93 research outputs found

    Analysis of optimal error estimates and superconvergence of the discontinuous Galerkin method for convection-diffusion problems in one space dimension

    Get PDF
    In this paper, we study the convergence and superconvergence properties of the discontinuous Galerkin (DG) method for a linear convection-diffusion problem in one-dimensional setting. We prove that the DG solution and its derivative exhibit optimal O(hp+1) and O(hp) convergence rates in the L 2 -norm, respectively, when p-degree piecewise polynomials with p ≥ 1 are used. We further prove that the p-degree DG solution and its derivative are O(h2p) superconvergent at the downwind and upwind points, respectively. Numerical experiments demonstrate that the theoretical rates are optimal and that the DG method does not produce any oscillation. We observed optimal rates of convergence and superconvergence even in the presence of boundary layers when Shishkin meshes are used

    Numerical simulation of conservation laws with moving grid nodes: Application to tsunami wave modelling

    Get PDF
    In the present article we describe a few simple and efficient finite volume type schemes on moving grids in one spatial dimension combined with appropriate predictor-corrector method to achieve higher resolution. The underlying finite volume scheme is conservative and it is accurate up to the second order in space. The main novelty consists in the motion of the grid. This new dynamic aspect can be used to resolve better the areas with large solution gradients or any other special features. No interpolation procedure is employed, thus unnecessary solution smearing is avoided, and therefore, our method enjoys excellent conservation properties. The resulting grid is completely redistributed according the choice of the so-called monitor function. Several more or less universal choices of the monitor function are provided. Finally, the performance of the proposed algorithm is illustrated on several examples stemming from the simple linear advection to the simulation of complex shallow water waves. The exact well-balanced property is proven. We believe that the techniques described in our paper can be beneficially used to model tsunami wave propagation and run-up.Comment: 46 pages, 7 figures, 7 tables, 94 references. Accepted to Geosciences. Other author's papers can be downloaded at http://www.denys-dutykh.com

    Multilevel Schwarz Methods for Porous Media Problems

    Get PDF
    In this thesis, efficient overlapping multilevel Schwarz preconditioners are used to iteratively solve Hdiv-conforming finite element discretizations of models in poroelasticity, and an innovative two-scale multilevel Schwarz method is developed for the solution of pore-scale porous media models. The convergence of two-level Schwarz methods is rigorously proven for Biot’s consolidation model, as well as a Biot-Brinkman model by utilizing the conservation property of the discretization. The numerical performance of the proposed multiplicative and hybrid two-level Schwarz methods is tested in different problem settings by covering broad ranges of the parameter regimes, showing robust results in variations of the parameters in the system that are uniform in the mesh size. For extreme parameters a scaling of the system yields robustness of the iteration counts. Optimality of the relaxation factor of the hybrid method is investigated and the performance of the multilevel methods is shown to be nearly identical to the two-level case. The additional diffusion term in the Biot-Brinkman model yields a stabilization for high permeabilities. Additionally, a homogenizing two-scale multilevel Schwarz preconditioner is developed for the iterative solution of high-resolution computations of flow in porous media at the pore scale, i.e., a Stokes problem in a periodically perforated domain. Different homogenized operators known from the literature are used as coarse-scale operators within a multilevel Schwarz preconditioner applied to Hdiv-conforming discretizations of an extended model problem. A comparison in the numerical performance tests shows that an operator of Brinkman type with optimized effective tensor yields the best performance results in an axisymmetric configuration and a moderately anisotropic geometry of the obstacles, outperforming Darcy and Stokes as coarse-scale operators, as well as a standard multigrid method, that serves as a benchmark test

    The Investigation of Efficiency of Physical Phenomena Modelling Using Differential Equations on Distributed Systems

    Get PDF
    This work is dedicated to development of mathematical modelling software. In this dissertation numerical methods and algorithms are investigated in software making context. While applying a numerical method it is important to take into account the limited computer resources, the architecture of these resources and how do methods affect software robustness. Three main aspects of this investigation are that software implementation must be efficient, robust and be able to utilize specific hardware resources. The hardware specificity in this work is related to distributed computations of different types: single CPU with multiple cores, multiple CPUs with multiple cores and highly parallel multithreaded GPU device. The investigation is done in three directions: GPU usage for 3D FDTD calculations, FVM method usage to implement efficient calculations of a very specific heat transferring problem, and development of special techniques for software for specific bacteria self organization problem when the results are sensitive to numerical methods, initial data and even computer round-off errors. All these directions are dedicated to create correct technological components that make a software implementation robust and efficient. The time prediction model for 3D FDTD calculations is proposed, which lets to evaluate the efficiency of different GPUs. A reasonable speedup with GPU comparing to CPU is obtained. For FVM implementation the OpenFOAM open source software is selected as a basis for implementation of calculations and a few algorithms and their modifications to solve efficiency issues are proposed. The FVM parallel solver is implemented and analyzed, it is adapted to heterogeneous cluster Vilkas. To create robust software for simulation of bacteria self organization mathematically robust methods are applied and results are analyzed, the algorithm is modified for parallel computations
    corecore