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ABSTRACT

A high dynamic range (HDR) image uses a large bit depth up to 
32-bit per pixel per color channel. Due to hardware limitation, it 
can neither be captured by conventional camera in a single 
photo, nor be displayed on a conventional monitor. In this 
thesis, a software solution of HDR imaging is introduced from 
the synthesis to the display of high quality HDR images. 

Contrary to conventional imaging method, HDR imaging 
uses multiple exposures. Therefore, the variance of the same 
pixel in different images is non-linear and difficult to measure. 
To solve this, a new inter-pixel relationship function (IRF) is 
proposed using both spatial and temporal correlations. It is 
widely used in many HDR imaging components. 

Multiple input images produce a new ghosting artifact due to 
moving object. A real time de-ghosting method is first proposed 
using bi-directional comparison and IRF based moving object 
detection and patching. It is lightweight in terms of both time 
complexity and physical memory consumption, which makes it 
suitable for mobile devices. We further extend it by merging the 
IRF with a histogram intensity mapping and adopting a new 
threshold model based on statistical study. The extended de-
ghosting scheme is more robust in the scenarios where the 
moving object occupies larger areas. 

Noise in the input images will be kept in the synthesized 
HDR image. A 2D de-noising factor is proposed for the 
synthesis of 32-bit HDR image, and a noise reduced tone-
mapping is proposed to map the 32-bit HDR image back to 8-bit 
for the display based on information content weighting (ICW). 
Both methods have low time complexity. 

It is also important to measure if the input images are from 
the same scene, as huge artifacts may appear if a wrong image is 
involved in the synthesis process. We proposed a structure 
similarly based metric which is robust to the images with 
different exposures. We also proposed a metric for the 
measurement of two 32-bit HDR images based on their 
histograms of radiance maps. 
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1 Introduction 

When a scene with high light contrast is captured by a camera, 
either the dark area or the bright area will be saturated in the 
output image, as shown in Fig. 1.1. This is due to the limitation 
of the camera sensor, and has been existed since the first camera 
was invented. To solve this, high dynamic range (HDR) imaging 
has been invented by recovering the real world scene using 
multiple conventional low dynamic range (LDR) images [1, 2, 3, 4, 
5, 6]. 
 

 
Fig. 1.1 Problem in capturing high dynamic range scene, where (Top) is the real world 
scene perceived by human eyes, and (Bottom) are the images captured by camera using 
different exposure times . Both over-exposed saturation (red square) and under-
exposed saturation (blue square) are present, even in the ‘best exposed’ image (Bottom 
Middle). The ‘real world scene’ image was synthesized through HDR imaging by 
using the bottom 3 images. 
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gradients rather than actual pixel intensities was shown to 
increase the dynamic range at the cost of computationally 
expensive Poisson solver [8]. As far as I know, the gradient 
camera is still a theoretical solution. In assorted pixels method, 
multiple neighboring pixels with fixed pattern filter are used to 
capture at different exposures [9, 10]. Each pixel in the final 
HDR image was reconstructed by 2-4 neighboring pixels, which 
results a loss of camera resolution. To overcome this problem, 
an alternative design uses an aligned spatial light modulator 
with programming imaging [11, 12]. However, such a design is 
difficult to implement with extra hardware expenses. 
 
Table 1.1 Typical acquisition approaches for capturing high dynamic range images. 

Acquisition Methods HDR Synthesis Methods

Single image capture

Gradient camera

Assorted pixels

Dynamic range adaptive imaging

Single device multiple image capture
Exposure bracketing (HDR video)

Generalized mosaics

Multi-device capture
Split aperture imaging

Optical splitting trees

 
The second acquisition approach uses single camera with 

multiple shots. Among all the methods, exposure bracketing [1, 
2, 13, 14, 15, 16] is most widely used as no hardware 
modification is required. Within a short period of time, multiple 
shots with different exposures are captured to minimize the 
change of the lighting condition as well as object movement. 
Then, intensity mapping is estimated using image correlation 
and an HDR radiance map is recovered by using the best 
exposure information in different input images. Similar 
approach was adopted to generate HDR video too [17, 18, 19, 
20]. In addition to exposure bracketing, a static filter with 
varying transitivity, named generalized mosaicing [21], was 
proposed to be mount in front of the camera sensor to mimic the 
exposure bracketing effect. 

Third acquisition approach uses multiple devices to capture 
the same scene with the help of prisms [22] or beam-splitters [23, 
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24, 25]. While these approaches allow dynamic content to be 
recorded, the additional optical elements split the emitting light 
and make it difficult to capture the low light scenes in their best 
exposures. 

1.3 HIGH DYNAMIC RANGE DISPLAY

Similar to image capturing system, the same hardware 
limitation exists in display system, where the HDR contents 
cannot be displayed on the conventional LDR display devices, 
such as monitors, printers and projectors. 

Nowadays, most HDR images are converted back into LDR 
images using HDR tone-mapping before being presented on 
conventional display devices. There are two major categories of 
HDR tone-mapping algorithms, global operators [26, 27, 28] and 
local operators [29, 30, 31, 32]. Global operators are optimized 
on the whole image without local adjustment based on 
neighboring information. It is fast with no intensity inversing, 
meaning the brighter pixels in the HDR image remains brighter 
or equal in the tone-mapping result. A good application is HDR 
video [33]. The tradeoffs of the global operators are the 
degradation of visual quality, such as lack of local contrast and 
lose of small details. In order to improve the visual quality, local 
operators use the neighboring information for every pixel to 
preserve the fine details. These operators are usually 
computationally expensive, and come with halo artifacts [29, 34] 
in some scenarios. 

Besides software solution, research based on hardware 
solutions has been carried out to display the original HDR 
content. A dual modulation display system [35] was invented by 
adding dynamic backlight using light-emitting diode (LED) to 
the conventional liquid crystal display (LCD), where the LCD 
provides color, resolution and normal contrast, while the 
programmable LED provides additional rear-illumination. 
Similar ideas have also been applied to increase the dynamic 
range of printer [36] and microscopy [37]. Another approach 
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focused on HDR projection by reallocating the light inside a 
conventional projector using an analog micro-mirror array in 
the optical path [38]. The light reallocation does not only 
increase the dynamic range of the projector display, but also 
reduces the device heat due to dumpling excessive background 
light out instead of physically enclosed in the device. 

1.4 WORKFLOW OF SOFTWARE SOLUTION OF HDR IMAGING

In this thesis, we focus on the software solution of HDR 
imaging. Therefore, exposure bracketing is used for HDR 
acquisition, and HDR tone-mapping is adopted for displaying. 
This solution is most widely used nowadays in consumer 
industry due to their capabilities of directly applying on existing 
hardware, which reduces the total cost. 

As shown in Fig. 1.3, a typical software solution of HDR 
imaging is not only one or two, but series of technologies that 
transforms the captured LDR images (usually 8-bit per color 
channel) into HDR images (usually 32-bit per color channel), 
and then display them on existing conventional display devices. 
The modules in amber color in Fig. 1.3 are the research topics 
covered in this thesis. The modules in green color are 
technologies used in our software solution of HDR imaging 
system, which are not covered in this thesis. 

Nevertheless, most consumer-level smart phones, such as 
iPhone 5, Samsung Galaxy S3, and HTC 1X1

                                                      
1 Information and datasheet can be found at  

, embedded HDR 
acquisition using exposure bracketing and display using 
exposure fusion [39, 40, 41, 42, 43, 44, 45], a combined fast process 
of HDR synthesis and HDR tone-mapping. We use exposure 
fusion for our mobile HDR solution, which is not covered in this 
thesis. 

iPhone 5: http://www.apple.com/iphone/ 
Galaxy S3: http://www.samsung.com/global/galaxys3/ 
1X: http://www.htc.com/www/smartphones/htc-one-x/ 
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2 Intensity Mapping 

Exposure bracketing is a photography technique to capture the 
same scene with multiple shots using various exposure settings. 
It allows high dynamic range contents to be stored at different 
exposure levels [46, 47, 48, 49].  
 

 
Fig. 2.1 A sequence of exposure bracketing images from the highest exposure (top left) 
to the lowest exposure (bottom right). The image of high exposure captured the detail of 
dark area with the saturation in the bright area, while the image of low exposure 
captured the bright area with the saturation in the dark area. 

 
HDR images are usually synthesized by recovering the 

radiance map using the correlations among these bracketing 
images. Among all the correlations, intensity mapping is the 
most important feature defined as 
 
 , ( ( )) = ( ) (2. 1)  
 
where   and  are the intensity value of the same co-located 
pixel  at different exposures of  and , and ,  is the intensity 
mapping from image  to image . It is noted that the intensity 
mapping is a directional function ( , , ). The intensity 
mapping function (IMF) is not only hardware dependant, but also 
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will change according to different capturing settings. And in 
most cases, it is not a linear function. 

The intensity mapping is the key to many HDR applications, 
such as image in-painting with exposure bracketing images, 
HDR image synthesis, and HDR de-ghosting. 

2.1 BACKGROUND

When taking a photo, each pixel in the digitized output image 
will contain a pixel value known as intensity. However, this 
value is rarely true measurement of the real radiance of that 
pixel [14]. Instead, it is the output of a mapping function, known 
as camera response function (CRF) [1, 2, 50], which maps the real 
world radiance to a pixel value within the display range.  

Intuitively, CRF is a good candidate for intensity mapping. It 
is a characteristic of the camera and the exposures and, thus, is 
not scene dependant and is commonly estimated from the 
exposure bracketing images. A popular CRF estimation is 
proposed in [2] by minimizing the quadratic objective function 
 

 
= [ , ] +

"( )   (2. 2)  

 
where  is the log reverse CRF function,  is the known pixel 
value at pixel location  (total  pixels) in the input image  
(total  images),  denotes the radiance value,  denotes the 
exposure time, and  represents a weight for the smoothness 
term. The CRF estimation is computationally expensive, and not 
very robust to noise, moving object or camera movement. Using 
CRF, the intensity mapping can be represented as 
 

 , ( ( )) = ( ( )  +  ) (2. 3)  
 

where the exposure time must be known in advance. 
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Another important approach uses a histogram based IMF[51], 
which determines the intensity mapping by using cumulative 
histogram. An IMF ( ) is defined as  

 
 , ( ( )) = ( ( ( )) (2. 4)  

 
where  ( ) = ( )   is the cumulative histogram of the  
original histogram . Compared to the CRF-based approach, the 
histogram based intensity mapping does not require exposure 
time information, and does not require hard image alignment. A 
drawback is that it only makes use of the pixel statistic 
information, but not any spatial correlation. 

2.2 INTER-PIXEL RELATIONSHIP FUNCTION

The inter-pixel relationship function (IRF) is proposed in [P1], and 
the idea is illustrated in Fig. 2.2. If the intensity at A’ and B’ are 
the same at one exposure time in the reference, they shall be the 
same at the other exposure times (not for saturated pixels). This 
is according to photography reciprocity [52]: when exposure 
time changes, the pixel values change correspondingly. 
However, during the image capturing process, sensor noise, 
sampling noise and compression noise are commonly generated. 
Thus, it is more accurate to find all the pixels with the same 
intensity in the reference image and calculate their co-location 
values in the test image using mean average. The IRF is defined 
as 

 

 , ( ( )) =
( )( ( ))

| ( ( ))|
 (2. 5)  

 
where | ( ( ))|  is the cardinality of the spatially co-located 
pixels set ( ) : { | ( ) = ( )}. 
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Fig. 2.2 Three differently exposed images with degraded image due to camera shake. 
The pixel value of B can be copied from A as their co-location A’ and B’ have the same 
intensity in the reference image. 

The IRF has three useful characteristics inherited from the 
physical camera response. (1) The IRF is a monotonically 
increasing function. (2) The pixels located at left end (dark 
pixels), as shown in Fig. 2.3, and right end (bright pixels) are 
highly compressed due to dynamic range limit. (3) When 
choosing different reference images, shorter exposure time leads 
to smaller slope at the left end and bigger slope at the right end. 

 

 
Fig. 2.3 An example of IRF function. Multiple IRF curves are presented with different 
images (captured at different exposure time) to the same reference image. 
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2.3 INPAINTING WITH EXPOSURE BRACKETING IMAGES

Images of same scene can be captured with different exposures 
and combined with computing power to synthesize image that 
overcomes limitation of conventional cameras. However, useful 
data can be lost due to camera shake, especially when capturing 
by a hand held device, which generates noticeable artifact in the 
synthesized image. In other words, different from the traditional 
image in-painting [53, 54, 55, 56] and scene completion [57], 
which generate only photorealistic patches, the degraded image 
in-painting in digital photography requires true luminance 
value of real world scene. Therefore, the challenge of patching is 
to find useful relations between missing pixels and the 
remaining pixels. 

In [P1], an IRF is proposed to in-paint the missing area with a 
dual patching, where dual reference images are used. In order to 
increase the accuracy, the reference image is selected to have the 
smallest exposure difference with the degraded image. However, 
the dynamic range lost caused by the characteristic 2, described 
in chapter 2.2, is still inevitable. 

If the reference image has shorter exposure time than the 
degraded image, then as can be seen from the characteristic 3, 
the dark pixels in the reference image are mapped from a large 
contrast to a small one. In other words, it is a compressing 
process mapping multiple values to one, which in turn makes 
the IRF in this area more reliable. On the contrary, a highly 
compressed bright pixel in the reference image is mapped into 
multiple values in the degraded image, which causes inaccuracy 
due to the dynamic range lost. Thus, multiple reference images, 
with longer and shorter exposure time respectively, can be 
adopted to recover the lost dynamic range and enhance the 
patching accuracy. The missing pixel intensity is calculated by 

 

 ( ) =
, ( ( )) , ( ) + , ( ) , ( )

, ( ) + , ( )
 (2. 6)  
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where image  and  are the two reference images, image  is the 
degraded image to be patched, and  is the weighting function 
defined as 

 

 , ( ) =
log( + 1) ,    

log(256 ) , <
, [0,255] (2. 7)  

 
which is plotted in Fig. 2.4.  
 

 
Fig. 2.4  

The missing area in an exposure bracketing image set can be 
recovered using the proposed intensity mapping. Compare with 
other methods, the exemplar-based in-painting [54] works well 
on simple texture, such as the table top. However, obvious 
errors can be seen at complex contents, like the baby’s face and 
the title of the book as shown in Fig. 2.5 (b), due to short of 
reference. The CRF-based method [58] recovers the contents by 
the luminance shift from the reference pixels, where obvious 
artifact can be seen at the border. The method proposed in [P1] 
recovers the original scene effectively in terms of speed and 
quality. We tabulate the peak signal-to-noise ratio (PSNR) of each 
method in Table 2.1. The test was set up similar to Fig. 2.5 (a), 
where part of the image is missing due to camera movement, 
but can be patched using two references (a brighter reference 
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and a darker reference). This scenario is common in HDR 
imaging. The result was averaged from ten test sets. 

 
Table 2.1 Typical acquisition approaches for capturing high dynamic range images. 

Method Inpainting [54] CRF based [58] IRF dual patching [P1]

PSNR (dB) 11.75 20.54 33.66

 
 

 
Fig. 2.5 Patching results of a degraded image from an exposure bracketing set shown 
in Fig. 2.2. (a) Original degraded image, (b) fixed image using exemplar-based in-
painting [54], (c) fixed image using CRF [58], (d) fixed image using the proposed 
method, (e) HDR image synthesized with degraded image, and (f) HDR image 
synthesized with patched image [P1]. 

The structure of the proposed method, intensity mapping 
plus dual patching, is extended to patch-based in-painting in 
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our later research works [59, 60]. It is proven to be an important 
tool for HDR de-ghosting [61, 62, 63]. 

2.4 BLIND EXPOSURE VALUE ESTIMATION

The exposure time is an important feature in synthesizing HDR 
images [1, 2, 50]. However, this information can be easily lost 
during copy or editing. Some methods have been introduced to 
recover the missing exposures. A radiometric model [14] was 
introduced to estimate the exposure ratio with an initial value 
set by user and an iterative process to fine-tune it. The results 
vary due to different initial settings and the order of the 
polynomial model used in the estimation. Another rough 
approximation was obtained by using IMF [51] between two 
images. However, as realized by the authors themselves, there 
are a lot of restrictions and assumptions involved. Thus, they 
used the approximated exposure ratio as the initial value to the 
radiometric model [14] in their experiments. 

In [P3], we present an accurate algorithm to recover the rate 
in between the different exposure ratios by using IRF [P1] and 
CRF [2]. For any pair of differently exposed images, each co-
located pixels represent the same intensity. Thus, if they are not 
saturated, their reverse CRF mapping difference shall be a 
constant that represents the radiance difference of their 
exposure ratio. The exposure ratio is defined using exposure 
value (EV) interval as = ( / ) . For any three 
images in an exposure set ( , + 1, + 2), we select one image ( ) 
as reference. The function CRF ( ) is calculated using the 
reference image and the first test image, while the pixel 
correlations are calculated using IRF between the reference 
image and the second image. As such, the EV unit in between 
the second test image and the reference image calculated by 

 

 
, , =

[ , ( ) , , ( ) ],

,

, , + 1
 (2. 8)
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where  and  are two constants that defines the valid region 
boundaries as 

 

 
, = max( ,

,
1( ))

, = min ( ,
,
1( ))

 (2. 9)  

 
where  and  are two constants defines the saturation value. 
When the first and second test images are the same, a base EV 
unit is estimated. The unknown exposure ratio is then calculated 
by 

 

 , =
, ,

, ,
,  (2. 10)  

 
If there is no prior exposure knowledge, assumptions of the 

exposure ratio between the first two LDR images are given, as 
shown in the experiments in Table 2.2. The estimated EV 
internals have small errors of 5-10%, which will not generate 
obvious distortion in the final HDR image. If the initial EV was 
not given correctly, as shown in EXP3, all the estimated EV will 
have the same proportion to the given initial EV, which results 
in synthesizing a near-identical HDR image (Chapter 5.2). 
 
Table 2.2 EV correction with given initial exposure ratio 

EV1 EV2 EV3 EV4

EXP1 Original 1 1 1 1

[P3] 1 (given) 0.92 0.94 0.88

EXP2 Original 1.66 1.66 1.66 1.66

[P3] 1.66 (given) 1.63 1.62 1.58

EXP3 Original 1 1 1 1

[P3] 1.58 (given) 1.53 1.54 1.51
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3 De-ghosting 

When synthesizing HDR image using exposure bracketing 
images, ghosting artifacts usually appear due to moving object 
[64, 65, 66, 67], such as moving people and trees waving in the 
wind. To solve this, de-ghosting is applied before the HDR 
synthesis. 

There are three major challenges in the de-ghosting process. 
Firstly, LDR images are taken with different exposures and 
cannot be compared directly. It is difficult to find a good 
criterion to bring different exposed images to the same 
comparable scale. Secondly, moving object pixels are classified 
by a threshold, but other factors, such as capturing parameters 
(ISO, shutter speed), capturing hardware and light conditions, 
affect the pixel co-relationship and militate against the selection 
of a static threshold. The third challenge is how to recover the 
missing dynamic range information. 

3.1 IMAGE REGISTRATION

Before jump into de-ghosting, there is another important pre-
processing step: image registration [68, 69, 70]. It is required if the 
images are captured using hand held devices. Otherwise, blur 
will appear in the synthesized HDR image. Luckily, when 
capturing multiple images in burst mode, misalignment are 
commonly seen as rotation and translation only. Thus, in most 
cases, only image alignment is required in HDR imaging. 

Fig. 3.1 gives a simple comparison between image alignment 
and de-ghosting, which both cause blur in the synthesized HDR 
image. Blur due to mis-alignment is a global effect, while 
ghosting artifact due to moving object is content based. Thus, it 
is more difficult to do de-ghosting than alignment. 
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An iterative approach was proposed in [81] by detecting the 
probability of a pixel belonging to a moving object or 
background, which minimized the assumption on the input 
image sequence. However, it is difficult to remove the moving 
object completely, and the algorithm is computationally 
expensive. Local entropy was proposed in [82] by matching the 
structure of the distribution of the local pixel value. It is a 
relative fast process, as there is no need for response curve 
estimation. However, as realized by the authors themselves, it 
cannot detect even large intensity differences when two co-
located areas have similar local structure. Grosch [58] proposed 
a method using camera response function (CRF). It is suitable for 
the scenario when CRF is known, and can therefore perform a 
very fast detection process. Otherwise, with moving object, it is 
very difficult to estimate CRF accurately. A pre-classification 
process is adopted to solve this problem in [83]. Gallo et al. [84] 
used a similar idea with an assumption that log exposure can be 
mapped to a straight line, which in practice may not be the case 
due to different capturing hardware.  

3.3 REALTIME DE-GHOSTING FRAMEWORK

A real-time de-ghosting method is proposed in [P4], which 
includes detecting of moving object pixels and patching them 
using only the background pixels. Its major benefit is that it is 
fast and requires little computational resources, including 
processing power and physical memory. In all cases, the de-
ghosting process involves only two images: a test image and the 
reference image. Because of this, the de-ghosting process is 
capable of working concurrently with the image capturing 
process, as shown in Fig. 3.2. The main function modules are the 
IRF estimation [P1], bi-directional comparison, moving object 
classification and moving object correction. 
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Fig. 3.2 Framework of the proposed real-time de-ghosting method. 

 

 
Fig. 3.3 Original input LDR images (top), and the zoom-in HDR images composed 
using uni-direction method (bottom left) and bi-directional method [P4] (bottom right). 

The reciprocity law fails at underexposed and saturated 
pixels [52], as they are cut-off values due to the limitation of the 
dynamic range of the camera. Thus, the IRF values of those 
regions are unreliable. To solve this, bi-directional comparison is 
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proposed to mapping only from the more reliable pixel to the 
less reliable pixel as 

 

 , ( ) =
Z ( ) , ( ( )) ,  ( ( )) ( ( ))

, (Z ( )) ( ) , ( ) < ( ( ))
 (3. 1)  

 
where  is a triangle weighting function [2], and (p)  is the 
error estimator at pixel . The error estimator simulates the 
distance between the two co-located pixels despite the 
saturation area in the reference image. An example is given in 
Fig. 3.3. 
 

 
Fig. 3.4 Original LDR images (top), and the zoom-in HDR images synthesized 
without outline re-evaluation (bottom left) and with outline re-evaluation [P4] 
(bottom right). 

It is worth noticing that a simple but powerful outline re-
evaluation filter can be adapted to the system before patching 
using IRF. The outline artifacts usually appear at the boundaries 
due to a similar value between moving object and the 
background, which makes it difficult to detect. The idea of the 
re-evaluation filter is to use a tight threshold and re-detect the 
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boundary pixels. An example of the outline re-evaluation filter 
is shown in Fig. 3.4. 

 

 
Fig. 3.5 HDR image synthesized from (top) five exposure bracketing images, using (a) 
FDRTools1, (b) Photomatix2, (c) Qtpfsgui3

Similar to [58], once the error estimator is calculated, the 
moving object pixels are classified using empirical fixed 
threshold and patched using IRF. Experiments show a 

, and (d) [P4]. 

                                                      
1 FDRTools is available at http://www.fdrtools.com/ 
2 Photomatix is available at http://www.hdrsoft.com/ 
3 Qtpfsgui is available at http://qtpfsgui.sourceforge.net/ 
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significant improvement in the visual quality comparing to the 
off-the-shelf applications, such as Photoshop. 

Our real-time de-ghosting framework has been tested on 
smart phones, where computation resources are limited. 
Combine with sub-sampling in Chapter 3.5, the processing time 
of the whole de-ghosting process for three 8MB (resolution 
3264x2488) input images is only 700ms on Samsung Galaxy S3. 

 

 
Fig. 3.6 An example of the failed case due to extreme large intensity changes, where 
(top) are the input image sequence, and (bottom) is the synthesized HDR image. 

The tradeoff of this fast processing is the fixed threshold, 
which fails in some extreme scenarios, such as an example of a 
night scene shown in Fig. 3.6. 
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3.4 ROBUST DE-GHOSTING

The real-time de-ghosting method introduced in Chapter 3.3 is a 
useful solution for mobile applications, where processing power 
and memory are the most important concerns. On the other 
hand, when quality is the key requirement, such as an offline 
HDR synthesis using PC, a more robust de-ghosting method 
should be used. In [P5], an improved de-ghosting method is 
proposed using double-credit intensity mapping which suits for 
more scenarios and gives better visual quality. 
 

 
Fig. 3.7 An example of double-credit IMF estimation. Two input images with different 
exposures (Top); extraction of reference points (Bottom-left); guidance curve and the 
fine-tuned double-credit IMF (Bottom-right). 

Histogram-based intensity mapping [51] uses the statistic 
information of the intensity distribution. However, such a 
process loses position information. On the other hand, the 
proposed IRF [P1] uses spatial correlation which preserves the 
position information, but can be distorted by large moving 
objects. Thus, a double-credit de-ghosting method is used, 
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which combines the advantages of both statistic information and 
spatial correlation, and generates HDR image with high visual 
quality. 

The final double-credit IMF is estimated using the following 
steps. First, reference points are detected as the points with the 
same value in the histogram-based IMF as well as the spatial 
correlated IRF. A guidance curve is an approximation by 
extending the reference points with Bezier curve approximation 
[84, 85]. The guidance curve is a monotonic increasing function 
that cut across the identified reference points. It provides the 
initial value for the final IMF, and is useful to filter out large 
intensity changes due to moving object. The final double-credit 
IMF is then fine-tuned by calculating the spatial correlation 
using only the reliable pixels as 

 

 ( ) =
( )( ) + ( )

| ( )| +
, = 0, … ,255 (3. 2)  

 
where ( ) is the set of pixels with the same intensity of  in the 
reference image, | ( )| represents the cardinality of this set,  
denotes the pixel of the test image, ( ) is the guidance curve 
and  is a predefined weight to the guidance curve. 

In order to robustly detect moving objects in different 
lighting conditions, an empirical fixed threshold is no longer 
feasible. In [P5], a data driven training is conducted based on 
images captured from tripod cameras with no moving object in 
the scene. The training is aimed to find a threshold model 
suitable for different scenarios. A threshold vector is calculated 
based on pixel intensities (from 0 to 255) to classify 95% of the 
pixels as background. An example is shown at the bottom graph 
of Fig. 3.8. The image database includes more than 300 images 
from different cameras including Nikon D3, D300, Canon EOS-
1, IXUS850, IXUS900, and images downloaded from Internet. 
The images have been captured using different capturing 
parameters at different lighting conditions to ensure extensive 
coverage. The adaptive threshold model is concluded as 

 



26 
 

 ( , ) =

,                                          0

+ ( ), <

+
255

( ), < 255

 (3. 3)  

 
where  represents the original RGB value,  represents the 
optimum bi-directional comparison central point, and a, b, c, d 
are the key parameters derived from the variance vector (V) 
generated during the fine-tuning of the double-credit IMF 
estimations. We use the following: 
 

 

= 0.8
1

( )

= 0.8
1

( )
/

/

= 5

= 30

 (3. 4)  

 

 
Fig. 3.8 The top graph plots the forward IMF and the reverse IMF of two static images. 
The bottom graph plots the thresholds, with which 95% of the pixels are classified as 
background. The forward IMF gives better performance on the left side of the central 
point M, and the reverse IMF minimizes the threshold value on the right. 
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Table 3.2 SNR comparison of different intensity mapping functions 

SNR Histogram Spatial Double-credit [P5]

SET1 20.32 dB 21.79 dB 27.50 dB

SET2 28.49 dB 18.39 dB 33.05 dB

 
The proposed double-credit IMF is compared with the 

histogram based mapping [51] and spatial correlation based 
mapping [P1] using two sets of images, of which each contains 
30 bracketing image pairs. In SET1, the moving object (small 
size) appears only in one image. In SET2, the moving object 
appears in both images at different positions. An average 
improvement of 7 dB is achieved, see Table 3.2, and no ghosting 
artifacts appears in the visual quality test when comparing with 
the leading commercial software in Fig. 3.9 and Fig. 3.10. 

There is an extreme case where the proposed method will 
fail. When the moving object is in a saturated area in the 
reference image, there is no information to patch during the 
synthesis. In this case, the result of the proposed de-ghosting 
algorithm may contain grey color patches. A hybrid patching 
algorithm was proposed in [59, 60] to handle these saturated 
pixels using block patching. 

 
Fig. 3.9 De-ghosting visual comparison in a day scene with (top) input images, using 
(bottom-left) Photomatix, (bottom-middle) Photoshop1

 

, and (bottom-right) [P5]. 

 

                                                      
1 Photoshop is one of the leading image processing software, and can 
be found at http://www.photoshop.com/. 
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Fig. 3.10 De-ghosting visual comparison in a night scene with (top) input images, 
using (bottom-left) Photomatix, (bottom-middle) Photoshop and (bottom-right) [P5]. 

3.5 MOTION DETECTION FOR SUB-SAMPLED IMAGES

Modern smart phones, such as iPhone 5 and Galaxy S3, are 
capable of capturing images with resolution up to 8MB. Thus, 
sub-sampling based fast movement detection is proposed in [P6] 
to save computational resources for the de-ghosting algorithm 
to be running on the mobile devices. 
 

  
Fig. 3.11 A sub-sampling based movement detection scheme 

An example with a sub-sampling factor of 4 is selected to 
illustrate the proposed fast movement detection scheme in Fig. 
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3.11. The pixels that are labeled with 1 are checked at the first 
round, and they are marked by the blue color if they are 
detected as moving object pixels. The neighboring pixels of a 
blue pixel, labeled with 1, are then checked by using a sub-
sampling method. In Fig. 3.11, all neighboring pixels that are 
labeled by 2 are checked in the second round. They are also 
marked by the blur color if they are moving object pixels. Finally, 
the eight neighboring pixels of a blue pixel labeled by 2, i.e., 
those pixels are labeled by 3, are checked in the final round.  

Only 1/16 of all pixels are detected in the first round. Since 
only a small portion of pixels in an LDR image belongs to 
moving objects, the second and third rounds of detections are 
only conducted for a small amount of pixels in the LDR image. 
As such, the complexity of the improved movement detection 
scheme is significantly reduced. Meanwhile, since many pixels 
are in the neighborhoods of two pixels, a flag is attached to each 
pixel to indicate whether it has been detected. With the flag, 
each pixel will only be processed once. 

Experiments show that the overall number of processed 
pixels is reduced by up to 58.61%. 
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4 HDR De-noising 

4.1 DE-NOISING OF LDR IMAGES

Image noise is usually caused by the capturing device. Common 
sources for noise are photon shot noise, dark current noise, and 
readout noise[87]. Noise may also come from special hardware, 
such as fixed pattern noise in charge-coupled device (CCD) camera 
[88, 89] and thermal noise and flicker noise in complementary metal–
oxide–semiconductor (CMOS) device [90]. 

Lots of research studies have been conducted to tackle the 
single image de-noising problem. Simple local filters, such as 
Gaussian mean filter and median filter[91] bring in blur in the de-
noised image. Edge preserved filters, such as bilateral filter[92], 
are developed to keep the sharp edges. Studies have been 
carried out on the anisotropic diffusion based techniques[93] and 
wavelet-based techniques[94]. Patch-based image de-noising 
find similar patch information inside the original image and 
stack them together to remove the noise while keep the edges, 
such as non-local mean [95, 96], BM3D[97], PLOW [98, 99]. 

When multiple images of the same scene are available, it is 
possible to merge the information from the multiple inputs. The 
simplest approach is the frame average[100], which theoretically 
reduces the noise variance by N (number of input images). 
However, when the multiple images are not captured using the 
same exposure, frame average fails due to un-aligned exposures. 
To solve this, noise-reduced HDR synthesis is studied. 

4.2 NOISE-REDUCED HDR SYNTHESIS USING 2D-DENOISING 

FACTOR

The presence of noise in an HDR synthesis poses a serious 
degradation to the HDR image especially when the input 
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images are captured at low light condition or with high 
sensitivity settings. Various methods have been proposed to 
tackle this problem. We further classify them into three 
categories: 1) weighted frame average based preprocessing 
method; 2) intensity weighting based direct HDR synthesis 
method; 3) exposure time based HDR composition method. 
 

 
Fig. 4.1 Different approaches in noise-reduced HDR synthesis: (I) spatial-based edge 
preservation, (II) temporal based weighted frame average, (III) temporal-based 
intensity weighting, (IV) temporal-based exposure time weighting, and (proposed) 
temporal-based adaptive exposedness de-noising factor [P8]. The input image sequence 
can have more than 3 images. 

The weighted frame average based methods, as shown in Fig. 
4.1 (II), are based on an observation that brighter images contain 
less noise than the darker ones, as the brighter images have 
stronger signal and result in higher signal-to-noise ratios (SNRs). 
In order to average different exposed images, a calibration of the 
co-located pixels is required. CRF is used in [87] to recover the 
full radiance map for weighted averaging. IMF is used in [101] 
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to correct the dark image on LDR domain. These methods are 
capable of reducing noise in dark images at the cost of extra 
memory and computation time. 

To reduce those costs, the intensity weighting based methods 
are designed to work directly in the HDR synthesis, as shown in 
Fig. 4.1 (III). A well-exposed pixel is assigned higher weight 
than an over/under-exposed pixel in both CRF estimation and 
HDR composition [87, 102, 103]. These methods are 
computational efficient and work well at extreme bright and 
dark area. But they are not as effective in the areas in between 
the result of weighted frame average methods. 

Another approach attempts to use exposure times as 
additional weight [104] during the HDR composition, as shown 
in Fig. 4.1 (IV). However, the link between the estimation of the 
CRF and the proposed additional weight is missing. Color shift 
is another problem due to high weight at saturated pixels. 

In [P8], we propose a two-dimensional (2D) denoising factor 
to assign higher weight to pixel with less noise based on both 
pixel luminance and image exposure. It is controlled by two 
coefficients. It preserves edges and fine details without blurring 
artifact. In addition, both memory and computation time are 
significantly reduced compare to other denoising methods. 
 

 
Fig. 4.2 The proposed luminance based weighting compares to other weighting 
functions: broad hat [1], MN [14], Ward [1] and Debevec [2]. 

The first dimension of the proposed denoising factor assigns 
a high weight to a pixel with a large luminance. Several 
methods have been proposed using different normalized 
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weighting functions, as shown in Fig. 4.2. Given an assumption 
that the noise distribution is independent of the measurement 
pixel value z, it is argued in [14] that a luminance based 
weighting function (MN weight) = ( )/ ( )  achieves the 
best signal to noise ratio, where ( ) is the radiometric response 
function. In [87], the MN weight is modified by replacing pixel 
value with luminance value. A broad hat function ( ) = 1

( 1)  was used to restrict the saturated pixels that may 
cause color cast.  

 

 
Fig. 4.3 A family of weightings in the first dimension calculated by using (left) 

 

 
Since the radiometric response function is usually monotonic 

increasing, we approximate the luminance based weight by a 
controllable hat function and a Hermite interpolation. Thus, we 
can significantly reduce processing time on response function 
recovery by defining a new weighting factor as 

 

 ( ) =

1
z

1 ,                                  0 <

1 3 1
255 z

255
+ 2 1

255

255
, z < 255

 (4. 1)

 
where the two key coefficient are the denoising strength 
coefficient  and the saturation control coefficient . The smaller 
the value of , the hat function will become steeper and this will 
result in better denoising effect. A large  gives high weights to 
pixels with small value (luminance), which remains noise in the 
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synthesized HDR image. A family of the proposed weighting 
function is plotted in Fig. 4.3. In our experiments, = 2  is 
chosen. Our tests indicate that = 12 generetes similar results 
as [87]. The saturation control coefficient limits the near 
saturated pixels to avoid color cast due to gamut limitations (an 
empirical value = 200 is used here). 
 

 
Fig. 4.4 An example of the proposed 2D denoising factor with 3 input images. 

The second component of the proposed denoising factor is 
based on exposure time. More photons reach the camera sensor 
with a longer exposure time ( ), which results in a more 
accurate reading. Thus, the proposed 2D weighting factor is 
designed to multiply the geometrically normalized exposure 
times with the luminance based denoising factor as 

 

 , = ( ) (4. 2)  

 
where   denotes the jth image among the  input images. The 
geometrical normalization avoids overwhelming big weights 
cause by images with very large exposure time. Thus, a 
modified objective function for estimating the CRF function is 
derived from [2] as 
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, ,

+ [ ( , max( , … , )) "( )]  
(4. 3)  

 

 
Fig. 4.5 Visual quality comparison for 2D de-noising factor 
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The proposed denoising method is tested by comparing it 
with three HDR synthesis methods, as shown in Fig. 4.5. The 
noise is significantly reduced compared to [2] with the same 
processing time. No blur artifact is generated as in [105] due to 
pure spatial averaging. Comparing with [87], the quality of the 
proposed is about the same. It is achieved with only 1/5 of the 
processing time, since no intermediate steps for approximating 
response function is required. 

4.3 NOISE REDUCED TONE-MAPPING

Tone-mapping is usually the last step in the software solution of 
HDR imaging to display the HDR content on LDR display 
devices. In general, the tone-mapping is designed by using 
either global operator [26, 27, 28] or local operator [29, 30, 31, 32, 
106]. The benefits of global operator are fast, easy to implement 
and no lighting inverse. Although some studies [107, 108] show 
that global operators can produce good results in some 
scenarios, many research studies are conducted based on 
sophisticated local operators for better local contrast and fine 
details. 

A popular local tone mapping approach is based on the 
Retinex theory [109] that an image (I) is regarded as a product of 
two components ( = ): an illuminance component (L) which 
contains large luminance variance, and a reflectance component (R) 
which contains intrinsic information. Guassian filtering method 
for decomposition was proposed in [110], and was soon be 
replace by bilateral filtering [29, 111] due to its better edge 
preservation. However, halo artifact is usually seen in the 
compressed image due to edges leaking to the reflectance 
component. Thus, better edge-preserving methods are proposed. 
A weighted least square (WLS) framework is proposed in [34] with 
progressive detail layer decomposition. Other methods focused 
on the smoothness constraint [32, 112] and the localized data 
term [113] for better visual quality and fast processing. 
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In [P7], a base layer information content weighting (ICW) and a 
detail layer ICW are proposed to reduce the noise in two steps. 
In edge-preserving decomposition, the data term defines the 
fidelity between the based layer and the original luminance. It is 
proposed in an L2 norm for easy calculation. First, the base layer 
ICW is introduced to be used on the data term as 

 

 

min
( )

( ) ( ) ( )

+
( )

, ( ) +
( )

, ( )  
(4. 4)  

 
where  is the spatial varying ICW based on perceptual of HVS,  
and  are the smoothness coefficient,  denotes the log HDR 
luminance,  denotes the target base layer. Without the base layer 
ICW, the above equation is exactly the tone mapping using WLS edge-
stopping filter [34]. Inspired by the information theory [114, 115, 
116], the base layer ICW is defined as 

 

 ( ) =
1

2
log (1 +

( )
) (4. 5)  

 
where ( ) is the local variance at pixel , and represents the 
channel noising power, which is determined by the saliency 
coefficient ( ) as 

 
 = (c P) (4. 6)  

 
where (p) = { (p), p P}, and  denotes the ascending sort of . 
For example, c = 0.5 indicates the median value of .  
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The saliency coefficient is an important factor that controls 
the saliency of the base layer ICW. A small saliency coefficient 
indicates a small channel noise, and results a high fidelity 
between base layer and the original image. A large saliency 
coefficient indicates a large channel noise, and results a smooth 
base layer. If the saliency coefficient is too big, the base layer can 
be over smoothed. A visual comparison of different saliency 
coefficient is illustrated in Fig. 4.7. In our implementation, 
c = 0.3 is chosen as a balanced value. However, if the noise level 
of the input HDR image is very high, a bigger saliency 
coefficient generates better denoising result. 

During the decomposition process, the ICW helps to push the 
out of the base layer. Therefore, when the detail layer is 
subtracted from the clean base layer, more noise appears. Thus, 
a detail layer ICW is adopted as  

 
 ( ) = ( ) ( ) ( )  (4. 7)  

 
where  is the detail layer ICW derived from information 
fidelity criteria [114, 115, 116] as 

 

 ( ) =
1

log (1 + (
( )

( )
) ) (4. 8)  

 
where  denotes the local variance of the base layer in a small 
window,  denotes the covariance between the base layer and 
the original luminance,  and  are two constants control the 
effectiveness of the weighting function, and  is a normalization 
factor which full fill the constraints of ( ) [0,1]. If ( ) is 
bigger than 1, the detail layer is amplified. It is commonly used 
in detail enhancement, with the risk of amplifying the noise at 
the same time. An example of the effectiveness of the detail 
layer ICW is given in Fig. 4.8. 

The de-noising level is controlled by the different selection of 
two smooth coefficients  and , as shown in Fig. 4.8. It is worth 
noticing that the required details may be hidden by the heavy 
noise. In that case, when removing the noise, the details are 
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smoothed out too. Thus, balanced smooth coefficients are 
carefully chosen. 

 

 
Fig. 4.8 Detail layer with (left) normal decomposition and (right) ICW-based de-
noising factor 

 

 
Fig. 4.9 Detail layer with different de-noising levels. The de-noising effect is increased 
from left to right, and from top to bottom. 

We compared our solution with the approach of applying 
single image de-noising after tone mapping. We choose BM3D 
[97], which is one of the leading de-noising algorithms. The 
implementation was downloaded from the website provided by 
original authors1

                                                      
1 Matlab code of BM3D is downloaded from 
http://www.cs.tut.fi/~foi/GCF-BM3D/ 

. The interface is a Matlab function, but the core 
is implemented in C. In order to test against the full capability of 
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BM3D, the noise level sigma is varied from 15 to 70, in order to 
find the best PSNR for BM3D. 

Gaussian white noise is added to the original clean HDR 
image with different signal-to-noise ratio vary from 10dB to 
25dB. Three tone mapping solutions are tested using WLS, 
WLS+BM3D, and the proposed ICW. As shown in Table 4.1, on 
average, the result of the proposed ICW is 1dB less than the 
result of WLS+BM3D solution, but the processing time is 
significantly reduced. The big difference occurs when the noise 
level of the input image is high. The BM3D method is able to use 
the information from the neighboring blocks at the tradeoff of 
the processing time. 

In some experiments, the proposed ICW-based solution 
outperforms the combination of WLS + BM3D, when the noise 
level of the input image is not high. A possible explanation is 
that the proposed ICW works directly on the full radiance map 
of HDR image, while BM3D works on the result of WLS, which 
contains less information due to compression. 

 

 
Fig. 4.10 Visual comparison with WLS+BM3D. (a) Clean image and a zoom-in object. 
The input image of (b-e) are added with d

-e), the (top row) is WLS, the 
(middle row) is WLS+BM3D, and the (bottom row) is ICW proposed in [P7]. 

Visual comparison was conducted with five leading tone 
mapping algorithms based on different approaches. We selected 
the state-of-the-art global operator (2008) [108], and used the 
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implementation in Luminance HDR 1

 

. The other four local 
operators were selected from a scale-decomposition-based 
solution (2005) [117], a bilateral-based decomposition (2007) 
[111], a slide-window-based direct luminance compression 
(2010) [118], and an edge-preserved decomposition (2008) [34]. 
All implementations were downloaded from the website of 
original authors. Visual comparison show good improvement in 
terms of noise reduction. 

Table 4.1 Comparison with WLS+BM3D using quality metrics. 

HDR image 

noise level

Method WLS WLS+BM3D [P7]

SNR=10
PSNR 24.65 29.94 28.08

SSIM 0.3949 0.8994 0.6869

SNR=15
PSNR 28.82 32.95 32.60

SSIM 0.6194 0.9209 0.8913

SNR=20
PSNR 33.13 36.25 35.47

SSIM 0.8230 0.9643 0.9456

SNR=25
PSNR 36.82 38.53 37.88

SSIM 0.9330 0.9804 0.9710

Average Execution Time

(Resolution 1200x800)
3 s 35 s 7 s

 
For simplicity, we applied the same method directly on the R, 

G, B color channels respectively, and therefore, color shift can be 
seen in some tone mapping result. Future work will focus on 
how to find in a better HDR color space for the least color 
distortions. Pioneer work about HDR color space is proposed in 
[119]. 

 

                                                      
1 Luminance HDR 2.3.1 is available at http://qtpfsgui.sourceforge.net/. 
It was previously named Qtpfsgui. 
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Fig. 4.11 Tone mapping visual comparison: (a) global tone curve [108], (b) scale-
decomposition [117], (c) bilateral filtering decomposition [111], (d) direct luminance 
compression [118], (e) edge-preserved decomposition[34], and (f) noise reduced tone 
mapping based on ICW in [P7].  
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5 Image Difference 
Metrics 

5.1 IMAGE DIFFERENCE METRICS FOR EXPOSURE 

BRACKETING IMAGES

Quality metrics have been well studied for both image and 
video processing in the LDR domain. In image quality 
assessment, when a pair of images is given, the measurement of 
their similarity is classified as full-reference measurement. Many 
intensity-based indices [120, 121] have been proposed for their 
simplicity and fast processing. The most straightforward 
method is the peak signal to noise ratio (PSNR) calculated from the 
mean square error (MSE). However, PSNR is not accurate in many 
cases as it does not consider human visual system (HVS) [120]. An 
HVS-based structural similarity (SSIM) index [120] was 
proposed and was applied to video coding[122].  
 

 
Fig. 5.1 Images captured with moving people and vehicle using different exposures 
settings: (a) +1 EV, (b) 0 EV, and (c) -1 EV. Although they are captured at the same 
scene within a short period of time, the similarity index (SSIM) between each pair of 
images appears to be low at  

Although these indices are designed to focus on cases where 
the dynamic ranges and intensities of the two images are almost 
the same, in practical situation where processing of high 
dynamic range imaging requires different level of exposures [2], 
such indices would not serve the scenarios, as shown in Fig. 5.1. 
In fact, it is known that the dynamic range can also be changed 
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due to images or videos with different bit-depth[123]. Moreover, 
the images being compared are assumed to be well registered by 
the intensity-based indices. However, it is unavoidable that 
there are rotations and translations in a set of differently 
exposed LDR images, especially when they are captured for 
outdoor scenes. Thus, in order to test if an image sequence is 
captured at the same scene and can be used for an HDR 
synthesis, it is desirable to provide simple similarity indices that 
are robust to translation, rotation, intensity change and dynamic 
range between two input images. 

In [P2], a structural similarity index for two LDR image by 
using intensity mapping and Richards’ curve [124] is proposed. 
Due to the limitation of image un-alignment, the histogram 
based IMF [51] is used to unify the dynamic ranges or intensities 
of two images from the same scene[125]. On the other hand, 
when there is neither intensity nor dynamic range change 
between two images from the same scene, the accumulated 
histograms of two similar images are almost the same, and the 
structure of the corresponding image is kept even though it is 
mapped by the IMFs. The Richards’ curve is adopted to design a 
switch on the deduction of the mean values from these two 
images. When two images are from the same scene, the 
similarity index value is calculated without the deduction of 
mean values from the corresponding images. As a result, the 
proposed index is robust to small translation and rotation 
between two images. When two images are from different 
scenes, the mean value is deducted from the corresponding 
images before the similarity index value is computed. As such, 
the proposed index is sensitive to two “similar” images from 
different scenes. 

Different from the traditional quality metrics, the proposed 
image difference metrics does not contain any mean-opinion-
scores. As such, it is designed to test if two images are from the 
same scene instead of measuring the image quality. 

The proposed index is then extended by dividing the whole 
image into local windows as in[120]. The similarity of two 
images is detected by checking all pairs of local windows. Such 
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a local similarity index is insensitive to large intensity changes, 
dynamic range changes, translation and small rotations between 
images from the same scene. 

The proposed image difference metrics start with mapping of 
two input images. Similar to the bi-directional comparison in 
[P4], the bi-directional mapping is written as 

 

 Z ( ) =
, (Z (p)),  ( ( )) ( ( ))

Z (p),            ( ) < ( ( ))
 (5. 1)  

  

 Z ( ) =
, (Z (p)),  ( ( )) ( ( ))

Z (p),            ( ) < ( ( ))
 (5. 2)  

 
where  is a triangle weighting function, Z (p) and Z (p) are the 
intensity value of the two input images at pixel p,  denotes the 
histogram based IMF [51], and Z(p)  represents an intensity 
unified pixel. This intensity unified pixel is then further 
transformed using Richards’ curve [124] as 

 

 ( ) = Z ( ) 1 Z , Z  (5. 3)  

  

 ( ) = Z ( ) 1 Z , Z  (5. 4)  

 
where  and  are the mean values of Z  and Z , 
respectively, Z , Z  is the cosine of the angle between the two 
lexicographic order vectors of Z  and Z , and (z)  is the 
Richards’ curve defined as 

 

 ( ) =
1

1 + exp ( ( ))
 (5. 5)  

 
where  and  are the growth rate and the threshold of 
maximum growth. Both  and  are used to detect the similarity 
of two images. On one hand, when two images are from the 
same scene, the existence of intensity changes, small translation 
and rotation between them would appear in the value of  
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wherein the value will be almost equal to 1. On the other hand, 
when two images are from different scenes, the value of  
approaches 0. 

The similarity index is defined as 
 

 S ( , ) =
2 +

+ +

2 ( ) ( ) +

( ) + ( ) +
 (5. 6)  

 
where  and  are two small positive constants and they are 
adopted to improve the robustness of the proposed index when 
the local signal to noise ratio is very low. Similar to SSIM index 
[120], the proposed similarity index is applied locally rather 
than globally, and the final index is the summation of all the 
local indices as 

 
 S ( , ) = ( , ). (5. 7)  

 
Experiments show similar result when the input images are 

of the same exposure level, while the proposed similarity index 
has great improvement when dealing with exposure bracketing 
images. Table 5.1 shows the metrics comparison based on the 
images in Fig. 5.1. 

 
Table 5.1 Metrics comparison using images in Fig. 5.1. The similarity indices mark 
from 0 (least similar) to 1 (identical). 

Image Pair (1,2) (1,3)

SSIM [120] 0.6685 0.4216

[P2] 0.9828 0.9780

[P2] 0.9681 0.9504

 
Table 5.2 Metrics comparison using images in Fig. 5.2. The similarity indices mark 
from 0 (least similar) to 1 (identical). 

Image Pair (1,2) (1,3) (1,4) (1,5) (1,6)

SSIM [120] 0.5064 0.4750 0.4791 0.3803 0.3048

[P2] 0.9787 0.9357 0.9879 0.9674 0.9845

[P2] 0.9220 0.8547 0.9414 0.8875 0.8706
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Another example is given with the input images captured 

using hand held camera, shown in Fig. 5.2. The image sequence 
contains camera movement, moving object, and exposure 
changes. The propose image difference metrics show the 
robustness in Table 5.2. 

 

  
Fig. 5.2 Sequence of images contain camera movement, moving object, and exposure 
difference of EV interval of 2/3. Images are marked as 1 to 6 from left to right, top to 
bottom. 

5.2 IMAGE DIFFERENCE METRICS FOR HDR RADIANCE MAP

Due to lack of strict link between physical light radiance and 
image radiance map, HDR images with the same scene can be 
very different in terms of their direct peak signal-to-noise ratio 
(PSNR), as shown in Fig. 5.3. 
 

 
Fig. 5.3 Histogram in log radiance domain of (top) original HDR image, (mid) shifted 
HDR image, and (bottom) scale-invariant HDR image. 

Near-identical HDR images are defined in [P3] as the images 
that carry the same scene information, but are shifted or have 
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different scale in the log radiance domain. These images are 
classified as 

 
 H = HDRI : R log (R ) = a log(R ) + b  (5. 8)  

 
where  is the radiance of the HDR image, 0 represents the 
reference image defined as original, q represents the test image, 
a  is the scale factor, and b  is the shift factor. If the HDR image 
is composed from an LDR image set and the exposure info is 
known, the scale factor can be estimated as 

 

 a =
log , ,

log , ,

 (5. 9)  

 
where k ,  represents the exposure ratio between the first two 
images in the bracketing LDR image set. If the scale factor 
equals to 1, we call this HDR image shift-identical to the 
reference HDR image, and the shift factor is calculated as 

 
 b = log ( , ) log( , ) (5. 10)  

 
where t denotes the exposure time of the first LDR image in 
the sequence. If the scale factor does not equal to 1, we name it 
scale-identical, where the value of the shift factor is related to 
the scale factor and the image radiance. 

When comparing the similarity of two HDR images, they are 
assumed to be near-identical. Thus, the scale factor is estimated 
using 

 

 a =
max( | ( ) > ) min( | ( ) > )

max ( ) > min ( ) >
 (5. 11)  

 
where   is the histogram function and  is a small number for 
the robustness to noise. The shift factor is calculated by 
correlating two HDR radiance maps using a sliding window. 
The biggest coefficient represents the best fit as 
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 b =
( )

( ) (5. 12)  

 
where  is the total number of bins in plotting the histogram,  
and  are the maximum and minimum of the input radiance 
map, ( ) = ( ) = max ( ) , = 1,2, … ,2 , and  is the 
correlation coefficient function corresponding to the starting bin 
number of the sliding window. Finally, the proposed HDR 
metrics is calculated as 

 

 PSNR = 10 (
[a log , + b log , ]

) (5. 13)  

 
 where  is a constant. 
 

Table 5.3 Compose HDR images with the following parameters in six experiments. 

( )

Original 0.02 1 1 1 1

EXP1 0.50 1.00 0.98 0.99 0.96

EXP2 0.50 1.58 1.53 1.54 1.51

EXP3 0.50 0.32 0.93 0.49 1.58

EXP4 0.02 1.32 1.42 0.58 0.74

EXP5 0.50 0.15 0.17 3.22 3.60

EXP6 0.03 0.26 0.32 1.00 3.32

 
 

 
Fig. 5.4 Chart of PSNR from EXP1-6 from Table 5.1, where PSNR1 is the result of 
direct pixel-by-pixel comparison and PSNR2 is the result of [P3]. 
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An example is shown with HDR images synthesized with 

different parameters, as shown in Table 5.3. They are then 
compared with original HDR image using direct comparison 
and the proposed metrics. Results are illustrated in Fig. 5.4. In 
EXP1 and EXP2, despite the difference of initial exposure time 
( ) and small distortion of EV intervals ( =

log ( ) ), the relative relations among  to  
remains constant. The composed HDR images are verified to 
have high similarity in comparison to the original image, while 
the direct comparison shows a very low PSNR value in Fig. 5.4. 
In EXP3-6, random numbers are given for all parameters. The 
proposed metrics find the distortion and shown a drop of PSNR 
at average of 20dB. On the contrary, the direct comparison 
method was able to recognize the distortions. 
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6 Summary of 
Contributions 

6.1 CONTRIBUTION OF THE THESIS

[P1]: A new intensity mapping, named inter-pixel 
relationship function (IRF), was proposed to map in between 
two images with different exposures by using their spatial 
correlations. The IRF has a variety of applications related to 
HDR imaging. In this paper, a dual patching is demonstrated 
using IRF with 10dB improvement compared to single 
directional patching using camera response function (CRF). 

 
[P2]: In this paper, a structural similarity index is proposed 

for identifying if two images are captured from the same scene 
and can be used for HDR synthesis. Different from traditional 
quality metrics, the proposed method is robust to different 
dynamic range, small moving object, as well as possibly small 
rotation and translation. Therefore, it is useful to find exposure 
bracketing sequence from a large image database for batch 
processing. 

 
[P3]: In this paper, we introduce the concept of near-identical 

HDR images, which carry the same scene information with 
different radiance representations. The same set of near-
identical HDR images can be transformed to each other with 
linear functions in log radiance domain, which is useful in 
displaying HDR images and HDR tone mapping. By using the 
log histogram of the radiance map, we manage to derive the 
scale and shift parameters for the near-identical HDR images, 
which will help to get an accurate assessment using PSNR.  A 
simple application of how to compose near-identical HDR 
images using IRF [P1] is also presented in the paper. 
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[P4]: A real-time framework to detect and remove the ghost 

artifact is proposed based on IRF and bi-directional comparison. 
The algorithm delivers robust ghost removal in O(n) time, 
which makes it a good candidate for mobile application. 

 
[P5]: A robust de-ghosting algorithm is proposed to solve an 

extreme scenario where a moving object occupies a large area 
and distort the spatial correlation. The distorted spatial 
correlation is corrected by using pixel intensity distribution. A 
statistical threshold model is trained from the image database, 
and the key parameters are determined on the fly. Experiments 
show that the proposed algorithm achieves good visual quality 
in both day-time and night-time lighting conditions. 

 
[P6]: In this paper, a sub-sampling based moving object 

detection is proposed to shorten the de-ghosting processing time 
for images with large resolution. Experiments show that the 
detection speed can be increased by 50%. Combining with this 
sub-sampling scheme, the real-time de-ghosting framework 
proposed in [P4] is capable of running on mobile device to de-
ghost on three 8MB image within 700ms. 

 
[P7]: A noise reduced tone-mapping is proposed to suppress 

the noise from the input HDR image. The de-noising process is 
embedded in the tone-mapping process based on the 
information content weighting. Therefore, it requires very little 
additional processing time. The experiments show a significant 
improvement in the visual quality of final tone-mapping image 
in terms of noise reduction. 

 
[P8]: A 2D de-noising factor is proposed to generate noise 

reduced HDR image from a set of noise LDR images. Contrary 
to existing solutions that operates in the HDR radiance domain, 
the proposed de-noising factor works directly on the pixels of 
input LDR images, which reduces the processing time to 20% of 
the radiance-based method. 
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6.2 SUMMARY OF RESULTS

The publications [P1-P8] have covered a large portion of the 
HDR imaging value chain, as shown in Fig. 1.3. 

Technologies described in [P1, P4-6] are implemented in our 
PC application and mobile application. An example of three 
input images with moving object is shown in Fig. 6.1. Results 
from two state-of-the-art algorithms, the entropy-based de-
ghosting algorithm [82] and the patch-based iterative de-
ghosting algorithm [126], are shown in Fig. 6.2 and Fig. 6.3 
respectively. The former is good in the background sky but fails 
in the foreground people, while the latter performs the opposite 
way. 

We also compare with two leading image processing 
applications, Photoshop and Photomatix. The results are 
illustrated in Fig. 6.4 and Fig. 6.5, where the ghosting artifacts 
are clearly visible. Our proposed method, as shown in Fig. 6.6, 
generates clear image without ghosting artifacts. 

Expect the entropy-based algorithm [82], which requires to be 
running on MacOS, all the rest four are tested on the same 
laptop. Our proposed method uses the shortest processing time 
of 1.5 seconds. The others vary from 2.5 seconds to 350 seconds. 
 

 
Fig. 6.1 Three input images captured with moving object at different exposure levels 
with 2EV appart from each other. The image resolution is 2144x1424. No camera 
movement is involved. 
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Fig. 6.2 HDR image synthesized using entropy-based de-ghosting algorithm proposed 
in [82]. Obvious ghosting artifacts are seen in red and green blocks. The 
implementation was downloaded from original author’s website in the binary of 
PhotoSphere1

 

. The processing time was around 5 seconds on a Mac Pro desktop. An 
HDR image was synthesized from the binary app, and it was then been compressed 
using Photomatix through tone mapping. 

                                                      
1 PhotoSphere is a MacOS based binary implemented by the original 
authors. It is downloaded from http://www.anyhere.com/. 
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Fig. 6.3 HDR image synthesized using patch-based iterative approach in [126]. The 
de-ghosting performs well at foreground object in the red and green blocks. However, it 
fails at sky region. Obvious halo artifacts are seen around the palm tree leaves, and 
ghosting artifacts are seen in the blue block. The implementation was downloaded from 
original author’s website1

                                                      
1 Source code was downloaded from author’s project webpage at 
http://ece.ucsb.edu/~psen/hdr. 

 in the format of Matlab interface calling C routines. The 
whole processing cost 350 seconds. 
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Fig. 6.4 HDR image synthesized using Photoshop CS5. The sky in the blue block is 
well kept, while some under the palm tree are distorted. The foreground people are 
heavily distorted as seen in the red and green block. The processing cost around 7 
seconds on a Dell Precision M6700 laptop. 
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Fig. 6.5 HDR image synthesized using Photomatix Pro 4.2. The sky in the blue block 
performs well, while the foreground people suffer from ghosting artifacts, as seen in the 
red and green blocks. The processing time is around 2.5 seconds on a Dell Precision 
M6700 laptop. 
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Fig. 6.6 HDR image synthesized using our algorithm. A clear and sharp image is 
presented for both foreground people and background sky. The processing time is 1.5 
seconds on a Dell Precision M6700 laptop. 

 
State-of-the-art tone mapping algorithms usually focus on 

detail preservation and local contrast enhancement. We make 
use of information content weightings and proposed a noise-
reduced tone mapping in [P7]. White Gaussian noise 
(SNR=20dB) is added in the original HDR image. 
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Fig. 6.7 Tone mapping using tone curve [108]. Implementation is found in Luminance 
HDR. 

 
Fig. 6.8 Tone mapping using subbands decomposition [117]. Implementation is found 
from authors' website1

                                                      
1 Matlab source code is provided at 
http://www.mit.edu/~yzli/hdr_companding.htm 

. 
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Fig. 6.9 Tone mapping using edge-preserved decomposition [34]. Implementation is 
found from authors' website1

 

. 

Fig. 6.10 Noise reduced tone mapping proposed in [P7]. 

We compare with three leading tone mapping algorithms: 
global tone curve [108] as shown in Fig. 6.7, subbands 
decomposition [117] as shown in Fig. 6.8, and edge-preserved 

                                                      
1 Matlab source code is provided at 
http://www.cs.huji.ac.il/~danix/epd/  
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decomposition [34] as shown in Fig. 6.9. Result of the proposed 
method is shown in Fig. 6.10. 
 

It is important to test if a sequence of images is from the same 
scene, and can be used for HDR synthesis. A useful application 
is the batch processing for generating HDR images from a large 
database. Fig. 6.11 shows five pair of images captured from the 
same scene with different exposures. The proposed method 
from [P2] demonstrates the robustness to the exposure change. 
 

 
Fig. 6.11 Five image pairs captured at the same scene with different exposures. The 
exposure value differences for the five pair of images are (1) 2/3EV, (2) 4/3EV, (3) 2EV, 
(4) 8/3EV, and (5) 10/3EV. 

 
Table 6.1 Comparison of similarity indices using image pairs from Fig. 6.11 

Image Pair (1) (2) (3) (4) (5)

SSIM [120] 0.8638 0.5502 0.3229 0.1985 0.1067

[P2] 0.9999 0.9999 0.9999 0.9999 0.9999

[P2] 0.9994 0.9972 0.9917 0.9845 0.9855

 
Another five pairs of images are shown in Fig. 6.12, where 

pair 1 shows two images with moving objects and slightly 
exposure difference, and pair 2 and 3 are captured using hand-
held camera with camera movement. The proposed image 
differnce metrics [P2] is robust to all these changes. Pair 4 and 5 
are from two different scenes but looks similar. The proposed 
indices are able to identify the differences, as shown in Table 6.2. 
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Fig. 6.12 Five image pairs of different scenarios: (1) moving object in the image; (2) 
camera movement; (3) camera movement; (4) similar scene; and (5) similar scene. 
Pairs of (1)-(3) are suitable for HDR synthesis, while (4)-(5) are not. 

 
Table 6.2 Comparison of similarity indices using image pairs from Fig. 6.12 

Image Pair (1) (2) (3) (4) (5)

SSIM [120] 0.4750 0.5688 0.6454 0.4730 0.4725

[P2] 0.9357 0.9199 0.9634 0.6466 0.7193

[P2] 0.8547 0.9153 0.8932 0.4802 0.5030
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7 Conclusion 

In this thesis, we have studied a high quality software solution 
for HDR imaging, including intensity mapping, de-ghosting, 
noise-reduced HDR synthesis, noise-reduced tone mapping and 
simple image difference metrics. 

 De-ghosting is an important step to remove artifacts caused 
by moving object. A real-time solution is proposed for the 
application of mobile devices. An extended robust solution is 
proposed for handling moving object covering large area. Both 
solutions require moving object detection and correction by 
using intensity mapping. In the future, a model of how to detect 
moving object without hard threshold shall be studied. 

We have proposed to incorporate de-noising during the 
process of HDR synthesis and tone mapping respectively. The 
major advantage is computational efficiency. A 2D de-noising 
factor based on signal-to-noise ratio is proposed in the noise-
reduced HDR synthesis. An information content based de-
noising factor is proposed based on human visual system in the 
noise-reduced tone mapping. Both two de-noising steps operate 
in the RGB domain. In future work, better HDR luminance color 
space [119] shall be considered. 

An image difference metrics for measuring whether a pair of 
images is from the same scene is proposed to identify correct 
image sequence from a large image database for the synthesis of 
HDR images. It is robust to limited distortions, including small 
image un-alignment, small moving object and large luminance 
change due to exposure difference. Another metrics measures 
the similarity of two HDR images using histogram-based 
transform. This is still a very preliminary work for difference 
measures. In the future more sophisticated dynamic range 
independent quality metrics [127, 128] can be studied, which can 
measure images with different bit depth. 
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