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ANALYSIS OF OPTIMAL ERROR ESTIMATES AND

SUPERCONVERGENCE OF THE DISCONTINUOUS GALERKIN

METHOD FOR CONVECTION-DIFFUSION PROBLEMS IN ONE

SPACE DIMENSION

MAHBOUB BACCOUCH AND HELMI TEMIMI

Abstract. In this paper, we study the convergence and superconvergence properties of the dis-
continuous Galerkin (DG) method for a linear convection-diffusion problem in one-dimensional
setting. We prove that the DG solution and its derivative exhibit optimal O(hp+1) and O(hp)
convergence rates in the L2-norm, respectively, when p-degree piecewise polynomials with p ≥ 1
are used. We further prove that the p-degree DG solution and its derivative are O(h2p) supercon-
vergent at the downwind and upwind points, respectively. Numerical experiments demonstrate
that the theoretical rates are optimal and that the DG method does not produce any oscillation.
We observed optimal rates of convergence and superconvergence even in the presence of boundary
layers when Shishkin meshes are used.

Key words. Discontinuous Galerkin method, convection-diffusion problems, singularly perturbed
problems, superconvergence, upwind and downwind points, Shishkin meshes.

1. Introduction

Problems involving convection and diffusion arise in several important applications
throughout science and engineering, including fluid flow, heat transfer, among many
others. Their typical solutions exhibit boundary and/or interior layers. It is well-
known that the standard continuous Galerkin finite element method exhibits poor
stability properties for singularly perturbed problems. One of the difficulties in
numerically computing the solution of singularly perturbed problems lays in the
so-called boundary layer behavior. In the presence of sharp boundary or interior
layers, nonphysical oscillations pollute the numerical solution throughout the com-
putational domain. In other words, the solution varies very rapidly in a very thin
layer near the boundary. Consult [49, 59, 58, 40, 55, 43] and the references cited
therein for a detailed discussion on the topic of singularly perturbed problems.
The discontinuous Galerkin (DG) methods have become very popular numerical
techniques for solving ordinary and partial differential equations. They have been
successfully applied to hyperbolic, elliptic, and parabolic problems arising from a
wide range of applications. Over the last years, there has been much interest in
applying the DG schemes to problems where the diffusion is not negligible and to
convection-diffusion problems.

The DG method considered here is a class of finite element methods using com-
pletely discontinuous piecewise polynomials for the numerical solution and the
test functions. DG method combines many attractive features of the classical
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finite element and finite volume methods. It is a powerful tool for approximat-
ing some differential equations which model problems in physics, especially in
fluid dynamics or electrodynamics. Comparing with the standard finite element
method, the DG method has a compact formulation, i.e., the solution within each
element is weakly connected to neighboring elements. DG method was initially
introduced by Reed and Hill in 1973 as a technique to solve neutron transport
problems [46]. In 1974, LaSaint and Raviart [42] presented the first numerical
analysis of the method for a linear advection equation. Since then, DG meth-
ods have been used to solve ordinary differential equations [7, 23, 41, 42], hyper-
bolic [19, 20, 21, 22, 34, 35, 45, 38, 39, 30, 57, 44, 2, 3, 16, 6] and diffusion and
convection-diffusion [17, 18, 53, 36] partial differential equations. The proceedings
of Cockburn et al. [33] an Shu [51] contain a more complete and current survey of
the DG method and its applications.

In recent years, the study of superconvergence of numerical methods has been an
active research field in numerical analysis. Superconvergence properties for finite
element and DG methods have been extensively studied in [7, 11, 37, 42, 56, 52] for
ordinary differential equations, [2, 3, 16, 6, 4, 15, 13, 7, 10] for hyperbolic problems
and [14, 5, 9, 10, 16, 24, 27, 30] for diffusion and convection-diffusion problems,
just to mention a few citations. A knowledge of superconvergence properties can
be used to (i) construct simple and asymptotically exact a posteriori estimates of
discretization errors and (ii) help detect discontinuities to find elements needing
limiting, stabilization and/or refinement. Typically, a posteriori error estimators
employ the known numerical solution to derive estimates of the actual solution
errors. They are also used to steer adaptive schemes where either the mesh is
locally refined (h-refinement) or the polynomial degree is raised (p-refinement). For
an introduction to the subject of a posteriori error estimation see the monograph
of Ainsworth and Oden [12].

The first superconvergence result for standard DG solutions of hyperbolic PDEs
appeared in Adjerid et al. [7]. The authors showed that standard DG solutions
of one-dimensional hyperbolic problems using p-degree polynomial approximations
exhibit an O(hp+2) superconvergence rate at the roots of (p + 1)-degree Radau
polynomial. They further established a strong O(h2p+1) superconvergence at the
downwind end of every element. Recent work on other numerical methods for
convection-diffusion and for pure diffusion problems has been reviewed by Cock-
burn et al. [32]. In particular, Baumann and Oden [18] presented a new numerical
method which exhibits the best features of both finite volume and finite element
techniques. Rivière and Wheeler [47] introduced and analyzed a locally conservative
DG formulation for nonlinear parabolic equations. They derived optimal error esti-
mates for the method. Rivière et al. [48] analyzed several versions of the Baumann
and Oden method for elliptic problems. Wihler and Schwab [54] proved robust
exponential rates of convergence of DG methods for stationary convection-diffusion
problems in one space dimension. We also mention the work of Castillo, Cockburn,
Houston, Süli, Schötzau and Schwab [50, 25, 26] in which optimal a priori error es-
timates for the hp-version of the local DG (LDG) method for convection-diffusion
problems are investigated. Later Adjerid et al. [8, 9] investigated the superconver-
gence of the LDG method applied to diffusion and transient convection-diffusion
problems. More recently, Celiker and Cockburn [27] proved a new superconver-
gence property of a large class of finite element methods for one-dimensional steady
state convection-diffusion problems. We also mention the recent work of Shu et al.
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[29, 30] in which the superconvergence property of the LDG scheme for convection-
diffusion equations in one space dimension are proven. Finally, Baccouch [14] ana-
lyzed the superconvergence properties of the LDG formulation applied to transient
convection-diffusion problems in one space dimension. The author proved that the
leading error term on each element for the solution is proportional to a (p+1)-degree
right Radau polynomial while the leading error term for the solution’s derivative
is proportional to a (p+1)-degree left Radau polynomial, when polynomials of de-
gree at most p are used. He further analyzed the convergence of a posteriori error
estimates and proved that these error estimates are globally asymptotically exact
under mesh refinement.

Cheng and Shu [28] developed a new DG finite element method for solving time de-
pendent partial differential equations with higher order spatial derivatives including
the generalized KdV equation, the convection-diffusion equation, and other types
of nonlinear equation with fifth order derivatives. Unlike the classical LDG method
which was first introduced by Cockburn and Shu in [36] for solving convection-
diffusion problems, their method can be applied without introducing any auxiliary
variables or rewriting the original equation into a larger system. They designed
numerical fluxes to ensure the stability of the schemes. Furthermore, they proved
sub-optimal p-th order of accuracy when using piecewise p-th degree polynomials,
while computational results show the optimal (p + 1)-th order of accuracy, under
the condition that p+ 1 is greater than or equal to the order of the equation.

In this work, we study the convergence and superconvergence of the DG method
applied to a linear convection-diffusion problem (1). We prove that the p-degree DG
solution and its derivative exhibit optimal O(hp+1) and O(hp) convergence rates
in the L2-norm, respectively. We further prove that the p-degree DG solution and
its derivatives are O(h2p) superconvergent at the downwind and upwind points, re-
spectively. Our proofs are valid for arbitrary regular meshes and for P p polynomials
with p ≥ 1, and for periodic, Dirichlet, and mixed Dirichlet-Neumann boundary
conditions. We present several numerical examples to validate the theoretical re-
sults. To the best knowledge of the authors, this work presents the first analysis of
optimal error estimates and superconvergence at the downwind and upwind points.

This paper is organized as follows: In section 2 we present the DG scheme for solving
the convection-diffusion problem and we introduce some notation and definitions.
We also present some preliminary results which will be needed in our error analysis.
In section 3, we present the DG error analysis and prove our main superconvergence
results. In section 4, we present several numerical examples to validate the global
superconvergence results. We conclude and discuss our results in section 5.

2. A model problem

In this paper, we study the superconvergence properties for the DG method for
solving the following one-dimensional convection-diffusion problem

(1a) −ǫu′′ + cu′ = f(x), a < x < b,
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subject to one of the following three kinds of boundary conditions (mixed Dirichlet-
Neumann, purely Dirichlet, and periodic) which are commonly encountered in prac-
tice:

u(a) = ul, u′(b) = ur,(1b)

u(a) = ul, u(b) = ur,(1c)

u(a) = u(b), u′(a) = u′(b),(1d)

where f(x) is a smooth function on [a, b]. For the sake of simplicity, we shall
consider here only the mixed boundary conditions (1b). This assumption is not
essential. If (1c) or (1d) are chosen, the DG method can be easily designed and our
results remain true. In this paper, the diffusion constant ǫ is a positive parameter
and the velocity c a nonnegative constant. The choice of c > 0 guarantees that
the location of the boundary layer is at the outflow boundary x = 1. In our error
analysis, we assume that ǫ = O(1). However, our numerical examples indicate that
the analysis techniques in this paper is still valid for singularly perturbed problems
when Shishkin meshes are used, see section 4.

In order to obtain the weak DG formulation, we divide the computational domain
Ω = [a, b] into N subintervals Ik = [xk−1, xk], k = 1, . . . , N , where a = x0 < x1 <
· · · < xN = b. We denote the length of Ik by hk = xk − xk−1. We also denote
h = max

1≤k≤N
hk and hmin = min

1≤k≤N
hk as the length of the largest and smallest

subinterval, respectively. Here, we consider regular meshes, that is h ≤ λhmin,
where λ ≥ 1 is a constant (independent of h) during mesh refinement. If λ = 1,
then the mesh is uniformly distributed. In this case, the nodes and mesh size are
defined by

xk = a+ k h, k = 0, 1, 2, . . . , N, h =
b− a

N
.

Throughout this paper, we define v(x−
k ) = lim

s→0−
v(xk+s) and v(x+

k ) = lim
s→0+

v(xk+

s) to be the left limit and the right limit of the function v at the discontinuity point
xk. We also use [v](xk) = v(x+

k )− v(x−
k ) to denote the jump of v at xk.

The weak DG formulation is obtained by multiplying (1a) on each element Ik by
a smooth test function v and integrating over Ik. After integrating by parts we
obtain the following weak formulation:

(ǫu′ − cu)(xk−1)v(xk−1)− (ǫu′ − cu)(xk)v(xk)− ǫu(xk−1)v
′(xk−1)

+ǫu(xk)v
′(xk)−

∫

Ik

(ǫv′′ + cv′)udx =

∫

Ik

fvdx.(2)

We define the piecewise-polynomial space V p
h as the space of polynomials of degree

at most p in each subinterval Ik, i.e.,

V p
h = {v : v|Ik ∈ P p(Ik), k = 1, . . . , N},

where P p(Ik) is the space of polynomials of degree at most p on Ik. Note that
polynomials in the space V p

h are allowed to have discontinuities across element
boundaries.

Next, we approximate the exact solution u(x) by a piecewise polynomial uh(x) ∈
V p
h . We note that uh is not necessarily continuous at the endpoints of Ik. The

discrete formulation consists of finding uh ∈ V p
h such that: ∀ v ∈ V p

h and k =
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1, · · · , N ,

(ǫû′
h − cûh)(xk−1)v(x

+
k−1)− (ǫû′

h − cûh)(xk)v(x
−
k )− ǫûh(xk−1)v

′(x+
k−1)

+ǫûh(xk)v
′(x−

k )−

∫

Ik

(ǫv′′ + cv′)uhdx =

∫

Ik

fvdx,(3)

where the numerical fluxes ûh and û′
h are, respectively, the discrete approximations

to the traces of u and u′ at the nodes. In order to complete the definition of the
discrete DG method we need to select ûh and û′

h on the boundaries of Ik. For
the mixed boundary conditions (1b), we take the following alternating numerical
fluxes; see Cheng and Shu [28]:

ûh(xk) =

{

ul, k = 0,
uh(x

−
k ), k = 1, . . . , N,

û′
h(xk) =

{

u′
h(x

+
k ), k = 0, . . . , N − 1,

ur, k = N.
(4a)

The numerical fluxes associated with the Dirichlet boundary conditions (1c) can be
taken as

ûh(xk) =







ul, k = 0,
uh(x

−
k ), k = 1, . . . , N − 1,

ur, k = N,

û′
h(xk) =

{

u′
h(x

+
k ), k = 0, . . . , N − 1,

u′
h(b

−) + p
hN

(uh(b
−)− ur), k = N.

(4b)

We note that, if the periodic boundary conditions (1d) are used then the numerical
fluxes can be taken as

ûh(xk) = uh(x
−
k ), û′

h(xk) = u′
h(x

+
k ), k = 0, . . . , N.(4c)

Notation, definitions, and preliminary results. In our analysis we need the
pth-degree Legendre polynomial defined by Rodrigues formula [1]

L̃p(ξ) =
1

2pp!

dp

dξp
[(ξ2 − 1)p], −1 ≤ ξ ≤ 1,

which satisfies the following properties: L̃p(1) = 1, L̃p(−1) = (−1)p, L̃′
p(−1) =

p(p+1)
2 (−1)p+1, and
∫ 1

−1

L̃k(ξ)L̃p(ξ)dξ =
2

2k + 1
δkp, where δkp is the Kronecker symbol.(5)

Mapping the physical element Ik = [xk−1, xk] into a reference element [−1, 1] by
the standard affine mapping

(6) x(ξ, hk) =
xk + xk−1

2
+

hk

2
ξ,

we obtain the p-degree shifted Legendre polynomial Lp,k(x) = L̃p

(

2x−xk−xk−1

hk

)

on

Ik.

In this paper, we define the L2 inner product of two integrable functions u and v

on the interval Ik as u, v)Ik =
∫

Ik
u(x)v(x)dx. Denote ‖u‖0,Ik = ((u, u)Ik)

1/2
to be

the standard L2-norm of u on Ik. Moreover, the standard L∞-norm of u on Ik is
defined by ‖u‖∞,Ik

= sup
x∈Ik

|u(x)|.
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Let Hs(Ik), where s = 0, 1, . . ., denote the standard Sobolev space of square inte-
grable functions on Ik with all derivatives u(j), j = 0, 1, . . . , s being square inte-
grable on Ik i.e.,

Hs(Ik) =

{

u :

∫

Ik

|u(j)|2dx < ∞, 0 ≤ j ≤ s

}

,

and equipped with the norm ‖u‖s,Ik =
(

∑s
j=0

∥

∥u(j)
∥

∥

2

0,Ik

)1/2

. TheHs(Ik)-seminorm

of a function u on Ik is given by |u|s,Ik =
∥

∥u(s)
∥

∥

0,Ik
.

We also define the norms on the whole computational domain Ω as follows:

‖u‖0,Ω =

(

N
∑

k=1

‖u‖
2
0,Ik

)1/2

, ‖u‖s,Ω =

(

N
∑

k=1

‖u‖
2
s,Ik

)1/2

, ‖u‖∞,Ω = max
1≤k≤N

‖u‖∞,Ik
.

The seminorm on the whole computational domain Ω is defined as |u|s,Ω =
(

∑N
k=1 |u|

2
s,Ik

)1/2

.We note that if u ∈ Hs(Ω), s = 1, 2, . . ., the norms ‖u‖s,Ω on the

whole computational domain is the standard Sobolev norm
(

∑s
j=0

∥

∥u(j)
∥

∥

2

0,Ω

)1/2

.

For convenience, we use ‖u‖Ik and ‖u‖ to denote ‖u‖0,Ik and ‖u‖0,Ω, respectively.

For p ≥ 1, we consider two special projection operators, P±
h , which are defined

as follows: For any smooth function u, the restriction of P−
h u to Ik is the unique

polynomial in P p(Ik) satisfying
∫

Ik

(P−
h u− u)vdx = 0, ∀ v ∈ P p−1(Ik), and (P−

h u− u)(x−
k ) = 0.(7a)

Similarly, the restriction of P+
h u to Ik is the unique polynomial in P p(Ik) satisfying

∫

Ik

(P+
h u− u)vdx = 0, ∀ v ∈ P p−1(Ik), and (P+

h u− u)(x+
k−1) = 0.(7b)

These special projections are used in the error estimates of the DG methods to
derive optimal L2 error bounds in the literature, e.g., in [30]. They are mainly used
to eliminate the jump terms at the element boundaries in the error estimates in
order to prove the optimal L2 error estimates.

In our analysis, we need the following well-known projection results. The proofs
can be found in [31].

Lemma 2.1. The projections P±
h u exist and are unique. Moreover, for any u ∈

Hp+1(Ik) with k = 1, · · · , N , there exists a constant C independent of the mesh
size h such that

∥

∥

∥
(u− P±

h u)(s)
∥

∥

∥

Ik
≤ Chp+1−s

k |u|p+1,Ik
,

∥

∥

∥
(u− P±

h u)(s)
∥

∥

∥
≤ Chp+1−s |u|p+1,Ω , s = 0, 1, 2.(8)

In addition to the projections P±
h , we also need another projection P̄h which is

defined as follows: For any smooth function u, the restriction of P̄hu to Ik is the
unique polynomial in P p(Ik) satisfying the following p + 1 conditions: For p = 1,
we require the two conditions

(P̄hu− u)′(x+
k−1) = 0, (P̄hu− u)(x+

k−1) = 0.(9a)
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For p = 2, we require the two conditions in (9a) and (P̄hu− u)(x−
k ) = 0 i.e.,

(P̄hu− u)′(x+
k−1) = 0, (P̄hu− u)(x+

k−1) = 0, (P̄hu− u)(x−
k ) = 0,(9b)

and, for p ≥ 3, we require the three conditions in (9b) and the following p − 2
conditions

∫

Ik

(P̄hu− u)vdx = 0, ∀ v ∈ P p−3(Ik).(9c)

The existence and uniqueness of P̄h is provided in the following lemma.

Lemma 2.2. The operator P̄h exists and unique. Moreover, we have the following
a priori error estimates: For p = 1,

∣

∣(u − P̄hu)(x
−
k )
∣

∣ ≤ h
3/2
k |u|2,Ik .(10)

Furthermore, for p ≥ 1,
∥

∥

∥
(u− P̄hu)

(s)
∥

∥

∥

Ik
≤ Chp+1−s

k |u|p+1,Ik
,

∥

∥

∥
(u− P̄hu)

(s)
∥

∥

∥
≤ Chp+1−s |u|p+1,Ω , s = 0, 1, 2.(11)

Proof. For p = 1, P̄hu is the first-degree Taylor polynomial for u about xk−1. It
can be seen from (9a) that P̄hu is uniquely given by

P̄hu(x) = u(x+
k−1) + u′(x+

k−1)(x− xk−1), x ∈ Ik.

Similarly, for p = 2, the three conditions in (9b) give the unique polynomial

P̄hu(x) =u(x+
k−1) + u′(x+

k−1)(x− xk−1)

+
u(x−

k )− hku
′(x+

k−1)− u(x+
k−1)

h2
k

(x − xk−1)
2, x ∈ Ik.

Now, we assume p ≥ 3. We are only going to proof the uniqueness, and since we
are working with a linear system of equations, the existence is equivalent to the
uniqueness.

Assume that w1 and w2 are two polynomials in P p(Ik) which satisfy (9b) and (9c).
Then the difference w = w1 − w2 satisfies the following p+ 1 conditions

w′(x+
k−1) = 0, w(x+

k−1) = 0, w(x−
k ) = 0,

∫

Ik

wvdx = 0,(12)

∀ v ∈ P p−3(Ik).

We note the w can be expressed in terms of the Legendre polynomials w(x) =
∑p

i=0 ciLi,k(x), x ∈ Ik. Using the orthogonality relation (5) and the p−2 conditions
∫

Ik
wvdx = 0, ∀ v ∈ P p−3(Ik), we get

w(x) = cp−2Lp−2,k(x) + cp−1Lp−1,k(x) + cpLp,k(x), x ∈ Ik.

Now using the three conditions w′(x+
k−1) = 0, w(x+

k−1) = 0, w(x−
k ) = 0 and

the properties of Legendre polynomials L′
i,k(xk−1) = (−1)i+1 i(i+1)

hk
, Li,k(xk−1) =

(−1)i, and Li,k(xk) = 1, we get the following linear system of equations

(−1)p−1 (p− 2)(p− 1)

hk
cp−2 + (−1)p

p(p− 1)

hk
cp−1 + (−1)p+1 (p+ 1)p

hk
cp = 0,

(−1)p−2cp−2 + (−1)p−1cp−1 + (−1)pcp = 0,

cp−2 + cp−1 + cp = 0.
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A direct computation reveals that the determinant of the coefficient matrix of this

linear system is 4(1−2p)
hk

6= 0. Thus, the system has the trivial solution cp−2 =

cp−1 = cp = 0. Thus w(x) = 0 which completes the proof of the existence and
uniqueness.

Next, we will prove (10). We note that, for p = 1, P̄hu is the first-degree Taylor
polynomial for u about xk−1. Using Taylor’s formula with integral remainder, we
have

(13) u(x) = P̄hu(x) +

∫ x

xk−1

(xk−1 − t)u′′(t)dt.

Thus,

∣

∣(u − P̄hu)(x
−
k )
∣

∣ =

∣

∣

∣

∣

∣

∫ xk

xk−1

(xk−1 − t)u′′(t)dt

∣

∣

∣

∣

∣

≤

∫ xk

xk−1

|xk−1 − t| |u′′(t)| dt.

Using |xk−1 − t| ≤ hk, x ∈ Ik and applying the Cauchy-Schwarz inequality, we
obtain
(14)

∣

∣(u− P̄hu)(x
−
k )
∣

∣ ≤ hk

∫ xk

xk−1

|u′′(t)| dt ≤ h
3/2
k

(

∫ xk

xk−1

|u′′(t)|
2
dt

)1/2

= h
3/2
k |u|2,Ik .

The proof of (11) is similar to that of (8) and is omitted. �

We would like to remark that the operator P̄hu is introduced only for the purpose
of technical proof of error estimates and superconvergence.

Finally, we recall some inverse properties of the finite element space V p
h which will

be used in our error analysis: For any vh ∈ V p
h , there exists a positive constant C

independent of vh and h, such that
∥

∥

∥
v
(s)
h

∥

∥

∥

Ik
≤ Ch−s

k ‖vh‖Ik , s ≥ 1, ∀ k = 1, . . . , N,(15a)

∣

∣vh(x
+
k−1)

∣

∣+
∣

∣vh(x
−
k )
∣

∣ ≤ Ch
−1/2
k ‖vh‖Ik , ∀ k = 1, . . . , N.(15b)

From now on, the notation C, C1, C2, etc. will be used to denote positive con-
stants that are independent of the discretization parameters h, but which may
depend upon (i) the exact smooth solution of the differential equation (1a) and
its derivatives and (ii) the diffusion constant ǫ. Furthermore, all the constants
will be generic, i.e., they may represent different constant quantities in different
occurrences.

3. Global convergence and superconvergence error analysis

In this section, we investigate the optimal convergence and superconvergence prop-
erties of the DG method. We prove that the DG solution and its derivative are
O(h2p) superconvergent at the downwind and upwind mesh points, respectively. In
order to prove these results, we need to derive some error equations.

Throughout this paper, e = u− uh denotes the error between the exact solution of
(1) and the numerical solution defined in (3).
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We subtract (3) from (2) with v ∈ V p
h and we use the numerical flux (4a) to obtain

the DG orthogonality condition for the error e on Ik:

(16a) Ak(e; v) = 0, ∀ v ∈ V p
h ,

where the bilinear form Ak(e; v) is given by

Ak(e; v) = (ǫe′(x+
k−1)− ce(x−

k−1))v(x
+
k−1)− (ǫe′(x+

k )− ce(x−
k ))v(x

−
k )

+ǫe(x−
k )v

′(x−
k )− ǫe(x−

k−1)v
′(x+

k−1)−

∫

Ik

(ǫv′′ + cv′)edx.(16b)

Performing a simple integration by parts on the last term of Ak(e; v) yields

Ak(e; v) = −ǫe′(x+
k )v(x

−
k ) + ǫe′(x+

k−1)v(x
+
k−1)

+[e](xk−1)(ǫv
′ + cv)(x+

k−1) +

∫

Ik

(ǫv′ + cv)e′dx.(17)

Using another integration by parts, we get

(18) Ak(e; v) = −ǫ[e′](xk)v(x
−
k )+ [e](xk−1)(ǫv

′ + cv)(x+
k−1)+

∫

Ik

(−ǫe′′ + ce′)vdx.

We note that, with the numerical fluxes (4a), the jumps of e and e′ at an interior
point xk are defined as [e](xk) = e(x+

k )−e(x−
k ) and [e′](xk) = e′(x+

k )−e′(x−
k ). Since

e(x−
0 ) = e′(x+

N ) = 0, the jumps at the endpoints of the computational domain are
given by

[e](x0) = e(x+
0 )− e(x−

0 ) = e(x+
0 ), [e′](xN ) = e′(x+

N )− e′(x−
N ) = −e′(x−

N ),

Next, we state and prove the following results needed for our analysis.

Theorem 3.1. Let u be the exact solution of (1). Let p ≥ 1 and uh be the DG
solution of (3) with the numerical fluxes (4a), then there exists a positive constant
C which depends on u and ǫ but independent of h such that

max
j=1,...,N

∣

∣e′(x+
j−1)

∣

∣ ≤ Chp ‖e′‖ .(19)

Proof. We construct the following auxiliary problem: find a function V ∈ H1([xj−1, b])
such that

ǫV ′ + cV = 0, x ∈ (xj−1, b],(20)

subject to the boundary condition V (xj−1) =
1

ǫ
,

where j = 1, . . . , N is a fixed integer. This problem has the following exact solution

V (x) =
1

ǫ
exp

(

−
c

ǫ
(x− xj−1)

)

, x ∈ Ω1 = [xj−1, b].(21)

Using (21), we have the regular estimate |V |p+1,Ω1
≤ C.

On the one hand, taking v = V in (17) and using (20), we have for all k = j, . . . , N

Ak(e;V ) = −ǫe′(x+
k )V (x−

k ) + ǫe′(x+
k−1)V (x+

k−1)

+[e](xk−1)(ǫV
′ + cV )(x+

k−1) +

∫

Ik

(ǫV ′ + cV )e′dx

= −ǫe′(x+
k )V (xk) + ǫe′(x+

k−1)V (xk−1),



412 M. BACCOUCH AND H. TEMIMI

which, after summing over Ik, k = j, . . . , N and using the fact that V (xj−1) = 1/ǫ
and e′(x+

N ) = 0, gives

N
∑

k=j

Ak(e;V ) = −ǫe′(x+
N )V (xN ) + ǫe′(x+

j−1)V (xj−1) = e′(x+
j−1).(22)

On the other hand, adding and subtracting P̄hV to V and using (16a) with v =
P̄hV ∈ P p(Ik), we write

Ak(e;V ) = Ak(e;V − P̄hV ) +Ak(e; P̄hV ) = Ak(e;V − P̄hV ).

Using (17) with v = V − P̄hV , we obtain

Ak(e;V ) = −ǫe′(x+
k )(V − P̄hV )(x−

k ) + ǫe′(x+
k−1)(V − P̄hV )(x+

k−1)

+[e](xk−1)(ǫ(V − P̄hV )′ + c(V − P̄hV ))(x+
k−1)

+

∫

Ik

(ǫ(V − P̄hV )′ + c(V − P̄hV ))e′dx.

Applying the properties of the projection P̄h (9a), we get

Ak(e;V ) = −ǫe′(x+
k )(V − P̄hV )(x−

k ) +

∫

Ik

(ǫ(V − P̄hV )′ + c(V − P̄hV ))e′dx.

Summing over the elements Ik, k = j, . . . , N and using (22), we obtain

e′(x+
j−1) =

N
∑

k=j

∫

Ik

(ǫ(V − P̄hV )′ + c(V − P̄hV ))e′dx

−
N
∑

k=j

ǫe′(x+
k )(V − P̄hV )(x−

k ).(23)

We consider the cases p = 1 and p ≥ 2 separately. We first consider the case p ≥ 2.
Since (V − P̄hV )(x−

k ) = 0 by (9b), (23) reduces to

e′(x+
j−1) =

N
∑

k=j

∫

Ik

(ǫ(V − P̄hV )′ + c(V − P̄hV ))e′dx.

Applying the Cauchy-Schwarz inequality and the estimate (11) yields

∣

∣e′(x+
j−1)

∣

∣ ≤

N
∑

k=j

∫

Ik

(

ǫ
∣

∣(V − P̄hV )′
∣

∣+ c
∣

∣V − P̄hV
∣

∣

)
∣

∣e′
∣

∣dx

≤
(

ǫ
∥

∥(V − P̄hV )′
∥

∥

0,Ω1
+ c

∥

∥V − P̄hV
∥

∥

0,Ω1

)

‖e′‖0,Ω1

≤
(

ǫC1h
p |V |p+1,Ω1

+ cC2h
p+1 |V |p+1,Ω1

)

‖e′‖ ≤ Chp ‖e′‖ .

Taking the maximum of both sides, we obtain the estimate (19).
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Next, we consider the case p = 1. Using the same steps as above and the estimate
(10), (23) gives

∣

∣e′(x+
j−1)

∣

∣ ≤

N
∑

k=j

∫

Ik

(

ǫ
∣

∣(V − P̄hV )′
∣

∣+ c
∣

∣V − P̄hV
∣

∣

) ∣

∣e′
∣

∣dx

+

N
∑

k=j

ǫ
∣

∣e′(x+
k )
∣

∣

∣

∣V − P̄hV )(x−
k )
∣

∣

≤ Ch ‖e′‖+

N
∑

k=j

ǫ
∣

∣e′(x+
k )
∣

∣h3/2 |V |2,Ik ≤ Ch ‖e′‖+ Ch3/2
N
∑

j=1

ǫ
∣

∣e′(x+
j )
∣

∣

≤ Ch ‖e′‖+ Ch3/2N max
j=1,...,N

∣

∣e′(x+
j−1)

∣

∣,

since e′(x+
N ) = 0. Using the fact that N ≤ b−a

hmin
≤ b−a

h , we get

∣

∣e′(x+
j−1)

∣

∣ ≤ Ch ‖e′‖+ Ch1/2 max
j=1,...,N

∣

∣e′(x+
j−1)

∣

∣.

Consequently, (1 − Ch1/2)maxj=1,...,N

∣

∣e′(x+
j−1)

∣

∣ ≤ Ch ‖e′‖ . Hence, for all h1/2 ≤
1
2C , we have

1

2
max

j=1,...,N

∣

∣e′(x+
j−1)

∣

∣ ≤ (1− Ch1/2) max
j=1,...,N

∣

∣e′(x+
j−1)

∣

∣ ≤ Ch ‖e′‖ .

We conclude that for p ≥ 1, maxj=1,...,N

∣

∣e′(x+
j−1)

∣

∣ ≤ Chp ‖e′‖ , which completes

the proof of (19). �

Next, we state and prove optimal L2 error estimate for ‖e′‖.

Theorem 3.2. Under the same conditions as in Theorem 3.1, there exists a con-
stant C such that

‖e′‖ ≤ C hp.(24)

Proof. We consider the following auxiliary problem: find a function U ∈ H1(Ω)
such that

ǫU ′ + cU = e′, x ∈ (a, b] subject to U(a) = 0.(25)

The above initial-value problem has a unique solution U ∈ H1(Ω)

U(x) =
1

ǫ

∫ x

a

exp
(c

ǫ
(s− x)

)

e′(s)ds,(26)

that verify the following regular estimates

‖U‖ ≤ C ‖e′‖ , |U |1,Ω ≤ C ‖e′‖ ,

|U |2,Ω ≤ C(‖e′‖+ ‖e′′‖), |U(b)| ≤ C ‖e′‖ .(27)

Taking v = U in (17) and using (25), we obtain

Ak(e;U) = −ǫe′(x+
k )U(xk) + ǫe′(x+

k−1)U(xk−1) + [e](xk−1)e
′(x+

k−1) +

∫

Ik

(e′)2dx,
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which, after summing over all elements and using the fact that U(a) = e′(x+
N ) = 0,

gives

N
∑

k=1

Ak(e;U) = −ǫe′(x+
N )U(xN ) + ǫe′(x+

0 )U(x0)

+

N
∑

k=1

[e](xk−1)e
′(x+

k−1) +

N
∑

k=1

∫

Ik

(e′)2dx

=

N
∑

k=1

[e](xk−1)e
′(x+

k−1) + ‖e′‖
2
.(28)

Adding and subtracting P̄hU to U and using (16a) with v = P̄hU ∈ P p(Ik), we get

Ak(e;U) = Ak(e;U − P̄hU) +Ak(e; P̄hU) = Ak(e;U − P̄hU).(29)

Applying (17) with v = U − P̄hU and using the properties of the projection P̄h

(9a), i.e., (P̄hu− u)′(x+
k−1) = (P̄hu− u)(x+

k−1) = 0, we obtain

Ak(e;U) = −ǫe′(x+
k )(U − P̄hU)(x−

k )

+

∫

Ik

(ǫ(U − P̄hU)′ + c(U − P̄hU))e′dx.(30)

Summing over all the elements Ik, k = 1, . . . , N , we arrive at

N
∑

k=1

Ak(e;U) = −ǫ

N
∑

k=1

e′(x+
k )(U − P̄hU)(x−

k )

+

∫ b

a

(ǫ(U − P̄hU)′ + c(U − P̄hU))e′dx.(31)

Combining (28) and (31), we get

‖e′‖
2

= T1 + T2 + T3,(32)

where

T1 =

∫ b

a

(ǫ(U − P̄hU)′ + c(U − P̄hU))e′dx,

T2 = −ǫ

N
∑

k=1

e′(x+
k )(U − P̄hU)(x−

k ),

T3 = −

N
∑

k=1

[e](xk−1)e
′(x+

k−1).

Next, we will estimate Tk, k = 1, 2, 3 one by one.

Estimate of T1. Applying the Cauchy-Schwarz inequality and using the estimate
(11) yields

T1 ≤ ǫ
(
∥

∥(U − P̄hU)′
∥

∥+ c
∥

∥U − P̄hU
∥

∥

)

‖e′‖

≤ ǫ
(

Chp |u|p+1,Ω + cChp+1 |u|p+1,Ω

)

‖e′‖

≤ C1h
p ‖e′‖ .(33)

Estimate of T2. We consider the cases p = 1 and p ≥ 2 separately. We first

consider the case p ≥ 2. Using the properties of the projection P̄h (9b), we have
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(P̄hU − U)(x−
k ) = 0. Thus, T2 = 0 for p ≥ 2. Next, we consider the case p = 1.

Using (19) with p = 1, (10), and the regularity estimate (27), we obtain

T2 ≤ ǫ

N
∑

k=1

∣

∣e′(x+
k )
∣

∣

∣

∣(U − P̄hU)(x−
k )
∣

∣

≤
N
∑

k=1

(Ch ‖e′‖)(h3/2 |U |2,Ik) = Ch5/2 ‖e′‖
N
∑

k=1

|U |2,Ik

≤ Ch5/2 ‖e′‖N1/2 |U |2,Ω ≤ C3h
5/2N1/2 ‖e′‖ (‖e′‖+ ‖e′′‖)

Since N ≤ b−a
h , we get

T2 ≤ C3h
2 ‖e′‖ (‖e′‖+ ‖e′′‖)

Using the smoothness of u, we have ‖e′‖ = ‖u′ − u′
h‖ ≤ ‖u′‖+ ‖u′

h‖ ≤ C since, for
p = 1, u′

h is piecewise constant. Furthermore, ‖e′′‖ = ‖u′′‖ ≤ C since u′′
h = 0 for

p = 1. We conclude that

T2 ≤ C2h
2, for p = 1 and T2 = 0, for p ≥ 2.(34)

Estimate of T3. Using the estimate (19), we have

T3 ≤

N
∑

k=1

∣

∣[e](xk−1)
∣

∣

∣

∣e′(x+
k−1)

∣

∣ ≤ Chp ‖e′‖

N
∑

k=1

∣

∣[e](xk−1)
∣

∣.

Next, we will estimate
∑N

k=1

∣

∣[e](xk−1)
∣

∣. Taking v = 1 in (18) and using (16a), we
get

[e](xk−1) = ǫ[e′](xk) +

∫

Ik

(ǫe′′ − ce′)dx = ǫe′(x+
k )− ǫe′(x+

k−1)− c

∫

Ik

e′dx.

Using the estimate (19) and applying the Cauchy-Schwarz inequality yields
∣

∣[e](xk−1)
∣

∣ ≤ ǫ
∣

∣e′(x+
k )
∣

∣ + ǫ
∣

∣e′(x+
k−1)

∣

∣+ ch1/2 ‖e′‖0,Ik

≤ ǫChp ‖e′‖+ ǫChp ‖e′‖+ ch1/2 ‖e′‖0,Ik ≤ C1h
p ‖e′‖+ ch1/2 ‖e′‖0,Ik .

Summing over all elements, applying the Cauchy-Schwarz inequality, and using the
fact that N ≤ b−a

hmin
≤ b−a

h , we get

N
∑

k=1

∣

∣[e](xk−1)
∣

∣ ≤ C1Nhp ‖e′‖+ ch1/2
N
∑

k=1

‖e′‖0,Ik

≤ C1Nhp ‖e′‖+ ch1/2N1/2 ‖e′‖

≤ C1(b− a)hp−1 ‖e′‖+ c(b− a)1/2 ‖e′‖

≤ C2h
p−1 ‖e′‖+ C3 ‖e

′‖ ≤ C4 ‖e
′‖ , p ≥ 1.

Therefore, we conclude that

T3 ≤ C3h
p ‖e′‖

2
.(35)

Now, combining (32) with (33), (34), (35) and applying the inequality ab ≤ 1
2a

2 +
1
2b

2, we get, for p ≥ 2,

‖e′‖
2
≤ C1h

p ‖e′‖+ C3h
p ‖e′‖

2
≤

1

2
C2

1h
2p +

1

2
‖e′‖

2
+ C3h

p ‖e′‖
2
,
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which gives ‖e′‖
2
≤ C2

1h
2p+2C3h

p ‖e′‖
2
. Similarly, if p = 1, we have an extra term

T2 ≤ C2h
2. Thus, for all p ≥ 1, we have

‖e′‖
2
≤ Ch2p + Chp ‖e′‖

2
≤ Ch2p + Ch ‖e′‖

2
,

Hence, for all h ≤ 1
2C , we have 1

2 ‖e
′‖

2
≤ (1 − Ch) ‖e′‖

2
≤ Ch2p, which completes

the proof of (24). �

In the following corollary, we state and prove 2p-order superconvergence of the
solution’s derivative at the upwind points.

Corollary 3.1. Under the same conditions as in Theorem 3.1, there exists a con-
stant C such that

max
j=1,...,N

∣

∣e′(x+
j−1)

∣

∣ ≤ Ch2p.(36)

Proof. Combining the estimates (19) and (24), we immediately obtain (36). �

Next, we state and prove optimal L2 error estimates for ‖e‖.

Theorem 3.3. Under the same conditions as in Theorem 3.1, there exists a con-
stant C such that

‖e‖ ≤ C hp+1.(37)

Proof. The main idea behind the proof of (37) is to construct the following adjoint
problem: find a function W such that

−ǫW ′′ − cW ′ = e, x ∈ (a, b),(38)

subject to W (a) = 0, ǫW ′(b) + cW (b) = 0.

This boundary-value problem has the following exact solution

W (x) = −
1

ǫ

∫ x

a

(
∫ y

b

e(s) exp
(c

ǫ
(s− y)

)

ds

)

dy

+
1− e−

c
ǫ
(x−a)

ǫ

∫ b

a

(
∫ y

b

e(s) exp
(c

ǫ
(s− y)

)

ds

)

dy,

that satisfy the regular estimate

|W |2,Ω ≤ C ‖e‖ .(39)

On the one hand, taking v = W in (16b) and using (38), we obtain

Ak(e;W ) = (ǫe′(x+
k−1)− ce(x−

k−1))W (xk−1)− (ǫe′(x+
k )− ce(x−

k ))W (xk)

+ǫe(x−
k )W

′(x−
k )− ǫe(x−

k−1)W
′(x+

k−1)−

∫

Ik

(ǫW ′′ + cW ′)edx

= (ǫe′(x+
k−1)− ce(x−

k−1))W (xk−1)− (ǫe′(x+
k )− ce(x−

k ))W (xk)

+ǫe(x−
k )W

′(xk)− ǫe(x−
k−1)W

′(xk−1) +

∫

Ik

e2dx.(40)
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Summing over all elements and using W (x0) = e(x−
0 ) = e′(x+

N ) = 0 and ǫW ′(xN )+
cW (xN ) = 0, gives

N
∑

k=1

Ak(e;W ) = (ǫe′(x+
0 )− ce(x−

0 ))W (x0)− (ǫe′(x+
N )− ce(x−

N ))W (xN )

+ǫe(x−
N)W ′(xN )− ǫe(x−

0 )W
′(x0) + ‖e‖

2

= e(x−
N ) (ǫW ′(xN ) + cW (xN )) + ‖e‖

2
= ‖e‖

2
.(41)

On the other hand, adding and subtracting P̄hW to W and applying (16a) with
v = P̄hW ∈ P p(Ik) yields

Ak(e;W ) = Ak(e;W − P̄hW ) +Ak(e; P̄hW ) = Ak(e;W − P̄hW ).(42)

We consider the cases p = 1 and p ≥ 2 separately. We first consider the case p ≥ 2.
Using (17) and the property of the projection P̄h, (42) gives

Ak(e;W ) =

∫

Ik

(

ǫ(W − P̄hW )′ + c(W − P̄hW )
)

e′dx,(43)

which, after summing over all elements and applying the Cauchy-Schwarz inequality
yields

N
∑

k=1

Ak(e;W ) =

N
∑

k=1

∫

Ik

(ǫ(W − P̄hW )′ + c(W − P̄hW ))e′dx

≤
(

ǫ
∥

∥(W − P̄hW )′
∥

∥+ c
∥

∥W − P̄hW
∥

∥

)

‖e′‖

Applying the standard interpolation error estimate (11), the regularity estimate
(39), and the estimate (24), we get

N
∑

k=1

Ak(e;W ) ≤ (ǫC1h |W |2,Ω + cC2h
2 |W |2,Ω)C3h

p

≤ (ǫC1hC4 ‖e‖+ cC2h
2C4 ‖e‖)C3h

p

≤ C(hp+1 + hp+2) ‖e‖ ≤ Chp+1 ‖e‖ .(44)

Combining the two formulas (41) and (44) yields ‖e‖
2
≤ Chp+1 ‖e‖ , which com-

pletes the proof of (37) in the case p ≥ 2.

Next, we consider the case p = 1. We note that (41) is still valid. However (43) is
not since P̄hW is defined by the two conditions (9a). Thus, we proceed differently.
Adding and subtracting P̄hW to W , using (16a), (17), and the properties of the
operator P̄h (9a), we obtain

Ak(e;W ) = Ak(e;W − P̄hW )

= −ǫe′(x+
k )(W − P̄hW )(x−

k ) +

∫

Ik

(ǫ(W − P̄hW )′ + c(W − P̄hW ))e′dx.(45)
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Summing over all the elements Ik, k = 1, . . . , N and using (41), we get

‖e‖
2

= −

N
∑

k=1

ǫe′(x+
k )(W − P̄hW )(x−

k )

+

N
∑

k=1

∫

Ik

(ǫ(W − P̄hW )′ + c(W − P̄hW ))e′dx

≤

N
∑

k=1

ǫ|e′(x+
k )|
∣

∣(W − P̄hW )(x−
k )
∣

∣

+
N
∑

k=1

∫

Ik

(

ǫ
∣

∣(W − P̄hW )′
∣

∣+ c
∣

∣W − P̄hW
∣

∣

)

|e′|dx.

Applying the Cauchy-Schwarz inequality, using the estimate (36) with p = 1,
and using the standard interpolation error estimate (10) i.e.,

∣

∣(W − P̄hW )(x−
k )
∣

∣ ≤

h
3/2
k |W |2,Ik , k = 1, . . . , N, we obtain

‖e‖
2

≤

N
∑

k=1

ǫ(C1h
2)(h

3/2
k |W |2,Ik) +

(

ǫ
∥

∥(W − P̄hW )′
∥

∥+ c
∥

∥W − P̄hW
∥

∥

)

‖e′‖

≤ C2ǫh
7/2

N
∑

k=1

|W |2,Ik +
(

ǫ
∥

∥(W − P̄hW )′
∥

∥+ c
∥

∥W − P̄hW
∥

∥

)

‖e′‖ .

Applying the Cauchy-Schwarz inequality
∑N

k=1 akbk ≤
(

∑N
k=1 a

2
k

)1/2 (
∑N

k=1 b
2
k

)1/2

,

the error estimates (11), (24), and the regular estimate (39), we get

‖e‖
2

≤ C2ǫh
7/2

(

b− a

h

)1/2
(

N
∑

k=1

|W |
2
2,Ik

)1/2

+
(

ǫC3h |W |2,Ω + cC4h
2 |W |2,Ω

)

C5h

=
(

C2(b− a)ǫh3 + C5

(

ǫC3h
2 + cC4h

3
))

|W |2,Ω

≤
(

C2(b− a)ǫh3 + C5

(

ǫC3h
2 + cC4h

3
))

C6 ‖e‖

≤ C (1 + h)h2 ‖e‖ ,(46)

Thus, we get ‖e‖ ≤ C (1 + h)h2 = O(h2), which completes the proof of (37) in the
case p = 1. �

Finally, we state and prove 2p-order superconvergence of the solution at the down-
wind points.

Theorem 3.4. Under the same conditions as in Theorem 3.1, there exists a con-
stant C such that

∣

∣e(x−
j )
∣

∣ ≤ Ch2p, j = 1, . . . , N.(47)

Proof. Again, the main idea behind the proof of (47) is to construct the following
auxiliary problem: find a function ϕ ∈ H2([a, xj ]) such that

−ǫϕ′′ − cϕ′ = 0, x ∈ [a, xj), subject to ϕ(xj) = 0, ϕ′(xj) =
1

ǫ
,(48)
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where j = 1, . . . , N is a fixed integer. This problem has the following exact solution

ϕ(x) =
1

c

(

1− exp
(c

ǫ
(xj − x)

))

, x ∈ Ω2 = [a, xj ].(49)

Using (49), we can easily show the following estimates

|ϕ(a)| =
1

c

(

exp
(c

ǫ
(xj − a)

)

− 1
)

= C > 0, |ϕ|p+1,Ω2
≤ C.(50)

We follow the reasoning of Adjerid et al. [11, Theorem 2.2]. First we prove (47)
for the case p ≥ 3. For p ≥ 3, let us consider an interpolation operator Ih which is
defined as follows: For any smooth function ϕ, Ihϕ ∈ V p

h ∩H2(Ω) and the restriction
of Ihϕ to Ik is the unique polynomial in P p(Ik) satisfying: for each k = 1, . . . , j,

Ihϕ(x
+
k−1) = ϕ(x+

k−1), (Ihϕ)
′(x+

k−1) = ϕ′(x+
k−1),

Ihϕ(x
−
k ) = ϕ(x−

k ), (Ihϕ)
′(x−

k ) = ϕ′(x−
k ),

and Ihϕ interpolates ϕ at p − 3 additional distinct points x̄k, k = 1, . . . , p − 3 in
(xk−1, xk). In our analysis, we need the following a priori error estimate [31]: For
any ϕ ∈ Hp+1(Ω2), there exists a constant C independent of the mesh size h such
that

‖ϕ− Ihϕ‖s,Ω2
≤ Chp+1−s |ϕ|p+1,Ω2

, s = 0, 1, 2.(51)

On the one hand, taking v = ϕ in (16b) and using (48), we obtain

Ak(e;ϕ) = (ǫe′(x+
k−1)− ce(x−

k−1))ϕ(x
+
k−1)− (ǫe′(x+

k )− ce(x−
k ))ϕ(x

−
k )

+ǫe(x−
k )ϕ

′(x−
k )− ǫe(x−

k−1)ϕ
′(x+

k−1)−

∫

Ik

(ǫϕ′′ + cϕ′)edx

= (ǫe′(x+
k−1)− ce(x−

k−1))ϕ(xk−1)− (ǫe′(x+
k )− ce(x−

k ))ϕ(xk)

+ǫe(x−
k )ϕ

′(xk)− ǫe(x−
k−1)ϕ

′(xk−1).(52)

Summing over all the elements Ik, k = 1, . . . , j and using ϕ(xj) = e(x−
0 ) = 0, and

ϕ′(xj) = 1/ǫ, gives

j
∑

k=1

Ak(e;ϕ) = (ǫe′(x+
0 )− ce(x−

0 ))ϕ(x0)− (ǫe′(x+
j )− ce(x−

j ))ϕ(xj)

+ǫe(x−
j )ϕ

′(xj)− ǫe(x−
0 )ϕ

′(x0)

= ǫe′(x+
0 )ϕ(x0) + e(x−

j ).(53)

On the other hand, adding and subtracting Ihϕ to ϕ and using (16a), we write
Ak(e;ϕ) as

(54) Ak(e;ϕ) = Ak(e;ϕ− Ihϕ) +Ak(e;ϕ) = Ak(e;ϕ− Ihϕ).

Using (16b) and the properties of the operator Ih, we obtain

Ak(e;ϕ) = (ǫe′(x+
k−1)− ce(x−

k−1))(ϕ− Ihϕ)(x
+
k−1)

−(ǫe′(x+
k )− ce(x−

k ))(ϕ− Ihϕ)(x
−
k )

+ǫe(x−
k )(ϕ− Ihϕ)

′(x−
k )− ǫe(x−

k−1)(ϕ − Ihϕ)
′(x+

k−1)

−

∫

Ik

(ǫ(ϕ− Ihϕ)
′′ + c(ϕ− Ihϕ)

′)edx

= −

∫

Ik

(ǫ(ϕ− Ihϕ)
′′ + c(ϕ− Ihϕ)

′)edx.(55)
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Summing over all the elements Ik, k = 1, . . . , j, we get

j
∑

k=1

Ak(e;ϕ) = −

j
∑

k=1

∫

Ik

(ǫ(ϕ− Ihϕ)
′′ + c(ϕ− Ihϕ)

′)edx.(56)

Combining the two formulas (53) and (56) yields

ǫe′(x+
0 )ϕ(x0) + e(x−

j ) = −

j
∑

k=1

∫

Ik

(ǫ(ϕ− Ihϕ)
′′ + c(ϕ− Ihϕ)

′)edx.(57)

Using the estimates (50) and (36) and applying the Cauchy-Schwarz inequality
yields

∣

∣e(x−
j )
∣

∣ ≤ ǫ
∣

∣e′(x+
0 )
∣

∣ |ϕ(x0)|+

j
∑

k=1

∫

Ik

(ǫ |(ϕ− Ihϕ)
′′|+ c |(ϕ− Ihϕ)

′|) |e| dx

≤ ǫ(C0h
2p)(C1) + (ǫ ‖(ϕ− Ihϕ)

′′‖0,Ω2
+ c ‖(ϕ− Ihϕ)

′‖0,Ω2
) ‖e‖0,Ω2

≤ ǫC0C1h
2p + (ǫ ‖(ϕ− Ihϕ)

′′‖0,Ω2
+ c ‖(ϕ− Ihϕ)

′‖0,Ω2
) ‖e‖ .(58)

Applying the standard interpolation error estimate (51) and the estimate (37), we
get

∣

∣e(x−
j )
∣

∣ ≤ ǫC0C1h
2p + (ǫC2h

p−1 |ϕ|p+1,Ω

+cC3h
p |ϕ|p+1,Ω)C4h

p+1 = O(h2p),(59)

which completes the proof of (47) when p ≥ 3.

For p = 2, let us consider another interpolation operator Th which is defined as
follows: For any smooth function ϕ, Thϕ ∈ V 2

h and the restriction of Thϕ to Ik is
the unique polynomial in P 2(Ik) satisfying: for each k = 1, · · · , j,

Thϕ(x
+
k−1) = ϕ(x+

k−1), Thϕ(x
−
k ) = ϕ(x−

k ), (Thϕ)
′(x−

k ) = ϕ′(x−
k ).

In our analysis, we need the following a priori error estimate [31]: For any ϕ ∈
H3(Ω2), there exists a constant C independent of the mesh size h such that

‖ϕ− Thϕ‖s,Ω2
≤ Ch3−s ‖ϕ‖3,Ω2

, s = 0, 1, 2.(60)

Adding and subtracting Thϕ to ϕ, using (16a), and the properties of the operator
Th, we obtain

Ak(e;ϕ) = Ak(e;ϕ− Thϕ)

= (ǫe′(x+
k−1)− ce(x−

k−1))(ϕ− Thϕ)(x
+
k−1)

−(ǫe′(x+
k )− ce(x−

k ))(ϕ− Thϕ)(x
−
k )

+ǫe(x−
k )(ϕ− Thϕ)

′(x−
k )− ǫe(x−

k−1)(ϕ− Thϕ)
′(x+

k−1)

−

∫

Ik

(ǫ(ϕ− Thϕ)
′′ + c(ϕ− Thϕ)

′)edx

= −ǫe(x−
k−1)(ϕ− Thϕ)

′(x+
k−1)−

∫

Ik

(ǫ(ϕ− Thϕ)
′′ + c(ϕ− Thϕ)

′)edx.(61)



DG METHOD FOR CONVECTION-DIFFUSION PROBLEMS 421

Summing over all the elements Ik, k = 1, . . . , j and using (53), we arrive at

ǫe′(x+
0 )ϕ(x0) + e(x−

j ) = −

j
∑

k=1

ǫe(x−
k−1)(ϕ− Thϕ)

′(x+
k−1)

−

j
∑

k=1

∫

Ik

(ǫ(ϕ− Thϕ)
′′ + c(ϕ− Thϕ)

′)edx.

Applying the Cauchy-Schwarz inequality and using the estimates (50), (36), and the
standard interpolation error estimates

∣

∣(ϕ− Thϕ)
′(x+

k−1)
∣

∣ ≤ Ch2
k

∥

∥ϕ(3)
∥

∥

∞,Ik
, k =

1, . . . , j, we obtain

∣

∣e(x−
j )
∣

∣ ≤ ǫ
∣

∣e′(x+
0 )
∣

∣ |ϕ(x0)|+

j
∑

k=1

ǫ
∣

∣e(x−
k−1)

∣

∣

∣

∣(ϕ− Thϕ)
′(x+

k−1)
∣

∣ +

j
∑

k=1

∫

Ik

(ǫ |(ϕ− Thϕ)
′′|+ c |(ϕ− Thϕ)

′|) |e| dx

≤ ǫ(C0h
4)(C1) + C2ǫh

2
∥

∥

∥
ϕ(3)

∥

∥

∥

∞,Ω2

j
∑

k=1

∣

∣e(x−
k−1)

∣

∣ +

(ǫ ‖(ϕ− Thϕ)
′′‖0,Ω2

+ c ‖(ϕ− Thϕ)
′‖0,Ω2

) ‖e‖0,Ω2
.(62)

Applying the standard interpolation error estimate (60) and the estimate (37), we
get

∣

∣e(x−
j )
∣

∣ ≤ ǫC0C1h
4 + C2ǫh

2
∥

∥

∥
ϕ(3)

∥

∥

∥

∞,Ω2

j
∑

k=1

∣

∣e(x−
k−1)

∣

∣

+(ǫC2h |ϕ|3,Ω + cC3h
2 |ϕ|3,Ω)C4h

3

≤ C

(

h4 + h2

j
∑

k=1

∣

∣e(x−
k−1)

∣

∣

)

.(63)

Next, we use induction and (63) to prove
∣

∣e(x−
j )
∣

∣ ≤ Ch4. Taking v = 1 in (16b)

with k = 1, using (16a) and e(x−
0 ) = 0, we get

0 = A1(e; 1) = ǫe′(x+
0 )− ce(x−

0 )− ǫe′(x+
1 ) + ce(x−

1 )

= ǫe′(x+
0 )− ǫe′(x+

1 ) + ce(x−
1 ).(64)

Applying (36) with p = 2, we obtain

∣

∣e(x−
1 )
∣

∣ =
∣

∣

∣

ǫ

c
(e′(x+

1 )− e′(x+
0 ))
∣

∣

∣
≤

ǫ

c
(
∣

∣e′(x+
1 )
∣

∣ +
∣

∣e′(x+
0 )
∣

∣)

≤
ǫ

c
(C0h

4 + C1h
4) = Ch4.(65)

Next, if we assume that
∣

∣e(x−
k )
∣

∣ ≤ C1h
4, k < j, then (63) yields

∣

∣e(x−
j )
∣

∣ ≤ C

(

h4 + h2

j
∑

k=1

∣

∣e(x−
k−1)

∣

∣

)

≤ C

(

h4 + h2

j
∑

k=1

C1h
4

)

≤ C
(

h4 + C1h
5
)

= O(h4),

which completes the proof of (47) for the case p = 2.
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Finally, we consider the case p = 1. We introduce an interpolation operator Lh

which is defined as follows: For any smooth function ϕ, Lhϕ ∈ V 1
h and the restric-

tion of Lhϕ to Ik is the unique polynomial in P 1(Ik) satisfying: for each k = 1, . . . , j,

Lhϕ(x
+
k−1) = ϕ(x+

k−1), Lhϕ(x
−
k ) = ϕ(x−

k ).

The following a priori error estimate [31] holds: For any ϕ ∈ H2(Ω2), there exists
a constant C independent of the mesh size h such that

‖ϕ− Lhϕ‖s,Ω2
≤ Ch2−s ‖ϕ‖2,Ω2

, s = 0, 1.(66)

Adding and subtracting Lhϕ to ϕ, using (16a), (16b), and the properties of the
operator Lh, we obtain

Ak(e;ϕ) = Ak(e;ϕ− Lhϕ)

= (ǫe′(x+
k−1)− ce(x−

k−1))(ϕ− Lhϕ)(x
+
k−1)

−(ǫe′(x+
k )− ce(x−

k ))(ϕ− Lhϕ)(x
−
k )

+ǫe(x−
k )(ϕ− Lhϕ)

′(x−
k )− ǫe(x−

k−1)(ϕ− Lhϕ)
′(x+

k−1)

−

∫

Ik

(ǫ(ϕ− Lhϕ)
′′ + c(ϕ− Lhϕ)

′)edx

= ǫe(x−
k )(ϕ − Lhϕ)

′(x−
k )

−ǫe(x−
k−1)(ϕ− Lhϕ)

′(x+
k−1)−

∫

Ik

(ǫ(ϕ− Lhϕ)
′′ + c(ϕ− Lhϕ)

′)edx.(67)

Since Lhϕ is a linear function on Ik, we have (Lhϕ)
′′(x) = 0. Thus, (67) simplifies

to

Ak(e;ϕ) = ǫe(x−
k )(ϕ− Lhϕ)

′(x−
k )− ǫe(x−

k−1)(ϕ− Lhϕ)
′(x+

k−1)

−

∫

Ik

(ǫϕ′′ + c(ϕ− Lhϕ)
′)edx.

Summing over all the elements Ik, k = 1, . . . , j, using e(x−
0 ) = 0 and (53) we arrive

at

ǫe′(x+
0 )ϕ(x0) + e(x−

j ) = ǫe(x−
j )(ϕ− Lhϕ)

′(x−
j )− ǫe(x−

0 )(ϕ − Lhϕ)
′(x+

0 )−

j
∑

k=1

∫

Ik

(ǫϕ′′ + c(ϕ− Lhϕ)
′)edx

= ǫe(x−
j )(ϕ− Lhϕ)

′(x−
j )−

j
∑

k=1

∫

Ik

(ǫϕ′′ + c(ϕ− Lhϕ)
′)edx.

Applying the Cauchy-Schwarz inequality and using the estimates (50), (36), and the
standard interpolation error estimates

∣

∣(ϕ− Lhϕ)
′(x+

k−1)
∣

∣ ≤ Chk ‖ϕ
′′‖∞,Ik

, k =
1, . . . , j, we obtain

∣

∣e(x−
j )
∣

∣ ≤ ǫ
∣

∣e′(x+
0 )
∣

∣ |ϕ(x0)|+ ǫ
∣

∣e(x−
j )
∣

∣

∣

∣(ϕ− Lhϕ)
′(x−

j )
∣

∣

+

j
∑

k=1

∫

Ik

(ǫ |ϕ′′|+ c |(ϕ− Lhϕ)
′|) |e| dx

≤ ǫ(C0h
2)(C1) + C2ǫh ‖ϕ

′′‖∞,Ij

∣

∣e(x−
j )
∣

∣

+(ǫ ‖ϕ′′‖0,Ω2
+ c ‖(ϕ− Lhϕ)

′‖0,Ω2
) ‖e‖0,Ω2

.
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Applying the standard interpolation error estimate (66) and the estimate (37), we
get
∣

∣e(x−
j )
∣

∣ ≤ ǫC0C1h
2 + C2ǫh ‖ϕ

′′‖∞,Ω2

∣

∣e(x−
j )
∣

∣+ (ǫ ‖ϕ′′‖0,Ω + cC3h |ϕ|2,Ω)C4h
2

≤ C
(

h2 + h
∣

∣e(x−
j )
∣

∣

)

,(68)

which gives (1 − Ch)
∣

∣e(x−
j )
∣

∣ ≤ Ch2. Therefore, for small h,
∣

∣e(x−
j )
∣

∣ = O(h2).

Thus, we have completed the proof of (47) for the case p = 1. WE conclude that
the superconvergence result (47) is valid for all p ≥ 1. �
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Figure 1: The L2-norm of the error ‖e‖ (left) and the derivative of error ‖e′‖ (right)
for Example 4.1 versus N using p = 1, 2, 3, 4.

Table 1. Maximum errors ‖e‖
∗
∞ at the downwind points for Ex-

ample 4.1 using p =1, 2, 3 and 4.

N p = 1 p = 2 p = 3 p = 4
‖e‖

∗
∞ Order ‖e‖

∗
∞ Order ‖e‖

∗
∞ Order ‖e‖

∗
∞ Order

18 3.1326e-1 — 1.7337e-4 — 7.2194e-8 — 1.6147e-11 —
20 2.4939e-1 2.16 1.1357e-4 4.01 3.8373e-8 5.99 6.9491e-12 8.00
22 2.0127e-1 2.24 7.6831e-5 4.10 2.1537e-8 6.06 3.2241e-12 8.05
24 1.6700e-1 2.14 5.4403e-5 3.96 1.2823e-8 5.96 1.6112e-12 7.97
26 1.4051e-1 2.15 3.9307e-5 4.06 7.9016e-9 6.04 8.4199e-13 8.10
28 1.1966e-1 2.16 2.9199e-5 4.01 5.0721e-9 5.98 4.6896e-13 7.90
30 1.0355e-1 2.09 2.2132e-5 4.01 3.3503e-9 6.01 2.4158e-13 9.61

4. Numerical Experiments

The purpose of this section is to validate the superconvergence results of this paper.
We use the DGmethod and carry out several experiments by numerically solving the
model problem (1a) subject to either mixed Dirichlet-Neumann or purely Dirichlet
boundary conditions. In addition, we use the DG method to solve a nonlinear
boundary-value problem to show numerically that the achieved results are still valid
for the nonlinear case. In all computations, we have used uniform and non-uniform
meshes and observed similar results. We compute the maximum DG errors ‖e‖

∗
∞

at the downwind point of each element Ik and then take the maximum over all
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Table 2. Maximum errors ‖e′‖
∗
∞ at the upwind points for Exam-

ple 4.1 using p =1, 2, 3 and 4.

N p = 1 p = 2 p = 3 p = 4
‖e′‖

∗
∞ Order ‖e′‖

∗
∞ Order ‖e′‖

∗
∞ Order ‖e′‖

∗
∞ Order

18 6.7456e-1 — 4.0220e-4 — 1.5828e-7 — 3.8419e-11 —
20 5.3758e-1 2.15 2.6334e-4 4.01 8.4109e-8 6.00 1.6506e-11 8.01
22 4.3449e-1 2.23 1.7829e-4 4.09 4.7222e-8 6.05 7.6525e-12 8.06
24 3.6076e-1 2.13 1.2614e-4 3.98 2.8103e-8 5.96 3.8263e-12 7.97
26 3.0373e-1 2.14 9.1169e-5 4.05 1.7322e-8 6.04 2.0073e-12 8.05
28 2.5883e-1 2.15 6.7711e-5 4.01 1.1117e-8 5.98 1.1156e-12 7.93
30 2.2405e-1 2.09 5.1317e-5 4.01 7.3431e-9 6.01 6.3594e-13 8.14

elements Ik, k = 1, . . . , N . Similarly, the maximum DG errors ‖e′‖
∗
∞ is computed

at upwind point of each element and by taking the maximum over all elements, i.e.,

‖e‖
∗
∞ = max

1≤k≤N
|e(x−

k )|, ‖e′‖
∗

∞ = max
1≤k≤N

|e′(x+
k−1)|.

Example 4.1. We consider the following convection-diffusion problem subject to
the mixed boundary conditions

−0.5u′′ + u′ = (x− 1) sinh(x) + (1− 0.5x) cosh(x), x ∈ [0, 4],

u(0) = 0, u′(4) = 4 sinh(4) + cosh(4).

The exact solution is given by u(x) = x cosh(x). We solve this problem using the
DG method on uniform meshes having N = 10, 20, 30, 40, 50, 60 elements and
using the spaces P p with p = 1, 2, 3, and 4. In Figure 1, we plot ‖e‖ and ‖e′‖ versus
N in a log-log graph in order to obtain the convergence rates for ‖e‖ and ‖e′‖. We
conclude that ‖e‖ = O(hp+1) and ‖e′‖ = O(hp). In Tables 1 and 2, we present
the maximum errors ‖e‖

∗
∞ and ‖e′‖

∗
∞ as well as their order of convergence. These

tables show that the DG errors e and e′ are O(h2p) superconvergent, respectively,
at the downwind and upwind endpoints of each subinterval. These results are in
full agreement with the theory.
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Figure 2: The L2-norm of the error ‖e‖ (left) and the derivative of error ‖e′‖ (right)
for Example 4.2 versus N using p = 1, 2, 3, 4.
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Table 3. Maximum errors ‖e‖
∗
∞ at the downwind points for Ex-

ample 4.2 using p =1, 2, 3 and 4.

N p = 1 p = 2 p = 3 p = 4
‖e‖

∗
∞ Order ‖e‖

∗
∞ Order ‖e‖

∗
∞ Order ‖e‖

∗
∞ Order

8 3.8100 — 2.1668e-3 — 8.8800e-7 — 1.0869e-9 —
10 1.8548 3.22 8.0881e-4 4.41 2.2702e-7 6.11 1.7250e-10 8.24
12 1.0544 3.09 3.7171e-4 4.26 7.4924e-8 6.08 3.9737e-11 8.05
14 6.5986e-1 3.04 1.9227e-4 4.27 2.9470e-8 6.05 1.1184e-11 8.22
16 4.4142e-1 3.01 1.0940e-4 4.22 1.3177e-8 6.02 3.7677e-12 8.14
18 3.1851e-1 2.77 6.6982e-5 4.16 6.4806e-9 6.02 1.4522e-12 8.09
20 2.3833e-1 2.75 4.3076e-5 4.18 3.4356e-9 6.02 6.0485e-13 8.31

Table 4. Maximum errors ‖e′‖
∗
∞ at the upwind points for Exam-

ple 4.2 using p =1, 2, 3 and 4.

N p = 1 p = 2 p = 3 p = 4
‖e′‖

∗
∞ Order ‖e′‖

∗
∞ Order ‖e′‖

∗
∞ Order ‖e′‖

∗
∞ Order

8 3.9551 — 2.5591e-3 — 1.4520e-6 — 8.1256e-10 —
10 1.9243 3.22 9.6153e-4 4.38 3.7290e-7 6.09 1.2612e-10 8.34
12 1.0932 3.10 4.4298e-4 4.25 1.2341e-7 6.06 2.8877e-11 8.08
14 6.8375e-1 3.04 2.2987e-4 4.25 4.8608e-8 6.04 8.0131e-12 8.31
16 4.5717e-1 3.01 1.3107e-4 4.20 2.1739e-8 6.02 2.6805e-12 8.20
18 3.2945e-1 2.78 8.0336e-5 4.15 1.0694e-8 6.02 1.0294e-12 8.12
20 2.4623e-1 2.76 5.1748e-5 4.17 5.6711e-9 6.02 4.3965e-13 8.07

Example 4.2. In this example, we consider the following convection-diffusion prob-
lem subject to the Dirichlet boundary conditions

−u′′ + u′ = ex(sin(x)− cos(x)), x ∈ [0, π],

u(0) = u(π) = 0.

The exact solution is given by u(x) = ex sinx. We solve this problem using the DG
method on uniform meshes having N = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 elements
and using the spaces P p with p = 1, 2, 3 and 4. In order to obtain the convergence
rates for e and e′, we plot ‖e‖ and ‖e′‖ versus N in Figure 2 using a log-log graph.
We observe that ‖e‖ = O(hp+1) and ‖e′‖ = O(hp). The maximum errors ‖e‖∗∞ and
‖e′‖∗∞ as well as their order of convergence shown in Tables 3 and 4 indicate that
the DG errors e and e′ are O(h2p) superconvergent, respectively, at the downwind
and upwind points of each element. These results confirm the theoretical findings
of this paper.

Example 4.3. We consider the following singularly perturbed problem subject to
the Dirichlet boundary conditions

−ǫu′′ + u′ = exp(x), x ∈ [0, 1],

u(0) = 0, u(1) = 0,
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Figure 3: The solutions u and uh (left) and u′ and u′
h (right) for Example 4.3 with

ǫ = 10−4 using N=20 with p = 2.
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Figure 4: The solutions u and uh (left) and u′ and u′
h (right) for Example 4.3 with

ǫ = 10−6 using N=20 with p = 2.
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Figure 5: The solutions u and uh (left) and u′ and u′
h (right) for Example 4.3 with

ǫ = 10−8 using N=20 with p = 2.

where ǫ is a small positive parameter. The exact solution is given by

u(x) =







(1−exp(1)) exp( x−1

ǫ
)+(1−exp(− 1

ǫ
)) exp(x)+exp(1− 1

ǫ
)−1

(1−ǫ)(1−exp(− 1
ǫ
))

, ǫ 6= 1,

exp(1)
exp(1)−1 (exp(x) − 1)− x exp(x), ǫ = 1.

We note that the true solution has a boundary layer with the width O(ǫ| ln ǫ|) at
the boundary x = 1. We solve this problem with ǫ = 10−4, 10−6, 10−8 using the
polynomial spaces V p

h , p = 1, 2, 3, 4 on Shishkin meshes [55] having N elements,
where N in an even positive integer, and using a mesh transition parameter τ =
(2p + 1)ǫ ln(N + 1) which denotes the approximate width of the boundary layer.
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Figure 6: The L2-norm of the error ‖e‖ (left) and the derivative of error ‖e′‖ (right)
for Example 4.3 with ǫ = 10−4 versus N using p = 1, 2, 3, 4.
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Figure 7: The L2-norm of the error ‖e‖ (left) and the derivative of error ‖e′‖ (right)
for Example 4.3 with ǫ = 10−6 versus N using p = 1, 2, 3, 4.
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Figure 8: The L2-norm of the error ‖e‖ (left) and the derivative of error ‖e′‖ (right)
for Example 4.3 with ǫ = 10−8 versus N using p = 1, 2, 3, 4.

The computational domain [0, 1] is divided into two subintervals [0, 1−τ ] and [τ, 1].
Each interval [0, 1 − τ ] and [1 − τ, 1] is uniformly subdivided into N

2 subintervals
which yields a Shishkin mesh.
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Table 5. Maximum errors ‖e‖
∗
∞ at the downwind points for Ex-

ample 4.3 with ǫ = 10−4 using p =1, 2, 3 and 4.

N p = 1 p = 2 p = 3 p = 4
‖e‖

∗
∞ Order ‖e‖

∗
∞ Order ‖e‖

∗
∞ Order ‖e‖

∗
∞ Order

100 1.0198e-1 — 4.4141e-4 — 5.7194e-6 — 9.1705e-8 —
150 2.8468e-2 3.14 6.9654e-5 4.55 4.2989e-7 6.38 3.3129e-9 8.19
200 1.2348e-2 2.90 1.9847e-5 4.36 6.9846e-8 6.31 2.9315e-10 8.42
250 6.8897e-3 2.61 7.6694e-6 4.26 1.7184e-8 6.28 4.7760e-11 8.13
300 4.3709e-3 2.49 3.5507e-6 4.22 5.6021e-9 6.14 1.0874e-11 8.11
350 3.0214e-3 2.39 1.8598e-6 4.19 2.1564e-9 6.19 3.3615e-12 7.61

Table 6. Maximum errors ‖e‖
∗
∞ at the downwind points for Ex-

ample 4.3 with ǫ = 10−6 using p =1, 2, 3 and 4.

N p = 1 p = 2 p = 3 p = 4
‖e‖

∗
∞ Order ‖e‖

∗
∞ Order ‖e‖

∗
∞ Order ‖e‖

∗
∞ Order

30 1.7958e+0 — 8.2734e-3 — 3.1700e-4 — 1.5560e-5 —
50 1.7400e-1 4.56 8.9969e-4 4.34 1.5304e-5 5.93 3.2374e-7 7.58
70 5.7630e-2 3.28 1.9625e-4 4.52 1.8587e-6 6.26 2.1665e-8 8.03
90 2.6473e-2 3.09 6.2919e-5 4.52 3.6852e-7 6.43 2.6397e-9 8.37
110 1.4746e-2 2.91 2.6267e-5 4.35 1.0328e-7 6.33 4.5072e-10 8.80
130 9.3811e-3 2.70 1.2783e-5 4.31 3.6534e-8 6.22 1.2223e-10 7.81

Table 7. Maximum errors ‖e‖
∗
∞ at the downwind points for Ex-

ample 4.3 with ǫ = 10−8 using p =1, 2, 3 and 4.

N p = 1 p = 2 p = 3 p = 4
‖e‖

∗
∞ Order ‖e‖

∗
∞ Order ‖e‖

∗
∞ Order ‖e‖

∗
∞ Order

50 5.4372e-1 — 3.2964e-3 — 9.0989e-5 — 3.1662e-6 —
60 2.6121e-1 4.02 1.4867e-3 4.36 3.0564e-5 5.98 7.8384e-7 7.65
70 1.5115e-1 3.54 7.4961e-4 4.44 1.1890e-5 6.12 2.3076e-7 7.93
80 9.6836e-2 3.33 4.1090e-4 4.50 5.1766e-6 6.22 7.6172e-8 8.30
90 6.6296e-2 3.21 2.4041e-4 4.55 2.4563e-6 6.32 2.9924e-8 7.93
100 4.7594e-2 3.14 1.4819e-4 4.59 1.2494e-6 6.41 1.1953e-8 8.70

We plot the DG solution and its derivative in Figures 3-5 using N = 20, p = 2,
and ǫ = 10−4, 10−6, 10−8. We observe that the DG solutions do not have any
oscillatory behavior near the boundary layer at the outflow boundary x = 1. The
L2 error norms shown in Figures 6-8, respectively, exhibit an O(hp+1) and O(hp)
convergence rates. In Tables 5-7 and 8-10, respectively, we present the maximum
errors ‖e‖∗∞ and ‖e′‖

∗
∞ as well as their order of convergence. These tables show that

the DG errors e and e′ are O(h2p) superconvergent, respectively, at the downwind
and upwind endpoints of each subinterval. These results indicate that the analysis
techniques in this paper is still valid for singularly perturbed problems. The analysis
remains an open problem for the DG method and will be investigated in the future.
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Table 8. Maximum errors ‖e′‖
∗
∞ at the upwind points for Exam-

ple 4.3 with ǫ = 10−4 using p =1, 2, 3 and 4.

N p = 1 p = 2 p = 3 p = 4
‖e‖∗∞ Order ‖e‖∗∞ Order ‖e‖∗∞ Order ‖e‖∗∞ Order

100 1.0198e+3 — 4.4142e+0 — 5.7195e-2 — 9.1705e-4 —
150 2.8469e+2 3.14 6.9656e-1 4.55 4.2990e-3 6.38 3.3119e-5 8.19
200 1.2349e+2 2.90 1.9848e-1 4.36 6.9849e-4 6.31 2.9428e-6 8.41
250 6.8902e+1 2.61 7.6703e-2 4.26 1.7185e-4 6.28 4.7761e-7 8.14
300 4.3714e+1 2.49 3.5513e-2 4.22 5.6027e-5 6.14 1.0356e-7 8.38
350 3.0218e+1 2.39 1.8602e-2 4.19 2.1561e-5 6.19 3.1369e-8 7.75

Table 9. Maximum errors ‖e′‖
∗
∞ at the upwind points for Exam-

ple 4.3 with ǫ = 10−6 using p =1, 2, 3 and 4.

N p = 1 p = 2 p = 3 p = 4
‖e‖

∗
∞ Order ‖e‖

∗
∞ Order ‖e‖

∗
∞ Order ‖e‖

∗
∞ Order

30 1.7958e+6 — 8.2734e+3 — 3.1700e+2 — 1.5560e+1 —
50 1.7400e+5 4.56 8.9969e+2 4.34 1.5304e+1 5.93 3.2374e-1 7.58
70 5.7630e+4 3.28 1.9625e+2 4.52 1.8586e+0 6.26 2.1665e-2 8.03
90 2.6474e+4 3.09 6.2919e+1 4.52 3.6840e-1 6.43 2.7357e-3 8.23
110 1.4746e+4 2.91 2.6267e+1 4.35 1.0328e-1 6.33 4.5072e-4 8.98
130 9.3811e+3 2.70 1.2783e+1 4.31 3.6534e-2 6.22 9.1790e-5 9.52

Table 10. Maximum errors ‖e′‖
∗
∞ at the upwind points for Ex-

ample 4.3 with ǫ = 10−8 using p =1, 2, 3 and 4.

N p = 1 p = 2 p = 3 p = 4
‖e‖

∗
∞ Order ‖e‖

∗
∞ Order ‖e‖

∗
∞ Order ‖e‖

∗
∞ Order

50 5.4372e+7 — 3.2964e+5 — 9.0989e+3 — 3.1662e+2 —
60 2.6121e+7 4.02 1.4867e+5 4.36 3.0564e+3 5.98 7.8384e+1 7.66
70 1.5115e+7 3.54 7.4962e+4 4.44 1.1890e+3 6.12 2.3076e+1 7.93
80 9.6836e+6 3.33 4.1091e+4 4.50 5.1766e+2 6.22 7.6172e+0 8.30
90 6.6296e+6 3.21 2.4040e+4 4.55 2.4563e+2 6.32 2.9924e+0 7.93
100 4.7594e+6 3.14 1.4819e+4 4.59 1.2494e+2 6.41 1.1953e+0 8.70

Example 4.4. In this final example, we demonstrate numerically that the theo-
retical results stated in this paper are still valid for the nonlinear case which will be
the subject of our future work. We consider the following nonlinear second-order
boundary value problem subject to the Dirichlet boundary conditions

u′′ + ln(u) = (2 + 4x2) exp(x2) + x2, x ∈ [0, 2],

u(0) = 1, u(2) = exp(4)

The exact solution is given by u(x) = exp(x2). We solve this problem using the
DG method on uniform meshes having N = 18, 20, · · · , 30 steps and with p =
1, 2, 3, 4. The errors ||e|| and ‖e′‖ versus N shown in Figure 9, respectively, exhibit
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an O(hp+1) and O(hp) convergence rates. The maximum errors ‖e‖
∗
∞ and ‖e′‖

∗
∞

as well as their order of convergence presented in Tables 11 and 12 show that the
DG errors e and e′ are O(h2p) superconvergent, respectively, at the downwind and
upwind endpoints of every element. These results are in full agreement with the
theory.
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Figure 9: The L2-norm of the error ‖e‖ (left) and the derivative of error ‖e′‖ (right)
for Example 4.4 versus N using p = 1, 2, 3, 4.

Table 11. Maximum errors ‖e‖
∗
∞ at the downwind points for Ex-

ample 4.4 using p =1, 2, 3 and 4.

N p = 1 p = 2 p = 3 p = 4
‖e‖∗∞ Order ‖e‖∗∞ Order ‖e‖∗∞ Order ‖e‖∗∞ Order

18 1.5450e-2 — 3.6558e-5 — 4.5515e-8 — 4.0144e-11 —
20 1.2698e-2 1.86 2.3395e-5 4.23 2.3992e-8 6.07 1.6956e-11 8.17
22 1.0601e-2 1.89 1.5654e-5 4.21 1.3491e-8 6.04 7.8355e-12 8.09
24 8.9779e-3 1.91 1.0865e-5 4.19 7.9667e-9 6.05 3.7836e-12 8.36
26 7.7040e-3 1.91 7.7743e-6 4.18 4.9004e-9 6.07 2.0002e-12 7.96
28 6.6777e-3 1.93 5.7154e-6 4.15 3.1309e-9 6.04 1.0791e-12 8.32
30 5.8402e-3 1.94 4.2984e-6 4.12 2.0626e-9 6.04 6.2084e-13 8.01

Table 12. Maximum errors ‖e′‖
∗
∞ at the upwind points for Ex-

ample 4.4 using p =1, 2, 3 and 4.

N p = 1 p = 2 p = 3 p = 4
‖e′‖

∗
∞ Order ‖e′‖

∗
∞ Order ‖e′‖

∗
∞ Order ‖e′‖

∗
∞ Order

18 3.7768e-2 — 4.4035e-5 — 4.8477e-8 — 3.7273e-11 —
20 3.1007e-2 1.87 2.8317e-5 4.19 2.5662e-8 6.03 1.5829e-11 8.12
22 2.5914e-2 1.88 1.9039e-5 4.16 1.4430e-8 6.03 7.3066e-12 8.11
24 2.1982e-2 1.89 1.3275e-5 4.14 8.5308e-9 6.04 3.5447e-12 8.31
26 1.8884e-2 1.90 9.5393e-6 4.12 5.2597e-9 6.04 1.8767e-12 7.94
28 1.6399e-2 1.90 7.0322e-6 4.11 3.3614e-9 6.04 1.0138e-12 8.30
30 1.4375e-2 1.91 5.4382e-6 3.72 2.2157e-9 6.04 5.8661e-13 7.93
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5. Concluding remarks

In this paper we studied the convergence and superconvergence properties of a DG
method for one-dimensional convection-diffusion problems. We proved that the
DG solution and its derivative exhibit optimal O(hp+1) and O(hp) convergence
rates in the L2-norm, respectively, when p-degree piecewise polynomials with p ≥ 1
are used. We further proved that the p-degree DG solution and its derivative are
O(h2p) superconvergent at the downwind and upwind points, respectively. Nu-
merical experiments demonstrate that the theoretical rates are optimal and our
results hold for some nonlinear problems. We are currently investigating the super-
convergence properties of the DG method applied to higher-order boundary-value
problems. We plan to study the superconvergence properties and the asymptotic
exactness of a posteriori error estimates for DG methods applied to nonlinear prob-
lems and to two-dimensional convection-diffusion problems on rectangular and tri-
angular meshes. Extending the error analysis to problems on tetrahedral meshes
will be investigated in the future.
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