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Discontinuous Petrov-Galerkin (DPG) finite element methods have garnered significant at-

tention since they were originally introduced. They discretize variational formulations with broken

(discontinuous) test spaces and are crafted to be numerically stable by implicitly computing a

near-optimal discrete test space as a function of a discrete trial space. Moreover, they are com-

pletely general in the sense that they can be applied to a variety of variational formulations,

including non-conventional ones that involve non-symmetric functional settings, such as ultraweak

variational formulations. In most cases, these properties have been harnessed to develop numerical

methods that provide robust control of relevant equation parameters, like in convection-diffusion

problems and other singularly perturbed problems.

In this work, other features of DPG methods are systematically exploited and applied to

different problems. More specifically, the versatility of DPG methods is elucidated by utilizing

the underlying methodology to discretize four distinct variational formulations of the equations of

linear elasticity. By taking advantage of interface variables inherent to DPG discretizations, an

approach to coupling different variational formulations within the same domain is described and

used to solve interesting problems. Moreover, the convenient algebraic structure in DPG methods

is harnessed to develop a new family of numerical methods called discrete least-squares (DLS) finite
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element methods. These involve solving, with improved conditioning properties, a discrete least-

squares problem associated with an overdetermined rectangular system of equations, instead of

directly solving the usual square systems. Their utility is demonstrated with illustrative examples.

Additionally, high-order polygonal DPG (PolyDPG) methods are devised by using the intrinsic

discontinuities present in ultraweak formulations. The resulting methods can handle heavily dis-

torted non-convex polygonal elements and discontinuous material properties. A polygonal adaptive

strategy was also proposed and compared with standard techniques. Lastly, the natural high-order

residual-based a posteriori error estimator ingrained within DPG methods was further applied to

problems of physical relevance, like the validation of dynamic mechanical analysis (DMA) calibra-

tion experiments of viscoelastic materials, and the modeling of form-wound medium-voltage stator

coils sitting inside large electric machinery.

vii



Table of Contents

Acknowledgments iv

Abstract vi

Chapter 1. Introduction 1

1.1 Discontinuous Petrov-Galerkin (DPG) methods . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2. Discontinuous Petrov-Galerkin (DPG) methods 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Model problem and variational formulations . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Minimum residual methods and DPG discretizations . . . . . . . . . . . . . . . . . . 11

2.4 Equivalent reformulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Least-squares methods and L2 test spaces . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Choice of trial and test spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8.1 Fortin operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8.2 Final estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.9.1 DPG software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 3. DPG methods for linear elasticity 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Variational formulations in linear elasticity . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Hilbert spaces in linear elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Linear elasticity equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 Basic variational testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.4 A family of variational formulations . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.5 A smaller family of broken variational formulations . . . . . . . . . . . . . . . 45

viii



3.2.6 Coupled variational formulations . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Smooth solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Singular solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Sheathed hose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 4. Linear viscoelasticity: DMA experiments and calibration 70

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Primal variational formulations for viscoelasticity . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Equations of linear viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Classical primal formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.3 Broken primal formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Discretization and convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 Code verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Validation of DMA experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 5. Case study: resins in form-wound medium-voltage coils 88

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Model geometry and preliminary assumptions . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Low frequency: thermoviscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Description and problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Mid-range frequency: stator ovalization . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.1 Description and problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 High frequency: Lorentz forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5.1 Description and problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5.2 Electromagnetic model for surface Lorentz forces . . . . . . . . . . . . . . . . 104

5.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

ix



Chapter 6. Discrete least-squares (DLS) finite element methods 111

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Discrete least-squares (DLS) finite element methods . . . . . . . . . . . . . . . . . . 113

6.2.1 Exploiting linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.2 Connections with finite element methods . . . . . . . . . . . . . . . . . . . . . 114

6.2.3 Solution algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2.4 Static condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.5 Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3.1 FOSLS vs. DLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3.2 Bubnov-Galerkin vs. DLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3.3 Ultraweak DLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3.4 Ill-conditioned failure study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Chapter 7. Polygonal DPG (PolyDPG) methods with ultraweak formulations 136

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2 PolyDPG methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2.1 Model problem and ultraweak formulations . . . . . . . . . . . . . . . . . . . . 141

7.2.2 Choice of trial and test spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.3 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3.1 Mesh with convex polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.3.2 Mesh with distorted elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.3.3 Interface problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.3.4 Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Chapter 8. Conclusions 164

Appendices 166

Appendix A. Sobolev spaces: simplest de Rham sequence 167

A.1 Exact sequence spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.2 Fractional spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

x



A.3 Traces and boundary restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.4 Duality theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.5 Sobolev-de Rham spaces and discretizations . . . . . . . . . . . . . . . . . . . . . . . 176

A.6 Interpolation estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Appendix B. Well-posedness in linear elasticity 183

B.1 Mutual well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B.1.1 Compatibility conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.1.2 Boundedness-below constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.2 Well-posedness of coupled formulations . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Appendix C. Derivation of thermoviscoelastic equations 198

C.1 Nonlinear thermodynamics of materials with memory . . . . . . . . . . . . . . . . . . 198

C.2 Linearized thermoviscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

C.3 Linear first-order system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Appendix D. PolyDPG interpolation estimates 221

D.1 Interface variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

D.2 Remaining variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

D.3 Final interpolation estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Bibliography 225

xi



Chapter 1

Introduction

1.1 Discontinuous Petrov-Galerkin (DPG) methods

The discontinuous Petrov-Galerkin (DPG) methodology is a finite element technique to

solve differential equations which has many attractive properties [95, 55]. The most important one

is its inherent capacity to craft as much numerical stability as allowed into the discretization of

the underlying well-posed variational formulation associated to a given linear partial differential

equation (PDE). Due to its solid mathematical structure, it has been used to solve many challenging

problems, especially those involving numerical stability issues where the robust control of relevant

equation parameters is crucial, like convection-diffusion problems [75, 102, 60, 184, 43, 44, 42] and

other singularly perturbed problems [183, 147, 121, 118]. It is also very convenient to couple,

within the same domain, with other numerical methods, such as boundary element methods and

other finite element methods [113, 145, 117, 119, 146, 120]. Moreover, it has been applied to

various physical problems such as wave propagation [237, 132, 96, 194], electromagnetism [55, 230],

elasticity [158, 36, 113, 111, 56], fluid flow [202, 58, 109, 159] and optical fibers via Schrödinger’s

equation [97].

The DPG methodology was first devised by Demkowicz and Gopalakrishnan [92, 93, 98, 237].

It starts with a variational formulation of a linear PDE, which, as usual, has an infinite-dimensional

trial space, where the solution of the PDE is sought, and an infinite-dimensional test space, where

test functions lie. The formulation is assumed to be well-posed, so its bilinear form has a strictly

positive inf-sup constant. Equivalently, when viewed in operator form (where the domain is the

trial space), the associated operator is bounded below. Then, if the trial space is discretized,

the idea is to find the element of the discrete trial space which minimizes the operator residual

of the variational formulation. This can be shown to be equivalent to a Petrov-Galerkin method

where the discrete test space is a so-called optimal test space, since it guarantees the discretized
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variational formulation has the best possible discrete inf-sup constant, thus ensuring numerical

stability. Finding the optimal test space (or minimizing the residual) involves inverting the Riesz

map of the test space, which is typically impossible due to its infinite-dimensional nature. Thus, in

practice the test space is discretized separately into an enriched test space, which one can then use

to compute a near-optimal test space instead. These methods are usually referred to as minimum

residual finite element methods. In general, the (discrete) inversion of the Riesz map has to be

performed at a global level, and this is extremely expensive, but if the Riesz map is somehow

localized to each element, the associated minimum residual method becomes much cheaper and

the overall method becomes useful from a practical standpoint. This is what happens when the

test spaces are “broken” or discontinuous across elements. Variational formulations whose test

spaces are broken are referred to as broken variational formulations, and they usually include extra

“interface” variables in the trial space as well. The DPG methodology is the special case of applying

minimum residual finite element methods to broken variational formulations.

Thus, the DPG methodology is able to craft numerical stability in such a way that it

decouples the discretization process of the trial and test spaces: first the trial space is discretized,

and then an independently tunable enriched test space is proposed (from which a near-optimal test

space is computed). As the enriched test space is made larger, the resulting discrete inf-sup constant

is designed to approach the best possible discrete inf-sup constant, and mathematically this can

be analyzed through the introduction of a Fortin operator [133]. This philosophy of providing

stability seems to be quite flexible and comes in contrast with the balancing act that arises in

traditional mixed methods, where the discretization of distinct variables has to be considered

simultaneously and carefully analyzed to establish the existence of numerical stability [38]. On

a separate note, DPG methods are conforming finite element methods (the discrete trial and test

spaces are subspaces of their infinite-dimensional counterparts). This, combined with their inherent

numerical stability, means that DPG methods do not need to include ad hoc stabilization terms,

as other methods do, and it also means that the mathematical analysis of the convergence of the

methods is often simplified. Moreover, there is nothing that forbids the use of piecewise high-order

polynomials as basis functions for the trial and test spaces. In fact, high-order DPG methods are

2



the norm rather than the exception.

Besides the numerical stability and its consequences, DPG methods have several other

assets. First, the DPG methodology is extremely general because it applies to any well-posed

broken variational formulation. Moreover, the discretization possesses a rich algebraic structure.

In fact, the associated stiffness matrices are always symmetric (or Hermitian) positive definite.

Lastly, it carries a natural residual-based high-order a posteriori error estimator which is ideal to

implement adaptivity. On the downside, it typically comes at a higher computational cost when

compared to other methods.

These attractive properties have been harnessed to open new avenues of research in nu-

merical methods and functional analysis. Indeed, the versatility with which DPG methods can be

applied to different variational formulations has permitted the development of numerical methods

that discretize non-conventional formulations involving non-symmetric functional settings, like ul-

traweak variational formulations. These formulations have many attractive properties which have

been taken advantage of in several different contexts, including robust error control in singularly

perturbed problems, superconvergence, and polygonal element methods [95, 96, 201, 46, 102, 43,

147, 60, 86, 116, 115, 229]. The interface variables that are often present in broken variational

formulations have also facilitated the coupling of DPG methods with other numerical methods

[113, 145, 117, 119, 146, 120]. In fact, the study of the broken variational formulations themselves

has produced new interesting theoretical results [55, 97]. Moreover, the methodology’s algebraic

structure has been exploited theoretically and computationally, leading to novel numerical meth-

ods [160]. Lastly, the study of error estimation in DPG methods has generated fresh mathematical

ideas, including the development of new numerical methods and goal-oriented a posteriori error

estimators [54, 161, 157].

1.2 Goal

Most applications of DPG methods have been associated with providing robust control of

relevant equation parameters. Examples include convection-diffusion problems and other singularly

perturbed problems. The goal of this work is to further the study of DPG methods, from both

3



the mathematical and engineering perspectives, by systematically exploiting other features of DPG

methods and applying them to different problems. Some more specific goals are:

• To show the generality of the approach offered by the DPG methodology. In particular, to

manifest the capacity to develop effective DPG methods for a variety of different variational

formulations.

• To explain some of the ideas behind coupling DPG methods with other numerical methods

and their potential applications.

• To apply DPG methods to real-world problems. This includes their use in calibration exper-

iments of viscoelastic materials, and in the study of resins in form-wound medium-voltage

stator coils sitting inside large electric machinery.

• To exploit the algebraic properties of DPG methods in order to design new discretization

techniques and computational optimizations.

• To capitalize on the properties of ultraweak formulations to allow the development of polyg-

onal DPG (PolyDPG) methods, which are useful for many engineering problems.

1.3 Outline

This dissertation is organized in three parts. The first part aims at describing DPG methods

and serves as a prelude for the following chapters in terms of notation and main concepts. This

is the content of Chapter 2. The reading of this chapter is aided by some knowledge in Sobolev

spaces, and for this reason an auxiliary chapter introducing the basics of these spaces is provided

as Appendix A.

The second part of the dissertation is about applications of DPG methods to linear elastic-

ity, viscoelasticity and thermoviscoelasticity. Chapter 3 has the dual role of showing the flexibility

of the DPG methodology in discretizing different variational formulations, and of explaining how

to couple these different DPG formulations within the same domain. Its content is the product of

two publications [158, 113]. The chapter is accompanied by Appendix B, which is a mathematical

contribution proving the mutual well-posedness of the different variational formulations. Chapter 4

applies DPG methods to the problem of dynamic mechanical analysis (DMA) calibration exper-
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iments of viscoelastic polymers, which was part of one publication [111]. Meanwhile, Chapter 5

analyzes basic scenarios relevant to form-wound medium-voltage stator coils in electric machinery.

These involve the linear viscoelasticity and thermoviscoelasticity equations, whose derivations from

first principles are presented in Appendix C.

The third and final part of this work aims at studying other numerical methods that can

be thought of as outgrowths of the DPG methodology. In Chapter 6 discrete least-squares (DLS)

finite element methods are presented, and their utility is shown. This chapter was the subject of a

publication of the same name [160]. Chapter 7 describes polygonal DPG (PolyDPG) methods and

provides several relevant examples. The details of the proof of convergence are given in Appendix D.

This chapter was the product of another publication [229].

Lastly, the overarching conclusions of the dissertation are presented in Chapter 8.
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Chapter 2

Discontinuous Petrov-Galerkin (DPG) methods

2.1 Introduction

A rough overview of DPG methods was already given in Section 1.1. The aim of this chapter

is to provide a more detailed account describing the DPG methodology from a mathematical and

computational perspective. It serves as a preliminary to the rest of the dissertation. Note that

with the exception of the variable names, the general notation will remain the same throughout this

dissertation, so this chapter also serves the function of introducing such notation. As a driving ex-

ample, Poisson’s equation is analyzed. Some familiarity with functional analysis and finite element

methods is recommended. Moreover, some knowledge of Sobolev spaces is also advised, including

H1(K), H(div,K), L2(K), their relevant traces, and their mesh-broken (piecewise discontinuous)

counterparts along with the respective interface spaces. For this reason Appendix A provides the

basics of these Sobolev spaces and the interpolation properties of their discretizations.

2.2 Model problem and variational formulations

The goal of this section is to present a classical variational formulation of Poisson’s equation,

followed by a broken variational formulation of the same equation. It will be shown that if the

classical formulation is well-posed in the sense of Hadamard (a unique solution satisfying a stability

estimate exists), then the broken formulation is also well-posed. Broken variational formulations

are suitable for discretization via the DPG methodology.

As a model problem, consider Poisson’s equation in a Lipschitz domain Ω ⊆ Rnd , with nd

being the number of spatial dimensions,

− div(∇u) = r , ⇔
{

div q = r ,

q +∇u = 0 ,
(2.1)
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where u is the temperature, q is the negative temperature gradient, and r is a source. Note that the

equation can be written directly as a second order system (left) or as a first-order system (right).

For simplicity, we assume temperature boundary conditions along all of ∂Ω, so that u = g at ∂Ω,

where g is a known function.

To solve the equation using finite element methods, a variational form is required, and

in this respect, there are many possibilities. For now assume vanishing temperature boundary

conditions so that g = 0. The classical approach stems directly from the second order equation

by multiplying by a test function and integrating by parts once, leading to the primal formulation

where the solution u is sought in the trial space U0 and must satisfy

b0(u, v) = `(v) ∀v ∈ V0 = U0 = H1
0 (Ω) ,

b0(u, v) = (∇u,∇v)Ω , `(v) = 〈r, v〉(H1
0 (Ω))′×H1

0 (Ω) .
(2.2)

Here, r ∈ (H1
0 (Ω))′, 〈 · , · 〉(H1

0 (Ω))′×H1
0 (Ω) is a usual duality pairing, and the L2 inner product in a

domain K ⊆ Ω is defined as

(u, v)K =

∫
K

trM(vTu) dK , (2.3)

where trM is the usual algebraic trace of a matrix, so that depending on whether u and v take

scalar, vector or matrix values, trM(vTu) will be uv, u · v or u : v, respectively. Notice in this case

the trial and test spaces are equal (U0 = V0), so both spaces can be discretized in the same way,

leading to the Bubnov-Galerkin method (see next section), and the same is true for standard mixed

formulations which stem from the first-order system. The primal formulation in (2.2) is known to

be coercive and well-posed in view of the Lax-Milgram theorem and Poincaré’s inequality.

The practicality of the DPG methodology relies on using broken (or discontinuous) test

spaces, and this results in a slightly modified formulation called the broken primal formulation,

which will be derived next. Consider a mesh (i.e. an open partition), T , of Ω comprised of (disjoint)

elements K ∈ T , and recall the broken space H1(T ) = {v ∈ L2(Ω) | v|K ∈ H1(K) , ∀K ∈ T }, and

the L2(T ) piecewise integration,

(u, v)T =
∑
K∈T

(u|K , v|K)K . (2.4)
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Then, element-wise, multiply Poisson’s equation by broken test functions v = v ∈ V = H1(T ),

integrate by parts, and sum across all elements. The (informal) result is very similar to the primal

formulation, ∑
K∈T

(−div(∇u), v)K =
∑
K∈T

(∇u,∇v)K −
∑
K∈T
〈∇u|∂K ·n̂K , v|∂K〉∂K , (2.5)

but has new terms on the boundaries of the elements involving ∇u|∂K·n̂K , where n̂K is the outward

normal to the element K. These terms vanish if the test space is not broken (i.e. v ∈ V0 = H1(Ω)).

Unfortunately, if we want u ∈ H1(Ω), then ∇u ∈ L2(Ω) =
(
L2(Ω)

)
nd , so the traces ∇u|∂K · n̂K

might not exist [170] and to incorporate them it is necessary to add a new interface variable.

With this in mind, consider the mesh-trace of a variable in H(div,Ω), called q̂n (a heat

flux), which is supposed to replace the T -tuple (−∇u)|K
∣∣
∂K
·n̂K , so that

q̂n ∈ H−1/2(∂T ) = trTdiv

(
H(div,Ω)

)
,

trTdivq =
∏
K∈T (q|K)

∣∣
∂K
·n̂K , ∀q ∈H(div, T ) ,

(2.6)

where H(div, T ) =
{
q ∈

(
L2(Ω)

)
nd | q|K ∈H(div,K) ,∀K ∈ T

}
. Similarly,

trTgradv =
∏
K∈T (v|K)

∣∣
∂K

, ∀v ∈ H1(T ) . (2.7)

Both trTdivq and trTgradv are T -tuples indexed by K ∈ T . The mesh inner product is

〈û, q̂n〉∂T =
∑
K∈T
〈(û)K , (q̂n)K〉∂K , (2.8)

where û ∈ trTgrad

(
H1(T )

)
, q̂n ∈ trTdiv(H(div, T )

)
, and 〈 · , · 〉∂K is the H1/2(∂K)×H−1/2(∂K) duality

pairing. This duality pairing can be thought of as a boundary integral (for smooth enough inputs

it is actually a boundary integral). Without loss of generality, we will use the same notation if the

inputs are switched, i.e. 〈q̂n, û〉∂T = 〈û, q̂n〉∂T (and 〈 · , · 〉∂K will denote the H−1/2(∂K)×H1/2(∂K)

duality pairing instead), so be aware of the context. For more information on these spaces consult

Appendix A.

The resulting broken primal variational formulation seeks

(u0, û) = u ∈ U = U0 × Û ,

u = u0 ∈ U0 = H1
0 (Ω) , q̂n = û ∈ Û = H−1/2(∂T ) ,

(2.9)
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such that
b(u, v) = `(v) ∀v = v ∈ V = H1(T ) ,

b
(
(u0, û), v

)
= b0(u0, v) + b̂(û, v) , `(v) = 〈r, v〉(H1(T ))′×H1(T ) ,

b0(u, v) = (∇u,∇v)T ,

b̂(q̂n, v) = 〈q̂n, trTgradv〉∂T ,

(2.10)

where r ∈ (H1(T ))′. Note that U 6= V. To prove well-posedness of the broken primal formulation,

a powerful theorem proved in [55, Theorem 3.1] is utilized.

Theorem 2.1. Let U0, Û and V be Hilbert spaces over a fixed field F ∈ {R,C}. Let ` : V → F be

a continuous linear form, and let b0 : U0 × V→ F and b̂ : Û× V→ F be continuous bilinear forms

if F = R or sesquilinear forms if F = C. With U = U0 × Û and ‖ · ‖2U = ‖ · ‖2U0
+ ‖ · ‖2

Û
, define

b : U× V→ F for all (u0, û) ∈ U and v ∈ V by

b
(
(u0, û), v

)
= b0(u0, v) + b̂(û, v) , (2.11)

and let

V0 = {v ∈ V | b̂(û, v) = 0, ∀û ∈ Û} . (2.12)

Assume:

(γ0) There exists γ0 > 0 such that for all u0 ∈ U0,

sup
v0∈V0\{0}

|b0(u0, v0)|
‖v0‖V

≥ γ0‖u0‖U0 . (2.13)

(γ̂) There exists γ̂ > 0 such that for all û ∈ Û,

sup
v∈V\{0}

|b̂(û, v)|
‖v‖V

≥ γ̂‖û‖
Û
. (2.14)

Then:

(γ) There exists γ =
(

1
γ2

0
+ 1

γ̂2 (M0
γ0

+ 1)2
)− 1

2 > 0 such that for all (u0, û) ∈ U,

sup
v∈V\{0}

|b
(
(u0, û), v

)
|

‖v‖V
≥ γ‖(u0, û)‖U , (2.15)

where M0 ≥ ‖b0‖ = sup(u0,v)∈U0×V\{(0,0)}
|b0(u0,v)|
‖u0‖U0

‖v‖V .
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Moreover, if ` satisfies the compatibility condition,

`(v) = 0 ∀v ∈ V00 , (2.16)

where

V00 = {v0 ∈ V0 | b0(u0, v0) = 0 ∀u0 ∈ U0} , (2.17)

which is always true if V00 = {0}, then the problem of finding (u0, û) ∈ U such that

b
(
(u0, û), v

)
= `(v) ∀v ∈ V , (2.18)

has a unique solution (u0, û) ∈ U satisfying the estimate

‖(u0, û)‖U ≤
1

γ
‖`‖V′ . (2.19)

Furthermore, the component u0 from the unique solution is also the unique solution to the problem

that seeks u0 ∈ U0 such that

b0(u0, v0) = `(v0) ∀v0 ∈ V0 . (2.20)

Therefore, it suffices to prove (γ0) and (γ̂) for (2.10). By Theorem A.1, it follows that

V0 = {v ∈ H1(T ) | 〈q̂n, trTgradv〉∂T = 0, ∀ q̂n ∈ H−1/2(∂T )} = H1
0 (Ω) . (2.21)

Thus, (γ0) is satisfied, because this is equivalent to the well-posedness of the original classical

formulation (simply use Poincaré’s inequality). Meanwhile, (γ̂) follows directly from Theorem A.3

with γ̂ = 1, and

V00 = {v ∈ H1
0 (Ω) | (∇u,∇v)T = 0, ∀u ∈ H1

0 (Ω)} = {v ∈ H1
0 (Ω) | ∇v = 0} = {0} . (2.22)

Thus, by Theorem 2.1, the broken primal formulation is well-posed, and in fact its stability prop-

erties are independent of the choice of the mesh (γ̂ = 1 and M0 = 1 do not depend on the mesh).

With nontrivial temperature boundary conditions, g 6= 0, simply consider the new right

hand side `(v) = 〈r, v〉(H1(T ))′×H1(T ) − (∇g̃,∇v)T instead, where g̃ ∈ H1(Ω) is an extension of

g ∈ H1/2(∂Ω), and add g̃ to the solution u of (2.10) to obtain the final temperature. When other

flux boundary conditions are present, simply modify the spaces accordingly and make the analogous

changes to `.
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2.3 Minimum residual methods and DPG discretizations

In this section we present the procedure of discretizing broken variational formulations. The

basics of minimum residual finite element methods and the DPG methodology are presented mostly

from the point of view of linear algebra, but more optional details are given in the next section.

Assume the field associated to the variational formulation is F = R (as in Poisson’s equation). The

generalization to F = C is straightforward, but does involve minor technicalities which will be left

for the reader to ponder.

The Bubnov-Galerkin method is the widely used approach for classical formulations, since

it employs the same test and trial spaces, leading to a square linear system of equations. Indeed,

consider the primal formulation in (2.2), with {u0,j}Nj=1 being a basis for the discrete subspaces

U0,h = V0,h ⊆ U0 = V0. Then, the discrete solution uh =
∑N

j=1(uh)ju0,j ∈ U0,h for uh ∈ RN ,

satisfies

BBGuh = lBG , (2.23)

where BBG
ij = b0(u0,j , v0,i) and lBG

i = `(v0,i) with v0,i = u0,i, so that BBG ∈ RN×N and lBG ∈ RN .

The basis functions, u0,j , are chosen with a very small support not exceeding a few neighboring

elements, resulting in a computationally practical method due to the sparse structure of BBG.

In general, when the trial and test spaces are different, U 6= V, this approach is still possible

but requires finding bases {uj}Nj=1 and {vi}Ni=1 for Uh ⊆ U and Vh ⊆ V respectively. However, two

issues immediately arise. First, the canonical polynomial-based discrete basis of Vh ⊆ V typically

is not of size N (the same size of the basis for Uh). Second, even if a nonstandard basis for Vh of

the right size is found, the resulting numerical method could very well be unstable, meaning that

the inf-sup inequality,

inf
δuh∈Uh\{0}

sup
vh∈Vh\{0}

b(δuh, vh)

‖δuh‖U‖vh‖V
= γh > 0 , (2.24)

might not hold. In fact, depending on the equation and mesh size, even the Bubnov-Galerkin

method can be unstable. Minimum residual finite element methods overcome these two difficulties

by design.
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Let U′ and V′ be the continuous dual spaces to the Hilbert spaces U and V respectively,

and define the linear operator B : U → V′ and its continuous transpose B′ : V → U′ (modulo the

evaluation map since V = V′′) through duality pairings as

〈Bu, v〉V′×V = b(u, v) = 〈B′v, u〉U′×U ∀u ∈ U, ∀v ∈ V . (2.25)

Recall the Riesz map, RV : V → V′, which is an isometric isomorphism between V and V′, defined

by duality as

〈RVv, δv〉V′×V = (v, δv)V ∀v, δv ∈ V , (2.26)

where ( · , · )V is the inner product of V. Then, for a discrete trial space Uh ⊆ U, ideal minimum

residual methods seek the minimizer of the residual,

uopt
h =arg min

δuh∈Uh
‖Bδuh − `‖2V′ ⇔ (R−1

V Buopt
h ,R−1

V Bδuh)V=(R−1
V `,R−1

V Bδuh)V ∀δuh∈Uh

⇔ 〈Buopt
h ,R−1

V Bδuh〉V′×V=〈`,R−1
V Bδuh〉V′×V ∀δuh∈Uh

⇔ b(uopt
h , vopt)=`(vopt) ∀vopt∈Vopt =R−1

V BUh .

(2.27)

Here, Vopt = R−1
V BUh is called the optimal test space, because this exact choice of discrete test

space automatically results in the best inf-sup stable discrete method satisfying (2.24), as will be

shown in the next section. For this reason, ideal minimum residual methods are sometimes referred

to as the optimal Petrov-Galerkin methods. Given an element of the basis for Uh, ui ∈ {uj}Nj=1,

the corresponding optimal test function is vopt
i = R−1

V Bui. With these choices the resulting matrix

Bopt
ij = b(uj , v

opt
i ), called the optimal stiffness matrix, is always symmetric positive definite.

Unfortunately, computing R−1
V is usually impossible since V is infinite-dimensional. Thus,

minimum residual methods simply make a choice of an enriched test space Vr ⊆ V over which the

operator is inverted. The enriched test space must be chosen to be large enough, and the minimum

requirement is that M = dim(Vr) ≥ dim(Uh) = N . The advantage is that this enriched space

may be discretized with a standard canonical polynomial-based basis, {vi}Mi=1, and ultimately the

resulting near -optimal space is Vh = Vn-opt = R−1
Vr

BUh and its corresponding near -optimal basis

is vn-opt
i = R−1

Vr
Bui for every ui ∈ {uj}Nj=1. The resulting discrete method can be shown to be

equivalent to the linear system,

Bn-optuh = BTG−1Buh = BTG−1l = ln-opt , (2.28)
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where uh =
∑N

j=1(uh)juj ∈ Uh is the discrete solution; the Gram matrix Gij = (vi, vj)V is a

discretization of RVr ; Bij = b(uj , vi) and li = `(vi) are called the enriched stiffness matrix and

load; and Bn-opt
ij = b(uj , v

n-opt
i ) and ln-opt

i = `(vn-opt
i ) are the near-optimal stiffness matrix and

load. Clearly the enriched stiffness matrix is rectangular and tall, B ∈ RM×N with M ≥ N , while

the near-optimal stiffness matrix is square and symmetric positive definite, Bn-opt ∈ RN×N . To

implement, one has to form the Gram matrix (G ∈ RM×M ), enriched stiffness matrix (B ∈ RM×N )

and enriched load vector (l ∈ RM ) first; then proceed to calculate the near-optimal stiffness matrix

(Bn-opt = BTG−1B ∈ RN×N ) and near-optimal load vector (ln-opt = BTG−1l ∈ RN ); and finally solve

for the basis coefficients of the discrete solution (uh ∈ RN ).

These methods are referred to as minimum residual finite element methods. All this deriva-

tion holds for any arbitrary linear variational formulation including the primal formulations in (2.2)

and (2.10). The method is near-optimal in that it is designed to approximate the optimal method

(with Bopt), so in principle it is not known to be stable, but in practice it typically is or can be made

stable (if it is not stable simply enrich Vr even more so that M � N). In fact, the stability of the

near-optimal method can rigorously be analyzed by constructing a Fortin operator, ΠF : V → Vr

(see Section 2.8.1).

However, there are major differences between applying this method to the primal formula-

tion in (2.2) and the broken primal formulation in (2.10). Namely, for the classical primal formu-

lation the enriched (sparse) stiffness matrix, B, and the Gram matrix, G, are assembled globally

first and then the near-optimal stiffness matrix, Bn-opt, is computed using (2.28). This is very

expensive, especially due to the inversion of G. Thus, despite many advantages, the method is

not very practical. On the other hand, when using broken test spaces, as in the broken primal

formulation, the matrix G has a disjoint diagonal block structure, where each block corresponds

to one element. Hence, the Gram matrix can be inverted locally, allowing the local near-optimal

stiffness matrices Bn-opt
K to be computed directly for each element K ∈ T . This in turn allows Bn-opt

to be assembled as in any other finite element method. Thus, using formulations with broken test

spaces localizes the computations and parallelizes the assembly, and makes it a viable method from

a practical standpoint. However, when compared to traditional finite element methods, the local
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computations are in general more expensive due to the extra operations involving enriched test

functions. Note that the broken primal formulation in (2.10) has an enriched stiffness matrix with

the structure,

B =


{(u0)j}N0

j=1︷ ︸︸ ︷
|

{ûj}N̂j=1︷ ︸︸ ︷
|

B0 B̂
| |

  {vi}Mi=1

(2.29)

where (B0)ij = b0((u0)j , vi) and B̂ij = b̂(ûj , vi), with {uj}Nj=1 = {((u0)j , 0)}N0
j=1 ∪ {(0, ûj)}N̂j=1 being

the Uh-basis, so that N = N0 + N̂ .

In the literature, the application of minimum residual methods to broken variational for-

mulations is referred to as the DPG methodology. The methodology is quite general as it can

be applied to variational formulations other than the broken primal such as broken ultraweak or

broken mixed formulations, as will be seen in Chapter 3. Each application case results in a different

DPG method similar to how the Bubnov-Galerkin methodology can be applied to primal and mixed

formulations (where Uh = Vh). They are conforming finite element methods, where the trial spaces

usually have some form of continuity across the mesh, while the test spaces are broken.

Remark 2.1. Unless otherwise specified, the norm of V, ‖ · ‖V, will be its natural Hilbert norm

(‖ · ‖H1(T ) if V = H1(T ), etc.). However, it should be noted that the choice of norm of V,

which enters the method through G, can be very important in DPG methods, as it can affect the

convergence behavior (the residual being minimized is measured in the ‖ · ‖V′ norm). Indeed, when

dealing with broken ultraweak formulations, another common choice has been to use the adjoint

graph norm, which has some important properties. Having said that, different choices have been

exploited in the literature to produce robust control of the error in some perturbation parameter

[132, 102, 60, 43, 147, 117].

2.4 Equivalent reformulations

This section extends the previous section as it relates to minimum residual methods. Other

equivalences are explored and the “optimal” labels are justified more rigorously. However, this

section is not necessary to understand the rest of this work, so the reader may skip it if so desired.
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As before, consider a variational formulation defined by a bilinear form b : U× V→ R and

linear form ` : V → R, where U and V are Hilbert trial and test spaces respectively. Using the

operator B defined in (2.25), the formulation can be equivalently rewritten in operator form: it

seeks a solution u ∈ U such that

b(u, v) = `(v) ∀v ∈ V ⇔ Bu = ` . (2.30)

Now consider a discrete trial space Uh ⊆ U. By using the definitions of B, B′ and the Riesz operator

RV given in (2.25) and (2.26), as in (2.27), it can be deduced that the following statements are

equivalent:

uopt
h = arg min

δuh∈Uh
‖Bδuh − `‖2V′ , (2.31)

b(uopt
h , vopt) = `(vopt) ∀vopt ∈ Vopt = R−1

V BUh , (2.32)

〈B′R−1
V Buopt

h , δuh〉U′×U = 〈B′R−1
V `, δuh〉U′×U ∀δuh ∈ Uh . (2.33)

Next, notice the last expression looks like a Schur complement, and proceed to write the equivalent

(mixed) system both in operator form and variational form:(
RV B

B′ 0

)(
ψopt

uopt
h

)
=

(
`
0

)
⇔

{
(ψopt, v)V + b(uopt

h , v) = `(v) ∀v ∈ V ,

b(δuh,ψ
opt) = 0 ∀δuh ∈ Uh ,

(2.34)

where ψopt ∈ V is a new solution variable called the error representation function, since it represents

the residual in V, i.e. ψopt = R−1
V (` − Buopt

h ). Thus, the equivalent mixed variational formulation

has the same (infinite-dimensional) trial and test space, namely Umix = Vmix = V × Uh. To

summarize: (2.31), (2.32), (2.33) and (2.34) are all equivalent statements. In particular, an ideal

minimum residual method can be viewed as a Petrov-Galerkin method with an optimal test space,

or like a mixed variational formulation with the same infinite-dimensional trial and test spaces.

Regarding the Petrov-Galerkin method in (2.32), its test space Vopt = R−1
V BUh, as men-

tioned previously, is called the optimal test space. To justify this label, first fix the discrete trial

space Uh and notice the discrete inf-sup constant has a fixed upper bound no matter which discrete

test space Vh ⊆ V is considered,

γh = inf
δuh∈Uh

sup
vh∈Vh

b(δuh, vh)

‖δuh‖U‖vh‖V
≤ inf

δuh∈Uh
sup
v∈V

b(δuh, v)

‖δuh‖U‖v‖V
= γopt . (2.35)

15



Note that throughout this document, in order to lighten the notation, the zero element is sometimes

tacitly omitted from infima and suprema taken over vector spaces. With the aim of attaining that

optimal bound, fix a δuh ∈ Uh and notice that

sup
v∈V

b(δuh, v)

‖v‖V
= ‖Bδuh‖V′ = ‖R−1

V Bδuh‖V =
(R−1

V Bδuh,R
−1
V Bδuh)V

‖R−1
V Bδuh‖V

=
b(δuh,R

−1
V Bδuh)

‖R−1
V Bδuh‖V

≤ sup
vopt∈R−1

V
BUh

b(δuh, v
opt)

‖vopt‖V
≤ sup

v∈V

b(δuh, v)

‖v‖V
,

(2.36)

so the supremum is attained by choosing the optimal test function R−1
V Bδuh. Clearly, all inequalities

above are in fact equalities. The result also holds for all δuh ∈ Uh, so taking the infimum at both

sides of the last two expressions yields that γh = γopt if Vh = Vopt = R−1
V BUh. Moreover,

γopt = inf
δuh∈Uh

sup
vopt∈Vopt

b(δuh, v
opt)

‖δuh‖U‖vopt‖V
= inf

δuh∈Uh
sup
v∈V

b(δuh, v)

‖δuh‖U‖v‖V
≥ inf

u∈U
sup
v∈V

b(u, v)

‖u‖U‖v‖V
= γ , (2.37)

so the discrete method is more stable than the original infinite-dimensional variational formulation.

This is why Vopt is called the optimal test space and why the underlying method is referred to

as the optimal Petrov-Galerkin method. Lastly, note that given a basis for Uh, ui ∈ {uj}Nj=1, the

corresponding optimal test function associated to a basis element ui is vopt
i = R−1

V Bui, as shown

above. As mentioned in the previous section, these choices result in the matrix Bopt
ij = b(uj , v

opt
i ),

called the optimal stiffness matrix, which was claimed to be symmetric positive definite. This is

easily shown, since for any nonzero a ∈ RN ,

aTBopta = aiB
opt
ij aj = aiajb(uj , v

opt
i ) = aiaj(R

−1
V Buj ,R

−1
V Bui)V = ‖R−1

V Baiui‖2V > 0 , (2.38)

where the Einstein summation convention is adopted. The symmetry of the matrix is proved

similarly.

Next, recall that due to the infinite-dimensional nature of V, inverting the Riesz map exactly

is not usually possible, so the Riesz map is inverted over a finite-dimensional enriched test space

Vr ⊆ V instead. To define those maps, first consider the orthogonal projections PVr : V → Vr

and PRVVr : V′ → RVVr (note Riesz map’s properties imply RVV
⊥
r = (RVVr)

⊥); and the canonical

embeddings ιVr : Vr → V and ιRVVr : RVVr → V′. Then, the Vr Riesz maps are,

RVr = RVιVrPVr : V→ V′ , R−1
Vr

= R−1
V ιRVVrPRVVr : V′ → V . (2.39)
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This is an abuse of notation, because neither RVr nor R−1
Vr

are invertible, but this is partly justified

since R−1
Vr

(
RVr |Vr

)
= idVr and RVr

(
R−1
Vr
|RVVr

)
= idRVVr . With these definitions, all the equivalences

still hold, but the variables previously designated as optimal are now near-optimal:

uh = arg min
δuh∈Uh

‖R−1
Vr

(Bδuh − `)‖2V , (2.40)

b(uh, v
n-opt) = `(vn-opt) ∀vn-opt ∈ Vn-opt = R−1

Vr
BUh , (2.41)

〈B′R−1
Vr

Buh, δuh〉U′×U = 〈B′R−1
Vr
`, δuh〉U′×U ∀δuh ∈ Uh , (2.42)(

RVr B

B′ 0

)(
ψr
uh

)
=

(
`
0

)
⇔

{
(ψr, vr)V + b(uh, vr) = `(vr) ∀vr ∈ Vr ,

b(δuh,ψr) = 0 ∀δuh ∈ Uh ,
(2.43)

where ψr is now sought in Vr instead of V. Rigorously speaking, this implies that (2.37) no longer

holds (intuitively the larger Vr is, the closer it is to V and the closer γh will be to γopt) and this

will be analyzed through a Fortin operator in Section 2.8.1.

The mixed method in (2.43), now has the same finite-dimensional trial and test spaces

Umix
h = Vmix

h = Vr × Uh. This means it can be discretized and solved using the Bubnov-Galerkin

method. Indeed, consider the bases {vi}Mi=1 and {uj}Nj=1 of Vr and Uh respectively, so their union

produces a basis for Umix
h = Vmix

h of size N + M . The resulting discretization yields the mixed

system, [
G B
BT 0

] [
ψr
uh

]
=

[
l
0

]
, (2.44)

where the final solution is given by ψr =
∑M

i=1(ψr)ivi ∈ Vr and uh =
∑N

j=1(uh)juj ∈ Uh. The

positive definite Gram matrix, Gij = (vi, vj)V, and enriched stiffness matrix and load, Bij = b(uj , vi)

and li = `(vi), are defined as in the previous section. The Schur complement of (2.44) precisely

recovers (2.28), but (2.28) can also be derived directly from (2.41) or (2.42). Lastly, the resulting

near-optimal stiffness matrix which governs the system of equations, Bn-opt = BTG−1B, is obviously

symmetric positive definite because Bn-opt = (G−1/2B)T(G−1/2B), and full rank becauseM ≥ N . This

concludes the analysis of the different equivalent characterizations of minimum residual methods,

both at the semi-discrete level and fully discrete level.
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2.5 Least-squares methods and L2 test spaces

This section is not fundamental to understand the vast majority of this dissertation, so there

is no harm if the reader wishes to jump ahead. It explores the connection of minimum residual

methods and least-squares finite element methods, and also analyzes the more complicated case

where only part of the test space is in L2. Throughout this section, any spaces comprised of copies

of L2(Ω) (e.g. L2(Ω), L2(Ω; S), etc.) will be liberally referred to as simply L2. It will be shown

that when some of the test variables are in L2, it is possible to exploit that (L2)′ ∼= L2 to avoid, at

least to some degree, the discrete inversion of the Riesz map.

The most salient case occurs when V = L2, so B : U → (L2)′ and it must take the

form b(u, v) = 〈Bu, v〉(L2)′×L2 = (Lu, v)L2 for all v ∈ L2, meaning L = R−1
L2 B : U → L2 is an

easily identified operator. Similarly, the load is easily identified as a function f ∈ L2, so that

`(v) = (f , v)L2 and f = R−1
L2 `. Then, simply rewrite the first variation in (2.27), which seeks

uopt
h ∈ Uh such that

(Luopt
h ,Lδuh)L2 = (f ,Lδuh)L2 ∀δuh ∈ Uh . (2.45)

The trivial identification of the (L2)′ functions Buopt
h , Bδuh and ` with the L2 functions Luopt

h ,

Lδuh and f corresponds precisely the exact inverse of the Riesz map, which is otherwise difficult

to compute. In general, when V 6= L2, this identification is not accessible, so Luopt
h , Lδuh and f

would be unknown (i.e. they have to be computed inexactly). In this case, (2.45) can easily be

discretized by considering a basis {uj}Nj=1 of Uh, so that

Boptuopt
h = lopt , Bopt

ij = (Luj ,Lui)L2 , lopt
i = (f ,Lui)L2 , (2.46)

where uopt
h =

∑N
j=1(uopt

h )juj ∈ Uh is the optimal discrete solution. Note the notation reflects that

Bopt and lopt are the optimal stiffness matrix and load, not the near-optimal ones. This is because

the Riesz map is being inverted exactly, so (assuming exact integration) the optimal stability of the

original formulation is reproduced exactly, and the numerical error that arises when discretizing Vr

is completely avoided. Moreover, the computational cost is significantly lowered when compared to

the discretization in (2.28). When applied to PDEs written as a first-order system, these methods

are known as first-order system least-squares (FOSLS) finite element methods [33].
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When part of the test space is in L2, similar optimizations are also possible, but only in the

L2 part of the test space, where the Riesz map is trivial. This both lowers computational cost and

helps to better approach optimal stability. A derivation for those cases in a general setting is now

presented.

Let W be a Hilbert space and assume the test space has the form V = W × L2 with

the Hilbert norm ‖(vW, vL2)‖2V = ‖vW‖2W + ‖vL2‖2L2 . The operators associated to the variational

formulation can then be easily decomposed as B = BW ×BL2 and ` = `W × `L2 , so that (2.33) can

be rewritten as,

〈B′WR−1
W BWuopt

h , δuh〉U′×U+(Luopt
h ,Lδuh)L2 =〈B′WR−1

W `W, δuh〉U′×U+(f ,Lδuh)L2 ∀δuh∈Uh , (2.47)

where (Lu, vL2)L2 = 〈BL2u, vL2〉(L2)′×L2 and (f , vL2)L2 = `L2(vL2). The inversion of R−1
W cannot be

done exactly, so consider R−1
Wr

instead to get a near-optimal method, where Wr ⊆W is an enriched

test space. Choosing bases {uj}Nj=1 and {wi}MW

i=1 of Uh and Wr respectively yields the following

linear system of equations,

(Bn-opt
W + Bopt

L2 )uh = (ln-opt
W + lopt

L2 ) , Bn-opt
W = BT

WG−1
W BW , ln-opt

W = BT
WG−1

W lW , (2.48)

where uh =
∑N

j=1(uh)juj ∈ Uh,
(
Bopt
L2

)
ij = (Luj ,Lui)L2 ,

(
lopt
L2

)
i = (f ,Lui)L2 ,

(
GW

)
ij = (wi,wj)W,(

BW

)
ij = 〈BWuj ,wi〉W′×W and

(
lW
)
i = `W(wi).

2.6 Adaptivity

This section discusses measuring the residual norm in minimum residual methods and a

posteriori error estimators in DPG methods. These allow for adaptivity to be implemented.

One big advantage of minimum residual methods is that they have a built-in way to measure

the residual norm, which is the same as the error measured in the special norm ‖ · ‖E = ‖B(·)‖V′ ,
since ‖uh − u‖E = ‖Buh − `‖V′ , where u is the exact solution (so Bu = `) and uh is the computed

solution of the minimum residual method. Ideally, minimum residual methods minimize the residual

‖Buh−`‖V′ as in (2.31), so as long as V remains the same, the exact residual will decrease as the trial

space is refined in a consistent nested manner (i.e. a series of refinements Uh1 ⊆ Uh2 ⊆ . . . ⊆ Uhn).
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In practice, however, usually the residual norm cannot be computed exactly due to the infinite-

dimensional nature of V, so the enriched test space Vr is considered again, and an expression for

the approximate global residual norm can be deduced to be

η2
h = ‖R−1

Vr
(Buh − `)‖2V = (Buh − l)TG−1(Buh − l) , (2.49)

where B and l are the enriched stiffness matrix and load defined previously, and uh is the solution

vector of coefficients computed from the minimum residual method in (2.28). Unfortunately, this

expression is not of much use to develop adaptivity, since it is only a global value, so it is not an

element-wise a posteriori error estimator.

This changes when the test spaces are broken, like in broken variational formulations dis-

cretized via the DPG methodology. In these cases, the computations are localized to each element.

Thus, enriched stiffness matrices, Gram matrices and loads are computed for each element, BK ,

GK and lK for all K ∈ T . In DPG methods, as mentioned in Section 2.3, the local near-optimal

stiffness matrices Bn-opt
K = BT

KG−1
K BK and loads ln-opt

K = BT
KG−1

K lK are computed and assembled

into Bn-opt and ln-opt as in any other finite element method, and then the solution vector uh in

(2.28) is solved for. A posteriori, one can arrange a vector uh,K for each K ∈ T comprised of the

components associated to the trial basis functions with support in K. The residual then becomes,

η2
h = ‖R−1

Vr
(Buh − `)‖2V =

∑
K∈T

η2
K , η2

K = (BKuh,K − lK)TG−1
K (BKuh,K − lK) , (2.50)

where the ηK are element-wise a posteriori error estimators. These then allow to develop adaptive

strategies by marking the desired elements for refinement under some proposed criterion. Tech-

nically speaking, the global residual in DPG methods need not decrease as the mesh is refined

(except in 1D), since the mesh-dependent test space changes (and along with it ‖ · ‖V′ and Vr)

and so does the trial space (in a way that can violate the nesting properties due to the presence of

interface variables). Nevertheless, in practice the residual does typically decrease with successive

refinements. Note that the residual-based estimator is natural since the residual itself is a founda-

tion that drives DPG methods, and note that expressions for ηK need not be modified if high-order

discretizations are being considered. Therefore, all DPG methods have a very convenient natural

residual-based high-order a posteriori error estimator that can be used to implement adaptivity.
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Remark 2.2. The criterion to refine elements usually follows a basic greedy algorithm where the

element K ∈ T is marked for refinement if,

ηK ≥ αηηmax , ηmax = max
K∈T

ηK , (2.51)

where αη ∈ [0, 1]. This means that the elements marked for refinement are those whose residual

norm lies within αη·100% of the maximum element residual norm (among all elements in the mesh).

A common choice is αη = 0.5.

Remark 2.3. In the cases considered in Section 2.5 the residual can also be computed. In fact, it

can be computed exactly (assuming exact integration) when V = L2 as

η2 = ‖Buopt
h − `‖2V′ =

∑
K∈T

η2
K , η2

K = (Luopt
h − f ,Luopt

h − f )L2
K
, (2.52)

where uopt
h =

∑N
j=1(uopt

h )juj , and L2
K is a restriction to K ∈ T of the domain associated to L2

(e.g. L2
K = L2(K) if L2 = L2(Ω)). Similarly, when only part of the test space is in L2, like when

V = W× L2, the local residual can also be approximated as

η2
K = (BW,Kuh,K − lW,K)TG−1

W,K(BW,Kuh,K − lW,K) + (Luh − f ,Luh − f )L2
K
. (2.53)

Remark 2.4. Note that the enriched test space used to compute the residual can actually be

different from that used to obtain the discrete solution. However, if that is the case, then BK ,

GK and lK must be recomputed as a function of the new Vr (but uh stays the same). This can

sometimes facilitate comparisons among residuals. For example, if uh1 and uh2 represent discrete

solutions from solving the problems with different polynomial orders (using Vr1 and Vr2), then the

residuals from both solutions can be more accurately compared if the residuals are computed using

a fixed Vr.

2.7 Choice of trial and test spaces

For simplicity assume the number of spatial dimensions is nd = 3 and consider a (sim-

ply connected) polyhedral element K ∈ T . Assume there exists a family of high-order finite-

dimensional discretizations of the spaces H1(K), H(curl,K), H(div,K) and L2(K) forming a
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differential de Rham exact sequence (or complex) as follows,

H1(K) H(curl,K) H(div,K) L2(K)

W p(K)

⊆ ∇ // Qp(K)

⊆

curl // V p(K)

⊆

div // Y p(K)

⊆

Pp
⊆

(Pp−1)3

⊆

(Pp−1)3

⊆

Pp−1

⊆

(2.54)

where Pp are the high-order polynomials in x = (x1, x2, x3) of total order at most p. Note the

parameter p represents the order of the discrete sequence composed of W p(K), Qp(K), V p(K) and

Y p(K), but does not necessarily coincide with the polynomial order of a specific discrete space in

the sequence (e.g. sometimes Y p(K) = Pp−1 even though it comes from the sequence of order p).

Instead, the parameter p is intended to eventually coincide with the order of convergence of the

numerical method (i.e. ‖u−uh‖U ≤ Chp). These discretizations are referred to as Sobolev-de Rham

discretizations, or simply SdR discretizations, and we refer to Appendix A (Section (A.5)) for more

subtleties and requirements about this definition. Discretization of the local traces is also possible

simply by using the appropriate definitions of traces (see Appendix A),

W p(∂K) =
{
φ̂K = φ|∂K | φ ∈W p(K)

}
⊆ H1/2(∂K) ,

Qp

a(∂K) =
{
Ê aK =

(
n̂K ×E|∂K

)
× n̂K | E ∈ Qp(K)

}
⊆H−1/2(curl, ∂K) ,

Qp
a(∂K) =

{
F̂ aK = n̂K × F |∂K | F ∈ Qp(K)

}
⊆H−1/2(div, ∂K) ,

V p(∂K) =
{
v̂nK = v|∂K · n̂K | v ∈ V p(K)

}
⊆ H−1/2(∂K) ,

(2.55)

where n̂K is the outward boundary normal vector of the element K ∈ T .

The sequence of spaces depends on the type of element K ∈ T , and for the conventional

elements, like hexahedra, tetrahedra, triangular prisms and pyramids, several different families

that satisfy these properties have been proposed in the literature [114, 74, 103, 34, 205, 236, 57].

Naturally, to have globally conforming discretizations of H1(Ω), H(curl,Ω) and H(div,Ω) across

the whole mesh, then some interelement compatibility of the spaces is required. In other words, if

F is a common face between elements K1 and K2, then the face trace restrictions of discretizations

of both elements should coincide, W p(∂K1)|F = W p(∂K2)|F , V p(∂K1)|F = V p(∂K2)|F , etc. This

criterion is relatively easy to satisfy when all elements of the mesh are of the same type (all
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hexahedra or all tetrahedra), but becomes more complicated when combining different types of

elements in the same mesh. This aspect is recognized and well covered in the literature.

Turning back to DPG methods, it will be assumed that the trial and test spaces, U and

V, only involve copies of the usual Sobolev spaces, H1(Ω), H(curl,Ω), H(div,Ω) and L2(Ω),

their broken counterparts and their relevant traces. This is a reasonable assumption as most

variational formulations involve these spaces or can be modified to solely involve these spaces. If

it is not possible, then appropriate discretizations satisfying the right approximation properties

have to be developed. In any case, with these assumptions it is clear that when the functions

δu = (δu0, δû) ∈ U0 × Û = U have their domain restricted to K, their exists a trial space with the

same canonical structure (involving no boundary conditions) which contains the restricted function,

δu|K = (δu0|K , δûK) ∈ U0(K) × Û(K) = U(K), where δûK is the K-th component of a T -tuple.

The space U0(K) will be composed of copies of H1(K), H(curl,K), H(div,K) and L2(K), while

Û(K) will be composed of copies of H1/2(∂K), H−1/2(div, ∂K), H−1/2(curl, ∂K) and H−1/2(∂K).

Thus, the discretization of U(K) is

U
p
h(K) = U

p
0,h(K)× Û

p
h(K) ⊆ U(K) , U

p
0,h(K) ⊆ U0(K) , Û

p
h(K) ⊆ Û(K) , (2.56)

where U
p
0,h(K) is composed to the corresponding copies of W p(K), Qp(K), V p(K) and Y p(K),

and Û
p
h(K) is composed to the corresponding copies of W p(∂K), Qp

a(∂K), Qp
a(∂K) and V p(∂K).

The same can be said of the test space V, which will be composed of copies of the broken

spaces H1(T ), H(curl, T ), H(div, T ) and L2(T ), so its K-restricted version, V(K), will also be

composed of the analogous copies of H1(K), H(curl,K), H(div,K) and L2(K). However, the DPG

discretization of V is not directly Vh = Vn-opt, but the enriched test space Vr (used to implicitly

compute Vn-opt). As mentioned previously, at least it is required that M = dim(Vr) ≥ dim(Uh) = N

for minimum residual methods to make sense (so that the matrix Bn-opt is invertible). This is

obviously satisfied by the conservative criterion that MK = dim
(
Vr(K)

)
≥ dim

(
U
p
h(K)

)
= NK for

every K ∈ T , where Vr(K) is some discretization of V(K). Thus, satisfying this criterion is usually

the approach taken. With this in mind, there are many ways to find an appropriate discretization

Vr(K) ⊆ V(K), but the modus operandi has typically been that of choosing Vr(K) to come from
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a sequence of enriched order p+ ∆p,

Vr(K) = Vp+∆p
r (K) ⊆ V(K) , (2.57)

where V
p+∆p
r (K) is composed to the corresponding copies of W p(K), Qp(K), V p(K) and Y p(K),

and where p is the order of the local trial space discretization U
p
h(K). The value of the enrich-

ment parameter, ∆p, can then be chosen locally (a ∆pK for each K ∈ T ) or globally (same ∆p

everywhere) to at least satisfy MK = dim
(
V
p+∆p
r (K)

)
≥ dim

(
U
p
h(K)

)
= NK at each K ∈ T .

Finally, the global high-order discrete trial and enriched test spaces are,

Uh = U
p
h =

{
δuh ∈ U | δuh|K ∈ U

p
h(K)

}
⊆ U ,

Vr = Vp+∆p
r =

{
vr | vr|K ∈ Vp+∆p

r (K)
}
⊆ V .

(2.58)

Note that the requirement that δuh ∈ U ensures the compatibility across elements. Otherwise it

could occur that δuh ∈
∏
K∈T U

p
h(K)\U. No such requirement exists for the enriched test functions,

because these spaces are assumed to be naturally broken. In the terminology of Appendix A (see

Definition A.2), Uh is said to be a compatible SdR discretization of order p, while Vr is an SdR

discretization of order p + ∆p. Lastly, notice these discretizations imply that DPG methods are

conforming finite element methods (even though the test spaces are broken).

It is always possible to increase the parameter ∆p (or to grow Vr(K) some other way) so

that the accuracy of the method is improved, since the approximation of Vn-opt = R−1
Vr

BUh to

Vopt = R−1
V BUh will be better. This means that once Uh has been chosen, ∆p acts as a convenient

tunable parameter that, if sufficiently high, will ensure the stability of the numerical method.

This is in contrast with the more complicated balancing act that arises in traditional high-order

mixed methods, where both the simultaneous discretizations of all variables must be considered

and carefully analyzed to determine numerical stability [38].

As an example of this discretization process, consider the variational formulation of Poisson’s

equation in Section 2.2 given in (2.10). The trial and test space discretizations would then be,

Uh =
{

(φ, τ̂n) ∈ U | φ|K ∈W p(K), (τ̂n)K ∈ V p(∂K)
}
⊆ U = H1

0 (Ω)×H−1/2(∂T ) ,

Vr =
{
w | w|K ∈W p+∆p(K)

}
⊆ V = H1(T ) .

(2.59)
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The requirement that (φ, τ̂n) ∈ U implies the interelement compatibilities φ|K1

∣∣
F

= φ|K2

∣∣
F

and

(τ̂n)K1 |F = −(τ̂n)K2 |F for every common face F between mesh elements K1 and K2. To be even

more explicit, consider a mesh of only tetrahedra, and use the spaces coming from the classical

Nédélec sequence of the first type [181], so that W p(K) = Pp and V p(∂K) is defined as in (2.55)

with V p(K) = RT p = (Pp−1)3 + xPp−1 being the high-order Raviart-Thomas space.

2.8 Convergence

To prove high-order convergence of DPG methods, first the issue of stability in the fully

discrete case will be analyzed (Section 2.8.1), and then using interpolation inequalities, the final

convergence estimates will be produced (Section 2.8.2). As shown in Section 2.4, minimum residual

methods are optimally stable provided the trial space has been discretized, and that the Riesz map

can be inverted exactly (at least over a relevant part of its range). In two special cases outlined

in remarks below one can show this is indeed the case. In the remaining cases, this inversion is

assumed not to be done exactly, so a cost is incurred in the stability of the method due to the use of

the enriched test space. To get a conservative estimate of that cost, one can posit the existence of

a Fortin operator, which can then be deduced to provide a bound for the discrete inf-sup constant.

This allows to make a fully rigorous analysis of the convergence in particular situations where such

a Fortin operator can be explicitly constructed. Otherwise, the existence of such Fortin operators

is assumed, and an a priori bound for the best approximation error can be established. Later,

interpolation estimates provide the bound resulting in asymptotic high-order convergence.

Remark 2.5. When the test space is V = L2 as in Section 2.5, then the Riesz map is inverted

exactly (because it is trivial to do so). Thus, the resulting discrete solution, uopt
h , is indeed optimal

and so are the stiffness matrix Bopt and inf-sup constant γopt as in (2.31) and (2.37). In other

words, the method is in fact an ideal minimum residual method, and uopt
h attains such minimum

exact residual.

Remark 2.6. When BUh ⊆ RVVr, then the resulting method will function like an ideal minimum

residual method. To see this, define RV⊥r
= V → V′ and R−1

V⊥r
= V → V′ analogously to RVr and
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R−1
Vr

in (2.39) (as noted there, there is an abuse of notation), so it follows that

RV = RVr + RV⊥r
, RVv = RVrv + RV⊥r

v ∈ V′ , RVVr 3 RVrv ⊥ RV⊥r
v ∈ RVV

⊥
r ,

R−1
V = R−1

Vr
+ R−1

V⊥r
, R−1

V v′ = R−1
Vr

v′ + R−1
V⊥r

v′ ∈ V , Vr 3 R−1
Vr

v′ ⊥ R−1
V⊥r

v′ ∈ V⊥r .
(2.60)

Hence, if BUh ⊆ RVVr, then R−1
V BUh ⊆ Vr and more importantly,

Vopt = R−1
V BUh = R−1

Vr
BUh + R−1

V⊥r
BUh = R−1

Vr
BUh + {0} = R−1

Vr
BUh = Vn-opt . (2.61)

Therefore, using (2.37), and comparing (2.32) with (2.41), it is clear that the solution is optimal

(uh = uopt
h ) and so are the inf-sup constant (γh = γopt), and stiffness matrix and load (Bn-opt = Bopt

and ln-opt = lopt).

2.8.1 Fortin operator

When DPG methods are used, in general Vn-opt 6= Vopt, so the inf-sup constant is not

exactly optimal, γh 6= γopt. Thus a lower positive bound for γh must be deduced. This can be done

via a Fortin operator, as shown in the next theorem, first proved in [133].

Theorem 2.2. Let b : U×V→ R be the bilinear form associated to a well-posed linear variational

formulation, and let Uh ⊆ U and Vr ⊆ V be a discrete trial and enriched test space respectively.

Suppose there exists a continuous linear operator ΠF : V→ Vr, such that

‖ΠFv‖V ≤ CΠ‖v‖V ∀v ∈ V ,

b(δuh, v−ΠFv) = 0 ∀δuh ∈ Uh, ∀v ∈ V .
(2.62)

Then,

inf
δuh∈Uh

sup
vh∈Vn-opt

b(δuh, vh)

‖δuh‖U‖vh‖V
≥ γ

CΠ
, (2.63)

where γ = infδu∈U supv∈V
|b(δu,v)|
‖δu‖U‖v‖V and Vn-opt = R−1

Vr
BUh, with R−1

Vr
defined in (2.39) and B defined

in (2.25).

Proof. Let δuh ∈ Uh. Then,

γ‖δuh‖U ≤ sup
v∈V

b(δuh, v)

‖v‖V
= sup

v∈V

b(δuh,ΠFv)

‖v‖V
≤ CΠ sup

v∈V

b(δuh,ΠFv)

‖ΠFv‖V
≤ CΠ sup

vr∈Vr

b(δuh, vr)

‖vr‖V
. (2.64)
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For the final step, note the orthogonal decomposition of R−1
V = R−1

Vr
+ R−1

V⊥r
provided in (2.60) in

Remark 2.6, which implies

b(δuh, vr) = (R−1
V Bδuh, vr)V = (R−1

Vr
Bδuh + R−1

V⊥r
Bδuh, vr)V = (R−1

Vr
Bδuh, vr)V ∀vr ∈ Vr , (2.65)

so that

sup
vr∈Vr

b(δuh, vr)

‖vr‖V
= sup

vr∈Vr

(R−1
Vr

Bδuh, vr)V

‖vr‖V
=
b(δuh,R

−1
Vr

Bδuh)

‖R−1
Vr

Bδuh‖V
= sup

vh∈Vn-opt

b(δuh, vh)

‖vh‖V
, (2.66)

because the supremum is clearly attained by vr = R−1
Vr

Bδuh ∈ R−1
Vr

BUh = Vn-opt.

The seminal work by Babuška then establishes the following result [12, 235].

Corollary 2.1. If the assumptions of Theorem 2.2 are satisfied, then the solution error is bounded

by the best approximation error,

‖u− uh‖U ≤
CΠM

γ
inf

δuh∈Uh
‖δuh − uh‖U , (2.67)

where |b(δu, v)| ≤ M‖δu‖U‖v‖V for all δu ∈ U and v ∈ V, u is the exact solution of the original

variational formulation, and uh is the solution of the discretized variational formulation with Uh

and Vn-opt = R−1
Vr

BUh as trial and test spaces.

Remark 2.7. Babuška’s theory and even DPG methods have been generalized to the Banach space

setting, along with the Fortin operator [213, 177]. In fact, an analogous estimate just like (2.67) is

available in the literature [177].

Remark 2.8. Obviously, when Vn-opt = Vopt, application of Babuška’s theorem yields the same

result as in (2.67) but without the constant CΠ coming from the Fortin operator.

The issue is now to construct such a Fortin operator. In general, this is a complicated task.

Fortunately, due to the broken test spaces in DPG methods it becomes a little easier, since the

problem decouples and it suffices to find local Fortin operators for each specific element. The first

construction in the context of DPG methods was done in [133], but since then, more elaborate

and general constructions have been made [179, 55, 56]. All constructions are in the context of

simplices, so it is an open problem to develop these operators for other types of elements. The

following theorem represents the most general construction for tetrahedra at this moment [55].
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Theorem 2.3. Let K ∈ T be a tetrahedron. Then, there exist a sequence of commuting linear and

continuous Fortin operators with domains H1(K), H(curl,K), H(div,K) and L2(K) as follows,

H1(K)
∇ //

Πp,∆pF,grad,K
��

H(curl,K)
curl //

Πp,∆pF,curl,K
��

H(div,K)
div //

Πp,∆pF,div,K
��

L2(K)

Πp,∆pF,∫ ,K
��

W p+∆p(K)
∇ // Qp+∆p(K)

curl // V p+∆p(K)
div // Y p+∆p(K)

(2.68)

where p+ ∆p ≥ 4, p ≥ 1, and the spaces coming from the Nédélec sequence of the first type,

W p(K) = Pp , Qp(K) = N p =
(
Pp−1

)3
+ x×

(
Pp−1

)3
,

V p(K) = RT p = (Pp−1)3 + xPp−1 , Y p(K) = Pp−1 .
(2.69)

with Pp being the polynomials in x = (x1, x2, x3) of total order at most p. The operators satisfy

the following identities,

(
φ, v −Πp,∆p

F,grad,Kv
)
K

= 0 ∀φ ∈ Pp+∆p−4, ∀v ∈ H1(K) , (2.70)(
φ,E −Πp,∆p

F,curl,KE
)
K

= 0 ∀φ ∈
(
Pp+∆p−3

)3
, ∀E ∈H(curl,K) , (2.71)(

φ,∇(v −Πp,∆p
F,grad,Kv)

)
K

= 0 ∀φ ∈
(
Pp+∆p−3

)3
, ∀v ∈ H1(K) , (2.72)(

φ,v −Πp,∆p
F,div,Kv

)
K

= 0 ∀φ ∈
(
Pp+∆p−2

)3
, ∀v ∈H(div,K) , (2.73)(

φ, curl(E −Πp,∆p
F,curl,KE)

)
K

= 0 ∀φ ∈
(
Pp+∆p−2

)3
, ∀E ∈H(curl,K) , (2.74)(

φ,w −Πp,∆p
F,∫ ,Kw

)
K

= 0 ∀φ ∈ Pp+∆p−1, ∀w ∈ L2(K) , (2.75)(
φ,div(v −Πp,∆p

F,div,Kv)
)
K

= 0 ∀φ ∈ Pp+∆p−1, ∀v ∈H(div,K) , (2.76)〈
trKdivφ, tr

K
grad

(
v −Πp,∆p

F,grad,Kv
)〉
∂K

= 0 ∀φ ∈ V p+∆p−2(K), ∀v ∈ H1(K) , (2.77)〈
trKcurl, aφ, tr

K
curl,a

(
E −Πp,∆p

F,curl,KE
)〉
∂K

= 0 ∀φ ∈ (Pp+∆p−2)3, ∀E ∈H(curl,K) , (2.78)〈
trKcurl,aφ, tr

K
curl, a

(
F −Πp,∆p

F,curl,KF
)〉
∂K

= 0 ∀φ ∈ (Pp+∆p−2)3, ∀F ∈H(curl,K) , (2.79)〈
trKgradφ, tr

K
div

(
v −Πp,∆p

F,div,Kv
)〉
∂K

= 0 ∀φ ∈ Pp+∆p−1, ∀v ∈H(div,K) , (2.80)

where the notation 〈 · , · 〉∂K is expanded to include the two duality pairings between H−1/2(curl, ∂K)

and H−1/2(div, ∂K), and where the outward element normal, n̂K , defines the relevant traces as

shown in Appendix A.
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Remark 2.9. The continuity constants of the Fortin operators in Theorem 2.3, and in all other

current high-order constructions [133, 179, 55], depend on the shape-regularity of the element and

on p+∆p. The open question is whether the constants are independent of p+∆p for sufficiently high

p+∆p, meaning that for a fixed large enough ∆p, the Fortin constant, CΠ, would be independent of

p. Eventually, this could allow to demonstrate algebraic hp-convergence estimates, instead of merely

h-convergence estimates. Numerical evidence suggests this is the case [179], but as it stands at the

moment, no such claim has been mathematically proved. However, the reader should be reminded

that Fortin operators are simply a mathematical tool that establishes a conservative bound for the

discrete stability. In practice, the real discrete stability is observed to lie much closer to the ideal

one and hp-estimates are often numerically detected. Moreover, computations with lower values of

∆p than those advocated by the Fortin operator also result in the desired convergence behavior.

As an example, consider the variational formulation of Poisson’s equation in Section 2.2

given in (2.10) on a shape-regular tetrahedral mesh. The discrete trial and test spaces were given

in (2.59). Define a Fortin operator ΠF : H1(T )→ Vr by (ΠF v)|K = Πp,∆p
F,grad,Kv|K for K ∈ T with

the local Fortin operator coming from Theorem 2.3. Take (φ, τ̂n) ∈ Uh, and notice that for every

tetrahedral element K ∈ T ,

(
∇(φ|K), (τ̂n)K

)
∈
(
Pp−1

)3 × trKdiv

(
V p(K)

)
⊆
(
Pp+∆p−3

)3 × trKdiv

(
V p+∆p−2(K)

)
, (2.81)

for ∆p ≥ 2, where V p(K) = RT p, so that using (2.72) and (2.78) it follows

b
(
(φ, τ̂n), v −ΠF v

)
=
(
∇φ,∇(v −ΠF v)

)
T +

〈
τ̂n, tr

T
grad(v −ΠF v)

〉
∂T = 0 ∀v ∈ H1(T ) . (2.82)

This means that as long as ∆p ≥ 2 and p+ ∆p ≥ 4 an existence of a Fortin operator is guaranteed.

2.8.2 Final estimates

This section simply gives the final convergence estimates. The main result comes from

Theorem A.4 in Appendix A which provides h-convergence interpolation estimates for variables in

the usual Sobolev spaces, H1(Ω), H(curl,Ω), H(div,Ω) and L2(Ω), and their traces H1/2(∂K),

H−1/2(div, ∂K), H−1/2(curl, ∂K) and H−1/2(∂K). Then, combining this with Corollary 2.1 yields
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the desired high-order convergence result. The reader should consult Section A.5 and Section A.6

for subtleties on the definitions and terminology used in the theorem, although the main result is

that the only dependence of the final estimates on the mesh is through the element size.

Theorem 2.4. Let Ω be a polytopal domain and {Th}h∈H be family of meshes of Ω comprised of

simply connected polytopal elements K∈Th with simply connected faces. Consider linear well-posed

variational formulations associated to bh : Uh × Vh → R and `h : Vh → R, where Uh and Vh are

SdR spaces. Let {uh}h∈H be the exact solutions to the corresponding formulations, and assume they

are attached to some uΩ ∈ UΩ through {Th}h∈H, where UΩ is a compatible SdR space. Let p ∈ N,

Uh,h ⊆ Uh be compatible SdR discretizations of order p, and Vr,h ⊆ Vh be SdR discretizations.

Suppose there exists a continuous linear Fortin operator ΠF,h : Vh → Vr,h such that for all v ∈ Vh

and δuh ∈ Uh,h, ‖ΠF,hv‖Vh
≤ CΠ‖v‖Vh

and bh(δuh, v − ΠF,hv) = 0, for some CΠ = CΠ(p) > 0 that

does not depend on the family of meshes {Th}h∈H. Then, there exists a unique solution, uh,h ∈ Uh,h,

solving the discrete variational formulation,

bh(uh,h, vh,h) = `h(vh,h) ∀vh,h ∈ V
n-opt
h = R−1

Vr,h
BhUh,h , (2.83)

where R−1
Vr,h

is defined in (2.39) and Bh is defined in (2.25). Assume the attached exact solution

uΩ ∈ UsΩ for some s > 1
2 , where UsΩ is the fractional counterpart to UΩ. Then, provided all elements

K ∈ Th among all {Th}h∈H are shape-regular, the following h-convergence estimate holds,

‖uh − uh,h‖Uh
≤ Chmin{s,p}

h ‖uΩ‖UsΩ , (2.84)

where hh = supK∈Th diam(K) and C = C(s, p) > 0. Moreover, if CΠ is p-independent as well

and if all elements are either tetrahedra or hexahedra, then in the p-asymptotic limit an algebraic

hp-estimate holds with C = Cs(ln p)
2p−s where Cs = C(s) is independent of p.

Remark 2.10. When Vn-opt = Vopt, as in Remark 2.5 and Remark 2.6, then the assumption of the

Fortin operator can be dropped altogether. Regarding the p-convergence estimate, the requirement

that all the elements be either tetrahedra or hexahedra is due to the fact that these are the

only elements for which there is a proof establishing a family of polynomial preserving extension

operators with a bound independent of p [90, 99, 100, 101, 84]. If such a result can be proved for
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other elements (e.g. triangular prisms), then those elements can be included in the list too. Lastly,

there is evidence that the logarithms in the p-convergence estimate may be removed [11, 172], but

no rigorous proof in the context of projection-based interpolation has been given.

Finally, return to the variational formulation of Poisson’s equation in Section 2.2 given

in (2.10) and consider a family of shape-regular tetrahedral meshes. Clearly, the assumption of

the Fortin operator in Theorem 2.4 holds provided ∆p ≥ 2 and p + ∆p ≥ 4 (see (2.82) for the

existence of the Fortin operator). From Theorem 2.1, it is known that the underlying exact solution

u0 = u ∈ H1
0 (Ω) is the same, regardless of the mesh being considered, and it is easily observed

that û = q̂n = trTdiv(−∇u) for every mesh T , so that all the exact solutions (u0, û) are attached

to uΩ = (u,−∇u) ∈ H1
0 (Ω) ×H(div,Ω) through the corresponding family of meshes. Thus, the

h-convergence estimate holds, and (2.84) can be explicitly rewritten as,

‖u− uh‖2H1(Ω) + ‖q̂n − q̂n,h‖2H−1/2 (∂T )
≤ C2h2 min{s,p}(‖u‖2H1+s(Ω) + ‖∇u‖2Hs(div,Ω)

)
, (2.85)

where u ∈ H1+s(Ω) (for some s > 1
2) is the exact solution, (uh, q̂n,h) are the discrete solutions after

solving at T , and h is the maximum element size in T . The p-convergence estimate is only true if

for large enough ∆p, the bound of the Fortin operator is proved to be independent of p.

2.9 Numerical implementation

Based on Section 2.3, it should be clear how to computationally implement DPG methods.

However, some of the more explicit details might be missing. This section aims to at least partially

cover some of those minor gaps, show some optimizations, and to review the current software with

support for DPG methods.

As is conventional in finite element methods, the stiffness matrix and load, Bn-opt and

ln-opt, are assembled not by evaluating each component (i.e. computing Bn-opt
11 , then Bn-opt

12 , etc.),

but by looking at the contribution of each element K ∈ T to Bn-opt and ln-opt and looping over

the elements. The local contributions are made by only considering the basis functions that have

support intersecting that particular element. As previously mentioned, this is not possible for

general minimum residual methods, but the broken test spaces discretized in DPG methods provide
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a natural and compatible decoupling of G, B and l, which allows the global expressions BTG−1B

and BTG−1l to be written as a sum of properly assembled local contributions of the same type,

Bn-opt
K = BT

KG−1
K BK , ln-opt

K = BT
KG
−1
K lK , (2.86)

where for every K ∈ T , GK , BK and lK are local Gram matrices, enriched (rectangular) stiffness

matrices, and loads. The connectivities used in the assembly of the Bn-opt
K and ln-opt

K are the ones

traditionally used by finite element codes. The structure of these local variables is very important,

because it can be exploited computationally. Indeed, notice that if LK is the Cholesky factorization

of GK = LKLTK , then G−1
K = L−TK L−1

K , and the local near-optimal stiffness matrix and load become

Bn-opt
K = (L−1

K BK)T(L−1
K BK) , ln-opt

K = (L−1
K BK)TL−1

K lK . (2.87)

This is in contrast with computing G−1
K BK first (which typically involves computing the Cholesky

factorization anyway), and then BT
KG−1

K BK . Indeed, exploiting this structure provides a slight

computational optimization if correctly implemented (by using the right BLAS and LAPACK routines).

Other factorizations producing a similar result as above, like GK = (G
1/2
K )TG

1/2
K , are possible, but

much more complicated and expensive to compute. The a posteriori error estimator is subject to

the same optimization, since (2.50) can be rewritten as

η2
K = (BKuh,K − lK)TG−1

K (BKuh,K − lK) =
(
L−1
K (BKuh,K − lK)

)T(
L−1
K (BKuh,K − lK)

)
. (2.88)

This type of optimization was first reported in [113, 111], and since then it has been exploited at

a global level to develop a new family of finite element methods (the subject of Chapter 6) [160].

To compute the individual components in GK , BK and lK , usually shape functions local to

each element are considered. These are basically restrictions of the relevant global basis functions

{uj}Nj=1 and {vi}Mi=1 to K ∈ T . The shape functions are essentially bases for the local discrete

spaces Uph(K) and V
p+∆p
r (K) described in Section 2.7, which are in turn composed of products of the

discrete spaces W p(K),Qp(K), V p(K), Y p(K), W p(∂K),Qp
a(∂K),Qp

a(∂K) and V p(∂K) proposed

in (2.54) and (2.55). As usual, one must be careful in satisfying interelement compatibilities, and

this implies that the shape functions must be chosen such that they have the correct orientation
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at each face in order to match the shape functions from the adjacent element (thus producing a

properly defined globally conforming basis element). As mentioned previously, these spaces and

compatibilities depend on the type of element K ∈ T and can become more elaborate to satisfy

when dealing with high-order methods, especially if local p-refinements are a desired feature.

Fortunately, all those features are supported and covered by the hierarchical orientation-

embedded high-order shape functions proposed in [114]. This work gives a unified coverage of all

the conventional elements in 1D, 2D (quadrilaterals and triangles), and 3D (hexahedra, tetrahedra,

triangular prisms, and pyramids) and provides discretizations of arbitrary high-order for H1(K),

H(curl,K),H(div,K) and L2(K) of the type described (2.54). These discretizations have also been

referred in this document as compatible SdR discretizations (see Section A.5 in Appendix A). For

each element, the hierarchical shape functions are classified by association with topological entities:

vertices, edges, faces, and interior. This, along with the concept of orientation embedding, facilitates

the computation of compatible shape functions across different elements, while also allowing for

the possibility of local p-refinements. In particular, the sequences of discrete spaces for tetrahedra

and hexahedra in [114] are the classical Nédélec sequences of the first type [181, 103, 34]. Other

explicit shape functions with some of these features can be found in [24, 25, 57, 205].

The classification of interior shape functions, also referred to as bubbles, is important in

high-order shape functions, because these correspond to basis functions that only have support in a

given element K ∈ T . The number of bubbles obviously grows with p. Their local support implies

that they are at least partially decoupled algebraically from the rest of the degrees of freedom,

so the Schur complement associated to these bubbles can be computed. This is referred to as

static condensation. It is done at the local level (so can be computed in parallel), and it results

in a considerably smaller global matrix, Bn-opt,c, which makes the implementation of high-order

methods much more efficient. Later, the degrees of freedom associated to the bubbles can be

recovered. This will be covered in more detail in Chapter 6. Previous to the static condensation,

however, some modifications are recommended to account for the degrees of freedom associated to

Dirichlet boundary conditions and to account for constrained approximations associated to hanging

nodes resulting from adaptive mesh refinements. For these, we refer to [89, 103].
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2.9.1 DPG software

There are a few software packages that were explicitly designed to support DPG methods.

The main ones are Camellia [199, 200], DUNE-DPG [136], hp3d, hp2d, and PolyDPG [229]. The codes

hp3d and hp2d are based on the same architecture, and the ideas are similar to those outlined in

[89, 103]. Among the 3D codes, the ones with the most features are Camellia and hp3d.

The package used throughout most of this dissertation is the in-house code hp3d written in

Fortran 90. The shape functions were taken from [114], as described previously, so hp3d supports

compatible discretizations of all the conventional element shapes (hexahedra, tetrahedra, triangular

prisms and pyramids) and for all the spaces H1(Ω), H(curl,Ω), H(div,Ω) and L2(Ω) and their

relevant traces. Thus, it can discretize hybrid meshes containing elements of different types in the

same mesh. As its name suggests, hp3d supports both h and p local anisotropic refinements via

constrained approximations and hanging nodes. Moreover, it has sophisticated multi-physics sup-

port (facilitating the identification of variables to couple between distinct subdomains), projection-

based interpolation of all the spaces [103, 90] (to enforce non-homogeneous boundary conditions),

the ability to handle isoparametric geometries with inherited curvilinear refinements through local

transfinite interpolation [103, 123], and support for complex-valued variables. The assembly and

computation of the residuals was done using multiple threads via OpenMP. The direct solvers used

for the global solution of the problems in this dissertation were MUMPS 5.0.1 [168, 3] and Intel

MKL PARDISO (and qr mumps 1.2 [48] in Chapter 6).

The package PolyDPG [229, 228] was used in Chapter 7 to implement (2D) high-order polyg-

onal DPG (PolyDPG) methods, as described there. It is based in MATLAB R©, but it also uses the

shape functions in [114, 112]. Lastly, as its name suggests, it has support for polygonal elements

and polygonal mesh refinement strategies.
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Chapter 3

DPG methods for linear elasticity

This chapter is the combination of two published research papers by the author ([158]∗ and

[113]†). It is about the application of the DPG methodology to the equations of linear elasticity.

The main purpose for being included in this dissertation is twofold. First, it shows the versatility

of the DPG methodology in being able to discretize distinct variational formulations. Second, it

shows the framework and motivation on coupling different formulations within the same domain

using DPG methods. The contributions of the author to the multi-authored articles ranged from

the computational implementation of the numerical methods to the development of the theory, the

mathematical proofs, and the writing of the manuscripts.

3.1 Introduction

In this chapter we demonstrate the fitness of the discontinuous Petrov-Galerkin (DPG)

methodology by applying it to various variational formulations of the equations of linear elasticity.

These equations are often solved by applying the Bubnov-Galerkin finite element methodology to

the classical displacement-based variational formulation, which is derived from the second-order

equations of linear elasticity. Alternatively, it is the formulation resulting from the minimization

of the potential energy functional [68, 154]. In a similar fashion, the minimization of the Hellinger-

Reissner energy functional leads to the other well-known mixed variational formulation that can

also be solved using the Bubnov-Galerkin methodology [38]. At the infinite-dimensional level, under

suitable regularity assumptions, they can be shown to be equivalent, since they result in exactly the

same solution [70, 108], namely, the unique solution of the equations of linear elasticity. However, at

∗ Keith, B., Fuentes, F., and Demkowicz, L. (2016). The DPG methodology applied to different variational

formulations of linear elasticity. Comput. Methods Appl. Mech. Engrg., 309:579–609.
† Fuentes, F., Keith, B., Demkowicz, L., and Le Tallec, P. (2017b). Coupled variational formulations of linear

elasticity and the DPG methodology. J. Comput. Phys., 348:715–731.
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the discrete finite-dimensional level, which is the setting involving finite element methods, there are

differences that might be important. For example, the mixed formulation results in a discretization

which is not as efficient computationally, but remains robustly well-posed for nearly incompressible

materials (it avoids volumetric locking) and also guarantees a locally conservative stress tensor [110,

38, 8]. Likewise, other energy principles leading to distinct variational formulations are possible.

In fact, just for this single problem, a total of fourteen complementary-dual energy principles are

presented in [190], each leading to a different variational formulation. Some may not be easily

amenable to computation, but perspective should be given that there is little to regard as sacred

or more physical about one formulation over another.

In this chapter we present eight different variational formulations that solve the equations of

linear elasticity, mostly derived naturally by formal integration by parts of the equations written in

their first-order form. We include a proof of what we believe is the contemporary observation that

all of the variational formulations which we have considered are mutually well- or ill-posed (a similar

assertion has been proved in the context of Maxwell equations in [55]). This is important because

it avoids having to present an independent proof of well-posedness for each different formulation.

Often finite element methodologies cannot be applied to particular variational formulations,

which might make them seem like they are not accommodated for computation. Indeed, some

formulations have different trial and test spaces, in which case they are said to have a non-symmetric

functional setting. What is powerful about minimum residual finite element methodologies, is that

as long as there is a discretization of the trial and test spaces, they can be used to solve these

non-conventional formulations, while at the same time being crafted to produce numerical stability.

The DPG methodology is a minimum residual methodology where the test spaces are broken

(discontinuous) along the mesh. In this chapter, we derive broken variational formulations for four

out of the eight formulations proposed initially, and show they are also well-posed. Moreover, the

DPG methodology, which is compatible with these formulations, is used to develop four distinct

high-order DPG methods to numerically solve the equations in 3D. This is done to show the

versatility of DPG methods in solving different formulations. Examples involving smooth and

singular solutions are considered in order to corroborate the theory. Moreover, the different behavior
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of the residual-based a posteriori error estimators coming from the four DPG methods is analyzed.

Other work involving DPG methods and 2D linear elasticity include [36, 133, 56, 54].

Additionally, this chapter studies the scenario where distinct variational formulations are

implemented in different subdomains of the same physical domain. This can be useful in situations

where a certain behavior of the equations to be solved is known (or expected) in particular parts

of the domain. Hence, in each region one can choose a variational formulation which is well-suited

to the expected behavior. For example, consider a material with heterogeneous material properties

varying within the domain. The properties can vary continuously, as in cloaking applications

or biological materials, or discontinuously, as in multi-material problems. Then, in the parts of

the domain where it can be an issue (e.g. a nearly incompressible material in linear elasticity),

one can choose a variational formulation that is robustly well-posed with respect to the material

properties. In the remaining regions, where such robustness is not fundamental, one can choose

a more computationally efficient formulation. Another example occurs when a near singularity is

expected in a particular area, so that one would hope to use a variational formulation (with possibly

an associated adaptivity scheme) which is desirable in that subdomain, but not necessarily in the

entire physical domain [204].

The main issue with such an implementation arises at the interfaces between the two sub-

domains having distinct variational formulations. At this interface, information must pass between

the two subdomains to enable communication. This imposes a coupling with both theoretical and

practical compatibility issues which can be difficult to resolve and analyze. Moreover, the cou-

pling must be constructed properly so that the entire problem is well-posed. This is not immediate,

even if each of the interacting variational formulations is well-posed when considered independently

across the whole domain.

At the theoretical and infinite-dimensional level, an attractive possibility that naturally

unburdens the compatibility and well-posedness requirements is the use of broken variational for-

mulations. These mesh-dependent formulations are extensions of the usual variational formulations

to the case involving broken (or discontinuous) test spaces, which are precisely the formulations

acquiescent to the DPG methodology. The family comprised of the four well-posed broken for-
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mulations mentioned before, is analyzed in this setting. Those formulations will be observed to

inescapably possess interface variable unknowns which are a desirable means of communicating

the necessary solution variable information across subdomains. This is what allows introducing a

proper definition of coupled variational formulations, which we will later prove to be globally well-

posed as well. Thus, another goal of this chapter is to demonstrate the use of the DPG methodology

in solving the equations of linear elasticity via coupled variational formulations. The derived DPG

method will be used to discretize and solve the coupled formulation in 3D and with high-order

methods while retaining numerical stability. The use of the DPG methodology will corroborate

the expected theoretical convergence results in this heterogeneous functional setting. Examples

showing the viability of the approach at a practical level will be illustrated, including a case where

the demanding scenario of a fully incompressible material is considered. This last case has physical

applications in modeling steel braided rubber hoses and even stents.

Regarding the coupling of formulations, similarity exists between the approach in this work

and that taken in [145] (used for elliptic transmission problems). There, a variational formulation

similar to those considered here is coupled with a variational formulation composed of boundary

integral operators. Afterward, the coupled formulation is discretized with the DPG methodology

throughout the entire computational domain. A remark is also warranted for the contributions in

[117, 119] where the ideas in [145] are extended to couple the DPG methodology with more standard

boundary element methods (BEMs), so that different discretization methods are considered across

the domain. More recently, there have also been further developments [146, 120].

This chapter is organized as follows. In Section 3.2 first the non-conventional Hilbert spaces

involved in linear elasticity are defined (for the conventional spaces see Appendix A). Then, the

equations of linear elasticity are introduced and eight different variational formulations are derived.

The proof that all these formulations are actually mutually well-posed is relegated to Appendix B.

Next, four broken variational formulations are deduced and it is argued that they are well-posed too.

In Section 3.2.6 coupled variational formulations are described. Their proof of well-posedness is also

left to Appendix B. In Section 3.3, numerical results are presented for the subset of the four broken

formulations and their coupled counterparts. Smooth solutions are used to corroborate the expected
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numerical results for all the formulations being considered. Then, a singular solution involving an

L-shaped domain is solved for using the four DPG methods derived, and their adaptive behavior (of

their built-in a posteriori error estimators) is compared. Finally, an illustrative, physically-relevant,

and challenging example of a sheathed hose is examined and solved using coupled variational

formulations.

3.2 Variational formulations in linear elasticity

3.2.1 Hilbert spaces in linear elasticity

Before introducing the equations of linear elasticity, it is useful to define the functional

spaces relevant to the problem. The conventional spaces are defined in Appendix A. Fortunately,

most formulations will only involve copies of those spaces, including all of the formulations which

will be numerically solved. The notation for those spaces is only slightly different, and we introduce

it for the sake of compactness and brevity. Additionally, there are other non-conventional spaces

important in linear elasticity, which will be defined below.

The vector- and matrix-valued Sobolev spaces on a domain K ⊆ R3 are,

L2(K) =
{
u : K → R3 | ui ∈ L2(K), i = 1, 2, 3

}
=
(
L2(K)

)3
,

L2(K) =
{
σ : K →M | σij ∈ L2(K), i, j = 1, 2, 3

}
,

L2(K; S) =
{
σ : K → S | σ ∈ L2(K)

}
⊆ L2(K) ,

L2(K;A) =
{
σ : K → A | σ ∈ L2(K)

}
⊆ L2(K) ,

H1(K) =
{
u : K → R3 | ui ∈ H1(K), i = 1, 2, 3

}
=
(
H1(K)

)3
,

H(div,K) =
{
σ : K →M | (σi1, σi2, σi3) ∈H(div,K), i = 1, 2, 3

}
=
(
H(div,K)

)3
,

H(div,K; S) =
{
σ : K → S | σ ∈ H(div,K)

}
⊆ H(div,K) ,

(3.1)

where M = R3×3 are the real-valued 3 × 3 matrices, S ⊆ M are the subset of symmetric matrices

and A ⊆ M are the subset of antisymmetric (or skew-symmetric) matrices. Note the divergence

in H(div,K) and H(div,K; S) is taken row-wise. The norms are the Hilbert norms which are

naturally induced. The trace spaces are,

H
1/2(∂K) =

(
H

1/2(∂K)
)3
, H−1/2(∂K) =

(
H−1/2(∂K)

)3
, (3.2)
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with their induced Hilbert norms. Meanwhile, for u ∈H1(K) and σ ∈ H(div,K) the traces are,

(
trKgradu

)
i

= trKgradui ,
(
trKdivσ

)
i

= trKdiv(σi1, σi2, σi3) , i = 1, 2, 3 . (3.3)

Next, if Ω ⊆ R3 is a domain, the spaces with boundary conditions, H1
Γu(Ω), HΓσ(div,Ω),

H
1/2
Γu

(∂Ω) and H
−1/2
Γσ

(∂Ω), are defined analogously to their simpler counterparts, where Γu ⊆ ∂Ω

and Γσ ⊆ ∂Ω are relatively open in ∂Ω. Meanwhile, HΓσ(div,Ω; S) = HΓσ(div,Ω) ∩H(div,Ω;S).

Lastly, if Ω ⊆ R3 is partitioned into a mesh, T , then it is easy to analogously define H1(T ),

H(div, T ), H
1/2(∂T ) and H−1/2(∂T ) as the corresponding copies of the broken spaces H1(T ),

H(div, T ), H1/2(∂T ) and H−1/2(∂T ). The same is true for the vector trace operators, trTgrad and

trTdiv. For L2(T ), L2(T ), L2(T ;S) and L2(T ;A), they are simply equal to L2(Ω), L2(Ω), L2(Ω;S)

and L2(Ω;A) respectively.

Note that with the exception of H(div,K;S), it is very easy to discretize these spaces, since

L2(K) is three copies of L2(K), L2(K) is nine copies of L2(K), L2(K; S) is six copies of L2(K)

(but the norm measured in L2(K)), L2(K;A) is three copies of L2(K) (but the norm measured

in L2(K)), H1(K) is three copies of H1(K), H(div,K) is three copies of H(div,K), H
1/2(∂K) is

three copies of H1/2(∂K), and H−1/2(∂K) is three copies of H−1/2(∂K). Thus, simply take copies

of the discretizations of the underlying space. Regarding the space H(div,K;S), it is notoriously

difficult to discretize as a high-order space with mathematically desirable properties [7, 10, 153],

and for that reason it is often avoided when it comes to computations.

3.2.2 Linear elasticity equations

In this work, the classical equations of static linear elasticity will be solved [67]. These

are simply the linearization in the reference configuration about a stress-free state of the general

constitutive model for solids and the conservation of momentum in the static case. The equations

of linear elasticity in a domain Ω ⊆ R3 can be written as follows,

− div(C :ε(u)) = f ⇔

σ − C :ε(u) = 0 ,

−divσ = f ,
(3.4)
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where u is the displacement, ε(u) = 1
2(∇u +∇uT) is its associated strain, σ = σT is the stress

(which must be symmetric in order to satisfy conservation of angular momentum), and f is the

known body force. Lastly, C : S→ S is the stiffness tensor. For isotropic materials,

Cijkl = λδijδkl + µ(δikδjl + δilδjk) , Sijkl =
1

4µ
(δikδjl + δilδjk)−

λ

2µ(3λ+ 2µ)
δijδkl , (3.5)

where C−1 = S : S → S is the compliance tensor, and λ and µ are the Lamé parameters. All

variables are assumed to be appropriately nondimensionalized.

The constitutive equation can be rewritten as

S :σ − ε(u) = 0 . (3.6)

This form is preferred when dealing with nearly incompressible materials (as λ→∞) because the

norm of S remains finite, while that of C diverges. This is the underlying reason why using this

form in a variational setting prevents volumetric locking phenomena.

Note the equations are written in their first- and second-order forms in (3.4). This single

second-order equation with the corresponding boundary conditions is the starting point for the

more traditional variational formulations. However, as it will be seen, using the first-order system

gives more versatility to construct variational formulations.

The goal is to solve the equations in (3.4) for the unknown displacement and stress, provided

the forcing and the dynamic stiffness tensor of the material are known throughout the domain

Ω ⊆ R3. For this to be possible, boundary conditions need to be specified, so it will be assumed

that the boundary is partitioned into relatively open subsets Γu ⊆ ∂Ω and Γσ ⊆ ∂Ω satisfying

Γu ∪ Γσ = ∂Ω and Γu ∩ Γσ = ∅, where displacement and traction boundary conditions are set by

the known functions u = uΓu and (C∗ :∇u) · n̂ = σΓσ
n on Γu and Γσ respectively, with n̂ being

the outward normal at ∂Ω. From now on it will be assumed that Γu 6= ∅ and Ω is bounded and

Lipschitz.

3.2.3 Basic variational testing

For simplicity, assume for now that there are no traction boundary conditions, so that

Γσ = ∅, and Γu = ∂Ω. If we assume that f ∈ L2(Ω), the conservation law is equivalent to the
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variational equation,

− (divσ,v)Ω = (f ,v)Ω ∀v ∈ L2(Ω) . (3.7)

Due to the symmetry of the stress tensor, σ = σT, it is natural to consider σ ∈ H(div,Ω; S).

However, as mentioned previously, the space H(div,Ω;S) is difficult to discretize [153, 7, 10, 195,

192, 193], so it is typically impractical to consider this space. Instead it is often assumed σ ∈
H(div,Ω), with the symmetry of σ being imposed weakly through the extra equation,

(σ,w)Ω = 0 ∀w ∈ L2(Ω;A) . (3.8)

Formally integrating (3.7) by parts gives an equation closely related to the principle of

virtual work,

(σ,∇v)Ω = (f ,v)Ω ∀v ∈H1
0(Ω) . (3.9)

Here, to enforce the symmetry it makes sense to take σ ∈ L2(Ω; S) which is easy to discretize. Note

that v ∈H1
0(Ω) in (3.9), while v ∈ L2(Ω) in (3.7).

Likewise, after testing with τ , the constitutive law in (3.4) may be written as,

(σ, τ )Ω − (C :∇u, τ )Ω = 0 ∀τ ∈ L2(Ω; S) , (3.10)

where it was used C : ε(u) = C : ∇u, with the domain of C : S → S being extended naturally to

C : M→ S (i.e., C|A = 0). Here, due to the presence of∇u, it makes sense to have u ∈ ũ∂Ω+H1
0(Ω),

where ũ∂Ω ∈H1(Ω) is an extension of the prescribed boundary displacement u∂Ω from ∂Ω to Ω.

To get an alternate variational form of the constitutive equation it is more convenient to

consider the characterization provided in (3.6). This equation is easier to integrate by parts and

avoids volumetric locking in the limit of incompressible materials, as alluded previously. Testing

with τ yields the expression (ε(u) : τ )Ω, which cannot be integrated by parts unless τ = τT, in

which case ε(u) : τ = ∇u : τ and (ε(u), τ )Ω = −(u,div τ )Ω. Thus, it makes sense to test using

τ ∈ H(div,Ω;S), and integration of (3.6) by parts yields,

(S : σ, τ )Ω + (u,div τ )Ω = 〈u∂Ω, trΩ
divτ 〉∂Ω ∀τ ∈ H(div,Ω;S) . (3.11)
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However, this revives the difficulties of discretizing H(div,Ω;S). To overcome the issue, one must

introduce an extra antisymmetric solution variable called the infinitesimal rotation tensor, ω, which

satisfies

∇u = ε(u) + ω ⇒ S : σ −∇u+ ω = 0 . (3.12)

Testing now with H(div,Ω) and integrating by parts then yields,

(S : σ, τ )Ω + (ω : τ )Ω + (u,div τ )Ω = 〈u∂Ω, trΩ
divτ 〉∂Ω ∀τ ∈ H(div,Ω) , (3.13)

where the domain of S is extended trivially from S to M (i.e., S|A = 0). Here, it is natural to

consider u ∈ L2(Ω) and ω ∈ L2(Ω;A), which are both easy to discretize.

3.2.4 A family of variational formulations

A linear variational formulation is a problem which seeks u ∈ U such that

b(u, v) = `(v) ∀v ∈ V , (3.14)

where U and V are trial and test Hilbert spaces over a fixed field F ∈ {R,C}, b : U × V → F is a

continuous bilinear form if F = R or sesquilinear form if F = C, and ` ∈ V′ is a continuous linear

form if F = R or antilinear form if F = C.

Using the distinct choices to discretize the equations, as shown in the last section, yields

seven different variational formulations,

USS = HΓσ(div,Ω;S)×H1
Γu(Ω) , VSS = L2(Ω; S)×L2(Ω) ,

bSS
(
(σ,u), (τ ,v)

)
= (σ, τ )Ω − (C :∇u, τ )Ω − (divσ,v)Ω ,

(3.15)

UUS = L2(Ω; S)×L2(Ω) , VUS = HΓσ(div,Ω; S)×H1
Γu(Ω) ,

bUS
(
(σ,u), (τ ,v)

)
= (S : σ, τ )Ω + (u,div τ )Ω + (σ,∇v)Ω ,

(3.16)

UMS = HΓσ(div,Ω;S)×L2(Ω) , VMS = HΓσ(div,Ω;S)×L2(Ω) ,

bMS
(
(σ,u), (τ ,v)

)
= (S : σ, τ )Ω + (u,div τ )Ω − (divσ,v)Ω ,

(3.17)

US = HΓσ(div,Ω)×H1
Γu(Ω) , VS = L2(Ω; S)×L2(Ω)× L2(Ω;A) ,

bS
(
(σ,u), (τ ,v,w)

)
= (σ, τ )Ω − (C :∇u, τ )Ω − (divσ,v)Ω + (σ,w)Ω ,

(3.18)
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UU = L2(Ω; S)×L2(Ω)× L2(Ω;A) , VU = HΓσ(div,Ω)×H1
Γu(Ω) ,

bU
(
(σ,u,ω), (τ ,v)

)
= (S : σ, τ )Ω + (ω, τ )Ω + (u,div τ )Ω + (σ,∇v)Ω ,

(3.19)

UM = HΓσ(div,Ω)×L2(Ω)× L2(Ω;A) , VM = HΓσ(div,Ω)×L2(Ω)× L2(Ω;A) ,

bM
(
(σ,u,ω), (τ ,v,w)

)
= (S : σ, τ )Ω + (ω, τ )Ω + (u,div τ )Ω − (divσ,v)Ω + (σ,w)Ω ,

(3.20)

UD = L2(Ω; S)×H1
Γu(Ω) , VD = L2(Ω; S)×H1

Γu(Ω) ,

bD
(
(σ,u), (τ ,v)

)
= (σ, τ )Ω − (C :∇u, τ )Ω + (σ,∇v)Ω ,

(3.21)

UP = H1
Γu(Ω) , VP = H1

Γu(Ω) ,

bP
(
u,v

)
= (C :∇u,∇v)Ω .

(3.22)

The eighth formulation at the end was derived directly from the second-order equation in (3.4).

Here, S stands for strong, U stands for ultraweak, M stands for mixed, D stands for dual-mixed, and

P stands for primal, with the subscript S denoting the cases where the “problematic” HΓσ(div,Ω;S)

is involved.

With homogeneous boundary conditions, uΓu = 0 and σΓσ
n = 0, the linear forms, `F,

always take the form `F(v) = (f ,v)Ω, where v is a component of v ∈ VF with F being one

of the formulations defined above. With nonhomogeneous boundary conditions, `F will have

terms involving extensions of the boundary conditions, uΓu and σΓσ
n , to ∂Ω and Ω. For example,

`U
(
(τ ,v)

)
= (f ,v)Ω + 〈ǔΓu , trΩ

divτ 〉∂Ω + 〈σ̌Γσ
n , trΩ

gradv〉∂Ω, where ǔΓu and σ̌Γσ
n are some extension

to ∂Ω of uΓu and σΓσ
n respectively. As these expressions suggest, it is assumed that f ∈ L2(Ω),

uΓu ∈ trΩ
grad

(
H1(Ω)

)∣∣
Γu and σΓσ

n ∈ trΩ
div

(
H(div,Ω)

)∣∣
Γσ . Moreover, as mentioned in the last sec-

tion, whenever necessary, C and S are assumed to act on M (as opposed to merely S) via the trivial

extensions C|A = 0 and S|A = 0.

The variational formulations with symmetric functional settings, namely, those with the

same trial and test spaces, are (3.17), (3.20), (3.21) and (3.22). These can be discretized using

the Bubnov-Galerkin method. In principle, it would unclear how to discretize the other formula-

tions using conventional methods while still retaining numerical stability. The minimum residual

methodology described here is possibly the most attractive way to do this in a systematic fashion.

On another note, those formulations involving S are expected to avoid volumetric locking by being
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robustly well-posed in the incompressible limit, and in fact, this has been proved in some of those

cases ((3.17) and (3.20)) [7, 10, 110].

It should be noted that the list of variational formulations for the equations of linear elas-

ticity proposed here is by no means exhaustive. Indeed, alternative versions of (3.18) and (3.21)

containing the compliance tensor (via use of (3.6)) are possible to construct, while in [190] energy

functionals are used to propose up to fourteen different variational formulations for these equations.

Moreover, volumetric locking can also be avoided by introducing a pressure term that produces yet

another formulation, but it comes at the cost making traction (normal stress) boundary conditions

more difficult to handle [154].

Finally, all the formulations (3.15)–(3.22) are mutually well-posed. This is the content of

the next theorem, whose proof is relegated to Appendix B (see Section B.1).

Theorem 3.1. If Γu 6= ∅, all the previously defined variational formulations are simultaneously

well-posed in the sense of Hadamard. That is, for the problem (3.14) with the forms and spaces

coming from one of (3.15)–(3.22), there exists a unique solution uF ∈ UF satisfying the stability

estimate ‖uF‖UF ≤ 1
γF
‖`F‖(VF)′ for some γF > 0. Since all variational formulations originate in the

same equations, by testing with smooth functions it is made clear that the unique solutions agree

among all formulations.

3.2.5 A smaller family of broken variational formulations

For some numerical methods, mesh-dependent broken spaces can bring advantages. In

particular, consider the case where only the test spaces are broken. It is in this setting that broken

variational formulations arise and, as it will be seen, this is fundamental in order to localize certain

computations in the DPG methodology.

Consider a mesh, T , of Ω, containing elements K ∈ T . Instead of following the original

approach of formally multiplying by a test function as in Section 3.2.3, the idea in this case is to

integrate over each K ∈ T and then sum the contributions, as in Section 2.2. This differs from

the former scenario in that the test functions can now be broken, so that they may have trace
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discontinuities along the boundaries of adjacent elements in the mesh. Thus, when integration by

parts is performed, some mesh boundary terms seize to cancel and have to be explicitly considered.

Apart from these terms, the resulting formulations are the same as before, where unbroken test

functions were being used. However, if they are to retain as much mathematical structure from the

original unbroken variational formulations, one finds that the new mesh boundary terms must have

a life of their own and become additional independent variables. That is, the price of using broken

test functions is that one sometimes needs to define new mesh-dependent interface variables along

the boundary of the mesh, as described in Section 2.2.

Broken variational formulations are precisely those formulations with broken test spaces

constructed as described above. They are clearly related to the original unbroken variational

formulations, which do not require the test spaces to be broken. In fact, the bilinear forms of

broken variational formulations can be decoupled into two bilinear forms as,

b(u, v) = b0(u0, v) + b̂(û, v) , (3.23)

where u = (u0, û) ∈ U = U0 × Û and v ∈ V, with U0 being the space associated to the original

unbroken formulation, Û being a space of interface variables, and V being the broken test space

directly associated to the test space V0 ⊆ V coming from the original unbroken formulation. When

the test space is restricted from V to V0 the variational formulation collapses to the original unbroken

formulation. More precisely, b0|U0×V0 is the bilinear form from the unbroken formulation and

b̂|
Û×V0

= 0, while `|V0 is the linear form from the unbroken formulation. In this sense, a broken

variational formulation can be interpreted as an extension to broken test spaces of an unbroken

variational formulation. It can be shown that the well-posedness of broken variational formulations

depends on the well-posedness of the original unbroken variational formulation and that of b̂.

Moreover, the unique solution u0 ∈ U0 to the unbroken formulation is the U0 component of the

unique solution (u0, û) ∈ U0 × Û to the broken variational formulation. This is the content of

Theorem 2.1.

We choose only a subset of the formulations in the last section. The reason is that we will

perform computations with these formulations. In this sense, we discard (3.15)–(3.17), because
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they involve the space HΓσ(div,Ω;S), which is difficult to discretize. We also discarded (3.21),

because it is essentially the same as (3.22), but much more expensive computationally.

The chosen subset of broken variational formulations associated to (3.18), (3.19), (3.20) and

(3.22) are deduced to be

U
ST
0 = US , ÛST = ∅ , VST = L2(T ;S)×L2(T )× L2(T ;A) ,

bST0
(
(σ,u), (τ ,v,w)

)
= (σ, τ )T − (C :∇u, τ )T − (divσ,v)T + (σ,w)T ,

(3.24)

U
UT
0 = UU , ÛUT = H

1/2
Γu

(∂T )×H−1/2
Γσ

(∂T ) , VUT = H(div, T )×H1(T ) ,

bUT
0

(
(σ,u,ω), (τ ,v)

)
= (S : σ, τ )T + (ω, τ )T + (u,div τ )T + (σ,∇v)T ,

b̂UT
(
(û, σ̂n), (τ ,v)

)
= −〈û, trTdivτ 〉∂T − 〈σ̂n, tr

T
gradv〉∂T ,

(3.25)

U
MT
0 = UM , ÛMT = H

1/2
Γu

(∂T ) , VMT = H(div, T )×L2(T )× L2(T ;A) ,

bMT0

(
(σ,u,ω), (τ ,v,w)

)
= (S : σ, τ )T + (ω, τ )T + (u,div τ )T − (divσ,v)T + (σ,w)T ,

b̂MT
(
û, (τ ,v,w)

)
= −〈û, trTdivτ 〉∂T ,

(3.26)

U
PT
0 = UP , ÛPT = H

−1/2
Γσ

(∂T ) , VPT = H1(T ) ,

bPT0

(
u,v

)
= (C :∇u,∇v)T ,

b̂PT
(
σ̂n,v

)
= −〈σ̂n, tr

T
gradv〉∂T ,

(3.27)

where UFT = U
FT
0 × ÛFT with F being a placeholder for one of the preceding formulations, and

where bFT : UFT ×VFT → R is defined in terms of bFT0 and b̂FT by (3.23). As before, the linear forms

`FT always have the term (f ,v)T and additionally may include terms involving extensions of the

boundary conditions uΓu and σΓσ
n , to Ω and the boundary of the mesh (by use of trgrad and trdiv

on an extension to Ω). For example, `UT
(
(τ ,v)

)
= (f ,v)T + 〈ŭΓu , trdivτ 〉∂T + 〈σ̆Γσ

n , trgradv〉∂T ,

where ŭΓu and σ̆Γσ
n are some extension to H

1/2(∂T ) and H−1/2(∂T ) of uΓu and σΓσ
n respectively.

As expected, bFT and `FT can be viewed as extensions to the original forms bF and `F, because

they collapse to the latter when testing against unbroken test functions in VF ⊆ VFT . That is,

bFT0 |UF×VF = bF, b̂FT |
ÛFT ×VF = 0 and `FT |VF = `F.

To establish the well-posedness of the broken variational formulations, (3.24)–(3.27), use

Theorem 2.1. As a simple example consider (3.27). First, observe that by Theorem A.1,

V0 =
{
v ∈H1(T ) | 〈σ̂n, trgradv〉∂T = 0 ∀σ̂n ∈H−

1/2
Γσ

(∂T )
}

= H1
Γu(Ω) = VP , (3.28)
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so condition (γ0) in Theorem 2.1 is immediately satisfied in view of Theorem 3.1 provided Γu 6= ∅.

Moreover, condition (γ̂) is also satisfied with γ̂ = 1 by use of Theorem A.3. This means the broken

variational formulation has a positive inf-sup constant, and actually this constant is independent

of the mesh (the continuity bound of bPT0 is easily seen to be bounded by M0 = 1 regardless of the

mesh). Furthermore, if Γu 6= ∅, then

V00 ={v∈H1
Γu(Ω) | (C :∇u,∇v)T =0 ∀u∈H1

Γu(Ω)}={v∈H1
Γu(Ω) |∇v=0}={0} . (3.29)

Hence, by Theorem 2.1, it follows (3.27) leads to a well-posed variational formulation. In general,

use the same procedure for the remaining formulations and show that `F|V00 = 0 in all cases. This

results in the following theorem.

Theorem 3.2. If Γu 6= ∅, then the broken variational formulations associated to (3.24)–(3.27) are

well-posed with associated stability constants that are independent of the mesh being considered.

3.2.6 Coupled variational formulations

As mentioned initially, there are multiple reasons that explain why it is desirable to solve

the equations of linear elasticity with different variational formulations on distinct subdomains of

the initial domain. The challenge in attaining this goal is that one must find a way of commu-

nicating solution information across the shared boundaries of the subdomains. For the purpose

of illustration, simply consider a domain Ω partitioned into two disjoint subdomains, ΩU and ΩP,

with a common interface, ΓI , such that ΩU ∪ ΩP = Ω and ΩU ∩ ΩP = ΓI . As suggested by the

notation, suppose that the equations of linear elasticity are to be solved in ΩU via the ultraweak

variational formulation in (3.19), and in ΩP via the primal variational formulation in (3.22). If a

solution is to exist, then it should be compatible in some sense at the common interface ΓI . This

immediately poses a theoretical concern because the displacement variable in the ultraweak varia-

tional formulation lies in L2(Ω)|ΩU and so it does not even have a notion of trace at ΓI . Thus, it

is not compatible with the primal displacement variable which lies in H1
Γu(Ω)|ΩP . A similar issue

also arises with the test spaces, which are obviously different on each subdomain. Even though the

finite-dimensional trial and test subspaces of any naive discretization generally do have well-defined
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traces, these difficulties are reasonably expected to be inherited by the discretization, meaning any

discrete convergence or stability analysis will probably be laborious, if at all possible. Hence, the

goal is to resolve the compatibility concerns at the infinite-dimensional level by developing a glob-

ally well-posed variational problem. Once this is done, there will be a clearer hope of producing

stable and convergent discretizations.

The claim is that by using broken variational formulations, the theoretical compatibility

issues are naturally dealt with. To see this, suppose instead that the equations are to be solved in

ΩU with the broken ultraweak variational formulation in (3.25) and in ΩP with the broken primal

variational formulation in (3.27). The mesh associated to the broken formulations, T , is obviously

assumed to be consistent with the subdomain partitioning, meaning that it is a refinement of the

subdomain mesh, T0 = {ΩU,ΩP}, and as such, there exist submeshes T U and T P of ΩU and ΩP

respectively, such that T = T U ∪ T P. In this scenario, the displacement variable in the ultraweak

domain still lies in L2(Ω)|ΩU , but the difference is that now there is an extra interface displacement

variable, ûU ∈ H1/2
Γu

(∂T )|T U . This variable is very convenient, as it is theoretically compatible at

ΓI with the well-defined trace of the displacement variable of the primal variational formulation,

uP ∈ H1
Γu(Ω)|ΩP . Similarly, with regard to the stress, there exist two new interface traction

variables, σ̂U
n ∈ H−

1/2
Γσ

(∂T )|T U and σ̂P
n ∈ H−

1/2
Γσ

(∂T )|T P , which are naturally compatible at ΓI .

Meanwhile, the use of broken test spaces relinquishes any compatibility requirements at the level of

test spaces. Notice the compatibility is not limited to the broken ultraweak and primal formulations.

Indeed, a close observation of the broken variational formulations in (3.24)–(3.27) shows that there

is always either an explicit interface variable or sufficient regularity to have well-defined traces of

the displacement and stress.

The next task is to more rigorously define the actual coupled variational formulations and

analyze their well-posedness. Continuing with the basic example, let UPT |ΩP be the restriction of the

trial space to ΩP meaning that typical field variables in U
PT
0 = UP have their domain restricted to

ΩP, while the interface variables in ÛPT are restricted to those components associated to elements in

T P. Therefore, the space is UPT |ΩP = H1
Γu(Ω)|ΩP ×H−1/2

Γσ
(∂T )|T P , with the restricted component

norms being ‖ · ‖H1(ΩP) and ‖ · ‖
H−

1/2 (∂T P)
respectively. The same applies to UUT |ΩU and the
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broken test spaces VUT |ΩU and VPT |ΩP . Then, the trial and test spaces associated to the coupled

formulations are

UC =
{
uC = (uU, uP)

∣∣∣ uU = (σU,uU,ωU, ûU, σ̂U
n ) ∈ UUT |ΩU , uP = (uP, σ̂P

n) ∈ UPT |ΩP ,

ûU|ΓI = uP|ΓI , σ̂U
n |ΓI = −σ̂P

n|ΓI
}
,

VC = VUT |ΩU × VPT |ΩP .
(3.30)

Hence, the trial space is the subspace of UUT |ΩU × UPT |ΩP which satisfies transmission conditions

for both displacement and stress at ΓI (see Remark 3.1 for more details). On the other hand, the

broken test space is oblivious to any transmission conditions. Lastly, the bilinear and linear forms

of the coupled variational formulation are

bC(uC, vC) = bUT |ΩU(uU, vU) + bPT |ΩP(uP, vP) ,

`C(vC) = `UT |ΩU(vU) + `PT |ΩP(vP) ,
(3.31)

where the restricted forms bUT |ΩU and bPT |ΩP are those formulations in (3.25) and (3.27) but with

the inner products and duality pairings only acting over those elements in T U and T P respectively.

The same applies to the linear forms `UT |ΩU and `PT |ΩP . Evidently, by carefully identifying the trial

spaces to enforce the compatibility conditions at the interdomain boundaries, coupled variational

formulations can be rigorously generalized to any finite partition of the domain into subdomains,

wherein each subdomain is endowed with a broken variational formulation among those found in

(3.24)–(3.27).

Remark 3.1. There is an abuse of notation when specifying the transmission conditions that

enforce the compatibility at the interdomain boundaries in (3.30). More precisely, ûU|ΓI = uP|ΓI
and σ̂U

n |ΓI = −σ̂P
n|ΓI denote that there exist global extensions ũ ∈ H1

Γu(Ω) and σ̃ ∈ HΓσ(div,Ω)

such that trTgradũ|T U = ûU, ũ|ΩP = uP, trTdivσ̃|T U = σ̂U
n and trTdivσ̃|T P = σ̂P

n. In fact, these

global extensions for the displacement and stress, ũ and σ̃, are fundamental in the numerical

implementation, where they are considered global variables in the context of a multi-physics domain,

whereas the remaining variables only have local support in a particular subdomain. Moreover, the

concept of the extensions is also important for specifying the problem boundary conditions, uΓu

and σΓσ
n . Indeed, by definition there exist extensions, ũΓu ∈ H1(Ω) and σ̃Γσ ∈ H(div,Ω), whose
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appropriate restrictions (e.g. trTgradũ
Γu |T U and ũΓu |ΩP for the displacement) play a role in the

linear forms `UT |ΩU and `PT |ΩP .

It remains to show that the coupled variational formulations are well-posed. The technique

is similar in spirit to the one utilized in proving well-posedness of broken variational formulations

in Theorem 2.1 (see [55]), where the first step is always to test with unbroken test functions to

cancel the boundary terms. The main idea here, however, is to collapse everything to the well-posed

ultraweak formulation by testing with more regular test functions and integrating by parts when

necessary. This is interesting since the ultraweak formulation is effectively being used as a tool

for a proof, due to its attractive property of having all the weight of the derivatives on the test

functions. The proof is again left for Appendix B, to keep continuity of the document.

Theorem 3.3. Let Ω be a domain partitioned into a finite number of subdomains, wherein each

subdomain is endowed with a broken variational formulation associated to one of the bilinear forms

in (3.24)–(3.27). Provided Γu 6= ∅, the resulting coupled variational formulation is well-posed with

an inf-sup stability constant, γC > 0, independent of the mesh.

Remark 3.2. The stability constant of the couple formulation, γC, depends on the distribution

of the variational formulations and the shape of the subdomains. The constant will remain robust

with respect to heterogeneous material properties as long as each formulation is robust when viewed

independently. Thus, the stability constant will remain bounded above as long as any near or

fully incompressible elastic behavior is limited to subdomains associated to robustly well-posed

variational formulations (i.e. broken ultraweak and mixed formulations).

Remark 3.3. As mentioned before, in this work, the variational formulations of linear elas-

ticity avoid the strong imposition of tensor symmetry in some of the spaces (i.e. they avoid

HΓσ(div,Ω;S)). This, among other reasons, adds a layer of complexity to the formulations and the

corresponding proofs, which typically need a few extra calculations. However, these difficulties are

not present in many other important equations. Indeed, a simpler version of this proof can easily

be applied to coupled formulations of Poisson’s equation, time-harmonic Maxwell’s equations (see

[55] for multiple formulations) and the diffusion-convection-reaction equation, among others.
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3.3 Numerical results

The four broken variational formulations described in Section 3.2.5, (3.24)–(3.27), were

discretized and solved numerically using the DPG methodology as described in Chapter 2. Often

the corresponding superscript is added to equation references to facilitate association, (3.24)S,

(3.25)U, (3.26)M and (3.27)P. In particular, (3.24)S was implemented as a first-order system least-

squares (FOSLS) method as described in Section 2.5, while (3.26)M was implemented as best as

possible by inverting part of the Riesz map exactly as described also in Section 2.5. The other two

formulations, (3.25)U and (3.27)P, were implemented as described throughout the rest of Chapter 2

(see Section 2.3, Section 2.9 and Section 2.7). This was possible because all the spaces in question

were SdR spaces (see Section A.5 in Appendix A for definition). Hence, the trial spaces were chosen

as compatible SdR discretizations of high-order p, while the test spaces (when required) were chosen

as SdR discretizations of order p+ ∆p.

It should be noted that it would not be difficult to construct Fortin operators for each

of these formulations using Theorem 2.3 and the procedure outlined in Section 2.8.1. Each of

these Fortin operators would have a minimum value of ∆p which would guarantee high-order

h-convergence as stated by Theorem 2.4, and a preliminary analysis shows that ∆p ≥ 3 should

be sufficient for all formulations. However, this is only a conservative criterion, and lower values

of ∆p can be used to produce computations, which has the advantage that the numerical method

is more efficient. In the computations that follow, we always chose ∆p = 1 and all meshes were

hexahedral. Regardless, as stipulated by Theorem 2.4, the expected convergence rate under uniform

h-refinements was always inherited from the mesh size, h, the order of the trial space, p ∈ N, and

the fractional order of the exact solution, s ≥ 0, so that the error would be bounded by Chmin{s,p},

where C only depends on the exact solution, s and p.

The software hp3d was used for all computations (see Section 2.9.1), as it has compatible

SdR discretizations for all the conventional element shapes [114]. The solver used in all computa-

tions was MUMPS 5.0.1.

The four resulting numerical methods discretizing (3.24)–(3.27) were applied to a manufac-
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tured solution and the rates for both the relative displacement error and the global residual were

compared. They were also compared when solving for a singular solution in an L-shaped domain,

both under uniform refinements and adaptive refinements. These results are in Section 3.3.1 and

Section 3.3.2 respectively.

The coupled formulations were also implemented as another DPG method. Here, the sophis-

ticated multi-physics support in hp3d was instrumental in facilitating the global assembly necessary

to make the trial space identification for coupled formulations as suggested by Remark 3.1. The

interdomain continuity was enforced as discussed in Remark 3.1.

Two illustrative examples involving these coupled formulations were solved. First, a smooth

manufactured solution on a cube with uniform and contrived material data involving four distinct

variational formulations in the same domain was considered. Then, a more physically-motivated

and challenging example was tackled: a sheathed hose with large material and layer-thickness

contrast, and with one layer composed of a fully incompressible material. The parametric transfinite

interpolation supported by hp3d made these computations possible. Only uniform refinements were

considered in these two examples, which are shown in Section 3.3.1 and Section 3.3.3 respectively.

Remark 3.4. Note that HΓσ(div,Ω;S) is not an SdR space as defined in Section A.5 in Ap-

pendix A, because it is a closed subspace of H(div,Ω), but not of H(div,Ω).

Remark 3.5. In the context of the mixed formulations with weakly imposed symmetry, (3.20)

and (3.26), some authors choose to nontrivially extend the compliance tensor, S, from S to M

[10, 36]. They do this to ensure that (S : σ,σ)Ω remains positive definite on L2(Ω) (and not only

on L2(Ω; S)). However, in this work, we chose to extend the compliance tensor trivally, so that

S|A = 0 (see Section 3.2.3). This did not pose any limitations in the infinite-dimensional setting

while proving the well-posedness of the mixed variational formulations (see Theorem 3.1 and its

proof in Appendix B, as well as Theorem 3.2). For the practical DPG methodology, where the

test space is designed to approximate the optimal test space, one can show that for a large enough

enrichment (i.e. value of ∆p) the problem remains well-posed (construct a Fortin operator using

Theorem 2.3). Thus, it is valid to extend S trivially, as this does not affect the presence of discrete

stability.
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3.3.1 Smooth solutions

In Section 3.3.1.1, the four broken variational formulations, (3.24)S, (3.25)U, (3.26)M and

(3.27)P, were solved, while in Section 3.3.1.2, a coupled variational formulation involving precisely

those four formulations was considered. In both cases, a smooth manufactured solution was taken

for the displacement, u. It was a simple sinusoidal vector field,

ui(x1, x2, x3) = sin(πx1) sin(πx2) sin(πx3) , i = 1, 2, 3, (3.32)

on a cubic domain. The domain was Ω = (0, 1)3 in Section 3.3.1.1, and Ω = (0, 2)3 in Section 3.3.1.2.

The material was considered to be isotropic and homogeneous with nondimensionalized Lamé pa-

rameters λ = µ = 1. The problem load, f , was deduced from the displacement using the equations.

The homogeneous displacement boundary data was prescribed along the whole boundary of Ω.

3.3.1.1 Homogeneous variational formulations
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Figure 3.1: Relative displacement error as a function of the degrees of freedom after uniform tetrahedral

refinements in the cube domain with a smooth solution.

The domain Ω = (0, 1)3 was initially partitioned into five tetrahedra, and subsequently

underwent a series of uniform tetrahedral refinements. The results for the relative error are pre-

sented in Figure 3.1 for p = 1, 2, 3 and they are shown for the DPG methods discretizing (3.24)S,

(3.25)U, (3.26)M and (3.27)P, alongside results from the classical Bubnov-Galerkin method dis-

cretizing (3.22). Here, the displacement error ‖u−uh‖‖u‖ was measured in the norm corresponding to

each formulation (‖·‖H1(Ω) with (3.24)S and (3.27)P and ‖·‖L2(Ω) with (3.25)U and (3.26)M), where
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u is the exact displacement and uh is the computed displacement. The results are plotted as a

function of the degrees of freedom, Ndof , so the expected convergence bound for 3D computations is

of the form Chmin{s,p} = O
(
N
−min{s/3,p/3}
dof

)
= O

(
N
−p/3
dof

)
, because h−3 = O(Ndof) and the solution

is smooth (so s→∞). In this case, the convergence rates are precisely as expected for all methods.

All DPG methods seem to behave very similarly, while the Galerkin method stands out for using

less degrees of freedom (since it involves no interface variables).
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Figure 3.2: Residual as a function of the degrees of freedom after uniform tetrahedral refinements in the

cube domain with a smooth solution.

The results in terms of the residual show a similar behavior and are illustrated in Figure 3.2.

The global residual, ηh, was computed using (2.50) (see also Remark 2.3 for (3.24)S and (3.26)M).

To facilitate comparison, it was computed with the same level of enrichment (p + ∆p = 4) as

described in Remark 2.4, and normalized with a fixed reference residual, ηref . Note there are no

results for the residual of the classical Galerkin method because we did not implement a way to

calculate it without using broken test spaces.

3.3.1.2 Coupled variational formulations

The domain Ω = (0, 2)3 was partitioned into eight equally sized unit cube subdomains in a

configuration in which four distinct broken formulations interact with each other. More specifically,

the formulations, (3.24)S, (3.25)U, (3.26)M and (3.27)P, were organized such that there is at least

one face that is a common interface between each of the possible pairs of formulations, as shown

in Figure 3.3. The initial mesh had eight hexahedral elements, and was then uniformly refined.
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Figure 3.3: Illustration of the geometry and arrangement of subdomains used for a coupled formulation

with which the code was verified via manufactured solutions.

To analyze convergence, only the L2(Ω) error of the displacement was considered and as

Figure 3.4 demonstrates, high-order (or better) convergence rates were witnessed for each 1 ≤ p ≤ 5,

where the convergence rate was given in terms of the mesh element size, h. Given the smoothness

of the solution, this is consistent with the theoretical expectations dictated by Theorem 2.4.
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Figure 3.4: Displacement error as a function of the mesh size under uniform hexahedral refinements in the

cubic domain Ω = (0, 2)3 with a sinusoidal manufactured solution.
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3.3.2 Singular solution

Perhaps a more interesting test is that of a problem with a singular solution. A typical

domain to elicit these solutions is the L-shape domain. A careful presentation in [76, §2.21–26]

considers a 3D domain under plane strain or averaged plane stress conditions, where in both

cases the analysis effectively reduces it to a two dimensional problem. Indeed, the L-shape domain

example is prevalent as a 2D singular problem in the literature [225, 36, 135], especially the averaged

plane stress case, which is elaborate to reformulate back into 3D [76, §2.26]. For this reason, in this

work we consider the plane strain case in 3D.

z

θr

re-entrant

re-entrant

edge

planes

Figure 3.5: L-shape domain in a cylindrical system of coordinates.

As depicted in Figure 3.5, we considered an L-shape domain composed of three unit cubes

and a cylindrical system of coordinates, (r, θ, z), such that the re-entrant edge passes through the

origin and aligns with the z-axis, while the re-entrant planes align with θ = ±3
4π.

Using Airy functions (see [225]) one can obtain general expressions for the displacement

components in polar coordinates of a homogeneous isotropic elastic body in equilibrium, so that

−div(C : ε(u)) = f = 0. These are

ur(r, θ) =
1

2µ
ra
(
− (a+ 1)F (θ) + (1− ν)G′(θ)

)
,

uθ(r, θ) =
1

2µ
ra
(
− F ′(θ) + (1− ν)(a− 1)G(θ)

)
,

uz(r, θ) = 0 ,

(3.33)
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where ν = λ
2(λ+µ) is the Poisson’s ratio, a is a constant, and

F (θ) = C1 sin
(
(a+ 1)θ

)
+ C2 cos

(
(a+ 1)θ

)
+ C3 sin

(
(a− 1)θ

)
+ C4 cos

(
(a− 1)θ

)
,

G(θ) = − 4

a− 1

(
C3 cos

(
(a− 1)θ

)
− C4 sin

(
(a− 1)θ

))
.

(3.34)

The nonzero stresses in polar coordinates satisfying the constitutive relation (and divσ = 0) are

σrr(r, θ) = ra−1
(
F ′′(θ) + (a+ 1)F (θ)

)
,

σθθ(r, θ) = a(a+ 1)ra−1F (θ) ,

σrθ(r, θ) = −ara−1F ′(θ) ,

σzz(r, θ) = λtrM
(
ε(u)

)
.

(3.35)

Next, consider zero displacement boundary conditions at the re-entrant planes meaning

that we want ur(r,±3
4π) = uθ(r,±3

4π) = 0. The values of C1, C2, C3, C4 and a are essentially

chosen to satisfy these boundary conditions. Indeed, choosing C2 = C4 = 0, C3 = 1 and

C1 =

(
4(1− ν)− (a+ 1)

)
sin
(
(a− 1)3

4π
)

(a+ 1) sin
(
(a+ 1)3

4π
) (3.36)

guarantees that ur(r,±3
4π) = 0 regardless of the value of a. After making this choice, the condition

uθ(r,±3
4π) = 0 becomes

C1(a+ 1) cos
(
(a+ 1)3

4π
)

+
(
4(1− ν) + (a− 1)

)
cos
(
(a− 1)3

4π
)

= 0 . (3.37)

Moreover, since σ has a common factor of ra−1 it follows that a > 0 is required to have σ ∈ L2(Ω;S),

which in turn implies σ ∈ H(div,Ω;S) in view of the intrinsic expression divσ = 0. Furthermore,

to have an actual singularity in the strains and stresses it is necessary for a < 1. Hence, a is chosen

to satisfy (3.37), with a ∈ (0, 1).

For steel, the Lamé parameters are λ = 123 GPa and µ = 79.3 GPa. They yield ν ≈ 0.304

and a constant a ≈ 0.5946 ∈ (0, 1). These values are used in our computations. Additionally, we

impose displacement boundary conditions at the re-entrant planes, and stress (traction) boundary

conditions at the other faces parallel to the z-axis. The remaining two faces perpendicular to the

z-axis are equipped with mixed boundary conditions where the displacement is restricted in the

normal direction (uz = 0) and where the tangential components of the traction vanish.
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Remark 3.6. Under averaged plane stress conditions the problem is extremely similar to the plane

strain case. The major difference is that the 2D displacements and stresses, ur, uθ, σrr, σrθ and

σθθ, are actually averaged quantities over the z direction. To solve the 2D problem for the averages

simply consider the same equations as the plane strain case, but ignore uz and σzz, and change ν

to ν
1+ν in (3.33), (3.35), (3.36) and (3.37) (see [225]). Recovering a 3D solution from the averaged

quantities involves several calculations and is described in [76, §2.26].

3.3.2.1 Uniform refinements

The common factor of the stresses, ra−1, actually implies that σ is in a space of fractional

order s, which roughly speaking corresponds to s = 1 + (a − 1) − δ = a − δ, where δ > 0. Since

a ∈ (0, 1), it follows that under uniform refinements the expected convergence rate with respect to

h is approximately a, meaning the expected convergence rate with respect to degrees of freedom is

−a
3 ≈ −0.1982 (since h−3 = O(Ndof)), regardless of the value of p (see Theorem 2.4).
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Figure 3.6: Residual as a function of the degrees of freedom after uniform hexahedral refinements in the

L-shape domain with a singular solution.

The uniform refinement results for the variational formulations (3.24)S, (3.25)U, (3.26)M

and (3.27)P, are presented in Figure 3.6. As expected, the rates are very close to −a
3 ≈ −0.1982

when p = 2 and p = 3. When p = 1, the mixed and ultraweak methods seem to be converging at

a higher rate (about 0.33), but this is probably because it has not reached the asymptotic regime

where it stabilizes to the expected rate. The global residual, ηh, was computed using (2.50) (see

also Remark 2.3 for (3.24)S and (3.26)M). It was computed with the same level of enrichment
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(p+ ∆p = 4) as described in Remark 2.4, and normalized with a fixed reference residual, ηref . For

each formulation, as expected from the theory of minimum residual methods, the residual decreased

both when the mesh was refined for a fixed p and also when p was refined for a fixed mesh. For

example, the latter case is observed by looking at how the first point in the strong formulation

(corresponding to the fixed initial three-element mesh) decreases in value as the order grows from

p = 1 (left plot) to p = 3 (right plot). This comparison is valid in the discrete setting, only because

a fixed value of p+ ∆p = 4 was used to compute the residual in all cases.

3.3.2.2 Adaptive refinements

To prevent the proliferation of degrees of freedom and to have some form of theoretical

footing we use anisotropic refinements such that no refinements are done in the z direction, where

uz = 0. The element a posteriori error estimators, ηK , are calculated for each element separately

as in (2.50) (see also Remark 2.3 for (3.24)S and (3.26)M). The criteria for adaptivity is the one

proposed in Remark 2.2 with αη = 0.5, where the marked elements are refined in the directions

perpendicular to z. With these anisotropic adaptive refinements in place it is possible to use the

2D theory on point singularities from [14], which implies that in the asymptotic limit the expected

rate should be equivalent to that coming from a smooth solution. That is, the rate with respect to

Ndof is expected to approach −p
3 in the limit.

102 103 104 105

Degrees of freedom

10−3

10−2

10−1

100

R
es

id
u

al
=
||B

u
h
−
`||

||B
u

re
f−
`||

1

-0.45

1

-0.52

p = 1

Strong

Primal

Mixed

Ultraweak

102 103 104 105

Degrees of freedom

10−3

10−2

10−1

100

1

-0.75

1

-1.12

1

-0.99

p = 2

Strong

Primal

Mixed

Ultraweak

102 103 104 105

Degrees of freedom

10−3

10−2

10−1

100

1

-1.09

1

-1.88

1

-1.47

p = 3

Strong

Primal

Mixed

Ultraweak

Residual in L-shape domain with singular solution and adaptive refinements

Figure 3.7: Residual as a function of the degrees of freedom after adaptive anisotropic hexahedral refinements

in the L-shape domain with a singular solution.
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The problem is solved successively through nine adaptive refinements with all formulations.

The results are illustrated in Figure 3.7. For p = 1 the rates initially oscillate at around 0.5, which

is much better than the expected 0.33. This is a desirable quality, because the pre-asymptotic rates

are faster than the expected rates. Nevertheless, the rate would probably eventually approach the

expected rate if more refinements had been taken. Similar assertions hold for p = 2 and p = 3.

It is worth noting that the formulations in (3.27)P and (3.24)S have very similar and consistent

behaviors with respect to convergence. On the other hand, for p = 2 and p = 3, the formulations

in (3.26)M and (3.25)U seem to have a less consistent behavior with adaptive refinements.
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Mixed Ultraweak
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2.0 · 10−2

2.5 · 10−2
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0

3.152 · 10−2

|u|

Figure 3.8: The adaptive meshes for each method after five successive refinements. The domains are colored

by the displacement magnitude, |u|, and warped by a factor of 10.

The adaptive refinement patterns for each of the different methods under this singular prob-

lem is interesting to analyze. Indeed, note that for Figure 3.7 the mixed and ultraweak formulations

evidence a greater growth in degrees of freedom with each adaptive step. Figure 3.8 complements

this by showing the resulting meshes for each of the methods after five refinements were performed.
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As can be clearly seen, more elements have been refined with the mixed and ultraweak formulations

than with the strong and primal formulations. This is especially evident far from the re-entrant edge

(where the singularity lies). There could be many reasons for these refinement patterns, including

the nature of the formulation itself and the choice of the test norm. Indeed, (3.27)P and (3.24)S

have the displacement variable, whose gradient is singular, lying in H1(Ω), while the (3.26)M and

(3.25)U have it lying in L2(Ω). This could imply that the residual is affected by those gradient

terms, which leads to a much more focused pattern of refinements toward the singularity. On the

other hand, the choice of test norm is completely fundamental and can have a profound effect on

the computations. Here, we chose the standard norms. However, other choice of norms, such as

graph norms for the ultraweak formulation, might lead to radically different refinement patterns.

3.3.3 Sheathed hose

Boundary conditions

Eight-element
initial mesh
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(−pout

0
0

)
=−poutêr
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êz
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Figure 3.9: Diagram of the sheathed hose problem with the configuration of variational formulations per

subdomain and a schematic of the boundary conditions used.

As a second example using coupled variational formulations, a rubber hose (hollow cylinder)

sheathed by a layer of steel was considered as illustrated in Figure 3.9. This is a more physically-
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relevant example, because similar configurations are used in an array of applications including

high-performance racing engine hoses and high-pressure hydraulic oil hoses (see SAE hydraulic

hose standards), which have a steel braided outer sleeve. A variation of the example may also be

pertinent to stents inside an artery.

To simulate balanced axial stresses which would appear in an infinite tube, the axial faces

were confined by vanishing normal direction (axial) displacement boundary conditions and zero

traction boundary conditions in the tangential directions as depicted in Figure 3.9. Moreover,

normal pressure distributions were placed on the inner rubber surface, pin(θ, z) at Rin, and on the

outer steel surface, pout(θ, z) at Rout, where θ represents the azimuthal direction and z represents

the axial direction. Lastly, to have a supported structure with a fixed origin, three non-collinear

points of one of the axial faces had their azimuthal displacement set to zero.

The thickness of the outer steel layer, Rout − Rmid, was assumed to be much smaller than

the thickness of the rubber layer, Rmid −Rin. This implied the use of very thin elements provided

each layer was discretized by the same number of elements in the radial direction, so that shear

locking could have been a concern. Additionally, the rubber was taken to be the demanding case

of a fully incompressible material, so that volumetric locking also had to be avoided. In principle,

this makes the problem particularly challenging to solve, and therefore constitutes an ideal testing

ground for the method being analyzed. Fortunately, the use of coupled variational formulations

was extremely convenient, because, at least with regard to volumetric locking, all one needed to do

was to choose a robustly well-posed variational formulation for the rubber subdomain coupled with

a more efficient formulation in the steel subdomain, where robustness with respect to the material

properties was not an issue. In fact, as shown in Figure 3.9, the broken ultraweak formulation,

(3.25)U, was chosen for the rubber, while the broken primal formulation, (3.27)P, was chosen for

the steel.

For reference, the steel had a Young’s modulus of ES = 200 GPa and a Poisson’s ratio of

νS = 0.285, and the rubber had a Young’s modulus of ER = 0.01 GPa and a Poisson’s ratio of

νR = 0.5. Then, the Lamé parameters were easily calculated using the formulas λ = Eν
(1+ν)(1−2ν)

and µ = E
2(1+ν) . Meanwhile, the radii used were Rin = 0.5 m, Rmid = 0.99 m and Rout = 1.0 m.
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3.3.3.1 Uniform pressure distribution

For code verification, a 1D problem was essentially solved in 3D. Indeed, uniform pressure

distributions were assumed to hold inside and outside, with values pin = 1 MPa and pout = 0 MPa

respectively, so that they were independent of the azimuthal and axial directions, along with all

the mechanics of the problem (i.e. ∂u
∂θ = 0 and ∂u

∂z = 0). The remaining boundary conditions at

the axial faces also implied that uθ = 0 and uz = 0. Thus, the exact solution was derived from the

ansatz that all nonvanishing physical variables were functions only of the radial direction, r. With

these assumptions, the linear elasticity problem with no external volumetric forces reduces to the

scalar equation
1

r

d

dr
(rσrr)−

1

r
σθθ = 0 , (3.38)

with boundary conditions, (σ ·n̂(Rin))r = −σrr(Rin) = pin and (σ ·n̂(Rout))r = σrr(Rout) = −pout.

For the steel, the nonzero stress components are

σrr = (2µS + λS)
dur
dr

+ λS
ur
r
, σθθ = (2µS + λS)

ur
r

+ λS
dur
dr

,

σzz = λS

( dur
dr

+
ur
r

)
,

(3.39)

while for the rubber there is the additional incompressibility equation div(u) = dur
dr + ur

r = 0 and

the stress components are

σrr = 2µR
dur
dr
− p0 , σθθ = 2µR

ur
r
− p0 ,

σzz = −p0 ,

(3.40)

for some constant, p0 ∈ R.

This boundary value problem has the general solution

ur(r) =

{
Ar−1 if Rin ≤ r ≤ Rmid ,

Br + Cr−1 if Rmid ≤ r ≤ Rout ,
(3.41)

where the range Rin ≤ r ≤ Rmid represents the rubber and the range Rmid ≤ r ≤ Rout represents

the steel. Upon matching displacements and tractions at the interface, Rmid, and applying the

boundary conditions, the constants A, B, C and p0 in their general form are given by the following
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expressions,

A =
1

2d

(
− pin

(
µSR

2
mid + (λS + µS)R2

out

)
+ pout(λS + 2µS)R2

out

)
R2

midR
2
in ,

B =
1

2d

(
− pinµSR

2
inR

2
mid − pout

(
(µR − µS)R2

in − µRR
2
mid

)
R2

out

)
,

C =
1

2d

(
− pin(λS + µS)R2

in + pout

(
(λS + µR + µS)R2

in − µRR
2
mid

))
R2

midR
2
out ,

p0 =
1

d

(
pin

(
(µR − µS)(λS + µS)R2

out + µS(λS + µR + µS)R2
mid

)
R2

in

− poutµR(λS + 2µS)R2
outR

2
mid

)
,

d =
(
(µR − µS)(λS + µS)R2

out + µS(λS + µR + µS)R2
mid

)
R2

in

− µR

(
µSR

2
mid + (λS + µS)R2

out

)
R2

mid .

(3.42)
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Figure 3.10: Stress error (in Pa) as a function of the number of uniform refinements, Nref . The value of

p = 1 was not shown because the isoparametric geometry was too inaccurate for the initial meshes.

In this example the convergence of the stress was presented. For this, the L2(Ω) error of

the variable σh was reported, where σh is the L2(ΩU) ultraweak stress solution variable inside the

rubber and σh = C :∇uh inside the steel, with uh being the H1(ΩP) primal displacement solution

variable. Order p convergence rates were expected for order p discretizations as stipulated by

Theorem 2.4, because ‖σ−σh‖L2(Ω) ≤ ‖σ−σh‖L2(ΩU)+‖C‖‖u−uh‖H1(ΩP). This was corroborated

numerically under uniform refinements for 2 ≤ p ≤ 4 as observed in Figure 3.10.
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3.3.3.2 Varying pressure distribution

Lastly, a nonuniform internal pressure distribution of pin(θ) = cos2(θ) MPa was prescribed

on the inside, while the the external pressure was uniformly kept at pout = 0 MPa. After a few

uniform refinements the solution is displayed in Figure 3.11 in each separate layer. Note that

the discontinuity of the stress component, σθθ, which is useful in some applications, was amicably

reproduced.
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Figure 3.11: Stress component σθθ (in MPa) from computed solution with p = 2 and nonuniform internal

pressure loading after three uniform refinements of the eight-element initial mesh. Note the discontinuity

across the material interface.

3.4 Discussion

This chapter fulfilled two roles. First, it was a proof of concept in showing the adaptability

of the DPG methodology to discretize different variational formulations. Second, it showed how to

take advantage of the mathematical structure present in broken variational formulations to produce

coupled variational formulations, where the variational setting changes heterogenously across the

domain.
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Eight different variational formulations for the equations of linear elasticity were introduced

and showed to be mutually well-posed. The proof is interesting, as it uses the closed range theorem

in its different forms to show how all the formulations are simultaneously well-posed, and this can

be an interesting technique when applied to other problems (e.g. proving inequalities). Then, a

subset of four broken variational formulations was derived, and also proved to be well-posed. High-

order DPG methods were then constructed by discretizing the four broken variational formulations,

and the resulting methods all evidenced the expected h-convergence rates coming from the theory.

This was true for both smooth solutions and singular solutions (coming from an L-shaped domain).

Moreover, a natural computation of the residual (in the context of DPG methods) was implemented

for use in adaptive refinements. This allowed to solve the singular problem with adaptivity, and

interesting results were observed in relation to the adaptive refinement patterns produced by the

different formulations. Overall, the dexterity and versatility of DPG methods to successfully dis-

cretize variational formulations, including those with non-symmetric functional settings, was made

evident.

Meanwhile, coupled variational formulations for linear elasticity were constructed using the

family of four broken variational formulations, where each subdomain of a partitioned domain was

solved with a distinct formulation from this family. The broken variational formulations that are

commonplace in the context of the DPG methodology proved to be ideal in the theory and practice

of the coupled formulations due to the presence of interface variables which served as a perfect

vessel to transmit the solution information along the shared interdomain boundaries. In fact, the

coupled formulations were also proved to be well-posed, and the proof is intriguing in its use of the

ultraweak formulation as tool within the proof. The formulations were successfully implemented

and solved using the DPG methodology. Expected convergence rates for various values of p were

observed for different variables in several well-crafted examples.

The coupled formulations are useful in cases where one might want to exploit the properties

of a particular formulation in a certain part of the domain. For example, it is useful to have a

robust formulation when a part of the domain is composed of a nearly incompressible material,

and certain formulations are more convenient when singular behavior of the solution is expected.
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In this work, an example of a sheathed hose with high material contrast was used to illustrate the

former point. This included the derivation of a nontrivial and physically-relevant exact solution

which can be used as a benchmark by other researchers. Regarding the near singular behavior in

the latter point, it would be interesting to study some examples with Maxwell’s equations in the

future. Additionally, from both a theoretical and practical standpoint, the approach presented in

this chapter can be extended with the help of the existing literature to many other equations such

as Poisson’s equation, Maxwell’s equations, the diffusion-convection-reaction equation, and more.

An important point to emphasize about solving coupled formulations with the DPG method-

ology is that depending on the subdomain formulation, the mode of convergence, which is given

by the minimization of the residual (see (2.27)), is different because the residual is directly related

to the bilinear form along with its associated trial and broken test spaces and their corresponding

norms. Hence, there is a potential subdomain bias in the convergence of the solution variables de-

pending on the variational formulations associated to each subdomain. This bias is even more stark

when having a multi-material domain, which expectedly introduces different scales throughout the

domain. If the focus is to be centered around optimality in solution estimation, as research in the

DPG methodology often has [60, 93, 102], then this subdomain bias in the convergence is a crucial

aspect to ponder. Indeed, it directly affects the (local) residual that is used as an a posteriori error

estimator to drive adaptivity (see (2.50)). The bias itself is not necessarily undesirable, since it

may align with preferences by the end user, but it may be important to understand and modify

so that it further aligns with those preferences. For example, in the example of the sheathed hose

(Section 3.3.3) one might want to prioritize the values of stress in the steel over those in the rubber,

or the values of strain in the rubber over those in the steel. Thus, the ideal scenario is to be able

to control the bias in accordance with a desired objective. With this in mind, the lucid approach

is to attempt to design objective-biased test norms that satisfy this very purpose. In the examples

in this chapter, the use of the standard test norms of the trial and test spaces introduced a natural

yet unoptimized subdomain bias, but designing these objective-biased norms would most certainly

constitute an improvement to the scope of the present work. It would be compelling to explore

more exotic test norms eventually.
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Another remark to make is that the coupled method used is akin to domain-decomposition

methods and may even serve as an alternative. In fact, many steps of the DPG numerical method

can be made parallel too, and the resulting connectivities along the interdomain boundaries are

of a similar nature as those of other domain-decomposition methods. Conceptually, compared

to domain-decomposition methods, the use of the DPG methodology in the current method has

the advantage of providing a solid ground of theory which practically guarantees stability and

convergence of the solution with successive refinements, but has the disadvantage of possibly coming

at a slightly higher computational cost. In the future, it would be interesting to more rigorously

investigate these connections with domain-decomposition methods. Lastly, the interface variables

in the broken formulations are not only natural to couple distinct formulations, but also suggest

a natural way to couple with entirely different finite element methods or with boundary element

methods. The latter has already been further investigated in the context of elliptic transmission

problems [117, 119, 120].
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Chapter 4

Linear viscoelasticity: DMA experiments and calibration

This chapter is essentially composed of the material published as a research article in [111]‡.

It describes solving the equations of linear viscoelasticity for real problems using DPG methods. It

is included in this dissertation, because it shows the applicability of the residual-based high-order

a posteriori error estimator that is intrinsic to DPG methods. Indeed, it was useful in solving a

real problem involving the calibration of material constants in dynamic mechanical analysis (DMA)

experiments of viscoelastic materials. The contributions of the author to the multi-authored article

were making all the computations, producing the mathematical proofs and writing the manuscript.

4.1 Introduction

The aim of this chapter is twofold. First, it is to implement a primal formulation of time-

harmonic linear viscoelasticity with a DPG method. Second, it is to use such an implementation to

validate calibration data directly from dynamic mechanical analysis (DMA) experimental results of

the dynamic Young’s modulus of two different thermoset resins. Many problems in viscoelasticity

have local solution features in the stress or displacement, and the a posteriori error estimator is a

very useful trait of the general DPG methodology which can be exploited in those cases. In fact,

such local solution features will be observed when simulating the experimental results.

The chapter is outlined as follows. In Section 4.2 the equations of viscoelasticity along with

the relevant variational formulations are introduced and proved to be well-posed. In Section 4.3

the DPG discretization is rigorously shown to be h-convergent by constructing a Fortin operator

that implies its discrete stability. In Section 4.4, numerical results are presented. Both h- and

p-convergence are analyzed in order verify the numerical scheme. Moreover, using experimental

data, the validation of calibration models from DMA experiments is studied.

‡ Fuentes, F., Demkowicz, L., and Wilder, A. (2017a). Using a DPG method to validate DMA experimental

calibration of viscoelastic materials. Comput. Methods Appl. Mech. Engrg., 325:748–765.
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4.2 Primal variational formulations for viscoelasticity

4.2.1 Equations of linear viscoelasticity

The classical linear viscoelasticity equations are solved in this chapter. The constitutive

model was originally developed by Boltzmann [35] and Volterra [231], but later recast more rigor-

ously as a linearization of equations arising in nonlinear continuum mechanics under the additional

assumption of a dependence of the stress on the deformation history [83, 78, 186, 188] (see also

Appendix C). In the time domain, the first-order system describing a viscoelastic material with

constant density ρ > 0 in a domain Ω ⊆ R3 is{ ρü = divσ + f ,

σ = Ċ ∗·· ε =

∫ ∞
−∞

Ċ(s) :ε(·− s) ds ,
(4.1)

where the displacement u and stress σ are unknown, f is a known body force, and the engineering

strain is defined in terms of u as ε = 1
2(∇u +∇uT). Meanwhile, the viscoelastic stiffness tensor

C is in general not only a function in space, but also in time. With the typical assumption of

C(t) = 0 for times t < 0, this leads to the distributional derivative Ċ(t) = C(0)δ0(t) + Ċ+(t)H0(t),

where Ċ+ =
dC|(0,∞)

dt , δ0 is the Dirac delta, and H0 is the Heaviside step function. This yields

the expression σ = C(0) : ε +
∫∞

0 Ċ(s) : ε(· − s) ds, which is commonly found in the literature

[142, 83, 105]. The relaxation or equilibrium stiffness tensor is C∞ = limt→∞ C(t). The classical

case of linear elasticity occurs when C(t) = C∞H0(t) leading to σ = C∞ :ε.

In practice, many applications occur in a vibrating environment, so considering the time-

harmonic case is natural. This also has the advantage of avoiding the computation of any con-

volutions, since Ċ ∗·· ε becomes a product after using the Fourier transform. As usual, the stiffness

tensor is assumed to have minor and major symmetries, so that Cijkl = Cijlk = Cjikl = Cklij and

as a result Cijklτ kl = Cijkl
1
2(τ kl + τ lk) for any second-order tensor τ . In particular Ċ ∗·· ε = Ċ ∗··∇u.

Thus, substituting the constitutive model for the stress into the conservation of momentum, and

considering the time-harmonic case at angular frequency ω, yields the second-order equation,

− ω2ρu− div(C∗ :∇u) = f , (4.2)
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where, given x ∈ Ω, the complex-valued u(x, ω), f(x, ω) and C(x, ω) are the corresponding Fourier

transforms of the time-dependent displacement, force and stiffness tensor; and where the dynamic

stiffness tensor is defined as C∗(x, ω) = iωC(x, ω). Note that in the limiting case of linear elasticity,

C∗ = C∞, so C∗ is no longer complex-valued or ω-dependent. For isotropic materials, the stiffness

tensor explicitly takes the form,

Cijkl = λδijδkl + µ(δikδjl + δilδjk) , (4.3)

and similarly with C∗ in terms of λ∗ = iωλ and µ∗ = iωµ, where in the latter expression, λ

and µ are the Fourier transforms of the time-dependent Lamé parameters. Moreover, G∗ = µ∗

is the dynamic shear modulus, K∗ = λ∗ + 2
3µ
∗ is the dynamic bulk modulus, E∗ = µ∗(3λ∗+2µ∗)

λ∗+µ∗

is the dynamic Young’s modulus, and ν∗ = λ∗

2(λ∗+µ∗) is the dynamic Poisson’s ratio. Notably, E∗

is a nonlinear function of λ∗ and µ∗, implying that in general it is not the Fourier transform of

d
dt
µ(t)(3λ(t)+2µ(t))

λ(t)+µ(t) . A similar assertion follows for ν∗. Thus, one should be careful when speaking

of the time-dependent Young’s modulus and Poisson’s ratio in three-dimensional viscoelasticity as

even different definitions derived from physical principles exist in the literature [164, §5.7].

The goal is to solve the second-order equation in (4.2) for the unknown displacement,

provided the forcing and the dynamic stiffness tensor of the material are known throughout the

domain Ω ⊆ R3 at the angular frequency ω. For this to be possible, boundary conditions need

to be specified. Thus, it will be assumed that the boundary is partitioned into relatively open

subsets Γu and Γσ satisfying Γu ∪ Γσ = ∂Ω and Γu ∩ Γσ = ∅, where displacement and traction

boundary conditions are set by the known functions u = uΓu and (C∗ :∇u)·n̂ = σΓσ
n on Γu and Γσ

respectively, with n̂ being the outward normal at ∂Ω. From now on it will be assumed that Γu 6= ∅

and Ω is bounded and Lipschitz.

Remark 4.1. As stated here, the functions will now be complex-valued, so they take values in

C. This means that the inner products (see (2.3)), and all the definitions of the Hilbert spaces in

Appendix A and Section 3.2.1 have to account for this change. In particular, the inner product will

now be sesquilinear. The theory from Chapter 2 will apply, but after the necessary modifications

are made.
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4.2.2 Classical primal formulation

The usual approach to solve the second-order equation is to multiply by a smooth enough

test function that vanishes at Γu, and then integrate by parts once. For every test function v this

yields the expression

b0(u,v) = −ω2ρ(u,v)Ω + (C∗ :∇u,∇v)Ω = (f ,v)Ω + 〈σΓσ
n ,v〉∂Ω = `(v) . (4.4)

To prove the convergence and stability of any numerical method aiming to solve (4.4), usually

determining well-posedness of the underlying non-discrete equations is either necessary or extremely

useful. For this, a deeper understanding of the functional spaces used as trial and test spaces is

required. Indeed, when uΓu = 0, the natural choice of space for u and v isH1
Γu(Ω). When, uΓu 6= 0,

the final displacement takes the form uf = u + ũΓu , where u ∈ H1
Γu(Ω) and ũΓu ∈ H1(Ω) is an

extension of uΓu to Ω. For simplicity consider uΓu = 0, let U = H1
Γu(Ω) and assume that for some

C > 0, |`(v)| ≤ C‖v‖H1(Ω) for all v ∈ U, so that ` ∈ U′. Then, solving (4.4) can be rewritten as

the problem that aims to find u ∈ U such that

b0(u,v) = `(v) ∀v ∈ U . (4.5)

This is referred to as the primal variational formulation, and the goal is to prove that it is well-posed

in the sense of Hadamard, so that there is a guaranteed existence of a unique solution depending

continuously upon the forcing and boundary conditions (encoded in `). The proof is presented in

what remains of the section, where a bounded Ω ⊆ R3 and Γu 6= ∅ are assumed throughout. It is

based on the use of the Fredholm alternative and the theory of Gelfand triples in the same spirit

as [144, 189, 155].

Lemma 4.1. Let bC∗(u,v) = (C∗ :∇u,∇v)Ω, for u,v ∈ H1
Γu(Ω) and with C∗ being a fourth-

order tensor with major and minor symmetries satisfying |ε̄ : Re(C∗) : ε| > 0 for all symmetric

second-order tensors ε 6= 0. Then, |bC∗(u,u)| ≥ α‖u‖2
H1(Ω)

for some α > 0.

Proof. First note that ∇u :C∗ :∇u = ε̄ :Re(C∗) :ε + iε̄ :Im(C∗) :ε with ε = 1
2(∇u +∇uT). The

major symmetry of C∗ clearly implies that both ε̄ :Re(C∗) :ε and ε̄ :Im(C∗) :ε are real-valued, so
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that

|bC∗(u,u)|2 = |(Re(C∗) :ε, ε)Ω|2 + |(Im(C∗) :ε, ε)Ω|2 ≥ |(Re(C∗) :ε, ε)Ω|2 .

Due to the symmetries, Re(C∗) and ε may be reinterpreted in Voigt notation as a symmetric

6 × 6 matrix and a vector in C6 respectively, so that the Rayleigh quotient of the Voigt-matrix

Re(C∗) takes the form ε̄ : Re(C∗) : ε/(ε̄ : ε + 2|ε12|2 + 2|ε13|2 + 2|ε23|2). By hypothesis, 0 is not

in the Rayleigh quotient’s range, implying |(Re(C∗) : ε, ε)Ω| =
∫

Ω |ε̄ : Re(C∗) : ε|dΩ, because its

range is either fully positive or fully negative. If the range is positive, the Rayleigh quotient yields

|ε̄ :Re(C∗) :ε| ≥ λmin(ε̄ :ε + 2|ε12|2 + 2|ε13|2 + 2|ε23|2) ≥ λminε̄ :ε, where λmin > 0 is the smallest

eigenvalue of the Voigt-matrix Re(C∗). Similarly if the range is negative, so that in any case

|bC∗(u,u)| ≥ α(ε, ε)Ω for some α > 0. The result follows because Korn’s and Poincaré inequalities

(Γu 6= ∅) imply that for all u ∈H1
Γu(Ω), (ε, ε)Ω ≥ α‖u‖2H1(Ω)

for some α > 0.

Remark 4.2. In the case of isotropic materials, the conditions on the dynamic stiffness tensor,

C∗, are equivalent to Re(G∗)Re(K∗) > 0. The physically-relevant case is when both the storage

shear and bulk moduli are positive, Re(G∗) > 0 and Re(K∗) > 0, but exotic exceptions do exist

where the storage bulk modulus may be negative [165]. Curiously, if Re(G∗) 6= 0 and Re(K∗) = 0,

then I : Re(C∗) : I = 0, but the coercive inequality |bC∗(u,u)| ≥ α‖u‖2
H1(Ω)

still holds, because

|(Re(C∗) :ε, ε)Ω| = 2Re(G∗)(εD, εD)Ω, where εD = ε− 1
3tr(ε)I is the deviatoric part of the strain.

Then, all that remains is to apply a recently proved and more general version of Korn’s inequality,

(εD, εD)Ω ≥ α(∇u,∇u)Ω for all u ∈H1
Γu(Ω) and α > 0 [182].

Remark 4.3. In the particular case of static linear elasticity, C∗ = Re(C∗) = C∞ and the primal

formulation is that of finding u ∈ H1
Γu(Ω) such that bC∗(u,v) = `(v) for all v ∈ H1

Γu(Ω). Thus,

a straightforward application of the Lax-Milgram theorem yields the well-posedness of the static

linear elasticity equation provided |ε :C∞ : ε| > 0 for all symmetric strains ε 6= 0. If the material

is isotropic this implies G∞K∞ > 0, and in particular, the equations are well-posed for positive

shear and bulk moduli. For even more general conditions (in terms of the compliance tensor,

S∞ = (C∞)−1) under which static linear elasticity remains well-posed, see [8].
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Theorem 4.1. Let U=H1
Γu(Ω) and consider the problem of finding u∈U such that b0(u,v)=`(v)

for all v ∈ U, where b0(u,v) = −ω2ρ(u,v)Ω + (C∗ :∇u,∇v)Ω and ` ∈ U′, and where it is assumed

|ε̄ :Re(C∗) :ε| > 0 for all symmetric second-order tensors ε 6= 0. Then, for each value of ω, either

there exists 0 6= u ∈ U such that b0(u,v) = 0 for all v ∈ U, or, given any ` ∈ U′, there exists a

unique solution u ∈ U solving b0(u,v) = `(v) for all v ∈ U which satisfies ‖u‖U ≤ C‖`‖U′ for a

C > 0 independent of the choice of `. Furthermore, the former case, where infinitely many solutions

of the form βu ∈ U for β ∈ C exist, only holds for a countable set of values of ω which has no

accumulation points.

Proof. First define the linear operator B : U → U′ as 〈Bu,v〉U′×U = bC∗(u,v) = (C∗ :∇u,∇v)Ω

for all v ∈ U. Lemma 4.1 implies that B is bounded below, ‖Bu‖U′ ≥ α‖u‖U, with some α > 0, so

that B is injective and its range, R(B) =
{
`∈U′ | `|U00 = 0, U00 = {v ∈U | bC∗(u,v) = 0 ∀u∈U}

}
,

is closed. Again by Lemma 4.1, U00 = {0} and R(B) = U′, so the open mapping theorem implies

B−1 : U′ → U is bounded. Assume the embedding ι : U→ U′, defined naturally as 〈ιu,v〉 = (u,v)Ω

for all v ∈ U, is compact, so that the operator K = ιB−1 : U′ → U′ is a compact operator, with

range R(K) = ι(U). Given ω 6= 0 (so ω2ρ 6= 0), the Fredholm alternative applies to K − 1
ω2ρ

id.

Hence, either there exists 0 6= ιu = v ∈ R(K) such that Kv − 1
ω2ρ
v = 0, or K− 1

ω2ρ
id : U′ → U′ is

a homeomorphism. In the first case, this would imply −ω2ρBι−1(Kv− 1
ω2ρ
v) = −ω2ριu+Bu = 0

for such u ∈ U. In the second case this implies −ω2ρ(K− 1
ω2ρ

id)B : U→ U′ is a homeomorphism,

so there exists a unique solution u ∈ U to the equation −ω2ρ(K− 1
ω2ρ

id)Bu = −ω2ριu+ Bu = `

for any ` ∈ U′ which satisfies that ‖u‖U ≤ ‖(−ω2ρ(K − 1
ω2ρ

id)B)−1‖‖`‖U′ . When ω = 0 and for

any ` ∈ U′, obviously ‖u‖U ≤ ‖B−1‖‖`‖U′ , where u = B−1` is the unique solution to Bu = `.

From the theory of compact operators the set of eigenvalues of K is countable, bounded,

and can only accumulate at 0. Since the eigenvalues considered are of the form 1
ω2ρ

, it follows that

their inverses, ω2ρ, are also countable and have no accumulation point.

It remains to show the embedding ι : U → U′ is compact. This is due to the fact that

(U,V,U′) is a Gelfand triple, with V = L2(Ω). More precisely, the natural embedding ιV : U→ V,

ιVu = u, is continuous by the Sobolev embedding theorem, and moreover UV = V since U contains
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all smooth functions vanishing in ∂Ω which are well known to be dense in V. Thus, the transpose

ιTV : V′ → U′ is continuous, takes the form ιTVv = v|U, and is injective by the density of U in V. Let

RV : V → V′ be the Riesz map, which explicitly takes the form 〈RVu,v〉 = (u,v)Ω, and is known

to be continuous and bijective by the Riesz representation theorem. Thus, the original embedding

ιTVRVιV = ι : U → U′ is injective and compact, because ιV is compact by the Rellich-Kondrachov

theorem.

Remark 4.4. The theorem can be generalized to spatially heterogeneous (but constant in time)

densities, as long as ρmin < ρ(x) < ρmax for all x ∈ Ω, where ρmin > 0 and ρmax > 0 are constants.

Remark 4.5. Theorem 4.1 shows that (4.5) is well-posed for almost every value of ω, with the

exception of some critical values which are essentially spread out in the real-number line. At these

critical values the system is said to be in resonance, and a unique solution does not exist. Indeed,

the constant C in the statement of the theorem, which is ω-dependent, blows up as these resonant

frequencies are approached. Thus, when close to these frequencies, numerical schemes discretizing

these equations, even if theoretically stable, are usually very ill-conditioned and round-off error

may play an undesirable role (see [160]).

4.2.3 Broken primal formulation

In the study of discontinuous finite element methods it is common to merely consider

functions that element-wise have a particular regularity and are possibly discontinuous at the

boundaries of the elements, instead of requiring those functions to have the regularity at a global

level. This leads to broken spaces dependent on a mesh (a relatively open partition of Ω), T (see

Appendix A and Section 3.2.1 for definitions). Proceeding as with the classical case, but this time

multiplying (4.2) by a broken test function v ∈H1(T ) yields,

−ω2ρ(u,v)T + (C∗ :∇u,∇v)T − 〈(C∗ :∇u)·n̂,v〉∂T = (f ,v)T ,

(u,v)T =
∑
K∈T

(u|K ,v|K)K , 〈u,v〉∂T =
∑
K∈T
〈uK ,vK〉∂K . (4.6)

This is still not a well-defined formulation because 〈 · , · 〉∂K needs to be interpreted rigorously and

the expression (C∗ :∇u) · n̂ needs to be replaced by an appropriate interface variable along the
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mesh skeleton. The variable itself represents a traction, so it must come from a stress. As seen in

Chapter 3 (and Section 2.2 as well), the appropriate space for these tractions is H
−1/2
Γσ

(∂T ), which

in turn come from stresses in HΓσ(div,Ω) (see Section 3.2.1 for the definition of those spaces). The

corresponding trace operators for variables in H1(K) and HΓσ(div,K) are trKgrad and trKdiv, while

for variables in H1(T ) and HΓσ(div, T ) they are trTgrad and trTdiv (see Appendix A for definitions).

Assuming vanishing boundary conditions, uΓu = 0 and σΓσ
n = 0, the broken primal varia-

tional formulation is defined by

bT
(
(u, σ̂n),v

)
= b0(u,v) + b̂(σ̂n,v) , `T (v) = (f ,v)T ,

b0(u,v) = −ω2ρ(u,v)T + (C∗ :∇u,∇v)T , b̂(σ̂n,v) = −〈σ̂n, tr
T
gradv〉∂T ,

(4.7)

where u ∈ U = H1
Γu(Ω), σ̂n ∈ Û = H

−1/2
Γσ

(∂T ), v ∈ VT = H1(T ), and the trial space UT = U× Û

is equipped with its Hilbert norm. Note that in relation to (4.4), the domain of the test space of b0

was extended from H1
Γu(Ω) to H1(T ). Meanwhile, it is clear `T ∈ V′T . Thus, the broken primal

formulation that solves (4.2) is equivalent to seeking u ∈ U such that,

bT
(
(u, σ̂n),v

)
= `T (v) ∀v ∈ VT . (4.8)

When the boundary conditions are nontrivial, terms involving extensions of uΓu ∈ H1/2(Γu) and

σΓσ
n ∈H−

1/2(Γσ) to H1(Ω) and H−1/2(∂T ) respectively, become part of `T .

Theorem A.1 implies that b̂|
Û×V0

= 0, and that bT |U×V0 and `T |V0 are effectively the forms of

the classical primal formulation (since Û ceases to play a role). Moreover, this fact and Theorem A.3

yield the well-posedness of the broken primal formulation via a straightforward application of

Theorem 2.1, provided the classical primal formulation is well-posed. Thus, under the assumption

of |ε̄ :Re(C∗) :ε| > 0 for all symmetric second-order tensors ε 6= 0, the broken primal formulation

is well-posed for most values of ω as established by Theorem 4.1.

Theorem 4.2. Let U = H1
Γu(Ω), Û = H

−1/2
Γσ

(∂T ), UT = U × Û, VT = H1(T ), and consider the

problem in (4.8), with bT defined in (4.7) in terms of b0 and b̂. Then, (4.8) is well-posed if and

only if the problem in (4.5) is well-posed. In case of being well-posed, given any `T ∈ V′T , there

exists a unique solution (u, σ̂n) ∈ UT solving bT
(
(u, σ̂n),v

)
= `T (v) for all v ∈ VT which satisfies

‖(u, σ̂n)‖UT ≤ C‖`T ‖V′T for a C > 0 independent of the choice of `T and mesh T .
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4.3 Discretization and convergence analysis

The broken variational formulation was discretized as described throughout Chapter 2. The

choice of spaces was precisely that proposed in Section 2.7, because all the spaces are SdR spaces

(see Section A.5 in Appendix A for definitions), so there exist compatible SdR discretizations of

order p for the trial spaces and SdR discretizations of order p + ∆p for the enriched test spaces.

These discretizations exist for all conventional element shapes [114]. More explicitly, the trial and

test spaces are,

Uh =
{

(φ, τ̂n)∈U=H1
Γu(Ω)×H−1/2

Γσ
(∂T )

∣∣ φ|K ∈(W p(K)
)3
, (τ̂n)K ∈

(
trKdiv(V p(K))

)
3
}
,

Vr =
{
w | w|K ∈

(
W p+∆p(K)

)
3
}
⊆ V = H1(T ) ,

(4.9)

where the spaces W p(K) and V p(K) come from a local SdR discretization of a particular element.

Next, assume T is a shape-regular tetrahedral mesh. Then, the discrete trial and enriched

test spaces in (4.9) are explicitly

W p(K) = Pp , V p(K) = RT p = (Pp−1)3 + xPp−1 , (4.10)

for everyK ∈ T . These spaces come from the classical Nédélec sequence of the first type, whereRT p

is called the Raviart-Thomas space of order p. Then, define a Fortin operator ΠF : H1(T )→ Vr by

(ΠFv)|K = Πp,∆p
F,grad,Kv|K for K ∈ T with the local Fortin operator coming from Theorem 2.3. Take

(φ, τ̂n) ∈ Uh, and assume C∗ is piecewise constant across the mesh. Hence, for every tetrahedral

element K ∈ T ,

φ|K ∈
(
Pp
)3 ⊆ (Pp+∆p−4

)3
,

C∗ :∇(φ|K) ∈
(
Pp−1

)3×3 ⊆
(
Pp+∆p−5

)3×3 ⊆
(
Pp+∆p−3

)3×3
,

(τ̂n)K ∈
(
trKdiv(V p(K))

)3 ⊆ (trKdiv

(
V p+∆p−4(K))

)3 ⊆ (trKdiv

(
V p+∆p−2(K))

)3
,

(4.11)

for ∆p ≥ 4. Therefore, using (2.70), (2.72) and (2.78) it follows

bT
(
(φ, τ̂n),v −ΠFv

)
= −ω2ρ

(
φ,v −ΠFv

)
T +

(
C∗ :∇φ,∇(v −ΠFv)

)
T

−
〈
τ̂n, tr

T
grad(v −ΠFv)

〉
∂T = 0 ∀v ∈H1(T ) .

(4.12)

This means that as long as ∆p ≥ 4 and p ∈ N, an existence of a Fortin operator is guaranteed.
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Remark 4.6. Due to the nature of the equations, and more specifically to the dynamic term

(u,v)T in (4.7), the requirement of ∆p ≥ 4 is more stringent than that proved for linear elasticity

and Poisson’s equation, which is ∆p ≥ 3 for ultraweak formulations [133] and even ∆p ≥ 2 for

primal formulations (see Section 2.8.1).

From Theorem 2.1, it is known that the underlying exact solution u ∈H1
Γu(Ω) is the same,

regardless of the mesh being considered, and it is easily observed that σ̂n = trTdiv(C∗ :∇u) for

every mesh T . Therefore, all the exact solutions (u, σ̂n) are attached to the mesh-independent

element uΩ = (u,C∗ :∇u) ∈ H1
Γu(Ω) × HΓσ(div,Ω) through the corresponding family of meshes

(see Definition A.4 in Appendix A). With all these facts, the next theorem holds.

Theorem 4.3. Let Ω⊆R3 be a polyhedral domain and {Th}h∈H be family of polyhedral meshes of

Ω comprised of shape-regular tetrahedral elements K ∈ Th. For every Th, consider the DPG dis-

cretization of the variational formulation in (4.8), which has discrete trial and enriched test spaces

explicitly written in (4.9), with ∆p ≥ 4. Let u ∈ H1
Γu(Ω) be the mesh-independent element exact

displacement solution of all the formulations, and assume (u,C∗ :∇u) ∈H1+s(Ω)×Hs(div,Ω) for

some s > 1
2 . Then, if (uh, σ̂n,h) is the discrete solution computed at every mesh, and (u, σ̂n) is the

exact solution, it follows

‖u− uh‖2H1(Ω)
+ ‖σ̂n − σ̂n,h‖2H−1/2 (∂Th)

≤ C2h
2 min{s,p}
h

(
‖u‖2

H1+s(Ω)
+ ‖C∗ :∇u‖2Hs(div,Ω)

)
, (4.13)

where C = C(s, p) > 0 and hh = maxK∈Th diam(K). Additionally, if there exists a continuous

Fortin operator from the test space to the enriched test space with a continuity bound independent

of p, then C = Cs(ln p)
2p−s with Cs = C(s) being independent of p.

In practice, the result is also expected to hold for other element shapes and for lower values

of ∆p. The construction of a Fortin operator with a p-independent continuity bound is still an

open question at the moment.

4.4 Numerical results

First, verification studies confirming the convergence theory were done in a cube. Then,

a validation study was completed using results from dynamic mechanical analysis (DMA) calibra-
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tion experiments on different viscoelastic polymers. The in-house software hp3d was used for all

computations and MUMPS 5.0.1 was utilized as the solver.

4.4.1 Code verification

To verify the convergence results, a cube, Ω = (0, 1)3, was discretized initially with five

tetrahedra. A manufactured smooth solution for the displacement, ui(x) =
∏3
k=1 sin(πxk) for

i = 1, 2, 3, was utilized to determine the stress, force and boundary data, where the dynamic

stiffness tensor, C∗, was defined by λ∗ = µ∗ = 1 + i. The results are shown in Figure 4.1, where

∆p = 1 in all cases.
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Figure 4.1: Relative displacement error in the H1(Ω) norm. Uniform h-refinements yield expected hp con-

vergence rates for 1 ≤ p ≤ 6. Moreover, p-refinements of the same mesh do exhibit exponential convergence

of the form exp(−b p1.25) with b > 0 depending on the mesh (the finer the mesh, the higher the b).

Clearly, uniform mesh refinements confirm the h-convergence theoretical estimates in (4.13),

since the rate of convergence is of the type hp due to the analyticity of the solution (so s = ∞).

When p ≥ s, where s is the regularity of the solution, Theorem 4.3 establishes an asymptotic hp-

convergence estimate of the form ‖u− uh‖U ≤ Cs(ln p)
2
(
h
p

)
s, where Cs is independent of h and p.
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This is a quasi-algebraic form of convergence. However, when the solution is analytic, this estimate

is expected to improve in some sense, but the explicit form cannot be deduced from the previous

hp-estimate, since Cs depends on s and its behavior is unknown as s → ∞. Figure 4.1 seems to

indicate an exponential p-convergence estimate of the form ‖u − uh‖U ≤ C exp(−b p1.25), where C

and b are independent of p (but not of h) and where b > 0 is larger if the mesh is finer. This result

can be compared with exponential convergence results found in the literature [151, 152, 209] (it is

also better than related hp-exponential rates in geometric meshes [13, 138, 139, 207, 206]).

It should be noted that ∆p = 1 was used in the computations, but numerical experiments

were done with higher values of ∆p as well (including ∆p = 4), and the resulting data points were

almost exactly the same. Thus, for this particular equation it seems ∆p = 1 is preferable, since the

results are the same and the local computational cost is much lower. However, this merits further

theoretical study to be certain, perhaps by finding a Fortin operator which is valid for ∆p ≥ 1.

Having said that, there are equations and solution schemes where higher values of ∆p provide

advantages (see [86]), so this possibility should not be discarded either.

4.4.2 Validation of DMA experiments

Characterization of viscoelastic material properties in the frequency domain is done through

dynamic mechanical analysis (DMA) experiments, where the material is subjected to oscillations.

More precisely, to find the dynamic Young’s modulus, E∗, a clamped material sample at a given

temperature is made to vibrate at a particular amplitude and frequency. Thus, the temperature,

vibration amplitude and frequency are controlled by the experimenter. A certain force is then

measured in the experiment (the dependent variable), and using the appropriate beam theory one

can find an inverse model for E∗. Experiments were done at the J. J. Pickle Research Campus

of the University of Texas at Austin using the Q800 DMA instrument from TA Instruments. The

experimental setup purposefully resembles cantilever beams. Indeed, Figure 4.2 shows a material

sample in cantilever, clamped at both ends, where one clamp is static while the other clamp is free

to move and vibrate at a given amplitude and frequency. It is at this moving clamp that the force

is measured by the instrument.
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L

wCS

tCS

L

Figure 4.2: The single cantilever DMA experimental setup. The external clamp is statically fixed, while

the central clamp, where a force is measured, moves vertically with a known amplitude and frequency. This

whole setup lies inside a closed oven that carefully controls the temperature.

An inverse model for E∗ can be derived using Timoshenko beam theory. Consider a static

linear elastic beam clamped at one end and with a point force applied at the other end, where

additionally the cross-section remains parallel to the force (see Figure 4.2). This last condition

represents the moving clamp where the force is being measured. Hence, this is not a typical

cantilever beam (where one of the ends is free), but for simplicity it is still referred as such. Using

Timoshenko beam theory [222, 223], the vertical displacement can be determined using the zero-

angle boundary conditions at both ends and a zero-displacement in the clamped end. The resulting

maximum displacement occurs where the force is applied and takes the value,

umax =
FL3

12EI
+

FL

κACSG
=

FL3

12EI

(
1 +

2

κ
(1 + ν)

( tCS
L

)2)
, (4.14)

where umax is the maximum vertical displacement of the beam, F is the force applied, L is the

length between the clamped end and where the force is applied; E and G = E
2(1+ν) are the Young’s

and shear moduli of the linear elastic material while ν is its Poisson’s ratio; ACS = wCStCS , wCS

and tCS are the cross-sectional area, width and thickness respectively; I =
wCSt

3
CS

12 is the second

moment of area of the rectangular cross-section, and κ is the Timoshenko shear coefficient. This
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equation obeys a correspondence principle with the time-harmonic equations of linear viscoelasticity

[164], so that an inverse model of the form,

E∗ =
1

αc

F ∗exp
u∗max

L3

βcI

(
1 +

12

5
(1 + ν∗)

( tCS
L

)2)
,

αc = 0.7616− 0.02713
√

L
tCS

+ 0.1083 ln
(
L
tCS

)
,

(4.15)

is utilized, where βc = 12 in this single cantilever setting, and αc is a correction factor accounting

for 3D clamping effects, which is given by the manufacturer. For a rectangular cross-section, the

Timoshenko shear coefficient is taken from the literature as κ = 5
6 [156]. Here, E∗ is the dynamic

Young’s modulus, and note that both the experimental force and vibration amplitude, F ∗exp and

u∗max, are now complex numbers. Note that
F ∗exp
u∗max

=
∣∣ F ∗exp
u∗max

∣∣eiδph , where δph is an angle that represents

the phase change between the oscillations of the force and the driving mechanical vibrations of the

displacement. The values of temperature, vibration frequency, |u∗max|, |F ∗exp| cos(δph) and tan(δph)

are reported by the instrument. The distance L here is the distance between the clamps themselves,

not the distance between the midpoints of the clamps. The only limitation with this inverse model

is that it assumes that the dynamic Poisson’s ratio, ν∗, is known. The ideal scenario is that either

ν∗ or the dynamic shear modulus, G∗, are known from a separate preceding experiment. In the

latter case, where G∗ is known, note that ν∗ = E∗

2G∗ − 1, so an analogous expression for E∗ only in

terms of G∗ can easily be derived from (4.15). If neither ν∗ nor G∗ are experimentally known, it is

usually assumed that G∗ has the same phase as E∗, so that ν∗ is real-valued, and then an educated

guess is made for ν∗ ∈ R.

There is a second experimental setup which involves the same instrument, but with the

beam arranged in a double cantilever, with two external static clamps at both ends and a middle

moving clamp. This can be seen in Figure 4.3. The inverse model is actually the same as that given

in (4.15), but with βc = 24 in the double cantilever setting, and where the distance L is the same as

in the single cantilever case since it represents the distance between the edge of the external clamp

and closest edge of the middle clamp (as seen in Figure 4.3). Hence, the actual distance over which

the material is being deformed is Ld = 2L.
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Figure 4.3: The double cantilever DMA experimental setup. The two external clamps are statically fixed,

while a force is measured at the central clamp which moves at a controlled amplitude and frequency.

For the sake of brevity, results of only one example of each setup will be shown here. In the

single cantilever case, silicone at 30.0 ◦C was tested at 4 Hz with a controlled amplitude of vibration

of |u∗max| = 15µm, where the relevant part of the sample measured L = 17.5 mm, wCS = 11.8 mm

and tCS = 1.63 mm. The measured force from the experiment was |F ∗exp| cos(δph) = 0.1064 N with

tan(δph) = 0.0384. In the double cantilever case, epoxy at 22.4 ◦C was tested at 40 Hz with an

amplitude of vibration of |u∗max| = 15µm, where the relevant part of the sample had dimensions of

Ld = 2L = 35.0 mm, wCS = 13.2 mm and tCS = 2.05 mm. The measured force from the experiment

was |F ∗exp| cos(δph) = 0.7248 N with tan(δph) = 0.00869. In both experiments it was assumed that

ν∗ = 0.33 (see [128], but higher values are also found in [210]), so using the inverse model in (4.15)

with βc = 12 and βc = 24 respectively, it was possible to calculate E∗.

Next, the dynamic stiffness tensor, C∗, was computed using the values of E∗ and ν∗, and

the experiments were then simulated computationally. Here, it is important to mention that the

the middle clamp measures Lm = 6.35 mm, while the two external clamps measure Le = 7.625 mm

each, as observed from Figure 4.3. Thus the samples themselves (both in the experiment and the

simulated geometry) are typically longer than Le + L + Lm = 31.475 mm in the single cantilever

case and 2Le + 2L + Lm = 56.6 mm in the double cantilever case. The samples used for the

numerical results were 40 mm for the single cantilever and Ltot = 60 mm for the double cantilever.
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The densities of the silicone and epoxy resins were assumed to be 1134 kg·m−3 and 1250 kg·m−3

respectively. The force, which is the quantity of interest, was calculated a posteriori by integrating

the vertical traction, (σ̂n,h)3, over the area where the moving clamp made contact with the sample.

The numerically computed force, F ∗h , was then compared with the actual measured force from the

experiment, F ∗exp. The results for different values of p and with ∆p = 1 are shown in Figure 4.4.
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Figure 4.4: Convergence of the magnitude of the computed force, F ∗
h , to the real experimental value

measured from DMA experiments on different setups, F ∗
exp. The single cantilever results correspond to a

silicone sample, while those of the double cantilever correspond to an epoxy sample.

The magnitude of the force appears to converge to within 5% of the experimental value

with both the single and double cantilever setups. This is as good as one can hope for from the

validation point of view, and it confirms that the equations do indeed model the actual physical

behavior observed experimentally. These results seem to suggest that the value of p = 2 does not

offer a significant advantage over p = 1 to obtain the desired outcome, but further research on this

matter might be necessary, as a different quantity of interest might produce very different results.

With respect to the phase error in tan(δph), the simulations show virtually no error even from the

first computation. This is probably due to the assumption that ν∗ ∈ R is real-valued, but perhaps

a less trivial convergence behavior would be observed if this hypothesis were to be dropped.

The results in Figure 4.4 were obtained with adaptivity driven by the arbitrary-p residual-

based a posteriori error estimator described in (2.50), which is innate to the DPG methodology.

85



Otherwise, it would have been prohibitively expensive to obtain the same results via uniform

refinements. Indeed, from the physics of the problem, it is intuitive to notice that most of the

stress will be concentrated in the areas close to where the clamps are holding the material. The

computations confirm this, as can be observed from Figure 4.5, where it is clear that not only the

stress is localized there, but that the adaptivity scheme is refining in precisely that area, which is

where the force will be computed from. Thus, adaptivity is fundamental for this problem which

has localized solution features, and this justifies to a degree the use of this DPG method.
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Figure 4.5: Numerical results with the double cantilever setup with p = 1 and after 4 isotropic adaptive

refinements. The displacement is warped by a factor of 4000 for clarity. The vertical traction seems to be

concentrated at the edges of the middle clamp, and adaptive refinements do seem to focus on that area.

4.5 Discussion

A DPG finite element method was implemented for the time-harmonic equations of linear

viscoelasticity. The method discretizes a broken primal variational formulation of the equation,
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which was proved to be well-posed in the infinite-dimensional setting. As part of this proof, the well-

posedness of the classical primal variational formulation of linear viscoelasticity was also rigorously

established. Moreover, the numerical method itself was shown to be stable and convergent under

certain conditions, and this included analyzing both h- and p-convergence estimates. A completely

natural a posteriori error estimator for arbitrary-p which is used to drive adaptivity is also included

as part of the method. The method was verified using a smooth manufactured solution, where the

expected h-convergence rates of the form hp where corroborated for various values of p. Moreover,

the verification tests displayed exponential p-convergence estimates of the form exp(−b p1.25).

Additionally, DMA experiments to determine the dynamic Young’s modulus, E∗, were

performed on different materials and with distinct experimental setups: single and double cantilever.

The computational results validated the calibration model to within 5% error of the quantity of

interest. Moreover, the simulated stress was very concentrated on certain parts of the domain,

so having a good adaptivity scheme was crucial to obtain the desired result. In this sense, the

numerical DPG method was extremely convenient, since it already came with its own a posteriori

error estimator.

Looking forward, more complicated validation studies could be tackled, where the quantities

of interest may vary in nature. The built-in a posteriori error estimator is designed to drive down

the residual, but may not be optimal in accelerating the convergence of a particular quantity

of interest. In this sense, this could lead to investigating goal-driven adaptivity schemes within

the context of the DPG methodology. When the linear system size is large, computations may

become prohibitive, so it would be useful to make improvements to reduce the system size as much

as possible and to support parallel computing within the solvers. Finally, for more interesting

cases closer to the glass transition temperature of the materials in question, the results from the

computations might improve if the actual value of the dynamic Poisson’s ratio, ν∗, or the dynamic

shear modulus, G∗, are used in the calibration inverse model, but this requires separate DMA

experiments to be completed, which might be a future endeavor.
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Chapter 5

Case study: resins in form-wound medium-voltage coils

This chapter aims to focus on a case study involving resins found in form-wound medium-

voltage stator coils sitting inside large electric machinery. These constitute the (electric) insulation

of the machinery, and the failure of such insulation is not yet well understood. This chapter is

an attempt at a basic understanding the underlying mechanics of certain scenarios that could

eventually lead to such failure. It is mostly based on modeling of an idealized geometry under

distinct loading profiles occurring at different frequency regimes. Once again, the chapter is included

in this dissertation, because it shows the benefits of the residual-based high-order a posteriori error

estimator that is intrinsic to DPG methods.

5.1 Introduction

The insulation failure of form-wound medium-voltage stator coils inside electric machinery

is still not well understood, even though it is an important problem in the context of electric

machinery, as it demands that the machine be stopped and the insulation be replaced. Otherwise,

the machine could fail completely. Most efforts have concentrated on the diagnosis of insulation

failure (typically associated to the presence and formation of internal voids) through the detection

of physical phenomena such as partial discharge [215, 214, 180], and these efforts have had moderate

success. However, it would be useful to be able to detect insulation failure earlier, either to prevent

it, or to make a replacement with sufficient time before a critical and relatively lengthy period of

continuous operation of the machine is foreseen. Given the little knowledge about the problem in the

literature, we will focus on a very simple “turn-to-turn” geometry and analyze three hypothetical

mechanical scenarios, each associated to a different frequency regime and physical features. That

will be the objective of this chapter.
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5.2 Model geometry and preliminary assumptions

Stator of electric machine Form-wound coil
Turn-to-turn
insulation

Cu

Cu

Insulation

Figure 5.1: Schematic of turn-to-turn region within a form-wound medium-voltage coil sitting inside the

stator of a large electric machine.

Form-wound stator coils are carefully organized copper square-like wires surrounded by a

composite laminate material that acts as electrical insulation. In reality, the insulation is typically

composed of mica or glass tape held together by a matrix of viscoelastic resin (see Figure 5.2). Thus,

it is anisotropic and heterogeneous in nature. However, to simplify the physics, the insulation will

be assumed to be simply the resin matrix, which will be taken to be a homogeneous isotropic

viscoelastic material. Meanwhile, the coils will be made of copper. The interface between the

materials will be assumed to have continuous displacement between the two materials. We will

additionally focus on the simplest “turn-to-turn” region involving only two copper coils. This is

depicted in Figure 5.1. Meanwhile, the parametric geometry adopted is illustrated in Figure 5.2,

with the values of the parameters taken as h = 14.5 mm, w = 14.0 mm, hCu = 4 mm, wCu = 8 mm,

hgap = 1.0 mm and a rounding radius of Rr = 1.0 mm.

Power-dense electric machines are in a completely oscillatory environment due to their ro-

tational nature, and as a result it makes sense to analyze their mechanics in the frequency domain.

To simplify further, the underlying physics is assumed to be linear, so it is assumed that the dis-

placements, temperature variations and their gradients all take very small values. Depending on the

frequency regime, the physical phenomena that is predominant in the domain changes completely.
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Idealized model geometry
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Figure 5.2: Real form-wound stator coil, followed by blueprint of geometry, and actual geometry modeled.

The parameters of the modeled geometry were h = 14.5 mm, w = 14.0 mm, hCu = 4 mm, wCu = 8 mm,

hgap = 1.0 mm and a rounding radius of Rr = 1.0 mm.

At very low frequencies temperature effects are important, at mid-range frequencies the overall

kinematics of the machine are important, whereas at very high frequencies the electromagnetic

interaction produces Lorentz forces that affect the system. These three scenarios will be analyzed

in what follows. Additionally, two different insulating resins, epoxy and “silicone” (a silicone-based

resin), will be compared throughout.

5.3 Low frequency: thermoviscoelasticity

5.3.1 Description and problem setup

Thermal oscillations occur at relatively low frequencies of about 0.05 Hz. These variations

are due to Joule heating (i.e. Ohmic heating, resistive heating) in the copper coil and the counteract-

ing effect of rapid cooling in the stator assuming the existence of forced cooling in the power-dense

machine design. These produce a natural thermal expansion of all materials involved in the do-

main (the copper and the viscoelastic insulation). However, at these low frequencies, we expect

the deformations of the stator and the supporting structure to be negligible. Thus, the material

does not deform from the outside, yet it wants to expand inside, as illustrated in Figure 5.3. This
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produces stresses which might be interesting to investigate.

⇒

Figure 5.3: Simplified schematic of the effects of temperature in the displacement field (and possibly stress

field) assuming no external deformation.

The interaction of thermal effects and viscoelastic solids (previously referred to as “materials

with memory”) in the time domain can be modeled using classic nonlinear continuum mechanics as

done in [78]. To analyze the material in the frequency domain it is convenient to linearize the under-

lying equations, and this is valid provided the variations in the displacement gradient, temperature,

temperature gradient and their time derivatives are small. This procedure is explained rigorously

in Appendix C. Under the assumption of no residual stress at the linearization temperature and

strain, and that the infinitesimal entropy production in each closed process is “invariant under

time-reversal” (see [141]), the resulting linear thermoviscoelastic equations in the time domain are

as follows, 

ρü = divσ + f ,

ρċv∗ϑ̇ = −div q + θ̄Ṁ ∗·· ε̇+ r ,

σ = Ċ ∗·· ε+ Ṁ∗ϑ ,
q = −κ · ∇(ϑ+ θ̄) ,

(5.1)

where u is the displacement, θ is the absolute temperature, ϑ = θ− θ̄ is the temperature difference

with respect to an initial time-independent temperature distribution θ̄, σ is the Cauchy stress

tensor, q is the heat flux, and ε = 1
2(∇u +∇uT) is the engineering strain as a function of u.

The source terms in the first two equations are the body force per unit volume, f , and the body
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heat generation per unit volume, r. Regarding the material properties, ρ is the density, C is

the viscoelastic stiffness tensor, cv is the viscoelastic specific heat capacity at constant volume,

M = −Ċ ∗·· α is the viscoelastic stress-temperature tensor, α is the viscoelastic tensor of coefficients

of linear thermal expansion, and κ is the heat conductivity tensor. The symbols ∗ and ∗·· are

convolutions in the time domain,

Ċ ∗·· ε =

∫ ∞
−∞

Ċ(s) :ε(·− s) ds , Ṁ∗ϑ =

∫ ∞
−∞

Ṁ(s)ϑ(·− s) ds , (5.2)

and so on. As such, note that with the exception of κ and ρ, all material properties are in fact time-

dependent in the viscoelastic case, and the resulting system in (5.1) is a set of integro-differential

equations (not merely differential equations).

The aforementioned assumptions imply that C has minor and major symmetries, and that α

and κ are symmetric, so that Cijkl = Cijlk = Cjikl = Cklij , αij = αji and κij = κji. The relaxation

or equilibrium stiffness tensor is C∞ = limt→∞ C(t), and the simplest case is C(t) = C∞H0(t), where

H0 is the Heaviside step function, so that (distributionally) Ċ = C∞δ0 with δ0 being the Dirac delta

distribution. The same holds for the relaxation variables c∞v = limt→∞ cv(t), M∞ = limt→∞M(t)

and α∞ = limt→∞α(t), with the simplest cases being cv(t) = c∞v H0(t), M(t) = M∞H0(t) and

α(t) = α∞H0(t) respectively. With the simplest expressions it follows that σ = C∞ : (ε − ϑα∞)

and ρc∞v ϑ̇ = −div q− θ̄α∞ :C∞ : ε̇+r, which coupled with the remaining two equations are precisely

the equations of linear thermoelasticity [53]. Lastly, in the isotropic case it follows that,

Cijkl = λδijδkl + µ(δikδjl + δilδjk) , α = αI , κ = κI , (5.3)

where λ and µ are the time-dependent Lamé parameters, α is the time-dependent coefficient of

linear thermal expansion, and κ is the heat conductivity.

With these linear equations it is now possible to pass to the frequency domain. Let ω be an

angular frequency, suppose θ̄ is constant (so ∇θ̄ = 0), and substitute σ and q into the other two

expressions, so that the frequency-domain thermoviscoelastic equations written as a second-order

system are, {
(iω)2ρu− div

(
C∗ :ε− C∗ :α∗ϑ

)
= f ,

ρ(iω)c∗vϑ+ (iω)θ̄α∗ :C∗ :ε− div
(
κ · ∇ϑ

)
= r ,

(5.4)
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where now the frequency-specific unknown variables u(ω) and ϑ(ω), and known variables f(ω),

r(ω), C∗(ω), c∗v(ω) and α∗(ω), are the Fourier transforms of the old time-dependent variables u(t),

ϑ(t), f(t), r(t), Ċ(t), ċv(t) and α̇(t) respectively. Here, C∗(ω) = iωC(ω) is called the dynamic

stiffness tensor, c∗v(ω) = iωcv(ω) is the dynamic specific heat capacity, and α∗(ω) = iωα(ω) is the

dynamic tensor of coefficients of linear thermal expansion, where C(ω), cv(ω) and α(ω) are the

Fourier transforms of C(t), cv(t) and α(t) respectively. In the case of linear thermoelasticity it will

follow that C∗ = C∞, c∗v = c∞v and α∗ = α∞. In the isotropic case, it follows analogously that

λ∗(ω) = iωλ(ω), µ∗(ω) = iωµ(ω) and α∗(ω) = iωα(ω), are the Fourier transforms of λ̇(t), µ̇(t)

and α̇(t) respectively, and C∗ = λ∗δijδkl + µ∗(δikδjl + δilδjk) and α∗ = α∗I. Moreover, G∗ = µ∗

is the dynamic shear modulus, K∗ = λ∗ + 2
3µ
∗ is the dynamic bulk modulus, E∗ = µ∗(3λ∗+2µ∗)

λ∗+µ∗

is the dynamic Young’s modulus, and ν∗ = λ∗

2(λ∗+µ∗) is the dynamic Poisson’s ratio. Notably, E∗

is a nonlinear function of λ∗ and µ∗, implying that in general it is not the Fourier transform of

d
dt
µ(t)(3λ(t)+2µ(t))

λ(t)+µ(t) . A similar assertion follows for ν∗. Thus, one should be careful when speaking of

the time-dependent Young’s modulus and Poisson’s ratio in three-dimensional thermoviscoelasticity

as different definitions exist in the literature [164, §5.7]. Finally, note that the convolutions became

products, so the equations returned to being differential equations for each fixed frequency ω (as

opposed to integro-differential equations), and note that u(ω), ϑ(ω), f(ω), r(ω), C∗(ω), c∗v(ω) and

α∗(ω) are now complex-valued functions (as opposed to real-valued).

Remark 5.1. If g(t) is a function in the time domain, the definition of its Fourier transform, g(ω)

is in general g(ω) =
∫∞
−∞ g(t)e−iωt dt, and this definition applies to u(ω), ϑ(ω), f(ω), r(ω), C∗(ω),

c∗v(ω) and α∗(ω). A usual ansatz for u(ω), ϑ(ω), f(ω) and r(ω) (not the viscoelastic material

properties) is g(t) = A cos(ω0t+ψph), so g(ω) = Aeiω·(ψph/ω0) 1
2

(
δ0(ω−ω0) + δ0(ω+ω0)

)
. Typically

1
2

(
δ0(ω − ω0) + δ0(ω + ω0)

)
is factored out of the expressions for u(ω), ϑ(ω), f(ω) and r(ω) and

cancelled in view of the linearity of (5.4). Thus, under this simple ansatz, instead of writing g(ω0),

one simply writes g = A
(

cos(ψph) + i sin(ψph)
)

and this is understood from the context. For

example, g(t) = A sin(ω0t) would be written as g = −iA in the frequency domain.

Multiplying the two equations in (5.4) by test functions u and χ and integrating by parts

over a Lipschitz domain Ω ⊆ R3 yields the equations,
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(iω)2
(
ρu,v

)
Ω

+
(
C∗ : (ε−α∗ϑ),∇v

)
Ω

=
(
f ,v

)
Ω

+
〈
C∗ : (ε−α∗ϑ) · n̂,v

〉
∂Ω
,

(iω)
(
ρc∗vϑ, χ

)
Ω

+ (iω)
(
θ̄α∗ :C∗ :ε, χ

)
Ω

+
(
κ · ∇ϑ,∇χ

)
Ω

=
(
r, χ
)

Ω
+
〈
κ · ∇ϑ · n̂, χ

〉
∂Ω
,

(5.5)

where n̂ is the outward normal to ∂Ω. Here, (·, ·)Ω is the sesquilinear complex-valued inner product

in L2 (see (2.3)), while 〈·, ·〉∂Ω is a sesquilinear inner product that for now can be interpreted

as a boundary integral (for smooth enough inputs). At the moment there has been no mention

of boundary conditions. With this in mind, consider two different partitions of ∂Ω, {Γu,Γσ}
and {Γθ,Γq}, such that they are relatively open in ∂Ω and satisfy Γu ∪ Γσ = Γθ ∪ Γq = ∂Ω and

Γu∩Γσ = Γθ∩Γq = ∅. In this way, there are displacement boundary conditions, u = uΓu , over Γu,

normal stress boundary conditions, σ · n̂ = C∗ : (ε−α∗ϑ) · n̂ = σΓσ
n , over Γσ, temperature boundary

conditions, θ = θΓθ , over Γθ, and surface heat flow boundary conditions, q · n̂ = −κ · ∇ϑ · n̂ = q
Γq
n ,

over Γq. The Hilbert spaces where these variables lie are important and they can be deduced from

the original system of equations in (5.4) and the variational equations above (see Section 3.2.1 for

the definitions). Indeed, u ∈ ũΓu +H1
Γu(Ω), where ũΓu is an extension of the boundary condition

uΓu ∈ H1/2(Γu) to H1(Ω); and ϑ ∈ ϑ̃Γθ + H1
Γθ

(Ω), where ϑ̃Γθ is an extension of the boundary

condition ϑΓθ ∈ H1/2(Γθ) to H1(Ω), with ϑΓθ = θΓθ − θ̄. For simplicity it will be assumed that

f ∈ L2(Ω) and r ∈ L2(Ω) (in reality these assumptions can be relaxed later). Meanwhile, ρ, κ,

C∗, α∗ and c∗v, can in principle be heterogeneous in Ω but should remain bounded. Then, provided

v ∈ H1
Γu(Ω) and χ ∈ H1

Γθ
(Ω), (5.5) may be recast as the problem of seeking u0 ∈ H1

Γu(Ω) and

ϑ0 ∈ H1
Γθ

(Ω) such that,

b0
(
(u0, ϑ0), (v, χ)

)
= `0

(
(v, χ)

)
∀v ∈H1

Γu(Ω), ∀χ ∈ H1
Γθ

(Ω) ,

b0
(
(u, ϑ), (v, χ)

)
= (iω)2

(
ρu,v

)
Ω

+
(
C∗ : (ε−α∗ϑ),∇v

)
Ω

+ (iω)
(
ρc∗vϑ, χ

)
Ω

+ (iω)
(
θ̄α∗ :C∗ :ε, χ

)
Ω

+
(
κ · ∇ϑ,∇χ

)
Ω
,

`0
(
(v, χ)

)
=
(
f ,v

)
Ω

+
〈
σ̌Γσ
n , tr∂Ω

gradv
〉
∂Ω

+
(
r, χ
)

Ω
−
〈
q̌

Γq
n , tr∂Ω

gradχ
〉
∂Ω
− b0

(
(ũΓu , ϑ̃Γθ), (v, χ)

)
,

(5.6)

where the final solution takes the form u = u0 + ũΓu and ϑ = ϑ0 + ϑ̃Γθ , and where σ̌Γσ
n is an

extension of the boundary condition σΓσ
n ∈ H−1/2(Γσ) to H−1/2(∂Ω); and q̌

Γq
n is an extension of

the boundary condition q
Γq
n ∈ H−1/2(Γq) to H−1/2(∂Ω). Here, 〈·, ·〉∂Ω is the duality pairing between
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H1/2(∂Ω) and H−1/2(∂Ω) and vice versa (or their vector counterparts). This is known as the primal

variational formulation.

To implement certain numerical methods, such as discontinuous Petrov-Galerkin (DPG)

finite element methods, it is more convenient to have test functions that are discontinuous across

a mesh, T , of Ω, which is comprised of open elements K ∈ T . Thus, one would test with broken

test functions v ∈ H1(T ) and χ ∈ H1(T ) (see Section 3.2.1 and Appendix A for the definitions).

The resulting inner products look like,

(
u,v

)
T =

∑
K∈T

(
u|K ,v|K

)
K
,

〈
û, σ̂n

〉
∂T =

∑
K∈T

〈
ûK , (σ̂n)K

〉
∂K

, (5.7)

for the functions u,v ∈ L2(Ω), and the T -tuples, û ∈ H1/2(∂T ) and σ̂n ∈ H−1/2(∂T ) (again

see Section 3.2.1 and Appendix A for definitions). Obviously, the notation is the same for scalar-

valued functions. Proceeding as in [111], the resulting broken primal variational formulation seeks

u0 = (u0, ϑ0) ∈H1
Γu(Ω)×H1

Γθ
(Ω) and û0 = (σ̂n,0, q̂n,0) ∈H−1/2

Γσ
(∂T )×H−1/2

Γq
(∂T ) such that

bT
(
(u0, û0), v

)
= `T

(
v
)

∀v = (v, χ) ∈H1(T )×H1(T ) ,

bT
(
(u, ϑ, σ̂n, q̂n), (v, χ)

)
= b0

(
(u, ϑ), (v, χ)

)
+ b̂
(
(σ̂n, q̂n), (v, χ)

)
,

b0
(
(u, ϑ), (v, χ)

)
= (iω)2

(
ρu,v

)
T +

(
C∗ : (ε−α∗ϑ),∇v

)
T

+ (iω)
(
ρc∗vϑ, χ

)
T + (iω)

(
θ̄α∗ :C∗ :ε, χ

)
T +

(
κ · ∇ϑ,∇χ

)
T ,

b̂
(
(σ̂n, q̂n), (v, χ)

)
= −

〈
σ̂n, tr

T
gradv

〉
∂T +

〈
q̂n, tr

T
gradχ

〉
∂T ,

`T
(
(v, χ)

)
=
(
f ,v

)
T +

(
r, χ
)
T − bT

(
(ũΓu , ϑ̃Γθ , σ̂Γσ

n , q̂
Γq
n ), (v, χ)

)
,

(5.8)

where the final solution takes the form u = u0 + ũΓu , ϑ = ϑ0 + ϑ̃Γθ , σ̂n = σ̂n,0 + σ̂Γσ
n and

q̂n = q̂n + q̂
Γq
n , with σ̂Γσ

n being an extension of the boundary condition σΓσ
n ∈ H−1/2(Γσ) to

H−1/2(∂T ) and q̂
Γq
n being an extension of the boundary condition q

Γq
n ∈ H−1/2(Γq) to H−1/2(∂T ).

In the particular case of Figure 5.3, the domain contains two isotropic materials, so that

the material constants ρ, κ, C∗, α∗ and c∗v will be discontinuous across the domain. The source

terms f and r will be assumed to vanish. Moreover, viewed as a 2D domain, Γu = Γθ = ∂Ω, and

the displacement boundary conditions are assumed to vanish, uΓu = 0, whereas the temperature
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boundary conditions are taken as θ(t) = 348 + 25 sin(ωt) K, with θ̄ = 348 K = 75 ◦C uniformly in

Ω, so that ϑ(t) = 25 sin(ωt) K (so ϑ = −25i in the frequency domain as shown in Remark 5.1). As

a 3D domain, the boundary conditions in the “2D faces” (the faces normal to the direction where

there is no variation) impose vanishing normal displacement and vanishing tangential stresses,

whereas full heat flux surface boundary conditions are used on those faces. Note that the assumed

variation in temperature (namely, 25 K) might not be sufficiently small to justify using the linear

thermoviscoelasticity equations, but the risk is taken with the hope of at least getting an estimated

solution. Lastly, the angular frequency was taken as ω = 2π·0.05 rad/s, and at that frequency (and

θ̄ = 348 K) the (isotropic) material properties, ρ, κ, E∗, ν∗, α∗ and c∗v (determining κ, C∗, α∗), for

an epoxy resin, a silicone resin, and copper are given in Table 5.1.

ω=2π·0.05 rad/s
Epoxy Silicone Copper

θ̄=348 K

ρ (kg/m3) 1247 1128 8909

κ (W/(kg·K)) 0.12 0.16 390

E∗ (MPa) 1976 + i38 184 + i43 117600

ν∗ 0.2883 + i0.1923 0.4629 + i0.0264 0.343

α∗ (1/MK) 38 + i42 118 + i91 17.78

c∗v (J/(kg·K)) 1261− i880 1560− i814 378

Table 5.1: Viscoelastic material properties of an epoxy resin, silicone resin and copper for an angular fre-

quency ω = 2π·0.05 rad/s and a temperature θ̄ = 348 K.

5.3.2 Results

The broken variational formulation in (5.8) was solved numerically using a DPG method

as in [111]. Indeed, the trial space, U = H1
Γu(Ω) × H1

Γθ
(Ω) ×H−1/2

Γσ
(∂T ) × H−1/2

Γq
(∂T ), and test

space, V = H1(T ) × H1(T ), were SdR spaces (see Section A.5 in Appendix A for definitions).

Thus, the discrete trial space, Uh ⊆ U was chosen as a compatible SdR discretizations of order p,

while the enriched test space, Vr ⊆ V, was chosen as an SdR discretization of order p + ∆p. The

software package used to solve the resulting DPG method was hp3d, which is an in-house code.

It has support for SdR discretizations for all the conventional element shapes [114], local h and

p anisotropic refinements via constrained approximations, and the possibility of using transfinite
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interpolation to implement curvilinear elements (for more details see Section 2.9.1). This last

feature was important for the rounded corners present in the interfaces of the two-material model

geometry seen in Figure 5.2, which was discretized using both hexahedra and triangular prisms.
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Figure 5.4: Maximum principal stress (σmax in Pa), maximum shear stress (τmax in Pa), and temperature (θ

in K) in a form-wound coil (see Figure 5.2). The thermoviscoelastic solution of (5.8) was obtained using an

adaptive DPG method (with p = 2 and ∆p = 1). Both an epoxy resin and a silicone resin were considered,

while the coils were made of copper (not illustrated). The relatively low frequency was ω = 2π·0.05 rad/s

and the average temperature was θ̄ = 348 K, with the material properties taken from Table 5.1. For visual

purposes, the domain is warped by a scaled solution displacement.
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The results of the simulation are illustrated in Figure 5.4, where p = 2 and ∆p = 1 were

used for the DPG discretizations. The results are in the time domain plotted at the time step

where the highest stresses were observed and at the time step where the highest temperatures were

observed for each of the two materials (the copper coils are not shown). The use of the natural

residual-based a posteriori error estimator that comes with the DPG method was fundamental in

resolving all the localized solution features present (especially in the stresses). From a qualitative

perspective, the behavior was similar in both thermoviscoelastic resins. Namely, their maximum

principal stress (largest eigenvalue of σ), σmax, and maximum shear stress (σmax−σmin
2 , where σmax

and σmin are the largest and smallest eigenvalues of σ), τmax, occurred near the outer boundary.

However, the quantitative behavior was different. The maximum principal stress was higher for the

silicone than for the epoxy (by about 50%), but the shear stress was higher in the epoxy (almost by

300%). The difference in quantitative behavior might be related to the different thermal properties

of both resins. Indeed, the epoxy has a lower heat conductivity than the silicone (see Table 5.1),

and the result is that the temperature does not appear to have penetrated as much as in the silicone

resin (see distribution of temperature in Figure 5.4). Having said that, it should be noted that it

could be more realistic if some form of heat would come from the copper coils themselves, instead

of the boundaries. In fact, Joule heating in the copper is what drives the heating in reality, while

the cooling comes from the outer boundaries. In the future, it could be possible to incorporate such

Joule heating via the body source term, r.

Next, the work done in one second was calculated for both resins. The work is the integral

of the power developed in the resin over one second. It is assumed that the material repeats its

behavior periodically in time with an angular frequency ω. In that case, it is defined as,

Wins =

∫
Ωins

ω

2π

∫ 2π
ω

0
σ(x, t) : ε̇(x, t) dt dΩins , (5.9)

with Ωins being the domain associated to the insulation (where the thermoviscoelastic resin is

present). Note that the power developed typically includes a term for the time derivative of the

kinetic energy [187, §4.4], d
dt

(
1
2ρu̇·u̇

)
, but under the periodicity assumption its integral will vanish,

1
2ρu̇·u̇

∣∣t=2π/ω

t=0
= 0. Under the assumption that ui(t) = Aui cos(ωt+ψui) and ϑ(t) = Aϑ cos(ωt+ψϑ),

98



it follows ui = Auie
iψui and ϑ = Aϑe

iψϑ in the frequency domain as argued in Remark 5.1, so that

the dissipative work can be deduced to be,

Wins =

∫
Ωins

ω

2π

(π
ω
Re(σ : ¯̇ε)

)
dΩins =

∫
Ωins

1

2
Re(−iσ : ε̄) dΩins , (5.10)

where the bar denotes complex conjugation. Recall from (5.1) and (5.4) that, in the frequency

domain, σ = C∗ : (ε − α∗ϑ), so σ : ε̄ = (∇u − α∗ϑ) :C∗ :∇u. The values for both the epoxy resin

and the silicone resin are WEp
ins = −3.870 · 10−5 J and W Si

ins = −1.765 · 10−4 J respectively.

5.4 Mid-range frequency: stator ovalization

5.4.1 Description and problem setup

During normal operation of an electric machine, certain vibrations (along with acoustic

noise) can develop in both the stator and the rotor of the machine. These vibrations can even

become large if one of the structure’s natural frequencies (either in the stator or rotor) coincides

with a multiple of the operating rotational speed of the machine, and they can naturally induce

a deformation of the “turn-to-turn” domain of interest. It is possible to calculate such natural

frequencies directly [127], but for the purposes of this work it will be assumed that such natural

frequencies do coincide with a multiple of the machine’s speed. That is, fvib = nvibfs, where fvib

is such natural frequency in Hz, nvib ∈ N and fs is the synchronous speed of the machine in Hz

(i.e. rotations per second). In [51] it was determined experimentally for a synchronous AC motor

operating at 7000 rpm ≈ 117 Hz = fs that a stator vibrational mode of elliptical type, referred

to here as “ovalization”, occurs at about fvib = 2.6 kHz, so that, roughly speaking, nvib lies in

the range 21–23. The ovalization is sketched in Figure 5.5 along with the induced displacement

boundary conditions. In this case, a synchronous AC single-phase permanent magnet motor with

a 6-pole stator and current supplied at fAC = 400 Hz will be considered. Thus, its synchronous

operating speed is fs = fAC
Ppole-pairs

= 400 Hz
3 ≈ 133 Hz (where Ppole-pairs is half the number of stator

poles per phase). Assuming nvib lies in the same range as that of the motor in [51], then implies

that fvib lies in the range between 2.8 kHz and 3.07 kHz. For the purposes of this section, fvib will

be taken as fvib = 2.8 kHz.

99



Stator ovalization Induced boundary conditions

Figure 5.5: Stator ovalization during machine operation leads to deformation of the form-wound coils.

The induced time-dependent linearized displacement boundary conditions are of the type

shown in Figure 5.5. More specifically, looking at Figure 5.2 for the definitions of the geometri-

cal parameters, and taking the middle of the domain as the origin, the displacement boundary

conditions (viewing the domain as a 2D domain) are,

u1(x, t) = A
(

2
wx1

)(
1

2hx2 + 3
4

)
sin(ωt) ,

u2(x, t) = −A
(

1
2hx2 + 3

4

)
sin(ωt) ,

(5.11)

where ω = 2πfvib = 2π·2800 rad/s, x = (x1, x2) ∈ ∂Ω with Ω = (−w
2 ,

w
2 ) × (−h

2 ,
h
2 ), and h and

w being the height and width of the model domain. Here, A is a reasonable vibration displace-

ment (note that the maximum boundary displacement occurs at x = (±w
2 ,

h
2 ) and has magnitude

√
2A). In this work, it will be assumed that A = 100µm. Viewed as a 3D domain, u3(x, t) = 0

everywhere, and vanishing tangential stresses are assumed at the faces normal to the “2D domain”.

Obviously, these boundary conditions can easily be expressed in the frequency domain as suggested

in Remark 5.1.

As implied by the specification of boundary conditions, no thermal effects are assumed to

be relevant, with the temperature being constant at θ̄ = 373K = 100 ◦C. Therefore, the physics

are modeled with the linear viscoelasticity equations as in Chapter 4. Indeed, assuming α = 0, the
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equations in (5.1) decouple and yield (in their second-order form),{
ρü− div(Ċ ∗·· ε) = f ,

ρċv∗θ̇ − div(κ · ∇θ) = r .
(5.12)

For the second equation one can take r = 0 and place uniform constant temperature boundary

conditions, which will yield that the temperature remains constant throughout the domain. In the

frequency domain, the relevant second-order linear viscoelasticity equation is,

(iω)2ρu− div
(
C∗ :ε

)
= f . (5.13)

As in the previous section, the broken variational formulation this time seeks u0 = u0 ∈ H1
Γu(Ω)

and û0 = σ̂n,0 ∈H−
1/2

Γσ
(∂T ) such that,

bT
(
(u0, û0), v

)
= `T

(
v
)

∀v = v ∈H1(T )×H1(T ) ,

bT
(
(u, σ̂n),v

)
= b0

(
u,v

)
+ b̂
(
σ̂n,v

)
,

b0
(
u,v

)
= (iω)2

(
ρu,v

)
T +

(
C∗ :ε,∇v

)
T ,

b̂
(
σ̂n,v

)
= −

〈
σ̂n, tr

T
gradv

〉
∂T ,

`T
(
(v, χ)

)
=
(
f ,v

)
T − bT

(
(ũΓu , σ̂Γσ

n ),v
)
,

(5.14)

where the final solution takes the form u = u0 + ũΓu and σ̂n = σ̂n,0 + σ̂Γσ
n , with ũΓu being an

extension of the boundary condition uΓu ∈H1/2(Γu) to H1(Ω) and σ̂Γσ
n being an extension of the

boundary condition σΓσ
n ∈H−

1/2(Γσ) to H−1/2(∂T ).

Lastly, the material properties at ω=2π·2800 rad/s and θ̄ = 373K = 100 ◦C are provided in

Table 5.2. These values were obtained experimentally, and are used in the simulations that follow.

ω=2π·2800 rad/s
Epoxy Silicone Copper

θ̄=373 K

ρ (kg/m3) 1245 1125 8909

E∗ (MPa) 1905 + i37 340 + i44 117600

ν∗ 0.29 + i0.12 0.433 + i0.052 0.343

Table 5.2: Viscoelastic material properties of an epoxy resin, silicone resin and copper for an angular fre-

quency ω = 2π·2800 rad/s and a temperature θ̄ = 373 K.
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5.4.2 Results

The equations were solved using adaptive DPG methods to discretize the broken variational

formulation (5.14) as described in Section 5.3.2. The values of p = 2 and ∆p = 1 were used for the

computations and the results are illustrated in Figure 5.6 (in the time domain) at the time step

where the highest stresses were observed (the copper coils are excluded).
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Figure 5.6: Maximum principal stress (σmax in Pa) and maximum shear stress (τmax in Pa) in a form-wound

coil (see Figure 5.2). The viscoelastic solution of (5.14) was obtained using an adaptive DPG method (with

p = 2 and ∆p = 1). Both an epoxy resin and a silicone resin were considered, while the coils were made

of copper (not illustrated). The mid-range ovalization frequency was ω = 2π·2800 rad/s and the average

temperature was θ̄ = 373 K, with the material properties taken from Table 5.2. For visual purposes, the

domain is warped by a scaled solution displacement.

In both resins, the results were qualitatively very similar, with the maximum principal

stress and shear stress occurring near the top corners of the interface of the top coil and the resin.

Once again, the DPG a posteriori error estimator was instrumental in resolving and adapting to
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such localized solution features. Quantitatively, the both the principal and shear stresses were

higher for the epoxy resin than the silicone resin by about a factor of 3. Lastly, using (5.10) with

σ = C∗ : ε (so σ : ε̄ = ∇u :C∗ :∇u), it follows that the work done in one second for each resin is

WEp
ins = 1.141 · 105 J and W Si

ins = 1.077 · 105 J for epoxy and silicone respectively.

5.5 High frequency: Lorentz forces

5.5.1 Description and problem setup

As alluded to in the previous section, assume an electric motor with a base current supplied

at fAC = 400 Hz, which is controlled via pulse-width modulation (PWM) techniques [217] associated

to a much higher switching frequency of fsw = 200 kHz. The end result is that the current supplied

can be modeled as a sum of two alternating cosine waves: one with a base frequency of fAC = 400 Hz

and amplitude of about IAC = 20 A, and a second “ripple” with a much higher frequency of

fsw = 200 kHz (500 times more than fAC) and much lower amplitude of Isw = 0.04 A (500 times

less than the base current amplitude).

The current supplied produces a current density field, J , that travels through each coil

and is modeled as an impressed current. This in turn produces magnetic and electric fields, B

and E, via Maxwell’s equations, as well as a charge density field, ρch. Then, the interaction of

these fields, in particular the magnetic field and the current density field, produces a Lorentz

force [134], f = ρchE + J × B. Lastly, this Lorentz force can be used as the sole loading that

drives the deformation of the “turn-to-turn” model domain. Thus, assume vanishing displacement

boundary conditions everywhere if the domain is viewed in 2D (vanishing tangential stresses and

normal displacement at the faces normal to the “2D domain” if viewed in 3D). Once again, thermal

effects are ignored (temperature assumed constant at θ̄ = 373K = 100 ◦C), so that the linear

viscoelasticity equations are considered in the form of the broken variational formulation in (5.14).

Note that the expression for the Lorentz force includes the term J × B, where both J and B

have frequency components in fAC and fsw, meaning that the final Lorentz force combines these

frequencies. The highest frequency involved in the product is 2fsw = 400 kHz, and it is this

frequency that will be analyzed for this loading scenario. The next section is devoted to explaining
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how to model and calculate this Lorentz force. In the meantime, the material properties of the

resins at such high frequencies are given in Table 5.3.

ω=2π·400000 rad/s
Epoxy Silicone Copper

θ̄=373 K

ρ (kg/m3) 1245 1125 8909

E∗ (MPa) 1945 + i33 480 + i39 117600

ν∗ 0.289 + i0.121 0.422 + i0.071 0.343

Table 5.3: Viscoelastic material properties of an epoxy resin, silicone resin and copper for an angular fre-

quency ω = 2π·400000 rad/s and a temperature θ̄ = 373 K.

5.5.2 Electromagnetic model for surface Lorentz forces

In what follows, the model for the Lorentz force will be described. The first assumption

is the medium will be assumed to be uniform (even though it is composed of at least copper and

a resin). The second assumption is that the coils are assumed to be of infinite length. The third

assumption is that due to such high frequencies, the current distribution is fully concentrated at the

interface between the copper and the resin. The fourth assumption is that the current is distributed

evenly along the interface. Lastly, the fifth assumption is that the current can be approximated by

a finite number of infinite electric line sources lying at the interface between the copper and the

resin (see Figure 5.7).

The first four assumptions along with the assumed form of the current means that the

impressed current density, J(x, t), can be written as

J(x, t) = JAC(x) cos(ωACt) + J sw(x) cos(ωswt) ,

JAC(x) =
IAC

lcoil
δΓCu

(x)

0
0
1

 , J sw(x) =
Isw

lcoil
δΓCu

(x)

0
0
1

 ,
(5.15)

where lcoil is the perimeter of one of the rounded coils (i.e. lcoil = 2
(
πRr+(wCu−2Rr)+(hCu−2Rr)

)
with the coil geometry shown in Figure 5.2), ωAC = 2πfAC, ωsw = 2πfsw, and δΓCu

(x) is a surface

Dirac delta with distributional support at the interfaces between the copper and resin, ΓCu. Indeed,

this means that the total current at fAC = 400 Hz flowing through each coil is IAC = 20 A, while

that at fsw = 200 kHz is Isw = 0.04 A.
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The distributional divergence of J sw is,∫
Ω

(divJ sw)φ dΩ = −
∫

Ω
J sw · ∇φ dΩ =

∫
ΓCu

Isw

lcoil

∫ ∞
−∞

∂φ

∂x3
(x1, x2, x3) dx3 dΓCu = 0 , (5.16)

where Ω = (−w
2 ,

w
2 )× (−h

2 ,
h
2 )× (−∞,∞) and φ is smooth with compact support in Ω. The same

holds for JAC, so that divJAC = 0, and overall divJ = 0. Note that, as the expression above

suggests, divJ = 0 also if the current is independent of x3 but not necessarily evenly distributed

along the interface (i.e. Isw
lcoil

is replaced by Jsw(x1, x2) with (x1, x2) ∈ ΓCu and the same with

IAC
lcoil

). Conservation of charge then results in ∂ρch
∂t = −divJ = 0, so charge is conserved at ρch(0).

Typically, ρch(0) = 0 too, since ρch is assumed to have only the frequency components in J . In

any case, this implies that in the frequency domain, ρch(ωAC) = 0 and ρch(ωsw) = 0, and leads

to the conclusion that at those frequencies charge density (from a Eulerian standpoint) vanishes

despite a current flowing. Physically this can be explained by taking a fixed control volume with

overall zero charge (equal number of positive and negative charges), so ρch = 0, and considering

an electron flowing into the volume at the same time as one flows out of the volume. Thus, the

charge is maintained at ρch = 0 for every time step, while the current is being carried by the flow

of electrons entering and leaving the control volume.

x1

x2 ξ

x

Bξ

r(ξ)
ϕ(ξ)

⇒ ⇒

Magnetic field due to
single line source

Source discretization
of interface

Resulting
Lorentz force

Figure 5.7: First, scattering theory is used to calculate the induced magnetic field contribution, Bξ, at a

point x due to a single infinite electric line source located at ξ. The interface between the copper and the

resin is discretized into a series of line sources (red points) and sample points (black points). Lastly, adding

all the magnetic field source contributions at each sample point yields a final magnetic field which can be

used to calculate a resulting Lorentz force acting at that interface.
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Next, the magnetic and electric fields, B and E, induced by the impressed current, J , are

described. For this, recall the fifth assumption, so the current can be approximated by a finite

number of infinite electric line sources distributed along ΓCu as evenly as possible. These are shown

in Figure 5.7 as small red dots. The magnetic and electric field induced by each of these electric

line sources can be calculated using scattering theory as described in [16, Chapter 11]. With this

in mind, place a source at ξ ∈ ΓCu carrying an impressed current of the form Jξ = (0, 0, 1)T I
Ncoil

,

where I(t) = IAC cos(ωACt) + Isw cos(ωswt) and Ncoil is the number of sources placed along the

interface of each coil. In the frequency domain the frequency components are simply I(ωAC) = IAC

and I(ωsw) = Isw. At the frequency ω and at a point x ∈ Ω (with same x3 coordinate as ξ), the

magnetic and electric fields induced by the source are (see [16, Chapter 11]),

Bξ(x, ω) = −i
I(ω)

Ncoil

µpβω
4

H
(2)
1 (βωr(ξ))

− sin(ϕ(ξ))
cos(ϕ(ξ))

0

 ,

Eξ(x, ω) = − I(ω)

Ncoil

β2
ω

4ωεp
H

(2)
0 (βωr(ξ))

0
0
1

 ,

(5.17)

where µp is the permeability of the the medium, εp is the permittivity of the medium, βω = ω
√
µpεp,

and as shown in the left of Figure 5.7, r(ξ) = |ξ−x| and ϕ(ξ) is the angle between ξ and x taking

ξ as the origin. Here, H
(2)
0 and H

(2)
1 are Hankel functions of the second type. Next, let x ∈ Ω be

the same sample point, but this time consider the contribution of a set of sources located in the

set Ξ, so that the electric and magnetic fields become,

B(x, ω) =
∑
ξ∈Ξ

Bξ(x, ω) , E(x, ω) =
∑
ξ∈Ξ

Eξ(x, ω) . (5.18)

These fields can be computed at several sample points along the interface, preferably not coinciding

with the source locations (to avoid numerical singularities), as shown in Figure 5.7 (the large black

dots). Lastly, in the time domain, each component of B(x, t) and E(x, t) can be expressed as the

sum of two (possibly shifted) cosine waves with angular frequencies ωAC and ωsw.

The last step is to calculate the Lorentz force [134], which in a continuum is given by,

f(x, t) = ρch(x, t)E(x, t) + J(x, t)×B(x, t) . (5.19)
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The Lorentz force only has distributional support at the interface between the copper and resin,

ΓCu, which is where the current and charge flows. Since ρch(x, t) = ρch(x, 0) is time-independent,

it follows the term ρchE produces forces in the same direction as the current and which have

frequency components only at angular frequencies ωAC and ωsw (the frequency components in E),

unless ρch(x, 0) = 0. Meanwhile, the term J ×B results in forces that are normal to the current

direction and which have frequency components at angular frequencies 0, ωAC + ωsw, ωAC − ωsw,

2ωAC and 2ωsw. The highest among all those frequencies is 2ωsw. In the most extreme case it

happens that,

f(x, 2ωsw)=J(x, ωsw)×B(x, ωsw)=
∑
ξ∈Ξ

i
I2

swµpβωsw

4Ncoillcoil
δΓCu

(x)H
(2)
1 (βωswr(ξ))

cos(ϕ(ξ))
sin(ϕ(ξ))

0

 , (5.20)

with βωsw = ωsw
√
µpεp. This will be the underlying assumption in this work, because we are inter-

ested at looking at the behavior of the materials at very high frequencies. Potential improvements

to this model would be to actually consider all the frequency components explicitly (not only at

2ωsw), or even to relax the assumption of evenly distributed current, thereby partly incorporating

the effects of the phenomenon known as current crowding [178, 208].

Thus, the viscoelasticity problem will be considered in the frequency domain solely at the

highest frequency, 2ωsw = 2π·400000 rad/s, where the loading will be given by the Lorentz force

described above. A MATLAB R© script solved for such Lorentz force at each of the sample points

along the interface, and the results are shown in the right of Figure 5.7 (with Ncoil = 110). The

electromagnetic properties used were the permeability (of copper), µp = 1.26 · 10−6 N/A2, and the

permittivity (taken as vacuum), εp = 8.854 ·10−12 C2/(N·m2). With these parameters, the resulting

surface Lorentz force had a magnitude in the order of N/mm2.

5.5.3 Results

The broken variational formulation in (5.14) solving the linear viscoelasticity equations

once again was discretized using an adaptive DPG method as in Section 5.4.2 with the relevant

parameters, p = 2 and ∆p = 1. The surface Lorentz forces drove the problem and were computed
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as described in the previous section. The results of the computations are illustrated in Figure 5.8

for each of the two resins at the time step where the highest stresses were observed.

Epoxy

−2.0 · 10−8

0.0 · 100

2.0 · 10−8

4.0 · 10−8

6.0 · 10−8

−3.112 · 10−8

7.923 · 10−8

σmax
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1.0 · 10−8
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Figure 5.8: Maximum principal stress (σmax in Pa) and maximum shear stress (τmax in Pa) in a form-wound

coil (see Figure 5.2). The viscoelastic solution of (5.14) was obtained using an adaptive DPG method (with

p = 2 and ∆p = 1). Both an epoxy resin and a silicone resin were considered, while the coils were made

of copper (not illustrated). The high frequency was ω = 2π·400000 rad/s and the average temperature was

θ̄ = 373 K, with the material properties taken from Table 5.3. For visual purposes, the domain is warped by

a scaled solution displacement.

Clearly, the results were completely different for both resins. Qualitatively, the stresses for

the epoxy shows a spatially periodic pattern with the largest stresses located at different parts of

the resin domain, including at the interface with the copper and near the outer boundaries, and

even some large stresses occurring in the interior. The stresses in the silicone resin had an outward

wave-like pattern and attained their maximum value at the outermost corners of the interface

between the copper and the silicone. From a quantitative perspective, both the maximum principal

stress and the maximum shear stress were higher in the epoxy than the silicone by factors of about
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2.5 and 5 respectively. The localized solution features were successfully resolved using adaptivity

via the DPG a posteriori error estimator. Finally, the work done in one second was calculated using

(5.10) by taking σ as described in Section 5.4.2. For the epoxy resin it was WEp
ins = 1.551 · 10−24 J

and for the silicone resin it was W Si
ins = 2.855 · 10−24 J.

5.6 Discussion

Three scenarios distinguished by a frequency regime and involving a “turn-to-turn” domain

representing the basic unit of a form-wound coil were considered. The domain was assumed to

be comprised of a viscoelastic resin surrounding two stacked copper coils as shown in Figure 5.2.

Different physical phenomena were involved in each scenario. For very low frequencies of about

0.05 Hz thermal effects were assumed to be relevant, so the linear thermoviscoelasticity equations

were solved subject to variations in temperature of 25 K in amplitude. At mid-range frequencies of

about 2.8 kHz, the normal operation of the machine was assumed to activate vibrations of elliptic

nature, referred to as ovalizations, which induced displacement boundary conditions in the order of

100µm associated to the equations of linear viscoelasticity. At high frequencies of about 400 kHz,

the interaction of the current at the switching frequency and its induced magnetic field were found

to produce a surface Lorentz force in the order of N/mm at the interface of the copper and the

resin, which was then used to load the linear viscoelasticity equations.

For all three scenarios the work done by the resin in one second was calculated. For an

epoxy resin in the low-frequency scenario it was in the order of 10−5 J, in the mid-range-frequency

scenario it was around 105 J, and in the high-frequency scenario it was about 10−24 J. The same

is true for a silicone resin. Similar differences were found by looking at the order of magnitude of

the stresses, where in the scenarios involving low and mid-range frequencies, the stresses were in

the order of MPa, while in the high-frequency scenario the stresses were in the order of nPa. Thus,

from a mechanical standpoint, this suggests that the Lorentz forces might have negligible effects,

that the temperature variations have moderate effects, while the stator ovalizations may have the

most significant effect. Having said that, it should be noted that the material properties vary

significantly across different frequencies, so for example the resin may be much more sensitive to
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fatigue at high frequencies, and the effects of the Lorentz force at high frequencies may ultimately

be relevant.

The models developed here are by no means exhaustive, and improvements as well as other

physical effects can also be incorporated in the future. In particular, it would be more realistic to

include body heat produced at the copper to simulate Joule heating more accurately in the low-

frequency scenario. For the mid-range frequencies, it could be possible to include other vibration

modes associated to the natural frequencies of the underlying stator structure, or even possibly

calculate them directly. This, along with a more precise estimate of the vibration amplitude

could produce more accurate results. Lastly, in the high-frequency scenario it could be possible to

analyze other frequencies components of the Lorentz force besides the highest one, and maybe even

incorporate an unevenly distributed current along the interface to better approximate the effects

of current crowding.
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Chapter 6

Discrete least-squares (DLS) finite element methods

This chapter is a reduced subset of a research article published by the author [160]§. It is

about a new family of finite element methods which is an outgrowth of DPG methods, and which

we have called discrete least-squares (DLS) finite element methods. They are based on exploiting

the rich algebraic structure provided by DPG discretizations. As their name suggests, they pose

the overall problem as a discrete least-squares problem associated to an overdetermined system of

equations which can be solved with QR-based algorithms. This has the advantage of having the

conditioning reduced by a square root, so these methods are particularly useful in handling very

ill-conditioned problems. This chapter is included in this dissertation because it shows how taking

advantage of the algebraic structure in DPG methods, a new family of finite element methods

was devised. The contributions of the author to the multi-authored article were doing some of

the computations, participating in discussions about the numerical method and the mathematical

derivations, and writing part of the manuscript.

6.1 Introduction

This chapter is meant to introduce a new family of finite element methods, which we refer

to as discrete least-squares (DLS) finite element methods. They are an outgrowth of discontinuous

Petrov-Galerkin (DPG) methods, and in particular of their attractive algebraic structure that

underlies the discretizations of those methods. DLS methods can be associated with a discrete

least-squares minimization corresponding to a rectangular overdetermined system coming from the

discretization of a linear well-posed variational formulation. This is in contrast with typical finite

element methods, such as Bubnov-Galerkin methods, which always solve a linear system associated

to a square system. The approach proposed here is very useful for ill-conditioned problems, since

§ Keith, B., Petrides, S., Fuentes, F., and Demkowicz, L. (2017c). Discrete least-squares finite element methods.

Comput. Methods Appl. Mech. Engrg., 327:226–255.
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DLS methods are associated to a condition number that is the square root of the condition number

of the associated square system. This means that it is possible to observe a growth of the condition

number of the order of O(h−1), instead of the more typical O(h−2), where h represents the element

size. Also, when viewed as a discretization of DPG methods, DLS methods have a natural inherent

a posteriori error estimator for use in adaptivity, and, more importantly, are crafted for numerical

stability.

As expected, the DLS methods have many connections with other minimization problems

both at the level of functional analysis and at the level of the discrete equations. In particular, they

are related to least-squares finite element methods. Least-squares finite element methods have been

demonstrated to be an auspicious class of methods for a wide variety of boundary value problems of

engineering interest. These methods are attractive for many challenging problems because of their

simple implementation, their numerical stability, and their built-in a posteriori error estimator. For

a thorough study of least-squares finite element methods and the most significant references, we

refer to [33]. Having said that, DLS methods have a much wider range of applicability, mostly due

to the fact that they are identified with the discretization of arbitrary variational formulations,

including those posed over non-symmetric functional settings. Indeed, DLS methods are identified

with discretizations of general minimum residual methods (of which DPG methods are a subset).

More generally, they apply to any system of the form[
G B
B∗ 0

] [
ψr
uh

]
=

[
l
0

]
, (6.1)

where for F ∈ {R,C}, G ∈ FM×M is Hermitian positive (semi-)definite and B ∈ FM×N is rectan-

gular, M ≥ N . The discrete saddle-point system in (6.1) can appear in several non-DPG finite

element settings as well [227, 75, 173, 59, 47, 177, 15], so we consider this entire class of methods

from a comprehensive perspective. However, in practice, only when certain computations are local-

ized does the method become much more effective, and this is precisely what happens when using

DPG methods, which are associated to variational formulations with broken (discontinuous) test

spaces. Thus, our principal examples will pertain to a specific class of DLS methods: those arising

from DPG methods.
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The chapter is organized as follows. In Section 6.2, DLS methods are described and some

of their connections are elucidated. More specifically, it is mentioned that the conditioning of

the system will be much improved when compared with competing alternatives. Furthermore, it

will be shown how to perform static condensation of matrices in a manner consistent with DLS

methods. The special assembly procedure associated to DLS methods will also be illustrated. In

Section 6.3, we present several engaging examples. In particular, DLS methods are compared to

both the classical Bubnov-Galerkin method as well the first-order system least-squares (FOSLS)

finite element methods. Moreover, an example clearly shows the applicability of DLS methods by

looking at a very ill-conditioned problem which other methods fail to accurately solve. Lastly, our

final discussion is left to Section 6.4.

6.2 Discrete least-squares (DLS) finite element methods

6.2.1 Exploiting linear algebra

As alluded previously, we start with a system of the form

[
G B
B∗ 0

] [
ψr
uh

]
=

[
l
0

]
, (6.2)

where G ∈ FM×M is Hermitian positive (semi-)definite, B ∈ FM×N is rectangular, M ≥ N , and

where F is either C or R. The solution vector has a very particular structure due to the presence

of 0, so the Schur complement to (6.2) becomes,

B∗G−1Buh = B∗G−1l ⇔ Auh = f , A = B∗G−1B , f = B∗G−1l . (6.3)

Next, consider a factorization of the form G = WW∗, for some W ∈ FM×M . There is an infinite

number of solutions, W, to this equation provided M > 1, so for now consider one of those. Then,

G−1 = W−TW−1

Auh = f ⇔ B∗W−TW−1Buh = B∗W−TW−1l ⇔ (W−1B)∗(W−1B)uh = (W−1B)∗(W−1l)

⇔ uh = arg min
u∈FN

∥∥W−1(Bu− l)
∥∥2

2
,

(6.4)
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where ‖ · ‖2 is the usual Eucledian norm in FM . Thus, the original problem in (6.2) is equivalent

to the discrete least-squares problem above. One particular solution, W, is the unique Cholesky

factorization of G = LL∗, where L is lower triangular. In this case, (6.4) is rewritten as

uh = arg min
u∈FN

∥∥B̃u− l̃∥∥2

2
, B̃ = L−1B , l̃ = L−1l , G = LL∗ . (6.5)

As is common in discrete least-squares problems, (6.3) is referred to as the normal equation to the

problem in (6.5). In the context of the discrete least-squares literature, the matrix A = B∗G−1B is

referred to as the Gram or (Gramian) matrix, but in this chapter, as we will see soon, we safeguard

the term of a Gram matrix to G, while A, B and B̃ are all called stiffness matrices, and f, l, and l̃

are called load vectors.

Remark 6.1. The choice of W = L solving G = WW∗, is made throughout this paper, but it

should be noted that other choices are possible (including W = G1/2). In fact, W can be interpreted

as a change-of-basis matrix, and in the statistics and signal processing communities, the procedure

described above is often known as “whitening” or “sphering”. We refer the reader to [162] to

explore the benefits of the other possibilities for the change-of-basis matrices W in that context.

6.2.2 Connections with finite element methods

Up to this point only linear algebra has been referred to. However, as described throughout

Chapter 2, especially Section 2.3 and Section 2.4, both (6.2) (see (2.44)) and (6.3) (see (2.28)) are

equivalent discretizations of general minimum residual finite element methods. Indeed, for a given

well-posed linear variational formulation, where a solution in a trial space, u ∈ U, is sought such

that,

b(u, v) = `(v) ∀v ∈ V , (6.6)

its corresponding minimum residual discretization involving a discrete trial space Uh ⊆ U and

enriched test space Vr ⊆ V is given by

Bn-optuh = ln-opt , A = Bn-opt = B∗G−1B , f = ln-opt = B∗G−1l , (6.7)

where given bases {uj}Nj=1 and {vi}Mi=1 for Uh and Vr, the enriched stiffness matrix and load are

defined by Bij = b(uj , vi) and li = `(vi), while the Gram matrix Gij = (vi, vj)V is a discretization
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of a Riesz map over Vr. The solution uh =
∑N

j=1(uh)juj ∈ Uh is solves the discrete variational

formulation,

b(uh, vh) = `(vh) ∀vh ∈ Vh = Vn-opt = span
{
vn-opt
j

}N
j=1

, (6.8)

where the near-optimal test functions are defined by

vn-opt
j =

M∑
i=1

(G−1Bej)ivi ∀j = 1, . . . , N , (6.9)

with ej ∈ FN being the Eucledian basis vectors, so that (ej)i = δij is the Kronecker delta. Clearly,

(6.7) is the same as the normal equation in (6.3), where A and f are identified with the near-optimal

stiffness matrix and load, Bn-opt and ln-opt. For the purposes of this chapter A = Bn-opt and f = ln-opt

and their label “near-optimal” is dropped when it is clear from the context, so they are simply

referred to as the stiffness matrix and load. Thus, this establishes a direct connection between any

minimum residual finite element method and a discrete least-squares problem associated with an

overdetermined rectangular system, as written in (6.5). Hence, it makes sense to refer to those

discretizations of variational formulations that result in a system like (6.2) or (6.3) as discrete

least-squares (DLS) finite element methods.

As pointed out in the literature of DPG methods, minimum residual methods may be

impractical from the computational standpoint, as they require finding the inverse, G−1, at a global

level. However, if the test spaces, V, are broken along the mesh, this is equivalent to providing B, l

and G with a decoupled structure. These are referred to as DPG methods. They allow to localize

all the computations in A and f, which are ultimately assembled as in any other finite element

method. In fact, as we will see shortly, B̃ and l̃ in the discrete least-squares setting (see (6.5)) can

also be assembled from the local contributions, with the Cholesky factorization of the local Gram

matrix being a viable calculation. Indeed, note that the observation made in (2.87) in the local

context, is equivalent with the global factorization G = LL∗ when such a decoupling of the test

spaces is being contemplated. Therefore, DLS methods are the most practical when discretizing

variational formulations with broken test spaces, like those considered in DPG methods. Moreover,

in those cases they inherit other attractive features like residual-based a posteriori estimators for

adaptivity and near-guaranteed discrete well-posedness (i.e. numerical stability). Having said that,
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there are other situations were they might be useful. Namely, when the global computation of

G−1 is viable, such as when it is diagonal or has very sparse structure (and so does its inverse).

This sometimes happens when the spaces lend themselves to being discretized by orthogonal basis

functions [26, 114], as we will see in some of the numerical experiments later.

Regarding its connection with least-squares finite element methods, note that as mentioned

in Section 2.5, least-squares methods are ideal minimum residual methods. More explicitly, they

take the form,

ALSuopt
h = fLS , ALS

ij = Bopt
ij = (Luj ,Lui)L2 , fLS

i = lopt
i = (f ,Lui)L2 , (6.10)

where uopt
h =

∑N
j=1(uopt

h )juj ∈ Uh ⊆ U is the solution that exactly minimizes the residual,

uopt
h = arg min

δuh∈Uh
‖Bδuh − `‖2V′ = ‖Lδuh − f ‖L2 , (6.11)

since loosely speaking V = L2. Here, B is the operator associated to the variational formulation,

so that it is defined by b(u, v) = 〈Bu, v〉(L2)′×L2 = (Lu, v)L2 and easily identified with L : U→ L2,

while `(v) = (f , v)L2 for some f ∈ L2. In non-ideal minimum residual methods, the resulting near-

optimal matrices A and f in (6.7) depend on an enriched test space Vr ⊆ V, so for all intents and

purposes refer to them as Ar and fr. As the enriched test space grows it will better approximate

V, and we would expect the same to occur with Ar and fr as they approximate their optimal

counterparts, which are precisely ALS and fLS (when the Riesz map is inverted exactly). Thus,

Ar → ALS and fr → fLS as Vr ⊆ V grows. In some cases, like when LUh ⊆ Vr (see Remark 2.6), the

Riesz map is inverted exactly, so it will happen that Ar = ALS and fr = f, and the least-squares

finite element method will be exactly the same as the DPG discretization. However, the difference is

that only Ar admits a DLS decoupling of the form Ar = (B̃r)∗B̃r, while ALS in (6.10) is a monolithic

expression that does not obviously admit such a factorization. As we will see shortly, the decoupling

will allow the problem to be solved with a better condition number, so when LUh ⊆ Vr the DLS

discretization provides a clear advantage (if ill-conditioning is a problem) while attaining the same

solution as least-squares methods.
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6.2.3 Solution algorithms

This section will remark on the very simple observation that the condition number resulting

from globally solving (6.3) and (6.5) is completely different, even though both systems are equivalent

when solved with infinite precision. First, the condition number of a rectangular matrix B is defined

as cond(B) = σmax
σmin

, where σmax and σmin are the the maximum and minimum singular values of B

respectively (i.e. the square roots of the maximum and minimum eigenvalues of B∗B). Therefore,

it immediately follows that cond(B∗B) = cond(B)2. The original system considered in (6.2) can be

solved in many different ways. We mention here solution methods based on (6.3) and (6.5), but

this list is not exhaustive and other alternatives exist in the literature [30, 131]. Our focus with

DLS methods on this chapter will be to avoid the conventional approach of solving the normal

equation in (6.3), and instead exploit the benefits of other alternatives that relate to the discrete

least-squares formulation in (6.5).

6.2.3.1 Normal equations

Obviously, one could solve the normal equation in (6.3) with a direct solver. Note this is ad-

vantageous since A = B∗G−1B would be Hermitian positive definite, so A has a structure amenable

to efficient linear solvers not usually available for many challenging problems. Moreover, from com-

putational experience, we have found the normal equation has demonstrated to be adequate when

solving systems that result from DPG discretizations. Indeed, in many reasonable circumstances,

the round-off error in the solution from the associated linear solve cannot be expected to be nearly

as large as the truncation error due to the finite element discretization, so in these cases solving the

normal equation is reliable. From experience we can also say direct solvers for Hermitian positive

definite systems are usually very fast. In fact, they are faster than the competing alternative that

we are about to describe. Lastly, storing A and f usually requires less memory than storing B̃ and

l̃ in (6.5).

Having said all this, solving the normal equation carries disadvantages too. Most notably,

the cond(A) will grow quadratically with cond(B̃) and, likewise, so will the upper bound on the

round-off error of the normal equation solution. Furthermore, the scaling constant controlling the
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condition number of the stiffness matrix is often large in a first-order system setting, which is

common in DPG discretizations, due to the additional equations and unknowns. Hence, there are

many anticipated circumstances where other solution methods would be especially useful. Archety-

pal examples include, but are not limited to, singular perturbation problems, problems with large

material contrast, high-order PDEs, penalty methods, and nonlinear problems where the linear

approximation may become singular or very ill-conditioned. In summary, in some situations it is

convenient to consider other approaches which deal explicitly with the matrices B, L, and l, and

avoid the normal equation altogether.

6.2.3.2 Orthogonal decomposition methods

The most practical alternative to the normal equation when solving for uh is to deal directly

with the matrices B̃ and l̃ coming from the (sparsely weighted) linear least-squares problem in (6.5).

The most common of these approaches is the orthogonalization algorithm called QR-factorization

(Householder, Givens, modified Gram-Schmidt) first introduced for least-squares problems in [129].

Other direct approaches are SVD, complete orthogonal decomposition, and Peter-Wilkinson as well

as various hybrid methods [30]. Each of these approaches are usually less efficient (and requires

more storage) than solving the normal equation, but are often preferred because they are more

numerically stable.

For our intended purposes, the matrix B̃ will be large and sparse, and so, because not all of

the methods above are well suited for sparse matrices or amenable to parallel computing, we will

focus only on the QR approach. As shown in various textbooks [30, 131, 224], the relative error in

the solution from a least-squares QR solve is controlled by cond(B̃) + ρ(B̃, l̃) · cond(B̃)2, where

ρ(B̃, l̃) =
‖B̃uh − l̃

∥∥
2

‖B̃‖2‖uh‖2
, (6.12)

and therefore depends upon the load vector. Due to the assumed well-posedness of the problem,

the residual (the numerator in (6.12)) is expected to tend to zero as the mesh is refined. That is,

ρ(B̃, l̃) → 0 as h → 0, where h represents the mesh size. Indeed, the reader may observe that the

ρ(B̃, l̃) even vanishes if l̃ ∈ R(B̃). Of course, the validity of this convergence as well as its rate will
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be determined by the interpolation spaces used in the discretization. However, in many common

scenarios the a priori bound can be proven to decrease at a rate of at least O(h). Indeed, for many

cases we have in mind, this rate is of the form O(hp) where p ∈ N is a polynomial order used in

the trial space discretization. Therefore, the intuition is that the quadratic condition number term

controlling the round-off error in a QR solve will be offset by a converging solution.

For instance, recall that cond(B̃) = cond(A)1/2 , since A = B̃∗B̃. For many DPG discretiza-

tions and least-squares methods, cond(A) can be proved to grow as O(h−2) [133, 32, 33]. Thus, we

would expect to see cond(B̃) growing as O(h−1), which is much better. Moreover, if the residual

converges to zero as described above, then ρ(B̃, l̃) · cond(B̃)2 can be no worse than O(h−1). In such

conventional scenarios, the numerical sensitivity of the least-squares solution is controlled only by

the inverse of the mesh size and will be far more accurate than any approach involving the normal

equation. Precisely, in the typical first-order system scenario, we expect a QR-based algorithm will

deliver an error bound of

‖eh‖2 ≤ εmach.‖u‖2Ch−1 , (6.13)

where eh is the round-off error in the computation of the least-squares solution, εmach. is machine

precision, and C is a mesh-independent constant.

Unfortunately, although QR-based algorithms are guaranteed to deliver a more accurate

solution than solving the normal equation, there is potentially still a concealed obstacle. As many

authors have pointed out, explicitly forming a product of two matrices before solving a least-squares

problem posed with the matrix product B̃ = L−1B is still not backwards stable [30]. Indeed, even

when B is sparse and the matrix L is diagonal, yet extremely ill-conditioned, this can be a potential

issue [31, 150]. Because of this concern, several algorithms exist in the numerical linear algebra

literature for this very class of problems [191, 4, 137, 226]. Nevertheless, we believe that such

precautions are unwarranted in all but the most exceptional problems that can be expected when

implementing DLS methods. Indeed, we implicitly assume that the conditioning of L should not be

badly behaved as the problem size grows, and in fact, in the cases where the Gram matrix comes

from a DPG method (i.e. is block-diagonal) or from some other technique (perhaps a preconditioner

estimate), G−1 can usually be generated using local element or patch information. This motivates
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us to assume that some measure of its local rank structure should stay constant or be uniformly

bounded (with respect to the mesh size, h) as the mesh is refined. If this is true, preconditioning

the Gram matrix, which itself often acts like a preconditioner, with its diagonal entries,

G 7→ D−1/2GD−1/2 , B 7→ D
1/2B , l 7→ D

1/2 l , (6.14)

where D = diag(G), before locally factoring into LL∗ and performing back-substitution, should lead

to robust results. This diagonal preconditioning procedure has been more than adequate in all of

our experiments thus far. However, another possibility for improving the condition of the Gram

matrix is the modified Lagrangian approach suggested in [130].

6.2.4 Static condensation

A common procedure which is often used to improve the solving time of linear systems is

called static condensation. Here, the degrees of freedom associated with the element interior nodes

(bubbles) are eliminated from the linear system. In practice, using a Schur complement procedure,

small and independent blocks of the original stiffness matrix and load vectors are removed, and the

original system is changed into a smaller-but-modified linear system with fewer unknowns. Often,

this procedure of condensing, solving, and then recovering the global solution is much faster than

solving the original system outright with standard means.

With this in mind, the idea is to develop the procedure of static condensation, but in the

framework of a discrete least-squares problem. The first step is to, without loss of generality,

separate the bubble and interface components of the relevant variables, so that uh =
[ ububb.
uinterf.

]
and

L−1B = B̃ =
[
B̃bubb. B̃interf.

]
. Then, the normal equation in (6.3) becomes,[

B̃∗bubb.B̃bubb. B̃∗bubb.B̃interf.

B̃∗interf.B̃bubb. B̃∗interf.B̃interf.

] [
ububb.

uinterf.

]
= B̃∗B̃uh = Auh = B̃∗ l̃ =

[
B̃∗bubb.̃l
B̃∗interf .̃l

]
. (6.15)

Then, writing the Schur complement for uinterf. yields,

B̃∗interf.(I− Pbubb.)B̃interf.uinterf. =
(
B̃∗interf.B̃interf. − B̃∗interf.B̃bubb.(B̃

∗
bubb.B̃bubb.)

−1B̃∗bubb.B̃interf.

)
uinterf.

= B̃∗interf .̃l− B̃∗interf.B̃bubb.(B̃
∗
bubb.B̃bubb.)

−1B̃∗bubb.̃l = B̃∗interf.(I− Pbubb.)̃l ,
(6.16)
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where Pbubb. = B̃bubb.

(
B̃∗bubb.B̃bubb.

)−1B̃∗bubb.. Next, note that Pbubb. = P∗bubb. is an orthogonal projection

and it can easily be verified that I− Pbubb. = (I− Pbubb.)
2, so that

(
(I− Pbubb.)B̃interf.

)∗
(I− Pbubb.)B̃interf.uinterf. =

(
(I− Pbubb.)B̃interf.

)∗
(I− Pbubb.)̃l . (6.17)

This can easily be seen to be equivalent to an overdetermined system that can be written in the

form of a discrete least-squares problem as,

uinterf. = arg min
us∈FNinterf.

∥∥(I− Pbubb.)(B̃interf.us − l̃)
∥∥2

2
, (6.18)

where Ninterf. is the dimension of the space where the interface components lie. Meanwhile, the

remaining degrees of freedom can be recovered a posteriori by the expression,

ububb. = B̃+
bubb.

(̃
l− B̃interf.uinterf.

)
, B̃+

bubb. =
(
B̃∗bubb.B̃bubb.

)−1
B̃∗bubb. . (6.19)

The issue then becomes that of computing Pbubb. and B̃+
bubb., since they involve (B̃∗bubb.B̃bubb.

)−1.

These have to be computed in a way which does not affect the global conditioning the QR-based

methods already provide in the discrete least-squares framework. Otherwise, the conditioning

would not be controlled as predicted in Section 6.2.3.2. To overcome this, introduce the full QR

decomposition of B̃bubb., which can be computed stably,

B̃bubb. =
[
Qbubb. Qinterf.

] [Rbubb.

0

]
, (6.20)

where
[
Qbubb. Qinterf.

]
is unitary and Rbubb. is upper-triangular. Then, it follows,

Pbubb. = Qbubb.Q
∗
bubb. , B̃+

bubb. = R−1
bubb.Q

∗
bubb. . (6.21)

These computations can naturally be localized if necessary, so this concludes the procedure of static

condensation in the context of discrete least-squares methods.

6.2.5 Assembly

In this section, we describe the construction of the global linear systems for DPG methods.

As outlined in Section 6.2.3, we are primarily interested in two different procedures. First, directly
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assembling the normal equation in (6.3), and second, assembling the overdetermined discrete least-

squares system in (6.5). To date, forming the normal equation has been the primary assembly

procedure for DPG linear systems. The main advantages of this approach is that the assembly

algorithm is identical to all traditional conforming finite element methods and it will involve the

least storage. Moreover, many efficient direct and iterative solvers specialized for Hermitian positive

definite systems can be employed. Nonetheless, there is an important disadvantage: the condition

number of this global stiffness matrix A is the square of the condition number of the alternative,

which is the (global) enriched stiffness matrix B̃. The enriched stiffness matrix is, however, rect-

angular, and so other solvers, which are generally more expensive, have to be used to solve the

overdetermined linear system it is involved with. Be that as it may, this second approach can be

applied to ill-conditioned problems, where forming the normal equation becomes an unsatisfactory

option. We proceed by giving a brief description of the two different assembly procedures.

6.2.5.1 The normal equations

The assembly of the normal equation for the DPG method can easily be incorporated into

any finite element code supporting exact sequence conforming shape functions [9, 114]. Recall

that the DPG Gram matrix G is block diagonal. Therefore, it can be inverted element-wise and,

therefore, G−1 is also block diagonal. Let BK denote the enriched stiffness matrix for element K

and lK the corresponding load vector. Additionally, let GK be the element Gram matrix. Then,

the DPG element stiffness matrix AK and load vector fK are given by AK = B∗KG−1
K BK and

fK = B∗KG−1
K lK , respectively. Using the Cholesky factorization of GK = LKL∗K , we obtain

AK = B∗KG−1
K BK = (L−1

K BK)∗(L−1
K BK) , fK = B∗KG−1

K lK = (L−1
K BK)∗(L−1

K lK) . (6.22)

We note that one may wish to precondition before the above operations, as in (6.14). The compu-

tation of the element DPG stiffness matrix and load vector is given by Algorithm 1.

The assembly of the global DPG stiffness matrix and load vector can be implemented

by following the common algorithm of any standard finite element code [89, 103]. Note that

there are two modifications that one should make to the element stiffness matrices before the
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Algorithm 1 Element stiffness matrix and load vector for the DPG normal equation.

1: LK ← Cholesky(GK)

2: B̃K ← Triangular solve(LKB̃K = BK)

3: l̃K ← Triangular solve(LK l̃K = lK)

4: AK ← B̃∗KB̃K // DPG element stiffness matrix

5: fK ← B̃∗K l̃K // DPG element load vector

global assembly: account for Dirichlet boundary conditions; and (optional) accommodate degrees

of freedom associated to constrained nodes for adaptive mesh refinement (hanging nodes are possibly

created after adaptive h-refinements). We refer the reader to [89, 103] for detailed discussion on

both of these modifications.

After pre-processing the element stiffness matrices, AK 7→ Amod
K , one should proceed with

static condensation, Amod
K 7→ Ac

K , to reduce the complexity of the global system. For these square and

symmetric matrices, this operation is described in Section 6.2.4. Additionally, as in standard FEM,

the assembly is driven by the so-called “local-to-global connectivity maps”. These maps assign to

the local degrees of freedom their corresponding global degrees of freedom. The construction of

these maps is based on the “donor strategy” and is implemented as in [89]. A description of the

assembly procedure is given in Algorithm 2.

Algorithm 2 Assembly of DPG normal equation.

1: Initialize global stiffness matrix and load vector A and f.

2: for K ← 1 to NK do // for each element in the mesh

3: Compute AK and fK // element stiffness matrix and load vector

4: Compute Amod
K and fmodK // modified element matrix and load vector

5: Compute Ac
K and fcK // condensed element matrix and load vector

6: Get ConK // local-to-global connectivity map

7: for k1 ← 1 to ndofK do // for each element degree of freedom (DOF)

8: i← ConK(k1) // global index for local DOF

9: f(i)← f(i) + fK(k1) // accumulate for the global load vector

10: for k2 ← 1 to ndofK do // for each element DOF

11: j ← ConK(k2) // global index for local DOF

12: A(i, j)← A(i, j) + AK(k1, k2) // accumulate for the global stiffness matrix
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6.2.5.2 The overdetermined system

Constructing the global overdetermined system requires some modifications to the assembly

algorithms above. First, in order to deliver rectangular element stiffness matrices B̃ and load vectors

l̃, one should only perform the first three steps of Algorithm 1. Note that the column size of the

element stiffness matrix B̃ corresponds to the number of trial degrees of freedom and the row size

to the number of test degrees of freedom. Similarly, the size of the load vector l̃ corresponds to the

number of the test degrees of freedom.

As with square stiffness matrices, after the rectangular element matrices and load vectors

have been computed, they need to be modified in order to accommodate Dirichlet boundary con-

ditions and constrained nodes. The Dirichlet boundary conditions can be accounted for locally,

like in the assembly algorithm for the normal equation, so that B̃K 7→ B̃mod
K and l̃K 7→ l̃modK . For

constrained nodes, the procedure is similar to the one for the normal equation, with the difference

being that now the modifications are performed only on the trial space because the test space is

broken. Note that there are no modifications needed for the load vector. The final local step is

static condensation, B̃mod
K 7→ B̃c

K and l̃modK 7→ l̃cK (see Section 6.2.4).

The global assembly algorithm then proceeds in a similar manner as for the normal equa-

tion. However, there is one important difference because the test space is broken: the need for

accumulation of the contributions from different elements in both the (global) enriched stiffness

matrix B̃ and the (global) enriched load vector l̃ has been eliminated. Therefore, in the global stiff-

ness matrix, every row is independent. Note that this allows for a fully parallel assembly algorithm.

This entire global assembly procedure is summarized in Algorithm 3.

6.2.5.3 Comparison

For the DPG ultraweak variational formulation of Poisson’s equation in one dimension

(see Section 6.3.3), Figure 6.1 depicts the global DPG stiffness matrix for the normal equation

(left in (a)) and the overdetermined system (left in (b)). The mesh used consisted of ten quadratic

elements and the polynomial order used for the enriched test space was three. In a broken ultraweak

formulation, continuity is enforced with the introduction of new interface unknowns, as will be
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Algorithm 3 Assembly of DPG overdetermined system.

1: Initialize global stiffness matrix and load vector B̃ and f̃.

2: Initialize global test degreee of freedom (DOF) counter i.

3: for K ← 1 to NK do // for each element in the mesh

4: Compute B̃K and l̃K // element stiffness matrix and load vector

5: Compute B̃mod
K and l̃modK // modified element matrix and load vector

6: Compute B̃c
K and l̃cK // condensed element matrix and load vector

7: Get ConK // local-to-global connectivity map

8: for k1 ← 1 to ndofTK do // for each element test degree of freedom

9: i← i+ 1 // global test DOF counter

10: l̃(i)← l̃K(k1) // fill in the global load vector

11: for k2 ← 1 to ndofK do // for each element DOF

12: j ← ConK(k2) // global index for local DOF

13: B̃(i, j)← B̃K(k1, k2) // fill in the global stiffness matrix

seen shortly. This explains the structure of the matrix for the total system seen in the left of

Figure 6.1(a). After static condensation of the interior degrees of freedom, the resulting linear

system involved only the interface unknowns, and, therefore, the matrix on the right of Figure 6.1(a)

consists of only one band of overlapping blocks.

0 20 40 60

nz = 574

0

10

20

30

40

50

60

0 10 20

nz = 110

0

10

20

(a) A total (left) and condensed (right) systems.

0 20 40 60

nz = 567

0

10

20

30

40

50

60

70

80

0 10 20

nz = 304

0

10

20

30

40

50

60

70

80
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Figure 6.1: DPG stiffness matrices A (normal equation) and B̃ (overdetermined system).
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The situation is slightly different in the case of the discrete least-squares overdetermined

system (see Figure 6.1(b)). For instance, because the test space is broken, there is no overlap

between rows. Similar to the case of the normal equation, static condensation led to a linear

system involving only the interface unknowns. However, here, the size of test space remained the

same and therefore only the column dimension was reduced (see right of Figure 6.1(b)).

6.3 Results

The software used for all computations was the in-house hp3d which has support for SdR

discretizations for all the element shapes [114] (see Section A.5 in Appendix A). The linear systems

associated to the normal equation were solved with MUMPS 5.0.1, while the overdetermined sys-

tem was solved with QR-based algorithms via the solver qr mumps 1.2.We will now compare the

condition number behavior, numerical sensitivity, discretization error, and round-off error incurred

in DPG methods. As in [198], in each of our experiments, the stiffness matrix was diagonally

preconditioned before the condition number was reported,

A 7→ D−1/2AD−1/2 , f 7→ D−1/2f , ⇔ B̃ 7→ B̃D−1/2 , l̃ 7→ l̃ , (6.23)

where D = diag(A). The cost of this procedure is computationally negligible and it is common

practice to scale the matrix in this way before iterative solution methods. Meanwhile, it is performed

implicitly in most direct solvers. Therefore, we presume no offense in this action. For additional

perspective on several topics we do not cover, related to the condition number of DPG stiffness

matrices, but with a focus on Stokes equation, we refer the interested reader to [198, Chapter 9].

6.3.1 FOSLS vs. DLS

For illustration, consider Poisson’s equation in R2 with body force f and Dirichlet boundary

condition given by u∂Ω ∈ H1/2(∂Ω). Here, the aim is to find (u,σ) ∈ (ũ+H1
0 (Ω))×H(div,Ω) such

that {−divσ + αu = f ,

σ − gradu = 0 ,
(6.24)

where, α = 0, f ∈L2(Ω), and ũ∈H1(Ω) is an extension of u∂Ω to Ω, so that trΩ
gradũ=u∂Ω∈H1/2(∂Ω).
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The simplest variational formulation of (6.24) seeks (u,σ) ∈ H1
0 (Ω)×H(div,Ω) = U so

b
(
(u,σ), (v, τ )

)
= `
(
(v, τ )

)
∀(v, τ ) ∈ L2(Ω)×L2(Ω) = V ,

b
(
(u,σ), (v, τ )

)
= −(divσ, v)Ω + (αu, v)Ω + (σ, τ )Ω − (∇u, τ )Ω ,

`
(
(v, τ )

)
= (f, v)Ω − (αũ, v)Ω + (∇ũ, τ )Ω .

(6.25)

And, where (·, ·)Ω = (·, ·)L2(Ω), L
2(Ω) =

(
L2(Ω)

)
2, and (u+ ũ,σ) is the solution to (6.24). This is

known as the (first-order) “strong variational formulation” of the Poisson equation [55]. These equa-

tions can be solved using the first-order system least-squares (FOSLS) method [49, 50] by directly

discretizing the trial space U = H1
0 (Ω) ×H(div,Ω), as in (6.10). The appropriate discretization

Uh ⊆ U should be a compatible SdR discretization of order p (see Section A.5 in Appendix A),

such as the ones found in [114] for triangles and quadrilaterals. A DLS discretization can be found

by using the same finite-dimensional spaces Uh as in the FOSLS method above, as well as an

L2-conforming test space Vr derived from an SdR discretization of order p + ∆p. Notice that,

for quadrilaterals at the master element level, the test functions are in Y p+∆p = Qp+∆p−1,p+∆p−1,

where Qp,q = Pp(x) ⊗ Pq(y), whereas divσ ∈ Y p and σ − ∇u ∈ (Y p+1)2. Thus, it follows that

B(Uh) ⊂ RV Vr whenever ∆p ≥ 1, and all the comments in Remark 2.6 and Section 6.2.2 would be

valid.

Let Ω = (0, 1)2 be partitioned by a uniform quadrilateral mesh of side length h, and assume

u(x, y) = sin(πx) sin(πy). Define f̂ = 0 and f = −div(∇u). With the extension ũ = 0, we

separately solved (6.24) using both least-squares (i.e. FOSLS) and DLS methods (with ∆p ≥ 1).

Moreover, because of the uniformity of the mesh and from using L2-orthogonal shape functions at

the master element level [114], we produced a diagonal Gram matrix, Gij = (vi, vj)L2(Ω).

The condition number we computed for each of the three possible stiffness matrices is

presented in Figure 6.2. Note that the condition number of the FOSLS stiffness matrix ALS was

verified to grow as O(h−2) (same as with a DLS stiffness matrix A), but the condition number of

the DLS enriched stiffness matrix B̃ was verified to grow only as O(h−1).

Recall (6.10) and (6.7). The FOSLS solution would be uopt
h , while that coming from the DLS

discretization would be uh,r. As expected from Remark 2.6 and Section 6.2.2, numerical results also
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Figure 6.2: Comparison with Poisson’s equation of the condition number of the FOSLS stiffness matrix

ALS to the condition number of the DLS stiffness matrices A and B̃ coming from the strong formulation,

(6.25). Exact sequence polynomial order p = 2 for Uh and, in the DLS setting, ∆p = 1. Observe that

cond(ALS) = cond(A) = cond(B̃)2. All reported results are for the statically condensed and diagonally

preconditioned matrices.

confirmed that when ∆p ≥ 1 (so B(Uh) ⊂ RV Vr), u
opt
h = uh,r and ALS = A, up to floating-point

precision.
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Figure 6.3: Distance between the FOSLS and DLS solutions, uopt
h and uh,∆p, and the stiffness matrices

ALS and A. The solution uh,∆p was computed, in each experiment, by way of the normal equation (6.3).

Exact sequence polynomial order p = 2 was used for Uh, for all computations. The norms are defined as

‖(u,σ)‖2U = ‖u‖2H1(Ω) + ‖σ‖2H(div,Ω), whereas ‖ · ‖2F is the Frobenius norm.
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When B(Uh) 6⊆ RV Vr, the solutions uopt
h and uh,r, and matrices ALS and A will no longer be

equal. Naturally, however, the distance between uh,r to uopt
h is expected to decrease as Vr is enriched

(i.e. as ∆p is increased). Specifically, if the enriched test spaces are nested, Vr1 ( Vr2 ( Vr3 ( · · · ,
we expect ‖uopt

h − uh,rk‖U → 0 as k ∈ N increases. Indeed, this was observed when considering

α(x, y) = sin(πx) sin(πy) in (6.24) and (6.25) and comparing the FOSLS solution, uopt
h , to the

DLS normal equation solution, uh,∆p, for increasing values of ∆p. The results in Figure 6.3(a)

show that the rate of h-convergence between the two discrete solutions grows with ∆p. Moreover,

Figure 6.3(b) shows that the matrix A converges to ALS. These numerical results suggest that the

error incurred in discretizing V to Vr can be made very small, and we expect this to be true even

with non-trivial variational formulations (i.e. after integrating by parts).

6.3.2 Bubnov-Galerkin vs. DLS

In order to explore less trivial variational formulations, consider the broken primal formu-

lation of the Poisson equation in (6.24) (with α = 0) [94]. In this setting, we seek a solution

(u, σ̂n) ∈ H1
0 (Ω) × H−1/2(∂T ) = U (see Appendix A for definitions of the trace Sobolev spaces)

such that

b
(
(u, σ̂n), v

)
= `(v) , ∀v ∈ H1(T ) = V ,

b
(
(u, σ̂n), v

)
= (∇u,∇v)T − 〈σ̂n, trTgradv〉∂T ,

`(v) = (f, v)T − (∇ũ,∇v)T .

(6.26)

Here, H1(T ) is a broken Sobolev space with norm ‖v‖2H1(T ), and the restriction of each member

of this space to any single K ∈ T is in H1(K). Likewise, (·, ·)T =
∑

K∈T (·, ·)K and similarly with

〈·, ·〉∂T . This second pairing, 〈·, ·〉∂T , can be understood, intuitively, as a mesh-boundary integral,

however, the inquisitive reader may wish to examine Appendix A for further detail. The exension

ũ ∈ H1(Ω) in (6.26) is identical to that from the least-squares setting presented before.

For the discretization, let the trial space Uh be a compatible SdR discretization of order p.

For the enriched test space Vr, it is sufficient to choose an SdR discretization of order p+ ∆p. The

enriched test space, Vr, need not be continuous across elements.

Observe that (6.26) is similar to the standard Bubnov-Galerkin problem, in which, the aim
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is to find u ∈ H1
0 (Ω) = UBG such that

bBG(u, v) = `BG(v) ∀v ∈ H1
0 (Ω) = VBG = UBG ,

bBG(u, v) = (∇u,∇v)Ω , `BG(v) = (f, v)Ω − (∇ũ,∇v)Ω .
(6.27)

Here, both trial and test spaces need to be H1-conforming (continuous) across the mesh.

As far as we are aware, the condition number of the DPG (or DLS) stiffness matrix A

coming from (6.26) has never been derived analytically. We leave that work to another researcher

and so do not derive it here, either. Nevertheless, we expect it to grow like h−2, as the Bubnov-

Galerkin stiffness matrix, ABG, does [37]. This hypothesis was confirmed with experiments on a

square domain Ω = (0, 1)2 starting from a uniform mesh of four square elements and exact solution

u(x, y) = sin(10πx) sin(10πy) (see Figure 6.4). Likewise, similar to the least-squares scenario,

cond(B̃) = cond(A)1/2 was confirmed to grow only as h−1, and so it eventually became less than

the condition number of ABG, which started out the smallest. Notably, in contrast to least-squares

finite element methods, this shows that a first-order system formulation is not required to achieve

O(h−2) (or even O(h−1)) condition number growth with a DLS method.
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Figure 6.4: Comparison with Poisson’s equation of the condition number of the Bubnov-Galerkin stiffness

matrix ABG to the condition number of the DPG stiffness matrices A and B̃ coming from the broken primal

formulation, (6.26). Exact sequence polynomial order p = 2 for Uh and UBG
h , and, in the DPG setting,

∆p = 1. Observe that cond(ABG) 6= cond(A) and that cond(B̃) < cond(ABG), eventually, for small enough

h. All reported results are for the statically condensed and diagonally preconditioned matrices.
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The optimal solution of the discrete minimum residual problem (6.7) coming from the

variational formulation (6.26) would be uh,∆p = (uh,∆p, (σ̂n)h,∆p). If we define the Bubnov-Galerkin

problem’s exact solution to be uBG, and the exact solution of (6.26) to be (uopt, σ̂opt
n ) then, it can

be shown that uBG = uopt [55]. However, for any given ∆p, there is no reason to expect uBG
h to be

equal to uopt
h,∆p. Indeed, these two solutions did not always agree as is demonstrated in Figure 6.5.

Nevertheless, the two different solutions clearly converged to each other, rapidly.
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Figure 6.5: Relative error in the discrete solutions uh,∆p and uBG
h . In the DPG solution, ∆p = 1. Observe

that, up to the smallest mesh size considered, the solutions uh,∆p obtained by the normal equation (6.3) do

not differ noticeably from those computed with QR factorization of the least-squares problem (6.5).

6.3.3 Ultraweak DLS

Lastly, consider the broken ultraweak formulation of the Poisson equation in (6.24) (with

α = 0). This seeks a solution (u,σ, û, σ̂n) ∈ L2(Ω) × L2(Ω) ×H1/2
0 (∂T ) ×H−1/2(∂T ) = U (again,

see Appendix A for definitions of the Sobolev spaces) such that

b
(
(u,σ, û, σ̂n), (v, τ )

)
= `
(
(v, τ )

)
∀(v, τ ) ∈ H1(T )×H(div, T ) = V ,

b
(
(u,σ, û, σ̂n), (v, τ )

)
= (σ, grad v + τ )T + (u,div τ )T − 〈σ̂n, trTgrad〉∂T − 〈û, trTdivτ 〉∂T ,

`
(
(v, τ )

)
= (f, v)T + 〈ǔ, trTdivτ 〉∂T .

(6.28)

Again, H1(T ) andH(div, T ) are broken Sobolev spaces which essentially means that the restriction

of each member to any single K ∈ T is in H1(K) and H(div,K), respectively. We assume that the
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norm for V is then ‖v‖2V = ‖v‖2H1(T ) + ‖σ‖2H(div,T ), although other choices are possible [60]. Lastly,

ǔ ∈ H1/2(∂T ) is an extension of û∂Ω ∈ H1/2(∂Ω) to ∂T .

As before, consider an SdR discretization of order p for Uh ⊆ U. Let the enriched test space

Vr be an SdR discretization of order p+ ∆p. In this situation, it was proven in [133] that, provided

∆p ≥ 2 and that the mesh is made of triangles, the condition number of A would grow with h−2.

This O(h−2) growth was indeed confirmed with the hexahedral elements we were using as can be

observed in Figure 6.6. More importantly, the enriched stiffness matrix B̃ was, therefore, verified

to have a much improved condition number growth of O(h−1).
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Figure 6.6: Condition number growth of the DPG stiffness matrices A and B̃ coming from broken ultraweak

formulation (6.28). Here, p = 2 and ∆p = 1. All reported results are for the statically condensed and

diagonally preconditioned matrices.

6.3.4 Ill-conditioned failure study

In some circumstances, finite element stiffness matrices can be so poorly conditioned that

the round-off error in solving the discrete equations will compete with, or even surpass, the trun-

cation error coming from the method itself and interpolation spaces being used. In such scenarios,

exploiting the overdetermined system of equations with QR is very attractive.

Due to time and space limitation, we will illustrate this behavior only for ultraweak DPG

methods for problems of the form (6.24). We have chosen the ultraweak setting because it is
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the most actively researched variational setting for DPG methods, at this time. For the normal

equation, we solved the system with MUMPS 5.0.1 [168, 3]; and for the overdetermined system, we

used qr mumps 1.2 [48]. Our results are reported in Figure 6.7.
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Figure 6.7: Divergence of the discrete solution is observed for various polynomial orders p in two standard

ultraweak DPG methods when the normal equation (6.3) is constructed, statically condensed, and then

solved. Notice that, instead, when QR factorization was used to directly solve the (statically condensed)

least-squares problem (6.5), the convergence of the discrete solution was maintained, at least for longer.

In the p = 2 run for (b), had more refinements been performed, we expect that the anticipated rate of

convergence (i.e. 2 6= 3.94) would have been recovered. ∆p = 1 in all experiments.

First, we performed a single-precision floating-point computation with Poisson’s equation

(6.24) to verify that round-off error would eventually overwhelm truncation error, even in the

most well-behaved of problems. Here, we chose Ω = (0, 1)2 and an exact solution of the form

u(x, y) = x2(1− x)2y2(1− y)2, and imposed (homogeneous) Dirichlet boundary conditions around

the entire boundary ∂Ω. Uniform h-refinements of quadrilateral elements, starting from a single

element, were then performed until our computer ran out of memory. In Figure 6.7(a), we report

the loss of convergence to this polynomial exact solution for p = 1, 2, 3 encountered after several

mesh refinements when solving the normal equation. Notice that, however, for each polynomial

order, qr mumps applied to the overdetermined system continued to produce the expected rates of

convergence after the normal equation approach failed.
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In the p = 2 case, we can use Figure 6.6 to corroborate this outcome. For example, note

that, the two solutions began to visibly diverge at the 7th mesh. Here, the relative error was just

below 10−3. Also, note that, from inspecting Figure 6.6, the corresponding condition number of the

stiffness matrix A was approximately 105. Since machine single precision is approximately 10−7,

the round-off error would have been, at most, approximately 10−2. It was, therefore, large enough

to compete with, or surpass, the truncation error, and this is indeed what we began to see.

Our second example is with the linear acoustics problem in Ω = (0, 1)2, which we chose to

solve with the ultraweak formulation with broken test spaces, near resonance, in double precision.

The equations of linear acoustics are: {
iωp + div u = f ,

iωu +∇p = 0 ,
(6.29)

where p is the pressure and u is the velocity. We imposed a hard boundary for this problem. That

is Neumann-type boundary conditions ĝ ∈ H−1/2(∂Ω) were specified on the entire boundary.

Similar to (6.28), we can derive the corresponding ultraweak formulation. In it, we seek a

solution (p,u, p̂, ûn) ∈ L2(Ω)×L2(Ω)×H1/2(∂T )×H−1/2
0 (∂T ) = U such that

b
(
(p,u, p̂, ûn), (q ,v)

)
= `
(
(q ,v)

)
(q ,v) ∈ H1(T )×H(div, T ) = V ,

b
(
(p,u, p̂, ûn), (q ,v)

)
= −(p, iωq + div v)−(u, iωv +∇q)+〈ûn, trTgradq〉∂T +〈p̂, trTdivv〉∂T ,

`
(
(q ,v)

)
= (f, q)T − 〈ǔn, q〉∂T ,

(6.30)

where ǔn ∈ H−1/2(∂T ) is an extension of ĝ ∈ H−1/2(∂Ω) to ∂T .

The discretization is also an SdR discretization of order p, similar to (6.28), except in F = C

instead of R. We chose to solve the problem for ω = 0.5001 · 2π which is very close to a resonance

frequency. Note that, the first eigenvalue of the Laplacian in this setting is ω1 = π. Therefore,

we can expect that the stiffness matrix will become very badly-conditioned as the mesh is refined.

Using a Gaussian beam for the exact solution and a corresponding discrete extension ǔn constructed

using projection-based interpolation [90], we clearly received more robust convergence with the QR

approach. The results are presented in Figure 6.7(b).
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6.4 Discussion

In this chapter we presented a general framework for discrete least-squares finite element

methods and illustrated features of this special class of methods. In particular every minimum resid-

ual method was posed equivalently as a discrete least-squares problem associated to an overdeter-

mined rectangular system. This was done by exploiting the underlying linear algebra. Ultimately,

this allowed to solve the overdetermined problem directly with QR-based algorithms instead of

handling the normal equation, which is the conventional approach. In particular, this allows to

solve the problem with a condition number that is the square root of that associated to the nor-

mal equation. DLS methods work best when they are applied to DPG discretizations (a subset of

minimum residual methods) because these methods localize all the computations and allow for a

much more practical method. When solving the overdetermined system, they are more costly, but

are able to support very ill-conditioned problems.

More specifically, a procedure for static condensation was described in the discrete least-

squares framework, which allows for the computations to remain accurate. Moreover, the assembly

algorithms were discussed in detail. We provided several examples that elucidated the benefits

of this new family of methods. In fact, the growth of the condition number of the associated

stiffness matrix, after only diagonal preconditioning, was demonstrated to be O(h−1) when solving

Poisson’s equation in all of our examples. In other experiments which compared sensitivity to round-

off error, we demonstrated the associated QR-factorization approach is particularly well-suited for

ill-conditioned problems.

Although the key results we present are directed towards DPG methods, we have maintained

a comprehensive and broad perspective in our presentation which has allowed us to make several

connections with other methods in the literature. Extending this work to iterative solvers would

be an interesting endeavor.
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Chapter 7

Polygonal DPG (PolyDPG) methods with ultraweak formulations

This chapter is the content of a research publication by the author [229]¶. It explains the

use of ultraweak formulations and DPG methods to handle meshes with polygonal elements in

2D. The resulting methods are labeled polygonal DPG (PolyDPG) methods. They are high-order

methods capable of discretizing arbitrary polygonal elements, including non-convex polygons. As

other DPG methods, they are crafted to be stable and they have an built-in polygonal a posteri-

ori error estimator to be used in adaptive refinements. Provided certain assumptions, PolyDPG

methods can be shown to be numerically stable and convergent. This chapter is included in this

dissertation because it shows how DPG methods are able to successfully exploit features in ultra-

weak formulations to produce novel numerical methods that are useful in certain applications. The

contributions of the author to the multi-authored article included devising the method, advising

related to the computations, producing the mathematical proofs, and writing of the manuscript.

7.1 Introduction

Numerical solutions of boundary value problems with meshes of general polytopes were first

proposed by Wachspress [232], who introduced rational barycentric coordinates that formed a finite

element basis over convex polygons, leading to a conforming finite element method (FEM) with

new types of elements. Over the last two decades, there has been a growing collection of numerical

methods using general polytopes which extend well beyond the original ideas of Wachspress. Among

the reasons for this group of methods to thrive is a handful of advantages that polytopes offer

over traditionally-shaped elements (simplices, hexahedra, etc.). These include: matching complex

interfaces (see e.g. [175, 62]); greater flexibility to mesh complex geometries and their role as

transition elements [216]; avoiding the limitations of parametric elements for highly distorted or

¶ Vaziri Astaneh, A., Fuentes, F., Mora, J., and Demkowicz, L. (2018a). High-order polygonal discontinuous Pe-

trov-Galerkin (PolyDPG) methods using ultraweak formulations. Comput. Methods Appl. Mech. Engrg., 332:686–711.
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ill-shaped elements (see e.g. [64, 166]); handling multiple hanging nodes in local h-refinements

[218]; and allowing for greater deformations and less tendency to mesh-locking in incompressible

media [65].

The features just mentioned give polytopal FEMs a wide range of applicability, especially

where conventional methods do not fare well. In fact, they are useful for resolving problems in-

volving the deformation of materials with heterogeneous microstructure [124], modeling complex

materials like elastomers and biomaterials [65, 85], creating meshes where interface fitting is re-

quired [62], and modeling fractured media [22]. Promising results have also been obtained in crack

propagation modeling [211, 167, 27, 29] and in topology optimization [219, 122, 5, 221], since polyg-

onal meshes combine the ability to mesh complex geometries with a reasonable number of elements

while reducing mesh-induced bias in particular directions (which occurs in structured meshes of

triangles or quadrilaterals) [219, 167, 5].

Many methods still utilize different types of generalized barycentric coordinates (including

some valid in non-convex polytopes), which have proliferated since Wachspress originally intro-

duced them, as well as other choices of shape functions (see e.g. [28]). These methods are usually

H1-conforming Galerkin FEMs [216], but there are some extensions to mixed methods (see e.g. [65]).

They mostly allow very flexible refinement schemes while avoiding constrained approximations [218],

but they are typically limited by first order h-convergence. Some families of high-order shape func-

tions have been proposed, but only for convex polytopes (see e.g. [196, 126]). As the barycentric

coordinates are in general rational polynomials, another challenge is the choice of the quadrature

scheme used for integration [174, 66].

Mimetic finite difference (MFD) methods are based on another discretization technique

which also supports polygonal elements. The technique consists of designing discrete differential

operators such that fundamental vector calculus identities and physical laws can be reproduced in

a discrete context [163, 40, 39]. Later, the ideas of MFDs led to the development of virtual element

methods (VEMs) [18]. In VEMs, appropriate spaces are tailored for each polytopal element, such

that their functions have continuous and piecewise polynomial traces over the boundaries. In

the lowest order case, the integrals over the cells can be computed exactly (i.e. up to machine
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precision) with quadrature points only on the boundary [169]. The power of VEMs lies partly in

eliminating the need of explicitly constructing the shape functions in the element, and yet resulting

in a FEM-like variational setting [21]. They are also high-order methods [17], and recent work

has resulted in the construction of H(div)- and H(curl)-conforming spaces [20]. VEMs have been

used for different problems like linear elasticity, plate bending, and second-order elliptic problems

[19, 41, 21]. But it must be noted that VEMs need a problem-dependent stability operator to

guarantee their convergence [169], and the solution at interior points of the elements is not accessible

directly, so it has to be approximated [21].

Another method is the polytopal interior penalty hp discontinuous Galerkin (IPDG) method

[52]. It is a nonconforming high-order method, which uses restrictions of standard FE spaces

associated to a bounding box of each element. Due to its nonconformity, the method has a thorough

but nonstandard equation-dependent error analysis, and like VEMs, it needs adding extra terms

to ensure stability. Lastly, other recent methods include hybrid mimetic mixed methods [107, 106],

PFEM-VEM [169], the weak Galerkin (WG) method [175, 176, 234], hybrid high-order (HHO)

methods [104], and hybridizable discontinuous Galerkin (HDG) methods [71, 73]. More details on

the historical development can be found in the thorough review [169].

The objective of this chapter is to present a completely new family of high-order methods

termed polygonal discontinuous Petrov-Galerkin (PolyDPG) methods. They are based on so-called

“broken” ultraweak variational formulations discretized using the discontinuous Petrov-Galerkin

(DPG) methodology [95]. These formulations, despite being well-defined at the infinite-dimensional

level, admit a very large degree of discontinuities in both the trial and test spaces, since their test

spaces are broken (i.e. they may be discontinuous across element interfaces) and part of their trial

spaces is in L2. In fact, the only communication between elements happens through the so-called

interface (or skeleton) variables that live on the element boundaries. These nonstandard formu-

lations can be systematically discretized in a conforming fashion (i.e., with discrete trial and test

spaces that are subspaces of the infinite-dimensional ones) and solved using the variationally ver-

satile DPG methodology, which always produces a positive definite finite element stiffness matrix.

The DPG methodology is essentially crafted to produce stability by using optimal test functions
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and without resorting to additional stabilization terms. DPG methods have been successfully used

for equations involving numerical stability issues [75, 102, 60, 184, 160], and applied to various

physical problems such as wave propagation [237, 132, 96, 194], transmission problems [145, 117],

electromagnetism [55], elasticity [158, 36, 113, 111], fluid flow [202, 58, 109, 159] and optical fibers

via Schrödinger’s equation [97].

In this chapter we consider 2D problems, where the element boundaries are merely line

segments, so high-order discretization of the interface variables is straightforward. As we will show,

this makes the broken ultraweak formulations an ideal framework for defining polygonal elements,

and it results in the conforming FEMs we refer to as PolyDPG methods. PolyDPG methods

are competitive with other existing polygonal methods, since they arise from very different ideas

and they inherit many advantages from the DPG methodology. For example, they can be easily

generalized to different linear equations; they have a solid mathematical background in terms of

proving stability and high-order convergence; they allow for discontinuous material properties while

retaining stability; they result in positive definite stiffness matrices; and they carry a completely

natural arbitrary-order a posteriori error estimator, which facilitates implementation of adaptive

refinement strategies. The last feature is particularly desirable when combined with polygonal

elements, because there is no need for the constrained approximation technology to treat hanging

nodes, paving the way for use in applications like dynamic fracture [211, 167, 27, 29] and topology

optimization [219, 122, 5, 221]. We complement this work by providing an open-source software in

MATLAB R©, also named PolyDPG [228].

The outline of the chapter is as follows. In Section 7.2 we describe a PolyDPG method

for a model problem (Poisson’s equation), along with the DPG solution scheme and the conver-

gence theory (with the proof relegated to Appendix D). In Section 7.3 several illustrative examples

are presented. High-order convergence for different p is verified for both convex and highly dis-

torted non-convex elements. Then, a physically relevant problem involving discontinuous material

properties along an arbitrary interface is solved. Finally, an adaptive refinement strategy is de-

scribed, successfully implemented, and compared to traditional adaptive schemes. Our concluding

discussion is presented in Section 7.4.
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7.2 PolyDPG methods

Typical FEMs map elements from the actual physical space to a known fixed master element

space corresponding to the same element type. For example, in 2D a general quadrilateral in R2

is mapped to a master quadrilateral (typically (0, 1)2 or (−1, 1)2). This requires defining a master

element for each element type, which is possible for limited types of elements (e.g. quadrilaterals

and triangles in 2D, or hexahedra, tetrahedra, triangular prisms and pyramids in 3D), but is usually

nonviable when dealing with general polytopes. Thus, as with any polytopal FEM, the idea is to

circumvent any master elements by shifting the focus directly to the physical space.

The main issue in doing so is satisfying inter-element continuity of the basis functions, which

is required for discretizing Sobolev spaces such as H1. This is partly resolved by using generalized

barycentric coordinates, but these techniques are usually limited to first order methods (in terms

of convergence), and it becomes difficult to discretize other Sobolev spaces such as H(curl) and

H(div) even for the lowest order cases [63]. Indeed, even with the “traditional” pyramid element,

having high-order discretizations for different spaces is challenging to achieve [185, 114, 125, 1],

and so is the case for 2D non-affine quadrilaterals [6]. To overcome this, VEMs concentrate on

the boundaries while nonconforming polytopal discontinuous methods, like IPDG, HHO, WG, and

HDG (which are closely related [72, 71]), remove the continuity requirements altogether. However,

all of these methods need to carefully add (equation-dependent) stabilization or penalty terms

[18, 52, 104, 234, 73], and they must account for these in the error analysis, leading to a nonstandard

theory of convergence [68].

As will be seen, the discontinuous Petrov-Galerkin (DPG) methodology is very general

from a variational standpoint, so it is not limited to the traditional primal and mixed formula-

tions. Thus, without sacrificing any desirable stability properties, it is able to discretize “broken”

ultraweak variational formulations, which avoid most inter-element continuity requirements. The

only continuity requirements are met by interface variables which live on the element boundaries.

Technically speaking, the resulting method is still a conforming FEM, and the “standard” error

analysis can be applied. This is very useful, because it allows to generalize the method to any
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well-posed linear equation formulated with traditional functional spaces (i.e. H1, H(curl), H(div)

and L2 as in Appendix A).

In 2D, the polygonal element boundaries are simply line segments, so it is easy to define

high-order discretizations along the mesh skeleton. Given that this is less trivial for polyhedra in

3D, we only analyze 2D problems in this introductory paper. We now proceed by introducing the

model problem and its corresponding ultraweak formulations in the next section.

7.2.1 Model problem and ultraweak formulations

As a model problem, consider Poisson’s equation coming from the steady-state heat equation

in a (heterogeneous) domain Ω ⊆ R2, where u is the temperature, q is the heat flux, k > 0 is the

variable thermal conductivity, and r is the internal heat source,

− div(k∇u) = r , ⇔

 div q = r ,

1
kq +∇u = 0 .

(7.1)

Note that the equation can be written directly as a second order system (left) or as a first order

system (right). For simplicity, we assume temperature boundary conditions along all of ∂Ω, so that

u = g at ∂Ω, where g is a known function.

To solve the equation using FEMs, a variational form is required, and in this respect,

there are many possibilities. For now assume vanishing temperature boundary conditions so that

g = 0. The ultraweak formulation is derived from the first-order system, so that both equations are

integrated by parts to pass the derivatives to the test functions. The resulting ultraweak formulation

seeks (u, q) = u0 ∈ U0 = L2(Ω)×L2(Ω) satisfying

b0(u0, v0) = `(v0) ∀(v, τ ) = v0 ∈ V0 = H1
0 (Ω)×H(div,Ω) ,

b0
(
(u, q), (v, τ )

)
= −(q,∇v)Ω + ( 1

kq, τ )Ω − (u,div τ )Ω, `
(
(v, τ )

)
= (r, v)Ω ,

(7.2)

where L2(Ω) = (L2(Ω))2. Clearly the trial and test spaces in this case are completely different,

U0 6= V0. Thus, to solve this system it is necessary to drift away from the traditional Bubnov-

Galerkin method. As we will see, a discretization via minimum residual FEMs is a viable option.

It is worth remarking that the primal and ultraweak formulations are mutually well-posed in the
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infinite-dimensional setting (see Chapter 3 and Appendix B). Since the primal formulation is known

to be well-posed in view of the Lax-Milgram theorem and Poincaré’s inequality, so is the ultraweak

formulation. This guarantees the existence of a unique solution in the trial space satisfying a

stability estimate.

The ultraweak formulation has copies of L2(Ω) as a trial space, thus its discretization does

not require satisfying any inter-element continuity, which is very desirable for polygons. However,

all the difficulties are passed to the test space for which inter-element continuity requirements are

essential. Fortunately, it is possible to remove these requirements in the test space as well, but

at the cost of introducing interface variables, as has been shown in Chapter 2 and Chapter 3.

Consider a mesh (i.e. an open partition), T , of Ω comprised of (disjoint) elements K ∈ T . Then,

element-wise, multiply by broken test functions (v, τ ) = v ∈ V = H1(T )×H(div, T ), integrate by

parts, and sum across all elements. The result is very similar to the ultraweak formulation, but

has new terms on the boundaries of the elements involving u|∂K and q|∂K ·n̂K , where n̂K is the

outward normal to the element K. These terms vanish if the test space is not broken (i.e. V0), but

if we want u ∈ L2(Ω) and q ∈ L2(Ω), then the traces u|∂K and q|∂K ·nK technically do not exist

and to incorporate them it is necessary to add new interface variables in the spaces H
1/2
0 (∂T ) and

H−1/2(∂T ). Therefore, the resulting broken ultraweak variational formulation seeks

(u0, û) = u ∈ U = U0 × Û ,

(u, q) = u0 ∈ U0 = L2(Ω)×L2(Ω) , (û, q̂n) = û ∈ Û = H
1/2
0 (∂T )×H−1/2(∂T ) ,

(7.3)

such that
b(u, v) = `(v) ∀(v, τ ) = v ∈ V = H1(T )×H(div, T ) ,

b
(
(u0, û), v

)
= b0(u0, v) + b̂(û, v) , `

(
(v, τ )

)
= (r, v)T ,

b0
(
(u, q), (v, τ )

)
= −(q,∇v)T + ( 1

kq, τ )T − (u,div τ )T ,

b̂
(
(û, q̂n), (v, τ )

)
= 〈q̂n, trTgradv〉∂T + 〈û, trTdivτ 〉∂T .

(7.4)

This formulation can also be proved to be well-posed, with stability properties independent of the

choice of the mesh (same technique as in Chapter2 and Chapter 3 via use of Theorem 2.1). With

nontrivial boundary conditions, g 6= 0, simply consider `(v) = (r, v)T − 〈trTgradg̃, tr
T
divτ 〉∂T instead,
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where g̃ ∈ H1(Ω) is an extension of g ∈ H1/2(∂Ω), and add g̃ to the solution u of (7.4) to obtain

the final temperature.

Despite looking intricate, the broken ultraweak variational formulation has the advantage

of removing much of the inter-element compatibility conditions, since some of its trial variables

are in L2(Ω) and its test variables are discontinuous along the elements. The only inter-element

compatibility is due to the interface variables, which reside solely on the element boundaries. In

2D, as we mentioned before, this is extremely convenient since the element boundaries are simply

1D line segments.

7.2.2 Choice of trial and test spaces

For details on the DPG methodology, the reader is invited to read Section 2.3. The usual

choice of trial and test spaces from DPG methods are SdR discretizations (see Section A.5 in

Appendix A), but these are not directly available for general polygonal elements. Therefore, a

different choice must be made, and this is the content of this section.

The choice of trial and test spaces is important to establish the method’s convergence.

As mentioned before, strict inter-element compatibility requirements leaves very limited options.

Particularly, the problem seems to be extremely complicated for general polygons with high-order

discretizations. Fortunately, the U0 trial space component of the broken ultraweak formulation

in (7.3) consists of copies of L2, so its discretization can be discontinuous across the elements.

Moreover, the test spaces are broken, so their discretization should be discontinuous across elements

too. This is what makes the ultraweak formulation a natural candidate to develop a DPG method

for polygonal elements. Indeed, this freedom allows one to create bases locally, disregarding the

neighboring elements. In particular, bases may be defined by restriction (to the polygonal element

of interest), as we will see next.

Our procedure is similar to that in [52] where a bounding box was utilized, but we use

a bounding triangle instead. First, the centroid of the polygon and the furthest vertex from the

centroid are determined. Next, a bounding circle centered at the centroid and passing through the

furthest vertex is defined. Then, the bounding equilateral triangle inscribing the circle is computed
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such that one of its edge-midpoints is the polygon’s furthest vertex. This is shown in Figure

7.1. Lastly, the “usual” high-order polynomial shape functions for the triangle are used and then

restricted to the polygon. We use the term “usual” liberally, but to clarify, we include further

details below.

Centroid

rmax

Figure 7.1: Bounding triangle of a polygonal element. The equilateral triangle is defined such that the

bounding circle centered at the polygon’s centroid is inscribed.

There are several spaces at the infinite-dimensional level which we want to discretize using

this technique. Namely, the test space components, H1(T ) and H(div, T ), and the U0 trial space

component, which may be represented by L2(Ω). Following our technique, the procedure reduces

to finding the local discretizations of H1(TK), H(div, TK) and L2(TK), where TK is the bounding

triangle of the polygonal element K ∈ T . These three spaces actually form a differential de Rham

exact sequence, and it is convenient that their respective discretizations do too. For triangles, this

is satisfied by the classical Nédélec sequence of the first type [103, 114],

H1(TK)
curl //H(div, TK)

∇· // L2(TK)

Pp(TK)

⊆

curl // RT p(TK)

⊆ ∇· // Pp−1(TK) ,

⊆ (7.5)

where Pp(TK) are the polynomials in x = (x1, x2) of total order less than or equal to p ∈ N,

the 2D Raviart-Thomas space is RT p(TK) = (Pp−1(TK))2 + xPp−1(TK) (a rotation of the 2D

Nédélec space), and the 2D scalar-to-vector curl operator is defined as curl(u) =
(

0 1
−1 0

)
∇u for

any u ∈ H1(TK). Notice that the parameter p represents the order of the discrete sequence and
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does not necessarily coincide with the order of the polynomials of a particular discretization. For

example if p = 3, the discretization of L2(TK) are the polynomials of at most total order p− 1 = 2.

Instead, the parameter p is intended to coincide with the order of h-convergence.

This sequence has many desirable properties, and precisely because of these, we prefer to use

a bounding triangle instead of a bounding box. In particular, the spaces are invariant under affine

transformations (the spaces remain the same even if the bounding triangle is arbitrarily rotated

about the polygon centroid); the overall drop of polynomial order across the sequence is one (from

Pp(TK) to Pp−1(TK)); the approximation properties are suitable (see Appendix A); and they are

the smallest possible spaces with all these properties (see [9, §3.4]).

Having said that, a similar procedure can be carried out for a bounding box, QK of K ∈ T ,

where the spaces become

H1(QK)
curl // H(div, QK)

∇· // L2(QK)

Qp,p(QK)

⊆

curl // Qp,p−1(QK)×Qp−1,p(QK)

⊆ ∇· // Qp−1,p−1(QK) ,

⊆ (7.6)

with Qp,q(QK) = Pp(x1)⊗ Pq(x2).

In either case, the final spaces for the polygon K ⊆ TK (or K ⊆ QK) are defined by

restricting the domain to K ∈ T , so we denote them by Pp(K) and RT p(K) (or Qp,p(K)) instead.

The only remaining spaces to specify are those of the interface variables lying in the Û

trial space component (see (7.3)). These can also be deduced using the same philosophy of exact

sequences, but utilizing the traces instead. Indeed, the spaces H
1/2
0 (∂T ) and H−1/2(∂T ) are merely

T -tuples of compatible traces of H1(K) and normal-traces of H(div,K) respectively. If two ele-

ments of different type (a triangle and a quadrilateral) share an edge, the discrete spaces should

be compatible across that edge. This is the case when considering the H1(K)-discretizations of

triangles and quadrilaterals: even though the discretizations themselves are different (Pp and Qp,p),
their restrictions to edges are exactly the same, Pp(e), where e represents an edge parametrized

linearly by te. The same occurs with the H(div,K)-discretizations, which have Pp−1(e) as normal-

trace along the edges. Additionally, the H1(K)-discretizations should be compatible at vertices.

This is consistent with 1D discretizations of H1 and L2, which also form an exact sequence, but
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instead occurring along the boundary of each element and being edge-parametrized along all edges

(see [114, §1.6] or definitions of SdR discretizations in Section A.5 of the Appendix A). This pat-

tern should hold for arbitrary polygons as well. For this, let E(K) be the set of edges of a polygon

K ∈ T , and define the local discretizations,

Pp−1(∂K) = {ŵK | ŵK |e ∈ Pp−1(e), ∀e ∈ E(K)} ⊆ H−1/2(∂K) ,

PpC(∂K) = Pp(∂K) ∩ C0(∂K) ⊆ H1/2(∂K) ,
(7.7)

where C0(∂K) are the continuous functions in ∂K (the intersection ensures that values of neigh-

boring edges coincide at a common vertex), and the infinite-dimensional local trace spaces are

H1/2(∂K) = {ûK = u|∂K | u ∈ H1(K)} and H−1/2(∂K) = {(q̂n)K = q|∂K ·nK | q ∈H(div,K)}.

Now we have enough information to actually globally define the discrete trial space. For a

value of p ∈ N, it is

Uh =
{

(u, q, û, q̂n) ∈ U | u|K ∈ Pp−1(K), q|K ∈
(
Pp−1(K)

)2
,

ûK ∈ PpC(∂K), (q̂n)K ∈ Pp−1(∂K), ∀K ∈ T
}
.

(7.8)

Notice that the condition (u, q, û, q̂n) ∈ U (so (û, q̂n) ∈ Û) implies that û vanishes at the boundaries,

that ûK1 |e = ûK2 |e, and that (q̂n)K1 |e = −(q̂n)K2 |e, where e is a common edge between the elements

K1 and K2. No such compatibility implications exist for (u, q) ∈ U0.

For the enriched test space, the discretizations are chosen from a sequence of order p+ ∆p,

and we say the space is p-enriched, so that

Vr =
{

(v, τ ) | v|K ∈ Pp+∆pK (K), τ |K ∈ RT p+∆pK (K), ∀K ∈ T
}
. (7.9)

The notation ∆pK indicates that this value is element-dependent. In fact, recall that for minimum

residual methods to work (Section 2.3), M = dim(Vr) ≥ dim(Uh) = N , and if this analogous

restriction on the dimensionality holds locally, then it will hold globally as well. Thus, ∆pK has

to be chosen such that this condition holds. This is important for the polygonal element methods,

because when a polygon has many sides, the size of the local trial space may be quite large and a

large value of ∆pK must be chosen for that particular element.
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To elaborate, consider an interior n-sided polygonal element K (so that ∂K ∩ ∂Ω = ∅). Its

local trial and test space dimensions would be

dim
(
Uh(K)

)
=

u|K︷ ︸︸ ︷
1
2p(p+ 1) +

q|K︷ ︸︸ ︷
p(p+ 1) +

ûK︷ ︸︸ ︷
n+ n(p− 1) +

(q̂n)K︷︸︸︷
np ,

dim
(
Vr(K)

)
= 1

2(p+ ∆pK + 1)(p+ ∆pK + 2)︸ ︷︷ ︸
v|K

+ (p+ ∆pK)(p+ ∆pK + 2)︸ ︷︷ ︸
τ |K

.
(7.10)

Thus, for p = 2 and n = 3 (a triangle), dim(Uh(K)) = 21, so that a value of ∆pK = 1 is sufficient

(dim(Vr(K)) = 25); but if p = 2 and n = 8 (an octagon), dim(Uh(K)) = 41, a value of at least

∆pK = 3 (so that dim(Vr(K)) = 56) is required. Having said that, sometimes for simplicity a valid

value of ∆p is chosen uniformly throughout the mesh (this is the case for all of our examples in

Section 7.3).

To illustrate, some representative shape functions of the components of Uh(K) and Vr(K)

are shown in Figure 7.2 for the different energy spaces and multiple values of p.

We refer to the high-order polygonal DPG method resulting from this choice of trial and

enriched test spaces as a PolyDPG method for Poisson’s equation. However, it can easily be

generalized to ultraweak formulations coming from other linear equations (see Remark 7.2 later),

so it is more appropriate to allude to a family of PolyDPG methods. Note that the methods seem to

be very expensive due to the large number of variables in the trial space Uh, but this is deceiving.

In fact, all of the U0 trial space components can be statically condensed locally for ultraweak

formulations, meaning that this part of the near-optimal stiffness matrix, Bn-opt, can be effectively

removed by taking Schur complements. Thus, the only remaining connectivity is that coming

from the interface variables in Û. So computationally speaking, solving with these variational

formulations is not as costly as one might initially imagine. Lastly, it should be noted that usually

the choice of ∆p is made globally in other DPG methods. However, PolyDPG methods embrace

the idea of local values of ∆p instead, as it may even be a necessary criterion for the numerical

method to work.
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Figure 7.2: Some of the shape functions on a polygonal element used either as trial or test variables in the

PolyDPG method. They are classified by the energy space (H1(K), H(div,K), L2(K) and their respective

traces) and shown for different values of the parameter p ∈ N denoting the order of the differential sequence.

The underlying hierarchical shape functions for the bounding triangle and edges are taken from [114].
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7.2.3 Convergence analysis

Since the subspaces used to discretize the ultraweak variational formulation are, rigorously

speaking, subsets of the infinite dimensional trial and test spaces, PolyDPG methods are conforming

FEMs. Thus, the “standard” convergence theory can be applied. However, this is an understate-

ment because the interface variables are not standard, so they require a careful treatment, and the

same holds true for the restricted shape functions in the remaining spaces. The standard inter-

polation estimates are presented in Section A.6 of Appendix A, and the necessary modifications

to account for the choice of trial spaces in PolyDPG methods is covered in Appendix D, which

the reader should consult for the details. Combining the results in Appendix D with the theory

of Fortin operators in Section 2.8.1, it is not difficult to obtain an analogous convergence result to

Theorem 2.4. Here, we only display the main result along with the key assumptions.

Definition 7.1. A collection of subsets of R2, TK, is said to have the finite overlap condition if

ov(TK) = sup
x∈R2

ov(x) <∞ , ov(x) = |{K ∈ TK | x ∈ K}| . (7.11)

For a family of such collections given by a parameter h ∈ H, {TK,h}h∈H, the finite overlap condition is

said to be robust in h if there exists an integer Mov > 0, independent of h, such that ov(TK,h) ≤Mov

for any h ∈ H.

Definition 7.2. A triangulation T(K) = {Ti(K)}i∈IK (with IK finite) of a (simple) polygonal

element K is said to be edge-compatible if for each edge of K, only one Ti(K) shares that edge. For

any polygon such a triangulation is known to exist [171, 61, 2]. The triangulation is additionally

said to be shape-regular if all Ti(K) satisfy a kind of uniform shape-regularity condition (e.g. they

satisfy a minimum angle condition or the ratio of their diameters to their incircle radii remains

bounded).

Theorem 7.1. Let Ω be a polygonal domain and {Th}h∈H be family of meshes of Ω comprised of

general polygonal elements with shape-regular edge-compatible triangulations for all K ∈ Th, and

with a robust shape-regularity condition independent of Th. Assume that the associated collections

of bounding triangles as described in Section 7.2.2, {TT,h}h∈H = {{TK}K∈Th}h∈H, where TK is
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the bounding triangle of a polygonal element K, satisfy a robust finite overlap condition. Consider

linear well-posed variational formulations associated to bh : Uh×Vh → R and `h : Vh → R, where Uh

and Vh are SdR spaces. Let {uh}h∈H be the exact solutions to the corresponding formulations, and

assume they are attached to some uΩ ∈ UΩ through {Th}h∈H, where UΩ is a compatible SdR space.

Let p ∈ N, and let Uh,h ⊆ Uh and Vr,h ⊆ Vh be PolyDPG discretizations of the trial and test spaces as

described in Section 7.2.2. Suppose there exists a continuous linear Fortin operator ΠF,h : Vh → Vr,h

such that for all v ∈ Vh and δuh ∈ Uh,h, ‖ΠF,hv‖Vh
≤ CΠ‖v‖Vh

and bh(δuh, v−ΠF,hv) = 0, for some

CΠ = CΠ(p) > 0 that does not depend on the family of meshes {Th}h∈H. Then, there exists a unique

solution, uh,h ∈ Uh,h, solving the discrete variational formulation,

bh(uh,h, vh,h) = `h(vh,h) ∀vh,h ∈ V
n-opt
h = R−1

Vr,h
BhUh,h , (7.12)

where R−1
Vr,h

is defined in (2.39) and Bh is defined in (2.25). If the attached exact solution uΩ ∈ UsΩ

for some s > 1
2 , where UsΩ is the fractional counterpart to UΩ, then

‖uh − uh,h‖Uh
≤ Chmin{s,p}

h ‖uΩ‖UsΩ , (7.13)

where hh = supK∈Th diam(K) and C = C(s, p) > 0. Moreover, if CΠ is p-independent as well, then

in the p-asymptotic limit an hp-convergence estimate holds with C = Cs(ln p)
2p−s where Cs = C(s)

is independent of p.

Remark 7.1. The robust finite overlap condition is also assumed in [52], and is not a very restric-

tive assumption. It is used in the proof to establish a robust finite constant for the global L2(Ω)

convergence estimates (details are in Appendix D). On the other hand, the robust shape-regular

edge-compatible triangulation of all elements is a more restrictive assumption, but it is necessary

to prove the convergence estimates of the interface variables.

Remark 7.2. As shown in Appendix A, the theorem actually holds for any well-posed broken

ultraweak variational formulation with trial variables in L2(Ω) and interface (also trial) variables in

subsets of H1/2(∂T ) and H−1/2(∂T ). Thus, this result also holds for other equations such as linear

elasticity, acoustics, and convection-dominated diffusion.
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Remark 7.3. The arguments can be easily extended to a 3D mesh with polyhedral elements pro-

vided all the faces of the polyhedra are triangular. Then, the proof would even hold for equations

involving interface variables representing the traces of H(curl,Ω) spaces, like an ultraweak formu-

lation of Maxwell’s equations (see [55]). However, the problem (and the corresponding numerical

implementation) is more challenging for general polyhedra in 3D.

7.3 Numerical results

In this section we consider several examples to examine the performance of the PolyDPG

method. In all cases, Poisson’s equation representing the nondimensionalized steady-state heat

equation was solved in the domain Ω = (0, 1)2. Unless otherwise stated, bounding triangles were

utilized (as opposed to bounding boxes) and the (nondimensional) conductivity was taken as k = 1.

Also, a default uniform value of ∆p = 1 was used, but was increased (uniformly across the mesh,

for the sake of simplicity) if deemed necessary (see (7.10) in Section 7.2.2).

For the broken ultraweak formulations, the adjoint graph norm has interesting properties

[95]. Using the ultraweak formulation in (7.2), the first two terms in this norm can be derived as,

‖(v, τ )‖2V = ‖ 1
kτ −∇v‖2L2(T )

+ ‖ − div τ‖2L2(T ) + ε2
0

(
‖v‖2L2(T ) + ‖τ‖2

L2(T )

)
. (7.14)

The third term, which has the ε2
0 factor, makes the norm localizable, because otherwise (7.14)

would not be a norm for arbitrary broken functions v ∈ H1(T ) (although it would be a norm for

v ∈ H1
0 (Ω)). One can choose an arbitrary value for ε0 > 0, but using small values of ε0 (with

the caveat of ill-conditioned local problems) is of particular interest for certain equations, such as

Helmholtz [132]. Note that the corresponding inner products for the (real-valued) Hilbert space

V can be derived from the polarization identity, (v1, v2)V = 1
4

(
‖v1 + v2‖2V − ‖v1 − v2‖2V

)
. For all

computations, the adjoint graph norm written in (7.14) with ε = 1 was used as the test space norm.

In the first example, we studied nontrivial meshes with n-sided convex polygons. In the

second example, we considered highly distorted non-convex elements in the mesh. The third ex-

ample was inspired by problems in geoscience, where arbitrary faults separating different material

properties occur. To model this, we cut a uniform grid at an angle, so that the resulting mesh had
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different polygons (pentagons, quadrilaterals and triangles) with discontinuous material properties

at each side of the cut. In these three examples, “uniform” refinements were analyzed for different

values of p ∈ N, in the sense that the largest element diameter was roughly cut in half with each

refinement.

Adaptivity in its own right is a very interesting subject of study for polygonal elements,

as they provide great flexibility for the implementation of such strategies without resorting to

constrained approximations to deal with hanging nodes. The natural arbitrary-order a posteriori

error estimator inherent to all DPG methods, computed from (2.50), also applies to the polygons.

Therefore, in the final example we described a polygonal adaptivity scheme by using the PolyDPG

arbitrary-order a posteriori error estimator, and compared it with conventional adaptive methods

(using standard element shapes). This is particularly important since adaptive refinement algo-

rithms applied to polygonal elements have applications in topology optimization [219, 122, 5, 221]

and crack propagation [211, 167].

Note that in all examples we only report the relative error in the U0 trial space component.

This is because a rigorous computation of the norms in the Û trial space component is simply not

viable. The U0 relative error is defined as

Relative error =
‖u0 − (u0)h‖U0

‖u0‖U0

, ‖(u, q)‖2U0
= ‖u‖2L2(Ω) + ‖q‖2

L2(Ω)
, (7.15)

where u0 is the exact solution and (u0)h is the computed solution from the PolyDPG method.

Remark 7.4 (PolyDPG software). Implementation of PolyDPG methods may deceptively appear

difficult when compared to typical FEM algorithms, so we developed an open-source code written

in MATLAB R© also called PolyDPG [228]. It can be run sequentially or in parallel, and it supports

both conventional and polygonal elements. We hope this removes some qualms related to the

implementation and makes DPG methods more accessible to other researchers. The shape functions

used in the code were originally described in [114] (see Figure 7.2). The numerical integration was

carried out by splitting the polygons into triangles (through Delaunay triangulation), followed by

using Gaussian quadrature for each triangle (the Gaussian quadrature points and weights were
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carefully mapped back from a square), so that polynomial integrands of a certain order were

computed up to machine precision.

7.3.1 Mesh with convex polygons

In this example, we investigated meshes with n-sided convex polygonal elements. The

software PolyMesher [220] was used to generate the polygonal meshes. In Figure 7.3 an initial

mesh and three subsequent refinements are displayed. The elements are colored according to their

number of sides, ranging from 4 (quadrilaterals) to 7 (heptagons). We used the manufactured

solution,

u(x, y) = sin(πx) sin(πy) , (7.16)

for (x, y) ∈ Ω = (0, 1)2 to determine the forcing, i.e. the internal heat source r in (2.1), and the

boundary conditions of u at ∂Ω.

(a)                                        (b)                                        (c)                                      (d)

Figure 7.3: Four refinements of a mesh with n-sided convex polygonal elements. The elements are colored

according to their number of sides.

As mentioned before, given a trial space associated to a parameter p, the corresponding

(uniform) value of ∆p was calculated from (7.10) (using the polygon with the greatest number

of sides). Given the presence of hexagons and heptagons, this meant that ∆p = 2 was required

when p = 1, 2, while ∆p = 3 was needed when p = 3, 4. The numerical results are plotted and

presented in Figure 7.4 for p = 4, including the interface temperature, temperature, and heat flux.

Additionally, the relative error, calculated using (7.15), is shown in Figure 7.5, where the expected

h-convergence rates can be observed for all values of p (the behavior is of the form hp as established

by Theorem 7.1). Note that the number of degrees of freedom, Ndof , is proportional to h2. Thus,
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the log-log slope indicators in Figure 7.5 display a 2 in the Ndof -direction, while the other label

corresponds to the h-convergence rate, p̃ (so that p̃
2 is the Ndof -convergence rate).

Figure 7.4: Numerical results using the solution in (7.16) on the coarse mesh from Figure 7.3(a) using p = 4

and ∆p = 3: (a) interface temperature, (b) temperature, (c) first component of the heat flux.
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Figure 7.5: Convergence study of the PolyDPG method in terms of degrees of freedom. The h-convergence

behavior is displayed for different values of p using the polygonal meshes in Figure 7.3.

7.3.2 Mesh with distorted elements

To demonstrate the distortion tolerance of PolyDPG methods, we considered a mesh with

highly distorted quadrilaterals, including non-convex elements. The pattern was then scaled and

tessellated to produce the refinements shown in Figure 7.6. This example is challenging in the

sense that other numerical methods likely fail due to the degeneration of either the parametric
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mapping or the barycentric coordinates associated with the highly distorted elements [166, 149].

The same problem as in Section 7.3.1 was solved (see (7.16) for manufactured solution). The

solution values and h-convergence rates for 1 ≤ p ≤ 4 are shown in Figures 7.7 and 7.8 respectively.

The expected convergence behavior was observed, showing the flexibility of PolyDPG methods to

deal with irregular elements.

(a)                                        (b)                                       (c)                                      (d)

Figure 7.6: Four refinements using the tessellation of a mesh with highly distorted quadrilaterals. The

non-convex elements are colored.

Figure 7.7: Numerical results using the solution in (7.16) on the coarse mesh from Figure 7.6(a) using p = 4

and ∆p = 2: (a) interface temperature, (b) temperature, (c) first component of the heat flux.

7.3.3 Interface problem

The inspiration behind this example came from applications in geoscience where faults

abruptly separate the material properties within a domain. Here we considered a domain composed

of two materials with different heat conductivities, which share an interface (for simplicity a straight

line at an arbitrary angle dividing the square). The heat conductivities are assumed to be uniform

on each side of the interface, taking values k1 and k2, as depicted in Figure 7.9.
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Figure 7.8: Convergence study of the PolyDPG method in terms of degrees of freedom. The h-convergence

behavior is displayed for different p using the meshes with highly distorted quadrilaterals in Figure 7.6.
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−(x₀, 0) i

Figure 7.9: Material properties and rotated coordinates of the interface problem.

To model certain interfaces one would need unstructured grids. However, by using PolyDPG

methods we are able to consider a uniform background grid and simply cut the elements through

the interface, leading to the creation of triangles, right trapezoids and pentagons near the interface.

In fact, to refine the mesh, first the background mesh was uniformly refined, and then the elements

were cut by the interface line. There is one caveat which is only evident for high values of p or

small values of h: when extremely small triangles (compared to their neighbors) are formed, the

assembled stiffness matrix becomes ill conditioned (so the infinite-precision result in Theorem 7.1

seizes to hold). Thus, it is necessary to either relocate the nodes along the interface or to collapse
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the nodes of the small triangle into a single node on the interface. We chose to implement the latter

approach whenever the area of the small triangle was less than 1% of the area of the background

grid elements. The meshes obtained are shown in Figure 7.10.

(a)                                       (b)                                      (c)                                       (d)

Figure 7.10: Four refinements of a mesh with an interface between two materials. Notice that some nodes

are collapsed to a node on the interface. This is due to eliminating the undesired tiny triangles that cause

ill conditioning.

For this problem we designed a manufactured solution that guarantees continuity of the

temperature and the heat flux across the interface, taking into account the finite jump in the

conductivity coefficient. By means of a translated and rotated system of coordinates, and following

the notation in Figure 7.9, the exact solution is given by,

u(x′, y′) =

{
k2 sin(πx′) sin(πy′), for x′ ≤ 0 ,
k1 sin(πx′) sin(πy′), for x′ > 0 ,

(7.17)

where the coordinates x′ and y′ come from a translation and rotation of the reference system defined

by the following transformation,(
x′

y′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x− x0

y

)
. (7.18)

The values of conductivity and the geometric data used for the numerical computation are k1 = 1,

k2 = 5, x0 = 0.12 and θ = tan−1(1/0.65). The nonzero boundary conditions were imposed using

projection-based interpolation of the manufactured solution on the boundary edges [90, 103].

Figure 7.11 shows the appearance of the computed ultraweak solution. As it can be observed

in Figure 7.12, the expected convergence rates were verified once again. It is remarkable that

without collapsing any nodes in these meshes, the same data points were observed for 1 ≤ p ≤ 3, but

157



the last data point for p = 4 did behave unexpectedly, so collapsing the nodes is still recommended

in general.

Figure 7.11: Numerical results using the manufactured solution in (7.17) and (7.18) on the coarse mesh

from Figure 7.10(a) using p = 4 and ∆p = 2: (a) interface temperature, (b) temperature, (c) first component

of the heat flux.
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Figure 7.12: Convergence study of the PolyDPG method in terms of degrees of freedom. The h-convergence

behavior is displayed for different p using the meshes with an interface in Figure 7.10.

7.3.4 Adaptivity

In the last example, we aimed to present a polygonal adaptive strategy. This is of interest as

it has direct applications in fracture dynamics [211, 167] and topology optimization [219, 122]. Im-

plementing such a strategy was possible, because the DPG methodology carries a natural arbitrary-

158



order a posteriori error estimator (see (2.50) and Section 2.6). The criterion used to mark an element

for refinement was given by Remark 2.2 with αη = 0.5.

In order to refine traditional quadrilateral elements, typically hanging nodes arise in the

mesh. But in practice, only one “level” of refinement is possible per element (often edges cannot

have more than one hanging node), resulting in so-called quadtree meshes [218]. To implement this

strategy a constrained approximation technology is necessary to handle the hanging nodes. Addi-

tionally, under anisotropic refinements, sometimes dead-lock scenarios arise (where it is logically

impossible to continue refining) and these must be avoided [89]. In short, it may be challenging to

implement conventional refinement strategies used for adaptivity.

An important advantage of the polygonal elements is that they naturally embrace hanging

nodes, because they merely represent that a polygon has an extra edge collinear with another edge.

Thus, the polygonal methods do not require an extra level of difficulty in terms of implementing the

adaptive refinements. We devised a practical convex polygonal refinement strategy as illustrated

in Figure 7.13: (a) shows the initial mesh in which an element of interest is picked and split into

quadrilaterals by using the centroid and edge midpoints as depicted in (b); next, any of the resulting

elements can be subsequently refined into finer quadrilaterals as shown in (c); and lastly, as shown

in (d), if a neighbor element needs to be refined too, it is split into quadrilaterals assuming all

adjacent collinear edges constitute a single edge (i.e. the vertices of this combined edge are used in

the calculation of the centroid and its midpoint used to place the new quadrilateral node).

(a)                              (b)                               (c)                               (d)

Figure 7.13: A practical local refinement strategy for convex polygons: (a) initial coarse polygonal mesh;

(b) line segments are projected from the centroid to every edge midpoint in the element of interest; (c) the

same approach is used to refine sub-elements; (d) the strategy can be re-applied to any other coarser element

by assuming all collinear vertices constitute a single combined edge.
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The manufactured solution for this problem is the sum of two Gaussian surfaces, given by

the function,

u(x, y) =
1

2πσ2

[
e
− 1

2

(
x−µ1
σ

)2

e
− 1

2

(
y−µ1
σ

)2

+ e
− 1

2

(
x−µ2
σ

)2

e
− 1

2

(
y−µ2
σ

)2]
, (7.19)

where the standard deviation is σ =
√

10−3 and the two means are µ1 = 0.25 and µ2 = 0.75. Again,

projection-based interpolation [90, 103] was used to approximate the nearly vanishing temperature

boundary conditions.

(a)                                                    (b)                                                     (c)

Figure 7.14: Three h-adaptively refined meshes (the thick red lines represent the initial mesh) for the

manufactured solution in (7.19): (a) traditional quadtree meshes via constrained nodes; (b) quadrilateral

mesh using the polygonal adaptive strategy; (c) polygonal mesh using the polygonal adaptive strategy.

In order to compare with other adaptive schemes, a traditional adaptive strategy using

quadtree meshes and constrained hanging nodes via quadrilateral elements was considered here

[89]. Starting with the same initial mesh, the traditional refinement strategy and the polygonal

refinement strategy were allowed to refine accordingly. When using the polygonal strategy on these

quadrilateral meshes, we used the more natural choice of bounding boxes instead of the bounding

triangles. Additionally, the same polygonal refinement strategy was applied to an initial polygonal

mesh (using bounding triangles as usual). Figure 7.14 shows the results of the three different

scenarios after several refinements. Clearly, the traditional adaptive strategy produces quadtree

meshes (see Figure 7.14(a)), so it is forced to refine and create new elements in areas of the domain

where the solution is nearly constant. However, the polygonal adaptive strategy applied to the
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same initial mesh produces a more localized refinement pattern which is not a quadtree mesh (see

Figure 7.14(b)). Lastly, the polygonal adaptive strategy applied to a polygonal mesh produces a

completely nonstandard, yet localized mesh (see Figure 7.14(c)).

The numerical solution for p = 6 and ∆p = 2 using the mesh in Figure 7.14(c) is presented

in Figure 7.15. The error convergence curves corresponding to the three refinement schemes in

Figure 7.14 are also displayed in Figure 7.16. The proposed polygonal refinement technique gen-

erates more edges (each new sub-segment becomes an edge) resulting in more degrees of freedom.

However, in the end the additional cost is compensated by producing less elements than traditional

quadtree refinement schemes (compare (b) and (c) with (a) in Figure 7.14). It can be seen from

Figure 7.16 that the convergence behavior in terms of degrees of freedom is very similar using

both approaches. Therefore, the polygonal adaptive strategy proposed here is competitive with the

existing strategies for traditional elements, whilst being more general in its applicability as it also

works for polygonal elements.

Figure 7.15: Numerical results using the manufactured solution in (7.19) on the mesh from Figure 7.14(c)

using p = 6 and ∆p = 2: (a) skeleton temperature, (b) temperature, (c) first component of the heat flux.

7.4 Discussion

A PolyDPG method discretized with high-order polygonal elements was successfully im-

plemented using ultraweak formulations and the DPG methodology. Here, the PolyDPG method

solves Poisson’s equation. However, like with the DPG methodology, the discretization and the-

ory is quite general. Thus, it can be applied to a large family of equations including acoustics,
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Figure 7.16: Convergence study of the PolyDPG method in terms of degrees of freedom. The h-convergence

behavior is displayed using p = 3 for several successive refinements associated with the refinement strategies

in Figure 7.14.

convection-dominated diffusion and linear elasticity. PolyDPG methods are conforming FEMs,

and as with many other polytopal methods, the spaces and integration schemes are defined directly

in the physical space. Indeed, given that the ultraweak formulations avoid interelement compatibil-

ity conditions, it is relatively straightforward to obtain many of the shape functions by restricting

them from a bounding (triangular or quadrilateral) element to the polygonal element. Despite the

greater computational cost compared to conventional methods, the resulting PolyDPG methods are

naturally high-order, carry their own residual-based a posteriori error estimator, have no need of

ad hoc stabilization terms, and always produce positive definite stiffness matrices. Moreover, under

reasonable assumptions, a rigorous proof demonstrating the convergence of PolyDPG methods was

included. To complement this chapter, the PolyDPG software [228] written in MATLAB R© is pro-

vided. We hope this will prove to be a practical tool for other researchers interested in polygonal

FEMs and in DPG methods.

Different illustrative examples corroborated the expected results. In the first example, n-

sided convex polygons were investigated, while in the second example, highly distorted concave

elements were examined. In both cases, as predicted by the theory, convergence rates of the form

hp were observed for different values of p, confirming that PolyDPG methods are distortion-tolerant.
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The third example was relevant to the field of geosciences, where faults cause heterogeneity in the

domain. This was simulated by irregularly cutting a uniform grid with an interface and assign-

ing different material properties on each side. Once again, the method converged as expected,

displaying its robustness in resolving heterogeneous material properties. The final example ex-

plored a polygonal adaptivity scheme driven by the arbitrary-order a posteriori error estimator of

PolyDPG methods. Even though polygonal and standard refinement strategies led to practically

identical convergence curves, polygonal techniques are more general since they apply to polygonal

elements and avoid the typical approaches of constrained approximations via hanging nodes. These

techniques may be useful in applications such as crack propagation and topology optimization.

Extension of the presented technique to arbitrary 3D polyhedral elements would be an

interesting endeavor. In principle, the current numerical method can be extended naturally to

polyhedral elements, as long as all the faces are triangular, but the case of arbitrary faces is much

more challenging and might lead to analyzing nonconforming numerical methods.
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Chapter 8

Conclusions

While it is true that some finite element methods are much more effective than DPG meth-

ods at solving a specific PDE, they usually succumb to ad hoc modifications whenever the PDE

is fundamentally changed. The power of the DPG methodology lies in its ability to effectively

solve almost any linear PDE without altering the underlying approach. In this dissertation such

versatility was shown by solving four distinct variational formulations of the equations of linear

elasticity. Moreover, by using insights from functional analysis it was proved those formulations

were mutually well-posed. Additionally, it was shown how interface variables present in broken

variational formulations serve as an ideal vessel to couple different DPG methods within the same

domain. Similar ideas have been applied by other researchers to couple DPG methods with other

numerical methods. From a physical standpoint, a relevant example was presented where such

coupling is convenient.

The natural high-order residual-based a posteriori error estimator attached to DPG meth-

ods was also found to be very useful in physical applications involving the equations of linear

viscoelasticity and thermoviscoelasticity. More specifically, DMA calibration experiments of two

different polymers were reproduced and the quantity of interest was found to be within 5% of the

experimental values. The adaptivity was key in helping to reproduce the results, since the stresses

were concentrated in a very small area within the domain. Similarly, three different scenarios

modeling form-wound medium-voltage stator coils were simulated. These scenarios were distin-

guished by the physical phenomena occurring at different frequency regimes. At low frequencies

thermoviscoelastic behavior was assumed to dominate, at mid-range frequencies the ovalization of

the stator determined the deformation, while at high frequencies the Lorentz forces resulting from

the interaction of electromagnetic variables drove the problem. For this last scenario, a new model

based on scattering theory was developed to calculate the Lorentz forces occurring at the interface

between the copper coils and the surrounding resin. The mechanical work done in one second was
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computed for all three physical scenarios and it was found to be higher in the mid-range frequency

scenario.

Exploiting the algebraic properties in the DPG methodology led to some computational

optimizations, but more importantly it guided the development of a new family of numerical meth-

ods labeled as discrete least-squares (DLS) finite element methods. They rely on using QR-based

algorithms to solve overdetermined rectangular discrete least-squares problems that discretize a

particular PDE, and are especially advantageous when dealing with very ill-conditioned problems.

Some illuminating examples were presented to show their applicability.

Finally, the features of ultraweak formulations were exploited to construct polygonal DPG

(PolyDPG) methods, along with a proof of convergence subject to some sensible assumptions. Nu-

merical experiments showed the methods were distortion-tolerant and able to handle complicated

non-convex polygonal elements in the mesh. Moreover, polygonal adaptive strategies were devel-

oped and found to be competitive with adaptive strategies involving traditional elements. Lastly,

interesting practical examples pertinent to geophysical applications were illustrated.
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Appendix A

Sobolev spaces: simplest de Rham sequence

This chapter is designed to be a short reference to Sobolev spaces that are part of the

most traditional differential de Rham exact sequence. The spaces, their traces and norms are all

explicitly defined, both in usual domains and in a mesh. The latest results of relevance are stated

as theorems. Moreover, a family of hypothetical discretizations of these spaces is considered, and

their approximation and interpolation properties are stated.

A.1 Exact sequence spaces

Depending on the number of spatial dimensions, the simplest differential de Rham exact

sequence involving the “standard” Sobolev spaces is different,

1D : H1(K)
∇ // L2(K) (A.1)

2D :

{
H1(K)

∇ //H(curl,K)
∇× // L2(K)

H1(K)
curl //H(div,K)

div // L2(K)

(A.2)

3D : H1(K)
∇ //H(curl,K)

curl //H(div,K)
div // L2(K) (A.3)

where K ⊆ Rnd is a contractible Lipschitz domain (e.g. a simply connected domain with connected

complement) and nd is the number of spatial dimensions. These sequences should be prepended by

R and appended by {0} (with the first operation being id(·) and the last being the zero operator,

0), but for simplicity only the relevant part is shown. The definitions of the spaces and operations

will be explained below.

First, let the L2 inner product in K be defined as

(u, v)K =

∫
K

trM(uTv) dK , (A.4)
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where trM is the usual algebraic trace of a matrix, so that depending on whether u and v take

scalar, vector or matrix values, trM(uTv) will be uv, u · v or u : v, respectively. Next, let

L2(K) =
{
u : K → R | ‖u‖L2(K) <∞

}
, ‖u‖2L2(K) = (u, u)K . (A.5)

Then, for every u ∈ L2(K), v ∈
(
L2(K)

)
nd and E ∈

(
L2(K)

)
3, the distributional gradient,

divergence and 3D curl are uniquely characterized by

(∇u,φ)K = −(u,divφ)K ∀φ ∈
(
C∞0 (K)

)
nd ,

(div v, φ)K = −(v,∇φ)K ∀φ ∈ C∞0 (K) ,

(curlE,φ)K = (E, curlφ)K ∀φ ∈
(
C∞0 (K)

)
3 ,

(A.6)

whenever ∇u ∈
(
L2(K)

)
nd , div v ∈ L2(K) and curlE ∈

(
L2(K)

)
3. Otherwise these concepts do

exist, but are identified directly as distributions, and the definitions are the same, except the inner

product is replaced by the duality pairing between distributions and the space of test functions,

C∞0 (K) (the smooth functions with compact support in K endowed with the topology of test

functions [203]). For this document the theory of distributions will not be needed. Note that in

1D, ∇ = div. Lastly, the only operations that remain to be defined are the 2D curl and ∇×, which

for u ∈ L2(K) and E ∈
(
L2(K)

)
2 are uniquely characterized by((

0 −1
1 0

)
curlu,φ

)
K

= −
(
u,divφ

)
K

∀φ ∈
(
C∞0 (K)

)2
,(

∇×E, φ
)
K

= −
((

0 1
−1 0

)
E,∇φ

)
K

∀φ ∈ C∞0 (K) ,
(A.7)

when curlu ∈
(
L2(K)

)
2 and ∇×E ∈ L2(K).

From now on, assume that nd = 3 is the number of spatial dimensions. It should be clear

how to define everything for nd = 2 and nd = 1. The definitions of the remaining 3D spaces in the

exact sequence are

H1(K)=
{
u∈L2(K) | ∇u∈L2(K)

}
, ‖u‖2W 1(K) =‖u‖2L2(K)+‖∇u‖2

L2(K)
, (A.8)

H(curl,K)=
{
E∈L2(K) | curlE∈L2(K)

}
, ‖E‖2H(curl,K) =‖E‖2

L2(K)
+‖ curlE‖2

L2(K)
, (A.9)

H(div,K)=
{
v∈L2(K) | div v∈L2(K)

}
, ‖v‖2H(div,K) =‖v‖2

L2(K)
+‖ div v‖2L2(K) , (A.10)

where ‖ · ‖2
L2(K)

= (· , ·)K is the norm of L2(K) =
(
L2(K)

)
3.
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Given a domain Ω ⊆ R3, let T be a mesh (i.e. an open partition) of elements (i.e. subdo-

mains) K ∈ T . The broken spaces are simply

H1(T )=
{
u∈L2(Ω) | u|K ∈H1(K) ∀K∈T

}
, ‖u‖2W 1(T )=

∑
K∈T

∥∥u|K∥∥2

W 1(K)
, (A.11)

H(curl, T )=
{
E∈L2(Ω) | E|K ∈H(curl,K) ∀K∈T

}
, ‖E‖2H(curl,T )=

∑
K∈T

∥∥E|K∥∥2

H(curl,K)
, (A.12)

H(div, T )=
{
v∈L2(Ω) | v|K ∈H(div,K) ∀K∈T

}
, ‖v‖2H(div,T )=

∑
K∈T

∥∥v|K∥∥2

H(div,K)
, (A.13)

L2(T )=L2(Ω) . (A.14)

The T -broken L2 inner product is

(u, v)T =
∑
K∈T

(u|K , v|K)K , (A.15)

where u and v can take scalar, vector, or matrix values, as stated previously.

Note that all functions have been assumed to take values in R throughout this section, but

everything can be easily generalized to functions taking values in C. For simplicity, we will continue

to assume the field is R, but all results will hold in C as well.

A.2 Fractional spaces

For the purposes of this work, it is only required to know that a set of spacesHs(K) ⊆ L2(K)

exist for all s ≥ 0, such that H0(K) = L2(K) and that Hs(K) coincides with (A.8) when s = 1.

However, for the sake of completeness, they are defined explicitly. Indeed, the fractional Sobolev

spaces for s ≥ 0 are

Hs(K) =
{
u ∈ L2(Ω) | ‖u‖Hs(K) <∞} ,

‖u‖Hs(K) = min
U |K=u,U∈L2(R3)

∥∥∥ lim
R→∞

∫
|x|<R

(1 + | · |2)s/2e−i2π(·)·xU(x) dx
∥∥∥
L2(R3)

.
(A.16)

This definition looks complicated, but can be written in simpler terms by using the Fourier trans-

form and the Bessel potential, which were concepts we did not want to introduce here. For more

details, refer to [170]. It is not difficult to see that H0(K) = L2(K) (with the same norms) and it

can be shown that when s = 1, H1(K) coincides with (A.8), so the notation is justified. The norms
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‖ · ‖W 1(K) and ‖ · ‖H1(K) are equivalent, but sometimes in the literature the notation ‖ · ‖H1(K)

is meant to refer to ‖ · ‖W 1(K). Here, we distinguish between the two for the sake of clarity and

consistency. It can be shown Hs1(K) ⊆ Hs2(K) for s1 ≥ s2, so in particular Hs(K) ⊆ L2(K) for

all s ≥ 0.

Let Hs(K) =
(
Hs(K)

)
3 be equipped with its natural Hilbert norm. Then, for all s ≥ 0,

the fractional counterparts to (A.9) and (A.10) are

Hs(curl,K)=
{
E∈Hs(K) | curlE∈Hs(K)

}
, ‖E‖2Hs(curl,K)=‖E‖2Hs(K)+‖ curlE‖2Hs(K) ,(A.17)

Hs(div,K)=
{
v∈Hs(K) | div v∈Hs(K)

}
, ‖v‖2Hs(div,K)=‖v‖2Hs(K)+‖div v‖2Hs(K) , (A.18)

so that H0(curl,K) = H(curl,K) and H0(div,K) = H(div,K).

Lastly, for a mesh, T , of a domain Ω, define the fractional broken spaces Hs(T ), Hs(curl, T )

and Hs(div, T ) analogously to (A.11), (A.12) and (A.13), and once again it is obvious that

H0(curl, T ) = H(curl, T ), H0(div, T ) = H(div, T ) and when s = 1, Hs(T ) is consistent with

(A.11) and has equivalent norms.

A.3 Traces and boundary restrictions

Next, for a bounded Lipschitz domain K ⊆ R3 with outward normal n̂K , consider the

well-defined surjective trace operators,

trKgrad = trH1(K) : H1(K)→ H
1/2(∂K) ,

trKcurl, a = trH a(curl,K) : H(curl,K)→H−1/2(curl, ∂K) ,

trKcurl,a = trHa(curl,K) : H(curl,K)→H−1/2(div, ∂K) ,

trKdiv = trH(div,K) : H(div,K)→ H−1/2(div, ∂K) ,

(A.19)

which for D(K) = {φ|K | φ ∈ C∞0 (R3)} are defined as,

trH1(K)u = u|∂K ∀u ∈ D(K) ,

trH a(curl,K)E =
(
n̂K ×E|∂K

)
× n̂K ∀E ∈

(
D(K)

)
3 ,

trHa(curl,K)F =
(
n̂K × F |∂K

)
∀F ∈

(
D(K)

)
3 ,

trH(div,K)v = v|∂K · n̂K ∀v ∈
(
D(K)

)
3 .

(A.20)
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Here, trH a(curl,K) is a tangential trace, while trHa(curl,K) is a rotated tangential trace. Before

defining the norms, consider the following placeholder of ordered pairs,

H(K) → H1(K) , H a(curl,K) , Ha(curl,K) , H(div,K) ,

H(∂K) → H1/2(∂K) , H−1/2(curl, ∂K) , H−1/2(div, ∂K) , H−1/2(∂K) ,
(A.21)

where H a(curl,K) = Ha(curl,K) = H(curl,K), and where H1(K) is given the norm ‖ · ‖W 1(K).

Thus, (A.19) is simply trH(K) : H(K)→ H(∂K), and the norms for all the H(∂K) spaces are

‖ŵ‖H(∂K) = min
w∈tr−1

H(K)
{ŵ}
‖w‖H(K) ∀ŵ ∈ H(∂K) . (A.22)

These norms are usually referred to as minimum energy extension norms and they obviously make

the trace operators automatically continuous. Note the trace spaces themselves, H(∂K), have not

been defined. In fact, a possibility is to define them as a completion using the trace maps: let

DK be D(K) or
(
D(K)

)
3 depending on H(K); note DK is dense in H(K), so consider a sequence

{wi}i∈N ⊆ DK converging to w ∈ H(K) in ‖·‖H(K); let ŵi = trH(K)wi using (A.20) and temporarily

redefine the minimum in (A.22) as an infimum with
(
trH(K)

∣∣DK)−1 instead of tr−1
H(K), so that

‖ŵi − ŵj‖H(∂K) ≤ ‖wi −wj‖H(K) is identified as a Cauchy sequence that must converge to some ŵ

in H(∂K) = trH(K)(DK)‖·‖H(∂K) and is naturally identified with ŵ = trH(K)w. Alternatively, there

are explicit characterizations in the literature. We refer to [170] for H1/2(∂K) and H−1/2(∂K), and

to [45] for H−1/2(curl, ∂K) and H−1/2(div, ∂K).

The trace spaces are naturally dual to each other. Indeed,
(
H1/2(∂K)

)′ = H−1/2(∂K) and(
H−1/2(curl, ∂K)

)′ = H−1/2(div, ∂K). Their duality pairing can be explicitly characterized for

every ûK ∈H1/2(∂K), v̂nK∈H−1/2(∂K), Ê aK∈H−
1/2(curl, ∂K) and F̂ aK∈H−

1/2(div, ∂K),

〈ûK , v̂nK 〉∂K = (u,div v)K + (∇u,v)K ,

〈v̂nK , ûK〉∂K = (div v, u)K + (v,∇u)K ,

〈Ê aK , F̂ aK 〉∂K = (E, curlF )K − (curlE,F )K ,

〈F̂ aK , Ê aK 〉∂K = (curlF ,E)K − (F , curlE)K ,

(A.23)

where the identities hold for any u∈tr−1
H1(K)

{ûK}, v∈tr−1
H(div,K){v̂nK}, E∈tr−1

H a(curl,K){Ê aK} and

F ∈ tr−1
Ha(curl,K){F̂ aK}. Note that all the duality pairings are encompassed by the same notation,
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〈·, ·〉∂K , so the relevant duality pairing should be deduced from the context. The global notation,

〈·, ·〉∂K , is partly justified because for smooth enough inputs it becomes a boundary integral, and

intuitively this is a useful association.

Returning to the placeholder notation, H(K) and H(∂K), the traces for fractional Sobolev

spaces will now be defined. For s > 0, the new placeholders that complement the spaces in (A.21)

in the same order are,

Hs(K) → H1+s(K) , Hs

a(curl,K) , Hs
a(curl,K) , Hs(div,K) ,

Hs(∂K) → H1/2+s(∂K) , H−1/2+s(curl, ∂K) , H−1/2+s(div, ∂K) , H−1/2+s(∂K) ,
(A.24)

where Hs

a(curl,K) = Hs
a(curl,K) = Hs(curl,K). Note that these spaces were defined for s > 0.

For s = 0 define H0(K) = H(K) and H0(∂K) = H(∂K), where the only detail to be aware is

that the norm of H0(K) will be ‖ · ‖W 1(K) (and not ‖ · ‖H1(K)) in the case of H1(K). It is useful

to think about a space as belonging to the family Hs(∂K) of order s, instead of thinking of them

independently, since this avoids confusions that arise due to abuse of notation (e.g. H1/2+s(∂K)

when s = 0 is different from H−1/2+s(∂K) when s = 1). To define Hs(∂K), note that for all s > 0,

Hs(K) ⊆ H(K), so

trHs(K) = trH(K)

∣∣
Hs(K)

: Hs(K)→ Hs(∂K) = trH(K)

(
Hs(K)

)
,

trHs(K)w = trH(K)w ∀w ∈ Hs(K) .
(A.25)

Clearly Hs(∂K) ⊆ H(∂K), and the associated norm is once again,

‖ŵ‖Hs(∂K) = min
w∈tr−1

Hs(K)
{ŵ}
‖w‖Hs(K) ∀ŵ ∈ Hs(∂K) . (A.26)

To consider traces in only part of a boundary, let K = Ω ⊆ R3 be a bounded domain, and

let Γ ⊆ ∂Ω be relatively open in ∂Ω (i.e. there exists an open set ΓR3 ⊆ R3 such that Γ = ΓR3∩∂Ω).

Then, the spaces Hs(Γ) can be defined by restriction, and their functions characterized uniquely

by testing with φΓ ∈ D(Γ) = {φΓ = φ̃|Γ | φ̃ = trrev(H(Ω))φ, φ ∈ DK , (suppφ) ∩ ∂Ω ⊆ Γ}, where

rev(H(Ω)) runs over the list in (A.21) in reverse, so that rev(H(Ω)) = H(div,Ω) if H(Ω) = H1(Ω),

rev(H(Ω)) = Ha(curl,Ω) if H(Ω) = H a(curl,Ω), and so on. Indeed, for s ≥ 0,

Hs(Γ) = {ŵΓ = ŵ|Γ | ŵ ∈ Hs(∂Ω)} , 〈ŵ|Γ, φ〉Γ = 〈ŵ, φ̃〉∂Ω ∀φ ∈ D(Γ) , (A.27)
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where φ̃ is the zero extension of φ to ∂Ω, and where 〈·, ·〉∂Ω is the duality pairing in (A.23) (so those

identities could be used if necessary). The functions vanishing at Γ ⊆ ∂Ω are defined for s ≥ 0 as

HsΓ(Ω) =
{
w ∈ Hs(Ω) | (trHs(K)w)

∣∣
Γ = 0

}
, (A.28)

and finally, when Γ = ∂Ω or Γ = ∅, the usual notation Hs0(Ω) = Hs∂Ω(Ω) and Hs(Ω) = Hs∅(Ω) is

justifiably adopted.

Lastly, consider a mesh, T , of the domain Ω with elements K ∈ T . The mesh traces are

T -tuples defined as

trHs(T ) : Hs(T )→
∏
K∈T

Hs(∂K) = HsΠ(∂T ) ,(
trHs(T )w

)
K

= trHs(K)(w|K) ∀w ∈ Hs(T ) ,
(A.29)

where the space HsΠ(∂T ) is given its natural Hilbert norm, and it follows

‖ŵ‖2HsΠ(∂T ) =
∑
K∈T
‖ŵK‖2Hs(∂K) =

∑
K∈T

min
wK∈tr−1

Hs(K)
{ŵK}
‖wK‖2Hs(K) = min

w∈tr−1
Hs(T )

{ŵ}
‖w‖2Hs(T ) . (A.30)

The spaces that are often of interest, are not those in theHsΠ(∂T ) family, which are decoupled across

elements, but rather those in Hs(∂T ), HsΓ(∂T ) and Hs0(∂T ), which have interelement compatibility

and even vanishing boundary conditions,

Hs(∂T ) = trHs(T )

(
Hs(Ω)

)
, HsΓ(∂T ) = trHs(T )

(
HsΓ(Ω)

)
, Hs0(∂T ) = trHs(T )

(
Hs0(Ω)

)
, (A.31)

where Γ ⊆ ∂Ω is relatively open in ∂Ω. In all the spaces above, the norm is relabeled for cosmetic

purposes as ‖ · ‖Hs(∂T ) = ‖ · ‖HsΠ(∂T ). All the subspaces of HsΠ(∂T ) are often referred to as interface

or skeleton spaces. When s = 0 (drop the superscript) and ŵ ∈ H(∂T ), then

‖ŵ‖H(∂T ) = min
w∈tr−1

H(T )
{ŵ}
‖w‖H(Ω) ∀ŵ ∈ H(∂T ) , (A.32)

since Theorem A.1 implies tr−1
H(T ){ŵ} ⊆ H(Ω) ⊆ H(T ). Moreover, when s = 0, there is a duality

within the spaces in the family HΠ(∂T ) analogous to (A.23), so that the mesh duality pairings are〈
ŵ1, ŵ2

〉
∂T =

∑
K∈T

〈
(ŵ1)K , (ŵ2)K

〉
∂K

, (A.33)

where (ŵ1, ŵ2) is in H
1/2
Π (∂T )×H−1/2

Π (∂T ), H
−1/2
Π (curl, ∂T )×H−1/2

Π (div, ∂T ) or their permutations.

Finally, when s = 0 another notation often used to replace trH(∂T ) is

trTgrad =trH1(∂T ) , trTcurl, a=trH a(curl,∂T ) , trTcurl,a=trHa(curl,∂T ) , trTdiv =trH(div,∂T ) . (A.34)
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A.4 Duality theorems

The following theorem was first proved in [55], and was slightly generalized in [158], whose

proof we present below.

Theorem A.1. Let Γ0 and Γ1 be relatively open in ∂Ω, and satisfy Γ0 ∪ Γ1 = ∂Ω and Γ0∩Γ1 = ∅.

(i) Let u∈H1(T ). Then u∈H1
Γ0

(Ω) if and only if 〈σ̂n, trTgradu〉∂T = 0 for all σ̂n∈H−
1/2

Γ1
(∂T ).

(ii) Let σ∈H(div, T ). Then σ∈HΓ1(div,Ω) if and only if 〈û, trTdivσ〉∂T = 0 for all û∈H1/2
Γ0

(∂T ).

(iii) Let E ∈H(curl, T ). Then E ∈H a,Γ0(curl,Ω) if and only if 〈F̂ a, trTcurl, aE〉∂T = 0 for all

F̂ a∈H−
1/2
a,Γ1

(div, ∂T ).

(iv) Let F ∈H(curl, T ). Then F ∈Ha,Γ1(curl,Ω) if and only if 〈Ê a, trTcurl,aF 〉∂T = 0 for all

Ê a∈H−
1/2

a,Γ0
(curl, ∂T ).

Proof. Only the first equivalence is proved, because the other three follow similarly.

Let u ∈ H1
Γ0

(Ω) and σ̂n ∈ H
−1/2
Γ1

(∂T ). By definition of H
−1/2
Γ1

(∂T ), there exists some

σ ∈HΓ1(div,Ω) such that trTdivσ = σ̂n. Given a domain K, for all u ∈ H1(K) and σ ∈H(div,K),

the following identity holds,

(σ,∇u)K + (divσ, u)K = 〈trKdivσ, tr
K
gradu〉∂K , (A.35)

and in particular if u ∈ H1
Γ0

(Ω) and σ ∈HΓ1(div,Ω) the following identity holds,

(σ,∇u)Ω + (divσ, u)Ω = 〈trΩ
divσ, tr

Ω
gradu〉∂Ω = 0 . (A.36)

Hence, rewriting the integral (σ,∇u)Ω + (divσ, u)Ω = 0 as a sum of integrals over each element in

the mesh and using the first identity yields the result,

0 =
∑
K∈T

(σ,∇u)K + (divσ, u)K =
∑
K∈T
〈trKdivσ, tr

K
gradu〉∂K = 〈σ̂n, trTgradu〉∂T . (A.37)

For the converse assume u ∈ H1(T ), so that u|K ∈ H1(K) for any K ∈ T . Next, let

σ̂n ∈ H
−1/2
Γ1

(∂T ), so that there exists σ ∈ HΓ1(div,Ω) satisfying trTdivσ = σ̂n. Define v such
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that v|K = ∇(u|K), meaning that v ∈ L2(Ω). Then, using the hypothesis and the distributional

identities gives,

0 = 〈σ̂n, trTgradu〉∂T =
∑
K∈T

(σ,∇(u|K))K + (divσ, u|K)K = (σ, v)Ω + (divσ, u)Ω . (A.38)

In particular, for any smooth test function σ, it holds that (v,σ)Ω = −(u,divσ)Ω. This means

v = ∇u is the distributional derivative of u, so that u ∈ H1(Ω). Next, let φ ∈ D(Γ0) (i.e. a

test function defined on Γ0 with support in Γ0). Then, its zero extension to ∂Ω, φ̃, satisfies that

φ̃ = trΩ
divφ̃ ∈ trΩ

div(HΓ1(div,Ω)), for some smooth φ̃ ∈ HΓ1(div,Ω) so that trΩ
divφ̃

∣∣
Γ0 = φ. By

definition of distributional restriction and the previous equality, it follows

〈trΩ
gradu

∣∣
Γ0 , φ〉Γ0 = 〈trΩ

gradu, tr
Ω
divφ̃〉∂Ω = (∇u, φ̃)Ω + (u,div φ̃)Ω = 0 , (A.39)

where the first distributional identity was utilized. This is true for all smooth test functions φ,

implying trΩ
gradu

∣∣
Γ0 = 0, so that u ∈ H1

Γ0
(Ω).

The following two theorems were proved in [55]. They show that the minimum energy

extension norms of the the trace spaces are actually dual to each other.

Theorem A.2. Let K ⊆ R3 be a bounded Lipschitz domain. Then, for every û ∈ H1/2(∂K),

σ̂n ∈ H−1/2(∂K), Ê a ∈H−1/2(curl, ∂K) and F̂ a ∈H−1/2(div, ∂K),

‖û‖
H

1/2 (∂K)
= min

u∈(trKgrad)−1{û}
‖u‖W 1(K) = sup

σ̂n∈H−1/2 (∂K)

|〈û, σ̂n〉∂K |
‖σ̂n‖H−1/2 (∂K)

= sup
σ∈H(div,K)

|〈û, trKdivσ〉∂K |
‖σ‖H(div,K)

,

(A.40)

‖σ̂n‖H−1/2 (∂K)
= min
σ∈(trKdiv)−1{σ̂n}

‖σ‖H(div,K) = sup
û∈H1/2 (∂K)

|〈σ̂n, û〉∂K |
‖û‖

H
1/2 (∂K)

= sup
u∈H1(K)

|〈σ̂n, trKgradu〉∂K |
‖u‖W 1(K)

,

(A.41)

‖Ê a‖H−1/2 (curl,∂K)
= min
E∈(trK

curl, a)
−1{Ê a}

‖E‖H(curl,K) = sup
F̂a∈H−1/2 (div,∂K)

|〈Ê a, F̂ a〉∂K |
‖F̂ a‖H−1/2 (div,∂K)

= sup
F∈H(curl,K)

|〈Ê a, trKcurl,aF 〉∂K |
‖F ‖H(curl,K)

,

(A.42)
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‖F̂ a‖H−1/2 (div,∂K)
= min
F∈(trKcurl,a)−1{F̂a}

‖F ‖H(curl,K) = sup
Ê a∈H−1/2 (curl,∂K)

|〈F̂ a, Ê a〉∂K |
‖Ê a‖H−1/2 (curl,∂K)

= sup
E∈H(curl,K)

|〈F̂ a, trKcurl, aE〉∂K |
‖E‖H(curl,K)

.

(A.43)

Theorem A.3. Let T be a mesh of elements K∈T discretizing a bounded Lipschitz domain Ω⊆R3.

Then, for every û∈H1/2
Π (∂T ), σ̂n∈H−

1/2
Π (∂T ), Ê a∈H−

1/2
Π (curl, ∂T ) and F̂ a∈H−

1/2
Π (div, ∂T ),

‖û‖
H

1/2
Π (∂T )

= min
u∈(trTgrad)−1{û}

‖u‖W 1(T ) = sup
σ∈H(div,T )

|〈û, trTdivσ〉∂T |
‖σ‖H(div,T )

, (A.44)

‖σ̂n‖
H
−1/2
Π (∂T )

= min
σ∈(trTdiv)−1{σ̂n}

‖σ‖H(div,T ) = sup
u∈H1(T )

|〈σ̂n, trTgradu〉∂T |
‖u‖W 1(T )

, (A.45)

‖Ê a‖
H
−1/2
Π (curl,∂T )

= min
E∈(trT

curl, a)
−1{Ê a}

‖E‖H(curl,T ) = sup
F∈H(curl,T )

|〈Ê a, trTcurl,aF 〉∂T |
‖F ‖H(curl,T )

, (A.46)

‖F̂ a‖
H
−1/2
Π (div,∂T )

= min
F∈(trTcurl,a)−1{F̂a}

‖F ‖H(curl,T ) = sup
E∈H(curl,T )

|〈F̂ a, trTcurl, aE〉∂T |
‖E‖H(curl,T )

. (A.47)

If û ∈ H1/2(∂T ), σ̂n ∈ H−1/2(∂T ), Ê a ∈ H−1/2(curl, ∂T ) and F̂ a ∈ H−1/2(div, ∂T ), then the

Π-subcript can be dropped from the expressions above, and the norms ‖ · ‖W 1(Ω), ‖ · ‖H(div,Ω) and

‖ · ‖H(curl,Ω) can be used in the expressions for the minimum energy extension norms.

A.5 Sobolev-de Rham spaces and discretizations

The aim of this section is to define the concept of Sobolev-de Rham spaces and discretiza-

tions. The definition of the former is found below.

Definition A.1. Let Ω ⊆ R3 be a domain partitioned into elements, K ∈ T , of a mesh, T . If

a Hilbert space U is comprised of products of closed subspaces of H1(T ), H(curl, T ), H(div, T ),

L2(T ), H
1/2
Π (∂T ), H

−1/2
Π (curl, ∂T ), H

−1/2
Π (div, ∂T ) and H

−1/2
Π (∂T ), then U is said to be a 3D

Sobolev-de Rham space, or simply and an SdR space. If it is only comprised of products of closed

subspaces of H1(Ω), H(curl,Ω), H(div,Ω), L2(Ω), then it is said to be a compatible SdR space.

The definition is analogous for domains in 2D and 1D.

Remark A.1. Compatible SdR spaces only depend on Ω, so are independent of any mesh.

176



Next, consider a simply connected polyhedron K ⊆ R3 with simply connected faces. As-

sume there exists a family of high-order finite-dimensional discretizations of the spaces H1(K),

H(curl,K), H(div,K) and L2(K) forming a differential de Rham exact sequence (or complex) as

follows,

H1(K) H(curl,K) H(div,K) L2(K)

W p(K)

⊆ ∇ // Qp(K)

⊆

curl // V p(K)

⊆

div // Y p(K)

⊆

Pp

⊆

(Pp−1)3

⊆

(Pp−1)3

⊆

Pp−1

⊆

(A.48)

where Pp are the high-order polynomials in x = (x1, x2, x3) of total order at most p. Moreover,

for each polygnal face F ⊆ ∂K of K, consider its image in 2D via an affine mapping, F̂ ⊆ R2, and

assume that the 2D affine pullbacks also form differential de Rham exact sequences,

H1(F̂ ) H(curl, F̂ ) L2(F̂ )

W p(F̂ )

⊆ ∇ // Qp(F̂ )

⊆ ∇× // Y p(F̂ )

⊆

Pp

⊆

(Pp−1)2

⊆

Pp−1

⊆

H1(F̂ ) H(curl, F̂ ) L2(F̂ )

W p(F̂ )

⊆

curl // V p(F̂ )

⊆

div // Y p(F̂ )

⊆

Pp

⊆

(Pp−1)2

⊆
Pp−1

⊆

(A.49)

where W p(F̂ ), Qp(F̂ ), V p(F̂ ) and Y p(F̂ ) are 2D affine pullbacks of the spaces

W p(F ) =
{
û = (trKgradu)

∣∣
F
| u ∈W p(K)

}
,

Qp(F ) =
{
Ê = (trKcurl, aE)

∣∣
F
| E ∈ Qp(K)

}
,

V p(F ) =
{
v̂ = (trKcurl,aF )

∣∣
F
| F ∈ Qp(K)

}
,

Y p(F ) =
{
v̂ = (trKdivv)

∣∣
F
| v ∈ V p(K)

}
,

(A.50)

to the pulled back polygonal face F̂ ⊆ R2, and where Pp refers to polynomials in x = (x1, x2)

instead. Note that if one of the sequences in (A.49) is exact, then the other automatically is too.

Finally, for every edge E ⊆ F ⊆ ∂K of each face F of K, consider its image in 1D via an affine

mapping, Ê ⊆ R, and assume that the 1D affine pullback forms a differential de Rham exact

sequence,
H1(Ê) L2(Ê)

W p(Ê)

⊆ ∇ // Y p(Ê)

⊆

Pp

⊆

Pp−1

⊆

(A.51)
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where W p(Ê) and Y p(Ê) are 1D affine pullbacks of the spaces

W p(E) =
{
û =

(
trFgrad(trKgradu)|F

)∣∣
E
| u ∈W p(K)

}
,

Y p(E) =
{
v̂ =

(
trFdiv(trKcurl,aF )|F

)∣∣
E
| F ∈ Qp(K)

}
,

(A.52)

to the pulled back segment Ê ⊆ R, and where Pp are now polynomials in x.

Discretizations of the traces of these spaces, H1/2(∂K), H−1/2(curl, ∂K), H−1/2(div, ∂K)

and H−1/2(∂K), are defined naturally as

W p(∂K) =
{
ûK = trKgradu | u ∈W p(K)

}
⊆ H1/2(∂K) ,

Qp

a(∂K) =
{
Ê aK = trKcurl, aE | E ∈ Qp(K)

}
⊆H−1/2(curl, ∂K) ,

Qp
a(∂K) =

{
F̂ aK = trKcurl, aF | F ∈ Qp(K)

}
⊆H−1/2(div, ∂K) ,

V p(∂K) =
{
v̂nK = trKgradv | v ∈ V p(K)

}
⊆ H−1/2(∂K) .

(A.53)

Definition A.2. Let Ω ⊆ R3 be a polyhedral domain partitioned into a mesh, T , comprised of

simply connected polyhedral elements K ∈ T with simply connected faces, and let U be an SdR

space. Without loss of generality, let U=U0×Û, where U0 is comprised of copies of closed subspaces

of H1(T ), H(curl, T ), H(div, T ) and L2(T ), whereas Û is comprised of copies of closed subspaces

of H
1/2
Π (∂T ), H

−1/2
Π (curl, ∂T ), H

−1/2
Π (div, ∂T ) and H

−1/2
Π (∂T ). Then, every u = (u0, û) ∈ U is

naturally associated to a T -tuple, (u|K)K∈T , where u|K =
(
u0|K , ûK) with u0|K being a restriction

from Ω to K, and ûK being the natural K-component of the T -tuple. Assume that for every K ∈ T
there exists a high-order discretization satisfying (A.48)–(A.52), and let Uph(K) = U

p
0,h(K)× Û

p
h(K)

be defined so that U
p
0,h(K) has the corresponding copies of W p(K), Qp(K), V p(K) and Y p(K)

subordinated to U0, while Û
p
h(K) has the corresponding copies of W p(∂K), Qp

a(∂K), Qp
a(∂K) and

V p(∂K) subordinated to Û. Then,

U
p
h =

{
u = (u0, û) ∈ U | u|K ∈ U

p
h(K)

}
, (A.54)

is said to be a Sobolev-de Rham discretization of order p, or simply an SdR discretization. The

SdR discretization is additionally said to be compatible if the relevant traces of the U
p
h(K) match

exactly on common faces between elements. The definition is analogous for relevant domains in 2D

and 1D.
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There are several SdR discretizations associated to the affine conventional element shapes,

such as triangles and quadrilaterals (parallelograms) in 2D; and tetrahedra, hexahedra (paral-

lelepipeds), triangular prisms (parallelogram-based prisms) and pyramids (parallelogram-based

pyramids) in 3D. In particular, the classical Nédélec sequences of the first type for triangles, quadri-

laterals, tetrahedra and hexahedra [181, 103, 34] are SdR discretizations, but others exist as well

[205, 236]. There are also examples for triangular prisms and pyramids [103, 185, 114, 74, 125, 1],

and even some efforts made for (lowest-order) general polygons [63]. Of particular interest are

unified constructions that allow for compatible SdR discretizations across a mesh with elements of

different types [114, 74, 103, 24, 25, 57, 1], because they allow to construct globally conforming dis-

cretizations of the subspaces of H1(Ω), H(curl,Ω), H(div,Ω), L2(Ω), H1/2(∂T ), H−1/2(curl, ∂T ),

H−1/2(div, ∂T ) and H−1/2(∂T ) (as opposed to their broken counterparts).

A.6 Interpolation estimates

Let Ω⊆R3 be a polyhedral domain partitioned into polyhedral elements K ∈ T from the

mesh T , let U be an SdR space, and let U
p
h be a corresponding SdR discretization of order p.

Return to the placeholder notation, so that if U = U0×Û, U0 is comprised of copies of subspaces of

the spaces in H(T ) (append L2(T ) = H0(T ) to (A.24) and elsewhere when it makes sense), while

Û of copies of subspaces of the spaces in HΠ(∂T ). For s ≥ 0 recall the fractional counterparts

are Hs(T ) and HsΠ(∂T ), and using them it is easy to construct the fractional counterpart to U as

Us ⊆ U. Meanwhile, denote their discretization by Hph(T ) and Hph(∂T ) respectively, which in turn

can be viewed as T -tuples of Hph(K) (taken from (A.48)) and Hph(∂K) (taken from (A.53)). These

are the building blocks of Uph. The idea is to construct an interpolation operator for a range of s,

ΠUs : Us → U
p
h . (A.55)

This operator will be constructed from its components, which in general take the form,

ΠHs(T ) : Hs(T )→ Hph(T ) ,
(

ΠHs(T )w
)∣∣∣
K

= ΠHs(K)(w|K) ∀K ∈ T ,

ΠHsΠ(∂T ) : HsΠ(∂T )→ Hph(∂T ) ,
(

ΠHsΠ(∂T )ŵ
)
K

= ΠHs(∂K)ŵK ∀K ∈ T ,
(A.56)
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where the second operator can be defined explicitly for any ŵK ∈ Hs(∂K) as

ΠHs(∂K)ŵK = trHs(∂K)

(
ΠHs(K)w

)
w ∈ tr−1

Hs(∂K){ŵK} . (A.57)

This operator is only well-defined if ΠHs(K)w at ∂K only depends on the trace of w at ∂K.

Therefore, provided that condition is held, ΠUs is completely determined by the local operators

ΠHs(K) : Hs(K)→ Hph(K) at each K ∈ T , and the task at hand is to define them.

For s > 1
2 , one such general construction is provided by projection-based interpolation [90],

H1+s(K)
∇ //

ΠH1+s(K)

��

Hs(curl,K)
curl //

ΠHs(curl,K)

��

Hs(div,K)
div //

ΠHs(div,K)

��

Hs(K)

ΠHs(K)

��
W p(K)

∇ // Qp(K)
curl // V p(K)

div // Y p(K)

(A.58)

where K ∈ T can be any polyhedral element with an SdR discretization. As most interpolation

operators, they are designed to satisfy interelement compatibility, in the sense that the interpolation

of a function on each face and edge depends only on the relevant trace of the function in that face or

edge. Hence, (A.57) will be well-defined, and the resulting mesh interpolants ΠHs(T ) and ΠHs(∂T )

are applicable to globally conforming discretizations involving closed subspaces of H(Ω) ⊆ H(T )

and H(∂T ) ⊆ HΠ(∂T ). More importantly, these interpolation operators commute, so

∇ΠH1+s(K)=ΠHs(curl,K)∇ , curl ΠHs(curl,K)=ΠHs(div,K)curl , div ΠHs(div,K)=ΠHs(K)div . (A.59)

Additionally, the operators are continuous (the range is measured in the L2(K) norm) and they

satisfy ΠHs(K)wh = wh for all wh ∈ Hph(K). Lastly, if κ : K → K̂, and κH : H(K)→ H(K̂) is the

induced pullback, then the property κH
(
ΠHs(K)w

)
= ΠHs(K̂)κHw holds (by definition) for κ being

an affine mapping.

Next, assume that s > 1
2 and p ∈ N. Using the properties of projection-based interpolation,

it can be shown that [91],

‖w −ΠHs(K)w‖H(K) ≤ CH(K̂)h
min{s,p}
K ‖w‖Hs(K) ∀w ∈ Hs(K) , (A.60)

where CH(K̂) = CH(K̂)

(
s, p,H(K̂)

)
> 0, hK = diam(K) and K̂ is an affine master element version

of K such that diam(K̂) = 1. A sketch of the procedure to get this estimate is: consider p ≥ r ∈ N;
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transform K to K̂ so the pullback is preserved as noted above; use commutativity, invariance

under the space Hph(K̂) and boundedness of the ΠHr(K) to get a bound in terms of the best

approximation error; define relevant seminorms | · |W r(K̂) and use the approximation properties of

the space (the polynomials that are contained in it) to bound the best approximation error in terms

of the | · |W r(K̂) seminorms of the important quantities in Hr(K̂) and a constant dependent on r

and Hr(K̂); transform back all the estimates to K, which involves powers of hK , and rearrange to

get the bound in terms of hK ; then generalize to s using the K-method to interpolate [170, 23].

Next, notice the traces will also satisfy (A.60): let ŵK ∈ Hs(∂K), then use (A.57), (A.25)

(trHs(K) = trH(K) on Hs(K)), (A.22), and (A.60) to obtain that

‖ŵK −ΠHs(∂K)ŵK‖H(∂K) =
∥∥trHs(K)

(
w −ΠHs(K)w

)∥∥
H(∂K)

≤ ‖w −ΠHs(K)w‖H(K)

≤ CH(K̂)h
min{s,p}
K ‖w‖Hs(K) ∀w ∈ tr−1

Hs(K){ŵK} .
(A.61)

This is true for every w ∈ tr−1
Hs(K){ŵK}, so take the infimum to get (see (A.26)),

‖ŵK −ΠHs(∂K)ŵK‖H(∂K) ≤ CH(K̂)h
min{s,p}
K ‖ŵK‖Hs(∂K) ∀ŵK ∈ Hs(∂K) . (A.62)

In what follows, for a given K, choose the maximum CH(K̂) among all four H(K̂), and call

it CK̂ = CK̂(s, p, K̂) so it no longer depends on H(K̂), but still depends on the domain. To obtain

the estimates across the whole mesh, T , consider (A.56) for w ∈ Hs(T ) and ŵ ∈ HsΠ(∂T ),

‖w −ΠHs(T )w‖2H(T ) =
∑
K∈T

‖w|K −ΠHs(K)(w|K)‖2H(K) ≤ C2
T h

2 min{s,p}
T ‖w‖2Hs(T ) ,

‖ŵ −ΠHsΠ(∂T )ŵ‖2HΠ(∂T ) =
∑
K∈T

‖ŵK −ΠHs(∂K)ŵK‖2H(∂K) ≤ C2
T h

2 min{s,p}
T ‖ŵ‖2HsΠ(∂T ) ,

(A.63)

where CT = CT (s, p) = maxK∈T CK̂ and hT = maxK∈T diam(K). Due to the compatibility of the

interpolation, the result holds true even if w ∈ Hs(Ω) ⊆ Hs(T ) and ŵ ∈ Hs(∂T ) ⊆ HsΠ(∂T ) or their

closed subspaces, provided the SdR discretization is compatible. Thus, adding all the variables in

U yields,

‖u−ΠUsu‖U ≤ CT hmin{s,p}
T ‖u‖Us ∀u ∈ Us . (A.64)

Note the norm ‖u‖Us technically depends on T , since in general U depends on T . If a series of

meshes is considered, one would be interested in having an estimate that does not depend on the
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T beyond the element size, hT (so CT and ‖u‖Us should lose their dependence on T ). With this in

mind, take into account the following definitions.

Definition A.3. Let K ⊆ R3 be a simply connected polyhedral domain with simply connected

faces, s > 1
2 and p ∈ N. Let C(s, p) > 0 be a fixed shape-regularity function of s and p. Then K is

said to be C(s, p) shape-regular, or simply shape-regular, if its Sobolev-de Rham domain constant,

CK̂(s, p, K̂), shown above, is always bounded above by C(s, p) for all s and p.

Definition A.4. Let Ω ⊆ R3 be a domain and {Th}h∈H be family of meshes of Ω with elements

K ∈Th. Let UΩ = U0,Ω × ŨΩ be a compatible SdR space, and for every h ∈ H, let Uh = U0,h × Ûh

be SdR spaces. Define tr
ŨsΩ(Th)

naturally for each mesh. If uh = (u0, trŨsΩ(Th)
ũ) ∈ Uh for some

fixed u = (u0, ũ) ∈ UΩ, then {uh}h∈H is said to be attached to u through {Th}h∈H, and it is clear

‖uh‖Uh
≤ ‖u‖UΩ

for all such uh.

Theorem A.4. Let Ω⊆R3 be a polyhedral domain and {Th}h∈H be family of polyhedral meshes of

Ω comprised of simply connected polyhedral elements K∈Th with simply connected faces. For every

h ∈ H, let Uh be an SdR space, and U
p
h be a corresponding compatible SdR discretization of order

p ∈ N. Let s > 1
2 and Ush ⊆ Uh be the fractional counterpart to Uh. Then,

‖u−ΠUsh
u‖Uh

≤ Chh
min{s,p}
h ‖u‖Ush ∀u ∈ Ush , (A.65)

where Ch = Ch(s, p) = maxK∈Th CK̂(s, p, K̂) and hh = maxK∈Th diam(K). Let {uh}h∈H be attached

to uΩ ∈ UΩ through {Th}h∈H, where UΩ is a compatible SdR space. Then, if {Th}h∈H is a shape-

regular family of meshes, it follows

‖uh −ΠUsh
uh‖Uh

≤ Chmin{s,p}
h ‖uΩ‖UsΩ , (A.66)

where C = C(s, p) is a uniform shape-regularity bound, and hh = maxK∈Th diam(K). Addi-

tionally, if all the elements in the meshes {Th}h∈H are tetrahedra or hexahedra, then there is an

hp-convergence estimate where C = Cs(ln p)
2p−s with Cs = C(s) being independent of p.

Remark A.2. The main reason why the p-convergence estimates is only valid for tetrahedra and

hexahedra is that polynomial preserving extension operators with a continuity bound independent

of p have been proved for those two elements across the whole sequence [90, 99, 100, 101, 84].
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Appendix B

Well-posedness in linear elasticity

This chapter aims to prove two theorems associated to the well-posedness of variational

formulations of the equations of linear elasticity. The first one is Theorem 3.1, whose proof will

use techniques from functional analysis to prove the mutual well-posedness of a family of eight

variational formulations. The particular tool that will be utilized is the closed range theorem, in

both of its settings (as it applies to closed operators and continuous operators). This technique is

interesting, as it could be used in other frameworks, like proving inequalities. The second one is

Theorem 3.3, which proves that the coupled variational formulations introduced in Section 3.2.6

are also well-posed. The compelling aspect of this proof is its use of the ultraweak formulations as

a tool within the proof. In Section B.1, Theorem 3.1 is proved, while in Section B.2, Theorem 3.3

is proved.

B.1 Mutual well-posedness

The goal is to prove Theorem 3.1. Throughout this section we assume Ω ⊆ R3 is a three-

dimensional bounded simply connected domain with a Lipschitz boundary ∂Ω = Γu ∪ Γσ, where

Γu and Γσ are disjoint and relatively open in ∂Ω. Note the results hold in two and one-dimensional

domains as well. Well-posedness and stability estimates are proved using the well-known result by

Babuška and Nečas.

Theorem B.1 (Babuška-Nečas). Let U and V be Hilbert spaces over a fixed field F ∈ {R,C},
b : U×V→ F be a continuous bilinear form if F = R or sesquilinear form if F = C, and ` : V→ F

be a continuous linear form if F = R or antilinear form if F = C. If there exists an inf-sup constant

γ > 0 such that for all u ∈ U,

sup
v∈V\{0}

|b(u, v)|
‖v‖V

≥ γ‖u‖U , (B.1)
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and ` satisfies the compatibility condition

`(v) = 0 ∀v ∈ V00 =
{
v ∈ V | b(u, v) = 0 ∀u ∈ U

}
, (B.2)

then the problem of finding u ∈ U such that

b(u, v) = `(u) ∀v ∈ V , (B.3)

is well-posed in the sense of Hadamard, so that there exists a unique solution u ∈ U satisfying the

stability estimate ‖u‖U ≤ 1
γ ‖`‖V′.

For ease of reference, the variational formulations of linear elasticity which will be shown

to be well-posed, (3.15)–(3.22), are repeated here again,

USS = HΓσ(div,Ω;S)×H1
Γu(Ω) , VSS = L2(Ω;S)×L2(Ω) ,

bSS
(
(σ,u), (τ ,v)

)
= (σ, τ )Ω − (C :∇u, τ )Ω − (divσ,v)Ω ,

(B.4)

UUS = L2(Ω; S)×L2(Ω) , VUS = HΓσ(div,Ω; S)×H1
Γu(Ω) ,

bUS
(
(σ,u), (τ ,v)

)
= (S : σ, τ )Ω + (u,div τ )Ω + (σ,∇v)Ω ,

(B.5)

UMS = HΓσ(div,Ω;S)×L2(Ω) , VMS = HΓσ(div,Ω;S)×L2(Ω) ,

bMS
(
(σ,u), (τ ,v)

)
= (S : σ, τ )Ω + (u,div τ )Ω − (divσ,v)Ω ,

(B.6)

US = HΓσ(div,Ω)×H1
Γu(Ω) , VS = L2(Ω; S)×L2(Ω)× L2(Ω;A) ,

bS
(
(σ,u), (τ ,v,w)

)
= (σ, τ )Ω − (C :∇u, τ )Ω − (divσ,v)Ω + (σ,w)Ω ,

(B.7)

UU = L2(Ω;S)×L2(Ω)× L2(Ω;A) , VU = HΓσ(div,Ω)×H1
Γu(Ω) ,

bU
(
(σ,u,ω), (τ ,v)

)
= (S : σ, τ )Ω + (ω, τ )Ω + (u,div τ )Ω + (σ,∇v)Ω ,

(B.8)

UM = HΓσ(div,Ω)×L2(Ω)× L2(Ω;A) , VM = HΓσ(div,Ω)×L2(Ω)× L2(Ω;A) ,

bM
(
(σ,u,ω), (τ ,v,w)

)
= (S : σ, τ )Ω + (ω, τ )Ω + (u,div τ )Ω − (divσ,v)Ω + (σ,w)Ω ,

(B.9)

UD = L2(Ω;S)×H1
Γu(Ω) , VD = L2(Ω; S)×H1

Γu(Ω) ,

bD
(
(σ,u), (τ ,v)

)
= (σ, τ )Ω − (C :∇u, τ )Ω + (σ,∇v)Ω ,

(B.10)

UP = H1
Γu(Ω) , VP = H1

Γu(Ω) ,

bP
(
u,v

)
= (C :∇u,∇v)Ω .

(B.11)

184



The proof of mutual well-posedness is discussed in two parts. First, the mutual satisfaction

of the compatibility conditions is analyzed. Second, the inf-sup constants are also shown to be

mutually satisfied.

Throughout, note that the proofs only hold in the compressible regime. Here, C and S

are inverse to each other over S. This is no longer true in the incompressible case (in the limit

of λ → ∞), where only the variational formulations that make use of S can be proved to remain

well-posed.

B.1.1 Compatibility conditions

Well-posedness of the variational formulations depends on the nature of Γu and Γσ. The first

lemma shows that Γu 6= ∅ is a necessary condition for all variational formulations to be well-posed.

The condition is also sufficient, and this is the content of Theorem 3.1.

Lemma B.1. Suppose one of the variational formulations among (B.4)–(B.11) is well-posed. Then

Γu 6= ∅.

Proof. Assume the hypothesis so that the well-posed variational formulation has a unique solution

u, whose component u is the displacement solution variable. By contradiction assume Γu = ∅.

Then any translation (constant) uC satisfies the boundary conditions vacuously and∇uC = 0. For

the variational formulations (B.4)SS , (B.7)S, (B.10)D and (B.11)P it is straightforward that, ceteris

paribus, the solution uC with displacement component u + uC is a different solution (provided

uC 6= 0) to the original problem. Similarly, since uC ∈ H1
Γu(Ω) and ∇uC = 0, the distributional

identity yields (uC ,div τ )Ω = −(∇uC , τ )Ω = 0 for all τ ∈ HΓσ(div,Ω), so that uC is also a different

solution to the variational formulations (B.5)US , (B.8)U, (B.6)MS and (B.9)M. This contradicts that

the original solution was unique.

The next lemma shows that the solution to the original elasticity equation with homogeneous

forcing and boundary conditions is u = 0 and is unique provided Γu 6= ∅.
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Lemma B.2. Suppose Γu 6= ∅ and consider the equation −div(C : ε(u)) = 0 in Ω, where u is

sought in H1
Γu(Ω) and C : ε(u) ∈ HΓσ(div,Ω). Then u = 0 is the unique solution to the problem.

Proof. Multiplying the equation by a test function v ∈ H1
Γu(Ω), integrating and using a distribu-

tional identity yields the equation (C : ∇u,∇v)Ω = 0 for all v ∈ H1
Γu(Ω), which is precisely the

formulation (B.11)P with f = 0. Using Korn’s inequality and that Γu 6= ∅, the bilinear form can

be shown to be coercive, meaning bP(u,u) = (C : ∇u,∇u)Ω ≥ α‖u‖2
H1(Ω)

for some α > 0 [70].

Taking v = u, the equation becomes bP(u,u) = 0, and using coercivity it implies ‖u‖H1(Ω) = 0,

so that u = 0 is the only solution.

Finally, it is shown that given Γu 6= ∅, the compatibility condition is satisfied trivially for

every variational formulation.

Lemma B.3. Let Γu 6= ∅. Then the variational formulations (B.4)–(B.11) all have a trivial

compatibility space, implying that the compatibility conditions, (B.2), are satisfied trivially.

Proof. First consider (B.7)S. The aim is to prove VS
00 = {0}. Let u = (σ,u) ∈ US, with u = 0 and

σ being any smooth symmetric matrix field vanishing at the boundary. The condition bS(u, v) = 0

then becomes (τ ,σ)Ω−(v,divσ)Ω =0, which yields the distributional equality−ε(v)=τ ∈L2(Ω;S).

By Korn’s inequality, v ∈H1(Ω), and further testing against σ ∈ HΓσ(div,Ω;S) yields additionally

that v ∈ H1
Γu(Ω). Next, test with σ = 0 and u ∈ H1

Γu(Ω), so that bS(u, v) = 0 now implies that

(C :∇u,∇v)Ω = 0, which can be rewritten as −div(C : ε(v)) = 0. By Lemma B.2, v = 0, meaning

τ = −ε(v) = 0. Finally, bS(u, v) = 0 becomes (σ,w)Ω = 0 when testing with σ ∈ HΓσ(div,Ω)

(non-symmetric), which results in w = 0 as well. Therefore u = (0, 0, 0) is the only element of VS
00.

Next consider (B.8)U and the condition bU(u, v) = 0 for all u = (u,σ,ω) ∈ UU. First

let σ = 0 and u = 0, so that the condition becomes (ω, τ )Ω = 0. Therefore, the antisymmetric

part of τ vanishes, meaning τ ∈ HΓσ(div,Ω;S). Then, with σ = 0, the condition becomes

(u,div τ )Ω = 0, so that div τ = 0. Finally, test with u = 0, so that the condition yields the

equation S : τ + ε(v) = 0, which can be rewritten as τ = −C : ε(v). Taking the divergence
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and using div τ = 0 gives −div
(
C : ε(v)

)
= 0, which by Lemma B.2 results in v = 0 and

τ = −C : ε(v) = 0. Hence, VU
00 = {0}.

Similar calculations follow for (B.10)D, (B.9)M, (B.11)P, (B.4)SS , (B.5)US and (B.6)MS .

When Γu = ∅ it is possible to redefine some spaces by considering the quotient over a

particular null space (e.g. rigid body motions). This essentially produces new closely related, yet

modified variational formulations which are sometimes well-posed even when Γu = ∅. Indeed, after

redefining these spaces, a relevant version of Korn’s inequality can be proved to hold [69, Theorem

2.3]. However, in this work we will not be dealing with those cases.

B.1.2 Boundedness-below constants

Before proceeding to the main result, the most challenging results are proved as three

independent lemmas. The closed range theorem in the closed operator setting plays a key role in

two of these lemmas, while the remaining lemma uses the Rellich-Kondrachov theorem to prove a

relevant Poincaré-type inequality.

Lemma B.4. The formulations (B.4)SS and (B.5)US are mutually ill or well-posed.

Proof. Assume (B.4)SS is well-posed, so the compatibility conditions are satisfied and γSS > 0

exists. Then by Lemma B.1, Γu 6= ∅. Using Lemma B.3, it follows V
SS
00 = {0} and V

US
00 = {0} so

the compatibility conditions are satisfied for (B.4)SS and (B.5)US . It remains to show the existence

of γUS > 0.

The first step is to recognize the underlying linear operators in (B.4)SS and (B.5)US . Indeed,

for u = (σ,u) and v = (τ ,v),

bSS(u, v) = (ASu, v)Ω , AS : USS → VSS , ASu =

(
id −C : ε
−div 0

)(
σ
u

)
,

bUS(u, v) = (u,AUv)Ω , AU : VUS → UUS , AUv =

(
S ε

div 0

)(
τ
v

)
.

(B.12)

Define L = VSS = UUS = L2(Ω;S)×L2(Ω) and D = USS = VUS = HΓσ(div,Ω;S)×H1
Γu(Ω). In the

topology of L, D is dense in L, and AS and AU are well-defined closed operators. Meanwhile, if D
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is suited with a graph norm such as ‖u‖2AS
= ‖u‖2L + ‖ASu‖2L or ‖v‖2AU

= ‖v‖2L + ‖AUv‖2L or with

the standard norm ‖(σ,u)‖2D = ‖σ‖2H(div,Ω) + ‖u‖2
H1(Ω)

, the operators AS and AU are well-defined

continuous operators. It can be shown that the norms ‖ · ‖AS
, ‖ · ‖AU

and ‖ · ‖D are equivalent.

Moreover, both operators are injective. Indeed, suppose ASu = 0 and AUv = 0 for u = (σ, u)

and v = (τ ,v), so that σ − C : ε(u) = 0, −divσ = 0, S : τ + ε(v) = 0 and div τ = 0. These can

be rewritten as −div(C : ε(u)) = 0 and −div(C : ε(v)) = 0 respectively, and, since Γu 6= ∅, by

Lemma B.2, u = v = 0 and σ = τ = 0, so that u = v = 0.

Next, notice the closed operator adjoints of AS and AU are closely related, since A∗S = AUM

and A∗U = M−1AS, where M = ( C 0
0 id ) : L → L is an invertible bounded linear operator with

continuous inverse M−1 = ( S 0
0 id ) : L→ L. Therefore, both A∗S and A∗U are injective.

Now, using that (B.4)SS is well-posed, it follows there exists γSS > 0 such that for all u ∈ D

‖ASu‖L = sup
v∈L

|(ASu, v)Ω|
‖v‖L

= sup
v∈L

|bSS(u, v)|
‖v‖L

≥ γSS‖u‖D ≥ γSS‖u‖L . (B.13)

Using the closed range theorem for closed operators along with the injectivity of AS and A∗S, it

follows that AS and A∗S are surjective, so that AS and AU = A∗SM
−1 are bijective, and for all v ∈ D

‖AUv‖L = ‖A∗SM−1v‖L ≥ γSS‖M−1v‖L ≥ γSS
‖M‖‖v‖L , (B.14)

where it was used that ‖v‖L ≤ ‖M‖‖M−1v‖L, where ‖M‖ is the operator norm of M. Squaring

the inequality and adding C2
S‖AUv‖2L on both sides, where CS = γSS

‖M‖ , yields for all v ∈ D

‖AUv‖L ≥
√

C2
S

1+C2
S

‖v‖AU
≥ CUD

√
C2

S

1+C2
S

‖v‖D , (B.15)

where CUD is the relevant equivalence constant between the norms ‖ · ‖AU
and ‖ · ‖D. Let γUS > 0

be defined by (γUS)2 =
C2

UDC
2
S

1+C2
S

. Since AU : D → L is bijective, it follows it is invertible with

inverse A−1
U : L → D, which is continuous (by the open mapping theorem) when D is viewed as a

normed space. The continuous operator transpose (A−1
U )′ : D′ → L′ = L therefore exists, and by

its properties it follows its operator norm is ‖(A−1
U )′‖ = ‖A−1

U ‖. Moreover, (A−1
U )′ = (A′U)−1 where

A′U : L′ = L→ D′ is the continuous operator transpose of AU satisfying (u,AUv)Ω = 〈A′Uu, v〉D′×D
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for all u ∈ L and v ∈ D. Hence,

γUS ≤ inf
v∈D
‖AUv‖L
‖v‖D

=
(

sup
v∈D

‖v‖D
‖AUv‖L

)−1
=
(

sup
u∈L

‖A−1
U u‖D
‖u‖L

)−1
=

1

‖A−1
U ‖

=
1

‖(A−1
U )′‖

=
1

‖(A′U)−1‖ = inf
u∈L
‖A′Uu‖D′
‖u‖L

= inf
u∈L

sup
v∈D

|〈A′Uu, v〉D′×D|
‖u‖L‖v‖D

= inf
u∈L

sup
v∈D

|(u,AUv)Ω|
‖u‖L‖v‖D

= inf
u∈L

sup
v∈D

|bUS(u, v)|
‖u‖L‖v‖D

.

(B.16)

This shows the existence of γUS > 0 satisfying the desired property, meaning (B.5)US is well-posed.

Similar calculations show that if (B.5)US is well-posed then (B.4)SS is well-posed.

Lemma B.5. Let Γu 6= ∅. There exists a constant CP > 0 such that for all u ∈ H1
Γu(Ω) and

ω ∈ L2(Ω;A), √
‖u‖2

L2(Ω)
+ ‖ω‖2

L2(Ω;A)
≤ CP ‖ −∇u+ ω‖L2(Ω) . (B.17)

Proof. Let L = L2(Ω) × L2(Ω;A) and ‖ · ‖L be its Hilbert norm. Suppose by contradiction that

such constant CP does not exist. Then, for every n ∈ N there exists (ũn, ω̃n) ∈H1
Γu(Ω)×L2(Ω;A)

such that

‖(ũn, ω̃n)‖L > n‖ − ∇ũn + ω̃n‖L2(Ω) . (B.18)

Let (un,ωn) = 1
‖(ũn,ω̃n)‖L (ũn, ω̃n) so that ‖(un,ωn)‖L = 1 and ‖ −∇un + ωn‖L2(Ω) <

1
n for all

n ∈ N. Note (ωn)n∈N ⊆ L2(Ω;A) is antisymmetric so taking the symmetric part of the previous

inequality yields ‖ε(un)‖L2(Ω;S) ≤ ‖ −∇un + ωn‖L2(Ω) <
1
n for all n ∈ N. Moreover, it is clear

that ‖ωn‖L2(Ω;A) ≤ ‖(un,ωn)‖L = 1, ‖∇un‖L2(Ω) ≤ ‖ −∇un + ωn‖L2(Ω) + ‖ωn‖L2(Ω;A) ≤ 2 and

‖un‖L2(Ω) ≤ 1, so ‖un‖H1(Ω) ≤
√

5 for all n ∈ N and by the Rellich-Kondrachov theorem it follows

there exists a subsequence convergent to some u ∈ L2(Ω), limk→∞ ‖unk−u‖L2(Ω) = 0. Then ε(unk)

converges to ε(u) as distributions, which in turn implies ε(u) = 0. Thus, −div(C : ε(u)) = 0

and by Lemma B.2 it follows u = 0. Using Korn’s inequality yields limk→∞ ‖unk‖H1(Ω) = 0, so

that in particular (∇unk)k∈N converges to ∇u = 0 in L2(Ω) and as a result (ωnk)k∈N converges

to ω = 0 in L2(Ω;A) as well. Lastly, ‖(unk ,ωnk) − (u,ω)‖L ≥ |‖(unk ,ωnk)‖L − ‖(u,ω)‖L| = 1

for all k ∈ N, because ‖(unk ,ωnk)‖L = 1. This contradicts that (unk ,ωnk)k∈N is convergent to

(u,ω) = (0, 0) ∈ L.

189



The next lemma proves an inf-sup condition which is the same as one of the Brezzi conditions

for (B.9)M [10]. It presents an alternate proof to that provided in [9, 110] and uses the closed range

theorem as opposed to differential forms.

Lemma B.6. Let Γu 6= ∅. There exists a constant CB > 0 such that for all u ∈ L2(Ω) and

ω ∈ L2(Ω;A),

CB
√
‖u‖2

L2(Ω)
+ ‖ω‖2

L2(Ω;A)
≤ sup
τ∈HΓσ (div,Ω)

|(u,div τ )Ω + (ω, τ )Ω|
‖τ‖H(div,Ω)

. (B.19)

Proof. The proof is very similar to that of Lemma B.4. First consider

AW : DW → LM , AW(u,ω) = −∇u+ ω ,

AV : DV → L , AVτ =
(
div τ , 1

2(τ − τT)
)
,

(B.20)

where DW = H1
Γu(Ω) × L2(Ω;A), DV = HΓσ(div,Ω), LM = L2(Ω) and L = L2(Ω) × L2(Ω;A).

Clearly in the topologies of L and LM, the domains DW and DV are dense in L and LM respectively.

With these topologies AW and AV are well-defined closed operators. If DW is given the graph norm

‖(u,ω)‖2AW
=‖(u,ω)‖2L+‖AW(u,ω)‖2LM

or the standard norm ‖(u,ω)‖2DW
=‖u‖2

H1(Ω)
+‖ω‖2LM

, then

AW is a well-defined continuous operator. Note ‖ · ‖AW
and ‖ · ‖DW

are equivalent norms. Similarly,

if DV is given the graph norm ‖τ‖2AV
= ‖τ‖2LM

+‖AVτ‖2L or the standard norm ‖τ‖DV
= ‖τ‖H(div,Ω)

then AV is a well-defined continuous operator. Note ‖ · ‖AV
and ‖ · ‖DV

are equivalent norms.

As closed operators, AW and AV are clearly adjoint to each other, so that A∗W = AV.

Moreover, if AW(u,ω) = 0, then ∇u = ω ∈ L2(Ω;A), so that ε(u) = 0. This implies that

−div(C : ε(u)) = 0 and by Lemma B.2, u = 0 and ω = ∇u = 0, so that AW is injective. On the

other hand, if AVτ = (0, 0), then τ ∈ N(AV) = {τ 0 ∈ HΓσ(div,Ω;S) | div τ 0 = 0}, so AV has a

nontrivial null space.

By Lemma B.5, it follows that for all (u,ω) ∈ DW, ‖AW(u,ω)‖LM ≥ 1
CP
‖(u,ω)‖L. By the

closed range theorem, ‖ÃV[τ ]‖L = ‖AVτ‖L ≥ 1
CP
‖[τ ]‖LM/N(AV) for all τ ∈ DV, where ÃV : D̃V → L

is defined by ÃV[τ ] = AVτ , with D̃V = DV/N(AV) and ‖[τ ]‖LM/N(AV) = infτ0∈N(AV) ‖τ + τ 0‖LM .

Then, ‖ÃV[τ ]‖L ≥ CB‖[τ ]‖D̃V
for all τ ∈ DV, where ‖[τ ]‖D̃V

= infτ0∈N(AV) ‖τ + τ 0‖DV
and where

CB = CVD 1
1+C2

P
, with CVD being the relevant equivalence constant between ‖ · ‖AV

and ‖ · ‖DV
.
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The closed range theorem also implies R(ÃV) = R(AV) = L is closed, so that ÃV is bijective and

by the open mapping theorem it is a homeomorphism with continuous inverse Ã−1
V : L → D̃V.

Using the continuous operator transpose of ÃV and Ã−1
V as in the proof of Lemma B.4 yields for

all u = (u,ω) ∈ L,

CB‖u‖L ≤ sup
[τ ]∈D̃V

|(u, ÃV[τ ])Ω|
‖[τ ]‖D̃V

= sup
τ⊥∈Z

sup
τ0∈N(AV)

|(u,AVτ
⊥)Ω|

infτ ′0∈N(AV) ‖τ⊥ + τ 0 + τ ′0‖DV

= sup
τ⊥∈Z

sup
τ0∈N(AV)

sup
τ ′0∈N(AV)

|(u,AVτ
⊥)Ω|

‖τ⊥ + τ 0 + τ ′0‖DV

= sup
τ∈DV

|(u,AVτ )Ω|
‖τ‖DV

,

(B.21)

where Z is any algebraic complement to N(AV) so that DV = N(AV)⊕Z. The result follows because(
(u,ω),AVτ

)
Ω

= (u,div τ )Ω + (ω, τ )Ω.

Finally, we can proceed to proving the main result, Theorem 3.1.

Theorem B.2. The variational formulations (B.4)SS, (B.5)US, (B.6)MS, (B.7)S, (B.8)U, (B.9)M,

(B.10)D and (B.11)P, are mutually ill or well-posed. That is, if any single formulation is well-posed,

then all others are also well-posed. In particular, if Γu 6= ∅, then all formulations are well-posed.

Proof. From now on, the formulations will be referred to by their label, (SS), (US), (MS), (S), (U),

(M), (D) and (P). Assume one of the variational formulations is well-posed. Then by Lemma B.1,

Γu 6= ∅. Using Lemma B.3, it follows that for all formulations the compatibility space is trivial so

the compatibility conditions are satisfied immediately for any linear form.

It remains to show that the positive inf-sup constants exist for the remaining formulations.

This is proved according to the following implication diagram.

(M)

(S)

(P) (D)

(U)

(SS) (US)

(MS)

(B.22)

The last statement in the theorem will hold because (P) is well-known to be well-posed using Korn’s

inequality and the Lax-Milgram theorem provided Γu 6= ∅.
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(SS)⇒ (US): This is the content of Lemma B.4.

(S) ⇒ (SS): The inf-sup constant γS > 0 is assumed to exist. Let u = (σ,u) ∈ USS ⊆ US,

v = (τ ,v) ∈ VSS and ṽ = (v,w) ∈ VS, so that ‖v‖VSS ≤ ‖ṽ‖VS . Due to the symmetry of σ it follows

bSS(u, v) = bS(u, ṽ). Hence,

γS‖u‖USS = γS‖u‖US ≤ sup
ṽ∈VS

|bS(u, ṽ)|
‖ṽ‖VS

= sup
ṽ∈VS

|bSS(u, v)|
‖ṽ‖VS

≤ sup
v∈VSS

|bSS(u, v)|
‖v‖VSS

, (B.23)

so that the desired inf-sup constant γSS = γS > 0 exists and (SS) is well-posed.

(US) ⇒ (U): Let the constant γUS > 0 exist. Let u = (σ,u) ∈ UUS , ũ = (u,ω) ∈ UU,

vS = (τ S,v) ∈ VUS ⊆ VU and v = (τ ,v) ∈ VU. Clearly, bUS(u, vS) = bU(ũ, vS), and

γUS‖u‖UUS ≤ sup
vS∈VUS

|bUS(u, vS)|
‖vS‖VUS

= sup
vS∈VUS

|bU(ũ, vS)|
‖vS‖VUS

≤ sup
v∈VU

|bU(ũ, v)|
‖v‖VU

. (B.24)

Due to ‖ũ‖2
UU =‖u‖2

UUS
+‖ω‖2

L2(Ω;A)
, it remains to find a bound for ‖ω‖L2(Ω;A). Let v0 =(τ , 0)∈VU,

so that ‖v0‖VU = ‖τ‖H(div,Ω) ≥ ‖τ‖L2(Ω) and (u,div τ )Ω +(ω, τ )Ω = bU(ũ, v0)−(S : σ, τ )Ω. Then,

by Lemma B.6 it follows

CB‖ω‖L2(Ω;A) ≤ sup
τ∈HΓσ (div,Ω)

|(u,div τ )Ω + (ω, τ )Ω|
‖τ‖H(div,Ω)

= sup
τ∈HΓσ (div,Ω)

|bU(ũ, v0)− (S : σ, τ )Ω|
‖τ‖H(div,Ω)

≤ sup
τ∈HΓσ (div,Ω)

|bU(ũ, v0)|
‖v0‖VU

+ sup
τ∈L2(Ω)

|(S : σ, τ )Ω|
‖τ‖L2(Ω)

≤ sup
v∈VU

|bU(ũ, v)|
‖v‖VU

+ ‖S‖‖σ‖L2(Ω;S) ≤
(

1 +
‖S‖
γUS

)
sup
v∈VU

|bU(ũ, v)|
‖v‖VU

,

(B.25)

since ‖σ‖L2(Ω;S) ≤ ‖u‖UUS . Therefore, the existence of the desired inf-sup constant γS > 0 defined

by (γU)−2 = 1
C2
B

(
1 + ‖S‖

γUS

)2
+
(

1
γUS

)2
is ensured.

(U)⇒ (M): The inf-sup constant γU > 0 is assumed to exist. Let u = (σ,u,ω) ∈ UM and

uS = (σS,u,ω) ∈ UU, where σS = 1
2(σ+σT) and σA = 1

2(σ−σT). Since (σS,σA)Ω = 0, it follows

‖u‖2
UM = ‖uS‖2UU + ‖σA‖2L2(Ω;A)

+ ‖divσ‖2
L2(Ω)

. Let ṽw = (0, 0,w) ∈ VM and ṽ = (τ ,v,w) ∈ VM

so that ‖ṽw‖VM = ‖w‖L2(Ω;A). Then, it is clear bM(u, ṽw) = (σA,w)Ω, and

‖σA‖L2(Ω;A) = sup
w∈L2(Ω;A)

|(σA,w)Ω|
‖w‖L2(Ω;A)

= sup
w∈L2(Ω;A)

|bM(u, ṽw)|
‖ṽw‖VM

≤ sup
ṽ∈VM

|bM(u, ṽ)|
‖ṽ‖VM

. (B.26)
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Next, let v = (τ ,v) ∈ VU and ṽ0 = (v, 0) ∈ VM, so that ‖ṽ0‖VM ≤ ‖v‖VU and ‖v‖H1(Ω) ≤ ‖v‖VU .

The distributional identity −(divσ,v)Ω = (σ,∇v)Ω holds for σ ∈ HΓσ(div,Ω) and v ∈ H1
Γu(Ω).

A careful calculation shows that bM(u, ṽ0) = bU(uS, v) + (σA,∇v)Ω. Therefore,

γU‖uS‖UU ≤ sup
v∈VU

|bU(uS, v)|
‖v‖VU

≤ sup
ṽ0∈(VU)×{0}

|bM(u, ṽ0)|
‖ṽ0‖VM

+ sup
v∈H1

Γu
(Ω)

|(σA,∇v)Ω|
‖v‖H1(Ω)

≤ sup
ṽ∈VM

|bM(u, ṽ)|
‖ṽ‖VM

+ ‖σA‖L2(Ω;A) sup
v∈H1

Γu
(Ω)

‖∇v‖L2(Ω)

‖v‖H1(Ω)

≤ 2 sup
ṽ∈VM

|bM(u, ṽ)|
‖ṽ‖VM

.

(B.27)

Finally, let ṽv = (0,v, 0) ∈ VM so that ‖ṽv‖MV = ‖v‖L2(Ω) and −(divσ,v)Ω = bM(u, ṽv). Then,

‖divσ‖L2(Ω) = sup
v∈L2(Ω)

|(divσ,v)Ω|
‖v‖L2(Ω)

= sup
v∈L2(Ω)

|bM(u, ṽv)|
‖ṽv‖VM

≤ sup
ṽ∈VM

|bM(u, ṽ)|
‖ṽ‖VM

, (B.28)

which implies that γM > 0 defined by (γM)2 = (γU)2

4+2(γU)2 is the desired inf-sup constant.

(US) ⇒ (MS): This is proved analogously to (U) ⇒ (M), but ignoring the calculations

associated to the term σA, which vanishes in this symmetric setting.

(M)⇒ (S): The inf-sup constant of (M), γM > 0, is assumed to exist. Let u = (σ,u) ∈ US,

ũ =
(
u, 1

2(∇u −∇uT)
)
∈ UM, vM = (τ ,v,w) ∈ VM and vS = (S : τ ,v,w) ∈ VS. Then, notice

that ‖u‖2
US = ‖ũ‖2

UM + ‖ε(u)‖2
L2(Ω;S)

and ‖S : τ‖L2(Ω;S) ≤ ‖S‖‖τ‖L2(Ω), so ‖vS‖VS ≤ MS‖vM‖VM

where MS = max{‖S‖, 1}. The distributional identity (u,div τ )Ω = −(∇u, τ )Ω holds because

u ∈H1
Γu(Ω) and τ ∈ HΓσ(div,Ω), and implies that bM(ũ, vM) = bS(u, vS). Hence,

γM‖ũ‖UM ≤ sup
vM∈VM

|bM(ũ, vM)|
‖vM‖VM

≤MS sup
vM∈VM,vS 6=0

|bS(u, vS)|
‖vS‖VS

≤MS sup
v∈VS

|bS(u, v)|
‖v‖VS

. (B.29)

It remains to find a bound for ‖ε(u)‖L2(Ω;S). Let v0 = (S : τ S, 0, 0) ∈ VS for τ S ∈ L2(Ω; S), so that

‖v0‖VS ≤ ‖S‖‖τ S‖L2(Ω;S). Notice (ε(u), τ S)Ω = (σ,S : τ S)Ω − bS(u, v0). Therefore,

‖ε(u)‖L2(Ω;S) = sup
τ S∈L2(Ω;S)

|(ε(u), τ S)Ω|
‖τ S‖L2(Ω;S)

= sup
τ S∈L2(Ω;S)

|bS(u, v0)− (σ, S : τ S)Ω|
‖τ S‖L2(Ω;S)

≤ ‖S‖ sup
τ S∈L2(Ω;S)

|bS(u, v0)|
‖v0‖VS

+ ‖S‖ sup
τ S∈L2(Ω;S)

|(σ, S : τ S)Ω|
‖S : τ S‖L2(Ω;S)

≤ ‖S‖ sup
v∈VS

|bS(u, v)|
‖v‖VS

+ ‖S‖‖σ‖L2(Ω;S) ,

(B.30)
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where it is used that S is bijective on L2(Ω; S). Using that ‖σ‖L2(Ω;S) ≤ ‖ũ‖UM , the existence of the

inf-sup constant γS > 0 defined by (γS)−2 = ‖S‖2
(
1 + MS

γM

)2
+
(
MS

γM

)2
is ensured.

(MS)⇒ (SS): This is proved analogously to (M)⇒ (S).

(U)⇒ (D): The inf-sup constant of (U), γU > 0, is assumed to exist. Let u = (σ,u) ∈ UD,

ũ =
(
u, 1

2(∇u −∇uT)
)
∈ UU, vU = (τ ,v) ∈ VU, vD = (S : τ ,v) ∈ VD, and v0 = (S : τ S, 0) ∈ VD

for τ S ∈ L2(Ω; S). The proof is then the same as for (M)⇒(S), but replacing M by U and S by D.

(D) ⇒ (P): Assume the constant γD > 0 exists. Let u = u ∈ UP, ũ = (C : ∇u, u) ∈ UD,

v = v ∈ VP and ṽ = (τ , v) ∈ VD, so that ‖u‖UP ≤ ‖ũ‖UD and ‖v‖VP ≤ ‖ṽ‖VD . Clearly it holds that

bD(ũ, ṽ) = bP(u, v). Then,

γD‖u‖UP ≤ γD‖ũ‖UD ≤ sup
ṽ∈VD

|bD(ũ, ṽ)|
‖ṽ‖VD

= sup
ṽ∈VD

|bP(u, v)|
‖ṽ‖VD

≤ sup
v∈VP

|bP(u, v)|
‖v‖VP

, (B.31)

so that the desired inf-sup constant γP = γD > 0 exists and (P) is well-posed.

(P) ⇒ (S): The constant γP > 0 is assumed to exist. Let u = u ∈ UP, ũ = (σ, u) ∈ US,

v = v ∈ VP and ṽv =
(
− ε(v),v, 1

2(∇v−∇vT)
)
∈ VS. Then, notice that ‖v‖VP = ‖ṽv‖VS and that

‖ũ‖2
US = ‖u‖2

UP + ‖σ‖2H(div,Ω). A careful calculation yields bS(ũ, ṽv) = bP(u, v). Therefore,

γP‖u‖UP ≤ sup
v∈VP

|bP(u, v)|
‖v‖VP

= sup
v∈VP

|bS(ũ, ṽv)|
‖ṽv‖VS

≤ sup
ṽ∈VS

|bS(ũ, ṽ)|
‖ṽ‖VS

. (B.32)

Next, consider ξ ∈ L2(Ω) which is decomposed into ξS = 1
2(ξ + ξT) and ξA = 1

2(ξ − ξT), and let

ṽξ = (ξS, 0, ξA), so that ‖ξ‖L2(Ω) = ‖ṽξ‖VS . Notice that bS(ũ, ṽξ) = (σ, ξ)Ω− (C :∇u, ξS)Ω. Hence,

‖σ‖L2(Ω) = sup
ξ∈L2(Ω)

|(σ, ξ)Ω|
‖ξ‖L2(Ω)

= sup
ξ∈L2(Ω)

|bS(ũ, ṽξ) + (C :∇u, ξS)Ω|
‖ṽξ‖VS

≤ sup
ξ∈L2(Ω)

|bS(ũ, ṽξ)|
‖ṽξ‖VS

+ sup
ξS∈L2(Ω;S)

|(C :∇u, ξS)Ω|
‖ξS‖L2(Ω;S)

≤ sup
ṽ∈VS

|bS(ũ, ṽ)|
‖ṽ‖VS

+ ‖C :∇u‖L2(Ω;S) ≤ sup
ṽ∈VS

|bS(ũ, ṽ)|
‖ṽ‖VS

+ ‖C‖‖u‖UP .

(B.33)

Finally, let ṽ0 = (0,v, 0) ∈ VS so that ‖ṽ0‖SV = ‖v‖L2(Ω) and −(divσ,v)Ω = bS(ũ, ṽ0). Then,

‖divσ‖L2(Ω) = sup
v∈L2(Ω)

|(divσ,v)Ω|
‖v‖L2(Ω)

= sup
v∈L2(Ω)

|bS(ũ, ṽ0)|
‖ṽ0‖VS

≤ sup
ṽ∈VS

|bS(ũ, ṽ)|
‖ṽ‖VS

. (B.34)

Therefore, the inf-sup constant γS > 0 exists and is defined by (γS)−2 =
(
1+ ‖C‖

γP

)2
+
(

1
γP

)2
+1.
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B.2 Well-posedness of coupled formulations

The aim of this section is to prove Theorem 3.3, which is about the well-posedness of the

coupled variational formulations of the equations of linear elasticity described in Section 3.2.6.

Theorem B.3. Let Ω be a domain partitioned into a finite number of subdomains, wherein each

subdomain is endowed with a broken variational formulation of linear elasticity among those found

in (3.24)–(3.27). Provided Γu 6= ∅, the resulting coupled variational formulation is well-posed.

Proof. For the sake of consistency and simplicity the main body of the proof applies to the two-

subdomain example described in Section 3.2.6, which involves the ultraweak and primal formula-

tions. Then, a few observations will clarify the more general case.

The goal is to prove that there exists a γC > 0 such that for every uC = (uU, uP) ∈ UC,

γC‖uC‖UC ≤ sup
vC∈VC

|bC(uC, vC)|
‖vC‖VC

= ‖uC‖E , (B.35)

where ‖uC‖E = ‖BCuC‖(VC)′ with BC : UC → (VC)′ defined by 〈BCuC, vC〉(VC)′×VC = bC(uC, vC).

As usual, the approach is to prove this bound for each of the components in uC = (uU, uP),

where uU = (uU
0 , û

U), uU
0 = (σU,uU,ωU) ∈ UU|ΩU , ûU = (ûU, σ̂U

n ) ∈ ÛUT |ΩU , uP = (uP0 , û
P),

uP0 = uP ∈ UP|ΩP and ûP = σ̂P
n ∈ ÛPT |ΩP . The first step is to find the bounds for the field

variables uU
0 and uP0 by somehow avoiding the terms involving the interface variables. The main

idea to achieve this is to collapse all formulations to the ultraweak formulation via careful testing

and integration by parts, yielding a global ultraweak formulation. This formulation has all the

weight of the derivatives on the test function, so it makes sense to consider the global ultraweak

test functions vΩ = (τ ,v) ∈ VU = HΓσ(div,Ω)×H1
Γu(Ω).

From now on, given any tensor, let the subscripts S and A denote its symmetric and an-

tisymmetric parts. Let ω(uP) = (∇uP)A, ε(uP) = (∇uP)S, and σ(uP) = C : ∇uP, so that

ε(uP) = S :σ(uP). Thus, (∇uP, τ )T P = (S :σ(uP), τ )T P + (ω(uP), τ )T P , and it follows

(C :∇uP,∇v)T P = (S :σ(uP), τ )T P + (ω(uP), τ )T P − (∇uP, τ )T P + (C :∇uP,∇v)T P

= (S :σ(uP), τ )T P + (ω(uP), τ )T P + (uP,div τ )T P

+ (σ(uP),∇v)T P − 〈trTgradu
P, trTdivτ 〉∂T P ,

(B.36)
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where integration by parts was valid due to the high regularity of both uP and τ . Therefore

bPT |ΩP(uP, vP) = bU|ΩP(uUP , vΩ)− 〈trTgradu
P, trTdivτ 〉∂T P − 〈σ̂P

n, tr
T
gradv〉∂T P , (B.37)

where uP = (uP, σ̂P
n), uUP = (σ(uP),uP,ω(uP)), vΩ = (τ ,v) and vP = v. Trivially it holds that

bUT |ΩU(uU, vU) = bU|ΩU(uUU , vΩ)− 〈ûU, trTdivτ 〉∂T U − 〈σ̂U
n , tr

T
gradv〉∂T U , (B.38)

where uU =
(
uU

0 , (û
U, σ̂U

n )
)
, uUU = uU

0 = (σU, uU,ωU), vΩ = vU = (τ ,v). Adding the pre-

vious two expressions and using the transmission conditions for the displacement and stress (see

Remark 3.1) along with Theorem A.1, it follows that the interface terms vanish, resulting in

bC(uC, vCΩ) = bU(uΩ, vΩ) , (B.39)

where uC =
(
(σU,uU,ωU, ûU, σ̂U

n ), (uP, σ̂P
n)
)
∈ UC, uΩ = (σΩ,uΩ,ωΩ) is defined by restriction as

uΩ|ΩU = (σU,uU,ωU) and uΩ|ΩP =
(
σ(uP),uP,ω(uP)

)
, vΩ = (τ ,v) and vCΩ =

(
(τ ,v)|ΩU ,v|ΩP

)
.

Thus, when testing appropriately, the coupled formulation is essentially a global ultraweak formu-

lation.

The global ultraweak variational formulation is known to be well-posed when Γu 6= ∅ by

Theorem 3.1, so that there exists γU such that

γU‖uΩ‖UU ≤ sup
vΩ∈VU

|bU(uΩ, vΩ)|
‖vΩ‖VU

= sup
vΩ∈VU

|bC(uC, vCΩ)|
‖vΩ‖VU

≤ sup
vΩ∈VU

|bC(uC, vCΩ)|
‖vCΩ‖VC

≤ ‖uC‖E , (B.40)

where it is used that ‖vCΩ‖VC ≤ ‖vΩ‖VU . Naturally, ‖(σU,uU,ωU)‖UU |
ΩU
≤ ‖uΩ‖UU . Meanwhile,

‖uP‖H1(ΩP) = ‖
(
ε(uP),uP,ω(uP)

)
‖UU |

ΩP
, so in view of ‖ε(uP)‖L2(ΩP;S) ≤ ‖S‖‖σ(uP)‖L2(ΩP;S), it

follows ‖uP‖H1(ΩP) ≤ CS‖uΩ‖UU , where CS = max{1, ‖S‖}. Thus, there exist constants CU > 0

and CP > 0, such that

‖uU
0 ‖UU |

ΩU
≤ CU‖uC‖E , ‖uP0‖UP|

ΩP
≤ CP‖uC‖E , (B.41)

for all uU
0 = (σU,uU,ωU) and uP0 = uP.

The last step involves finding the bounds for the interface variables, ûU = (ûU, σ̂U
n ) and

ûP = σ̂P
n. Consider σ̂P

n and let MP
0 satisfy

∣∣bPT0 |ΩP(uP0 , v
P)
∣∣ ≤ MP

0 ‖uP0‖UP|
ΩP
‖vP‖VPT |

ΩP
for all
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uP0 ∈ UP|ΩP and vP ∈ VPT |ΩP . Then, using the identities in Theorem A.3, it follows

‖σ̂P
n‖H−1/2 (∂T P)

= sup
v∈H1(T P)

|〈σ̂P
n, tr

T
gradv〉∂T P |

‖v‖H1(T P)

≤ sup
vP∈VPT |

ΩP

∣∣bPT |ΩP(uP, vP)− bPT0 |ΩP(uP0 , v
P)
∣∣

‖vP‖VPT |
ΩP

≤ ‖uC‖E +MP
0 ‖uP0‖UP|

ΩP
≤
(
1 +MP

0 C
P
)
‖uC‖E .

(B.42)

Similar calculations hold for ûU and σ̂U
n . Summing the contributions from uU

0 , ûU, uP0 and ûP,

yields the desired constant CC = 1
γC
> 0, so that for all uC =

(
(uU

0 , û
U), (uP0 , û

P)
)
∈ UC it holds that

‖uC‖UC ≤ CC‖uC‖E .

The more general case follows analogously, but some technicalities, mostly arising form the

weak imposition of symmetry, are worth mentioning. To observe the changes, it suffices to consider

the two-subdomain case involving the strong and ultraweak formulations. In this case, a similar

procedure as before yields

bC(uC, vCΩ) = bU(uΩ, vΩ) + (σS
A,∇v)ΩS , (B.43)

where uC =
(
(σS,uS), (σU,uU,ωU, ûU, σ̂U

n )
)
∈ UC, uΩ = (σΩ,uΩ,ωΩ) is defined by restric-

tion as uΩ|ΩS =
(
σS
S,u

S,ω(uS)
)

and uΩ|ΩU = (σU,uU,ωU), whereas the test functions are

vΩ = (τ ,v) and vCΩ =
(
(S : τ ,v, 0)|ΩS , (τ ,v)|ΩU

)
. Thus, it is enough to bound ‖σS

A‖L2(ΩS;A),

‖divσS‖L2(ΩS) and ‖ε(uS)‖L2(ΩS;S) in terms of ‖uC‖E in order to obtain the desired bound of

‖uS0‖US|
ΩS

=‖(σS,uS)‖H(div,ΩS)×H1(ΩS) in terms of ‖uC‖E . These bounds are easily obtained through

a careful choice of test functions in ΩS. With these facts, the astute reader can deduce the proof

for any other relevant and general scenario.
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Appendix C

Derivation of thermoviscoelastic equations

The purpose of this chapter is to provide a rigorous derivation of the equations of linear

thermoviscoelasticity from first principles. These equations are solved in the frequency domain

in Chapter 5. When the thermal interaction is assumed to vanish they result in the equations of

linear viscoelasticity, which are solved in Chapter 4 and Chapter 5. In Section C.1 of this chapter

the continuum mechanics equations of thermoviscoelastic materials with memory are presented

following the pioneering work of Coleman [78]. In Section C.2, the equations are then rigorously

linearized about a certain state. This leads to the linear first order system of thermoviscoelasticity

equations akin to that proposed in [141, 197]. The first order system is presented in the time

domain in Section C.3, where different simplifications of the equations are discussed.

C.1 Nonlinear thermodynamics of materials with memory

The purpose of this section is to present the thermoviscoelastic equations of solid materials

with fading memory in the framework of continuum mechanics. The approach is due to the seminal

work of Coleman [78].

Consider a material element domain Ω(t) ⊆ R3 for t > 0, so that the function x(X, t) ∈ Ω(t)

provides the motion of a particle initially at X ∈ Ω = Ω(0). Consequently, the displacement of the

particle is u(X, t) = x(X, t) −X, while the deformation gradient is F = ∇x = I +∇u, where

∇ = ∇X and I is the identity transformation. In the fixed configuration Ω, the conservation of

mass, momenta and energy, and the second law of thermodynamics (in the form of the Clausius-

Duhem inequality) [187] are,

conservation of mass: ρ̇ = 0 , (C.1)

conservation of linear momentum: ρü = div(FS) + f , (C.2)
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conservation of angular momentum: S = ST , (C.3)

conservation of energy: ρĖ = S :Ė − div q + r , (C.4)

second law of thermodynamics: ρη̇ + div(qθ )− r
θ ≥ 0 , (C.5)

where ρ is the mass density with ρ̇ = ∂ρ(X,t)
∂t , S is the second Piola-Kirchhoff stress tensor, f

represents the body force density, ü = ∂2u(X,t)
∂t2

is the acceleration, e is the specific internal energy

density (not due to the motion) with ė = ∂e(X,t)
∂t , E = 1

2(F TF − I) is the Green strain tensor

with Ė = ∂E(X,t)
∂t , q is the heat flux, r is the heat per unit volume due to internal sources, η is

the specific entropy density with η̇ = ∂η(X,t)
∂t , and θ is the absolute temperature. Note that all

variables are functions of X ∈ Ω and t > 0 and are actually pullbacks of variables in Ω(t). Indeed,

ρ = ρ̃detF , S = F−1σ̃F−T detF , f = f̃ detF , e = ẽ, q = F−1q̃ detF , r = r̃ detF , η = η̃ and

θ = θ̃, where the tilded variables are functions of x ∈ Ω(t) and t > 0 and are being evaluated at

(x(X, t), t) in the preceding expressions. Here, σ̃ is the Cauchy stress tensor. Hence, (C.1)–(C.5)

are to be interpreted in the fixed configuration Ω, so that div(·) = ∇X · (·) and div(·) =∇X · (·).

Introducing the specific Helmholtz free energy density ψ = e−ηθ and using the conservation

of energy allows the second law of thermodynamics to be rewritten in terms of ψ̇ = ∂ψ(X,t)
∂t and

θ̇ = ∂θ(X,t)
∂t as

− ρψ̇ − ρηθ̇ + S : Ė − 1
θq · ∇θ ≥ 0 . (C.6)

At this point the equations cannot be solved, since constitutive models for ψ, S, η and q

(which are sufficient to determine e) are unknown. The main physical question lies in establishing

which variables determine the behavior of ψ, S, η and q. That is, what are the dependencies of

the constitutive models. In classical theoretical hyperelasticity the assumption is that the models

are dependent on X and the current values of F , θ and ∇θ.

However, a much more general yet challenging assumption is that the models for ψ, S, η

and q depend on X and the histories of F , θ and ∇θ [78, 187] (see [140] for even more generality).

The history of F at time t is denoted as F t, and defined as

F t(X, s) = F (X, t− s) , ∀X ∈ Ω , ∀s ∈ [0,∞) . (C.7)
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Hence, F t encompasses all the values of F in the past, with small values of s representing the

recent past and large values of s representing the distant past. Notice, the history requires the

knowledge of F even for all t < 0, but this is not an issue since it is usually assumed the material

has remained at rest or in a constant state up to t = 0. For a fixed X, the question arises as

to what functional space the history F t(X, ·) lies. The principle of fading memory, introduced in

[82, 83, 78], states that the history is at least in a weighted space of square integrable functions,

F t(X, ·) ∈ L2
w(0,∞;M), where the weight function wL2 defined in (0,∞) is some almost-everywhere

positive function satisfying that
∫∞

0 wL2(s) ds <∞ (see [81] for more generality). More precisely,

L2
w(0,∞) = {θt : (0,∞)→ R | ‖θt‖L2

w(0,∞) = (θt, θt)L2
w
<∞} ,

L2
w(0,∞;U) = {At : (0,∞)→ U | ‖At‖L2

w(0,∞;U) = (At,At)L2
w
<∞} ,

(C.8)

where U is a subspace of M, the space of 3 × 3 matrices. The referenced inner product is sim-

ply (ut, vt)L2
w

=
∫∞

0 trM
(
(ut(s))Tvt(s)

)
wL2(s) ds, where trM is the usual trace of a matrix so that

trM
(
(ut(s))Tvt(s)

)
is ut(s)vt(s) if the range of ut and vt is R, or ut(s) :vt(s) if the range is U ⊆M.

The assumption that
∫∞

0 wL2(s) ds < ∞ obviously implies that lims→∞wL2(s) = 0. Hence, the

physical aspect behind the principle of fading memory is that the recent memory (small s) carries

more weight than the distant memory (large s) which is essentially forgotten. Obviously, the same

assertions apply to the history of θ at time t, denoted as θt, and to any other variable with a

superscript t, so that in particular θt(X, ·) ∈ L2
w(0,∞) for all X ∈ Ω.

The specific assumption made throughout this work [78] is that the constitutive models are

of the form

ψ(X, t) = ψr0(X,F t(X, ·), θt(X, ·),∇θ(X, t)) ,

S(X, t) = Sr0(X,F t(X, ·), θt(X, ·),∇θ(X, t)) ,

η(X, t) = ηr0(X,F t(X, ·), θt(X, ·),∇θ(X, t)) ,

q(X, t) = qr0(X,F t(X, ·), θt(X, ·),∇θ(X, t)) .

(C.9)

The functions ψr0 , Sr0 , ηr0 and qr0 are called response functions. This is by no means the most

general hypothesis. Indeed, a dependence on the history ∇θt is plausible [79, 141], as well as

dependencies on the history ∇Et [140]. However, this choice is general enough for most physical

purposes.
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Due to the principle of material frame indifference [187], one can show there exist (different)

response functions that depend on Et (defined by Et(X, s) = E(X, t−s)) as opposed to F t. Being

consistent with the principle of fading memory, it is assumed Et(X, ·) ∈ L2
w(0,∞; S) for all X ∈ Ω,

where S is the space of all symmetric 3× 3 matrices. Next, let the difference histories of E and θ

at t be Et
d and θtd, defined by

Et
d(X, s) = Et(X, s)−E(X, t) = E(X, t− s)−E(X, t) ,

θtd(X, s) = θt(X, s)− θ(X, t) = θ(X, t− s)− θ(X, t) ,
(C.10)

for all X ∈ Ω and s ∈ [0,∞). Clearly a dependence on Et is equivalent to a joint dependence

on E and Et
d, but the latter choice is more beneficial to establish future results and to elucidate

analogies with hyperelastic materials which are dependent on the current values of E and θ, but not

on the histories. Therefore, it is convenient to write the response functions in terms of E and Et
d,

as opposed to Et. Due to the properties of the weight wL2 , it is clear that Et(X, ·) ∈ L2
w(0,∞; S)

if and only if Et
d(X, ·) ∈ L2

w(0,∞; S). The same applies to a dependence on θt, which is better

replaced by a joint dependence on θ and θtd. Thus, the constitutive models are written in terms of

new response functions as

ψ(X, t) = ψr(X,E(X, t),Et
d(X, ·), θ(X, t), θtd(X, ·),∇θ(X, t)) ,

S(X, t) = Sr(X,E(X, t),Et
d(X, ·), θ(X, t), θtd(X, ·),∇θ(X, t)) ,

η(X, t) = ηr(X,E(X, t),Et
d(X, ·), θ(X, t), θtd(X, ·),∇θ(X, t)) ,

q(X, t) = qr(X,E(X, t),Et
d(X, ·), θ(X, t), θtd(X, ·),∇θ(X, t)) .

(C.11)

From now on, whenever it is clear from the context, the dependence on (X, t), (X,E,Et
d, θ, θ

t
d,∇θ)

and the superscript r will be omitted.

Before proceeding, a comment on the partial derivatives of the response functions is nec-

essary. Indeed, sufficient derivatives of the response functionals are assumed to exist to derive the

results that will follow. More precisely this is referring to Fréchet derivatives (which collapse to

usual derivatives if the variable is in R). This technicality is particularly necessary when looking

at partial derivatives with respect to the history variables which lie in nontrivial Hilbert spaces.

In this case the partial derivatives are continuous linear functionals acting on the Hilbert space in
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question, so they belong to the dual of the Hilbert space. Using the Riesz representation theorem,

this allows to identify the partial derivative with an element of the Hilbert space itself. Hence,

it is valid to write ∂ψ
∂E (Ξ) ∈ S, ∂ψ

∂Etd
(Ξ, ·) ∈ L2

w(0,∞; S), ∂ψ
∂θ (Ξ) ∈ R, ∂ψ

∂θtd
(Ξ, ·) ∈ L2

w(0,∞) and

∂ψ
∂∇θ (Ξ) ∈ R3, where Ξ = (X,E,Et

d, θ, θ
t
d,∇θ). Moreover, consider the following definitions to be

used in the coming calculations,

∇Etdψ(Ξ) =

∫ ∞
0

∂ψ

∂Et
d

(Ξ, s)wL2(s) ds ∈ S , ∇θtdψ(Ξ) =

∫ ∞
0

∂ψ

∂θtd
(Ξ, s)wL2(s) ds ∈ R . (C.12)

The same logic applies to higher order derivatives and derivatives of the other response functions.

As an example, consider the time derivative of ψ,

∂ψ

∂t
=
∂ψr

∂X
· ∂X
∂t

+
∂ψr

∂E
:
∂E

∂t
+
( ∂ψr

∂Et
d

,
∂Et

d

∂t

)
L2
w

+
∂ψr

∂θ

∂θ

∂t
+
(∂ψr

∂θtd
,
∂θtd
∂t

)
L2
w

+
∂ψr

∂∇θ ·
∂∇θ
∂t

, (C.13)

where the partial derivatives of ψr are evaluated at Ξ(X, t) with Ξ = (X,E,Et
d, θ, θ

t
d,∇θ), and all

other terms evaluated at (X, t). Clearly ∂X
∂t = 0, while

∂Etd
∂t = Ė

t
d = Ė

t− Ė and
∂θtd
∂t = θ̇td = θ̇t− θ̇,

where Ė = ∂E
∂t , Ė

t
(X, s) = Ė(X, t− s), θ̇ = ∂θ

∂t , and θ̇t(X, s) = θ̇(X, t− s). Denoting ψ̇ = ∂ψ
∂t and

∂∇θ
∂t = ∇∂θ

∂t = ∇θ̇ and omitting the superscript r leads to

ψ̇ =
∂ψ

∂E
: Ė +

( ∂ψ

∂Et
d

, Ė
t
d

)
L2
w

+
∂ψ

∂θ
θ̇ +

( ∂ψ
∂θtd

, θ̇td

)
L2
w

+
∂ψ

∂∇θ · ∇θ̇

=
( ∂ψ
∂E
−∇Etdψ

)
: Ė +

( ∂ψ

∂Et
d

, Ė
t
)
L2
w

+
(∂ψ
∂θ
−∇θtdψ

)
θ̇ +

( ∂ψ
∂θtd

, θ̇t
)
L2
w

+
∂ψ

∂∇θ · ∇θ̇ ,
(C.14)

since ( ∂ψ
∂Etd

, Ė)L2
w

= ∇Etdψ : Ė and ( ∂ψ
∂θtd

, θ̇)L2
w

= ∇θtdψ θ̇ due to Ė and θ̇ being constant for any

history time s.

With these facts in mind, it is possible to state the main conclusions derived by Coleman [78].

Using (C.6), he proved that the response functions for ψ, S and η in (C.11) are independent of ∇θ
(so that ∂ψ

∂∇θ = 0, ∂S
∂∇θ = 0 and ∂η

∂∇θ = 0) and

S = ρ
( ∂ψ
∂E
−∇Etdψ

)
,

η = −
(∂ψ
∂θ
−∇θtdψ

)
,

−ρ
(( ∂ψ

∂Et
d

, Ė
t
)
L2
w

+
( ∂ψ
∂θtd

, θ̇t
)
L2
w

)
− 1

θ
q · ∇θ ≥ 0 .

(C.15)
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Moreover, it was established that of all histories, Et and θt, ending with given values of E and

θ respectively, those corresponding to constant values of E and θ for all times result in the least

Helmholtz free energy. In other words, given arbitrary strain and temperature fields at time t,

E0(X) and θ0(X), the histories Et(X, s) = E0(X) and θt(X, s) = θ0(X) for all s ≥ 0, resulting

in difference histories Et
d(X, s) = 0 and θtd(X, s) = 0, produce a minimum in the response function

of the Helmholtz free energy with respect to the difference histories of Et
d and θtd. Therefore,

∂ψ

∂Et
d

(Ξ0t , ·) = 0 , ∇Etdψ(Ξ0t) = 0 ,

∂ψ

∂θtd
(Ξ0t , ·) = 0 , ∇θtdψ(Ξ0t) = 0 ,

(C.16)

where Ξ0t = (X,E, 0, θ, 0), so that X, E and θ are arbitrary, while Et
d = 0 and θtd = 0 (note ψ is

not dependent on ∇θ anymore). Additionally, as noticed by Coleman and Gurtin [79], in this same

scenario of zero difference histories, the dissipation inequality in (C.15) reduces to−1
θq(Ξq0t)·∇θ ≥ 0,

where Ξq0t = (X,E, 0, θ, 0,∇θ). From this point one can derive that at the zero temperature

gradient, the heat conductivity is positive semidefinite [80] (it can additionally be shown to be

symmetric positive semidefinite under certain assumptions of the nature of the anisotropy of the

material as in [233] or under “thermally stable” conditions as in [88]), and the heat flux vanishes

[79]. That is, at the state given by Ξq00 = (X,E, 0, θ, 0, 0), it holds that −vT ∂q
∂∇θ (Ξq00)v ≥ 0 for all

v ∈ R3, and q(Ξq00) = 0. This implies some partial derivatives at this point are zero,

∂q

∂E
(Ξq00) = 0 ,

∂q

∂θ
(Ξq00) = 0 . (C.17)

The previous results are very important. Firstly, if the response functions prove to be

independent of the difference histories, then the statements in (C.15) clearly collapse to the sim-

pler and better known expressions in dynamic nonlinear hyperelasticity. Secondly, even with this

dependence on the difference histories, the case of zero difference histories (constant strain an tem-

perature at given values) is essentially an equilibrium state that matches that of static nonlinear

hyperelasticity. Alternatively, this is equivalent to saying that in the limit of infinitely slow pro-

cesses the behavior matches that of static nonlinear hyperelasticity [78]. Thirdly, these results can

be used when linearizing about the points of zero difference histories. This is the subject of the

next section.
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C.2 Linearized thermoviscoelasticity

In this section the rigorous linearization of the physical laws and constitutive models is

carried out as in [83, 77, 87, 53] but in more generality. This leads to a system akin to that

proposed in [141, 197]. The are several technical details, so the uninterested reader may skip

directly to the derived first-order system in Section C.3.

To begin the linearization process the first step is to choose the origin about which the

equations and variables will be linearized. Since only small perturbations about this origin will be

contemplated, it is natural to consider the origin as the static reference configuration at rest (no

deformation) with a fixed constant temperature distribution. Hence, in terms of displacements and

temperature, the idea is to linearize around a zero strain (∇u = 0), a fixed temperature θ̄ (θ = θ̄),

a zero temperature gradient (∇θ = 0), a zero strain rate (∇u̇ = 0), and a zero temperature rate

(θ̇ = 0). Hence, at the origin of the linearization, E = 0 and Ė = 0, since E = 1
2(F TF − I) and

Ė = 1
2(Ḟ

T
F +F TḞ ) with F = I+∇u. This is valid for all times, meaning that at the origin of the

linearizationEt(X, s) = 0 and θt(X, s) = θ̄(X) for all s ≥ 0, so thatEt
d = 0 and θtd = 0. The tuples

at the origin are thus Ξ̄ = (X, Ē, Ē
t
d, θ̄, θ̄

t
d) = (X, 0, 0, θ̄, 0) and Ξ̄q = (Ξ̄,∇θ) = (X, 0, 0, θ̄, 0, 0).

Naturally, small variations of the strains, temperatures, temperature gradients, strain rates

and temperature rates are assumed about the linearization origin. To express this mathematically,

first let k(δ) be some variable dependent on δ > 0 and lying in a normed space. Then, the notation

k(δ) = O(δn) as δ → 0 means that there exist δ0 > 0 and MO > 0 such that ‖k(δ)‖ ≤MOδn for every

δ ∈ (0, δ0), where n ∈ N. Meanwhile, the notation k(δ) = O(δn) as δ → 0 means limδ→0
‖k(δ)‖
δn = 0,

where n ∈ N. With this in mind, let

∇u = O(δ) , θ − θ̄ = O(δ) , ∇θ = O(δ) , ∇u̇ = O(δ) , θ̇ = O(δ) . (C.18)

Hence, for a given δ > 0, the norms of the preceding variables at all points (X, t) are assumed to

be roughly of order δ. Due to the definition of E and the expression for Ė, it easily follows that

these variables are of order δ as well, and more importantly, since this is true at all times, it can

be shown [83]

E = O(δ) , Ė = O(δ) , Et
d = O(δ) , Ė

t
= O(δ) , θtd = O(δ) , θ̇t = O(δ) . (C.19)
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Note for the histories this implies looking at the norms ‖Et
d‖L2

w(0,∞;S), ‖Ė
t‖L2

w(0,∞;S), ‖θtd‖L2
w(0,∞)

and ‖θ̇t‖L2
w(0,∞). Next, define the tuples Ξ = (X,E,Et

d, θ, θ
t
d) and Ξq = (X,E,Et

d, θ, θ
t
d,∇θ)

satisfying the assumptions of small variations. Then it follows (Ξ−Ξ̄) = O(δ) and (Ξq−Ξ̄q) = O(δ).

Finally, recall the engineering strain is defined as ε = 1
2(∇u+∇uT), from which it easily follows

that
E = 1

2(F TF − I) = ε+ 1
2∇u

T∇u = ε+O(δ2) ,

Ė = 1
2(Ḟ

T
F + F TḞ ) = ε̇+ 1

2(∇u̇T∇u+∇uT∇u̇) = ε̇+O(δ2) .
(C.20)

Note that the engineering strain is a linear operator of u, while E is not. This is enough to proceed

to the linearization of the equations themselves.

The first observation to make is that it is only required to solve the equations of conservation

of linear momentum and the conservation of energy for the displacement and temperature, provided

constitutive models are known for the second Piola-Kirchhoff stress tensor, the entropy and the heat.

The first two constitutive models are known through the result (C.15), which is assumed to hold

so that the Clausius-Duhem inequality (expressing the second law of thermodynamics) is satisfied.

The equation for conservation of mass does not need to be solved, but if required the mass density

in the current configuration can be calculated from a knowledge of the displacement. Meanwhile

the conservation of angular momentum is satisfied automatically by the natural symmetry of the

deduced constitutive model in (C.15).

The conservation of linear momentum and conservation of energy can be rewritten in terms

of the Helmholtz free energy as

divP + f = ρü ,

ρψ̇ + ρηθ̇ + ρη̇θ = S :Ė − div q + r ,
(C.21)

where P = FS is the first Piola-Kirchhoff stress tensor. Substituting the results in (C.15) into

(C.14) and using that ∂ψ
∂∇θ = 0 gives

ψ̇ =
1

ρ
S :Ė − ηθ̇ +

( ∂ψ

∂Et
d

, Ė
t
)
L2
w

+
( ∂ψ
∂θtd

, θ̇t
)
L2
w

. (C.22)

Hence, the equation for conservation of energy becomes

ρη̇θ +
( ∂ψ

∂Et
d

, Ė
t
)
L2
w

+
( ∂ψ
∂θtd

, θ̇t
)
L2
w

= −div q + r . (C.23)
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The first equation to be linearized in detail is the second Piola-Kirchhoff stress tensor, S,

which is given by (C.15). Using the definition of Fréchet derivative at Ξ̄ (which is assumed to exist),

it follows

S(Ξ) = S(Ξ̄) +
∂S

∂E
(Ξ̄) :E +

( ∂S
∂Et

d

(Ξ̄),Et
d

)
L2
w

+
∂S

∂θ
(Ξ̄)(θ − θ̄) +

( ∂S
∂θtd

(Ξ̄), θtd

)
L2
w

+ O(δ) . (C.24)

Next, recall S = ρ
(
∂ψ
∂E −∇Etdψ

)
and the results in (C.16). First notice that

∂S

∂E
(Ξ̄) = ρ

∂2ψ

∂E2 (Ξ̄) ,
∂S

∂θ
(Ξ̄) = ρ

∂2ψ

∂θ∂E
(Ξ̄) , (C.25)

since Et
d and θtd remain fixed at zero in these partial derivatives and ∇Etdψ(Ξ0t) = 0, so essentially

∂
∂E∇Etdψ(Ξ0t) = 0 and ∂

∂θ∇Etdψ(Ξ0t) = 0. Using a similar reasoning and that mixed derivatives

commute, it follows

∂2ψ

∂Et
d∂E

(Ξ̄, ·) =
∂2ψ

∂E∂Et
d

(Ξ̄, ·) = 0 ,
∂2ψ

∂θtd∂E
(Ξ̄, ·) =

∂2ψ

∂E∂θtd
(Ξ̄, ·) = 0 , (C.26)

since ∂ψ
∂Etd

(Ξ0t , ·) = 0 and ∂ψ
∂θtd

(Ξ0t , ·) = 0. This implies

∂S

∂Et
d

(Ξ̄, ·) = −ρ
∫ ∞

0

∂2ψ

∂Et
d∂E

t
d

(Ξ̄, τ, ·)wL2(τ) dτ ,

∂S

∂θtd
(Ξ̄, ·) = −ρ

∫ ∞
0

∂2ψ

∂θtd∂E
t
d

(Ξ̄, τ, ·)wL2(τ) dτ .

(C.27)

Define the following material properties,

C∞(X)=
∂S

∂E
(Ξ̄)=ρ

∂2ψ

∂E2 (Ξ̄) ,

C ./(X, s)=−
∫ ∞
s

∂S

∂Et
d

(Ξ̄, τ ′)wL2(τ ′) dτ ′=ρ

∫ ∞
s

∫ ∞
0

∂2ψ

∂Et
d∂E

t
d

(Ξ̄, τ, τ ′)wL2(τ) dτ wL2(τ ′) dτ ′ ,
(C.28)

where s ≥ 0. It follows,

lim
s→∞

C ./(X, s) = 0 , Ċ ./(X, s) =
∂C ./

∂s
(X, s) =

∂S

∂Et
d

(Ξ̄, s)wL2(s) , (C.29)

for all s > 0. Moreover, both C∞ and C ./ have major and minor symmetries because they come

from second derivatives of the same variable, so that C∞ijkl = C∞klij = C∞jikl and C ./

ijkl = C ./

klij = C ./

jikl
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for all X ∈ Ω, s ≥ 0 and i, j, k, l = 1, 2, 3. Therefore,( ∂S
∂Et

d

(Ξ̄),Et
d

)
L2
w

=

∫ ∞
0

∂S

∂Et
d

(Ξ̄, s) :Et
d(X, s)wL2(s) ds

=

∫ ∞
0

Ċ ./(X, s) : (Et(X, s)−E(X, t)) ds

= −
∫ ∞

0
Ċ ./(X, s) ds :E(X, t) +

∫ ∞
0

Ċ ./(X, s) :Et(X, s) ds

= C ./(X, 0) :E(X, t) +

∫ ∞
0

Ċ ./(X, s) :E(X, t− s) ds .

(C.30)

At this point, it is helpful to make a brief pause to dwell with a different subject in order to

make a connection with the preceding expression. Indeed, the Stieltjes convolution of g : [0,∞)→ R

and h : (−∞,∞)→ R, denoted by g ∗dh, is defined as [142]

g ∗dh(t) =

∫ t

−∞
g(t− s)dh

dt
(s) ds , (C.31)

for t ∈ (−∞,∞). Provided lims→∞ g(s)h(t− s) = 0, some simple manipulations yield,

g ∗dh(t) =

∫ t

−∞
g(t− s)dh

dt
(s) ds =

∫ ∞
0

g(s)
dh

dt
(t− s) ds

= −g(s)h(t− s)
∣∣∣s=∞
s=0

+

∫ ∞
0

dg

dt
(s)h(t− s) ds = g(0)h(t) +

∫ ∞
0

dg

dt
(s)h(t− s) ds .

(C.32)

Additionally, if g is interpreted as having the domain (−∞,∞) (as opposed to [0,∞)) and having

support in [0,∞), then its distributional derivative in (−∞,∞) is dg
dt (t) = g(0)δ0(t) + dg+

dt (t)H0(t),

where g+ = g|(0,∞), δ0(t) is the Dirac delta distribution centered at t = 0, and H0(t) is the Heaviside

step function centered at t = 0. In this case, dg
dt (t) = dg+

dt (t) for t > 0, g(t) = dg
dt (t) = 0 for t < 0,

and the following relation involving the regular convolution holds

dg

dt
∗ h(t) =

∫ ∞
−∞

dg

dt
(s)h(t− s) ds = g(0)h(t) +

∫ ∞
0

dg

dt
(s)h(t− s) ds

= g ∗dh(t) + lim
s→∞

g(s)h(t− s) ,
(C.33)

for t ∈ (−∞,∞), where the last equality follows from (C.32). This observation is useful when

dealing with Fourier transforms as it involves a convolution in the full real line, R, as opposed to a

subset of R. Moreover, if h has support in [0,∞), then as above, dh
dt (t) = h(0)δ0(t) + dh+

dt (t)H0(t)
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and obviously lims→∞ g(s)h(t − s) = 0. It follows that if h has support in [0,∞), the Stieltjes

convolution commutes,

g ∗dh(t) =

∫ t

−∞
g(t− s)dh

dt
(s) ds = g(t)h(0) +

∫ t

0
g(t− s)dh

dt
(s) ds

= g(0)h(t) +

∫ t

0

dg

dt
(s)h(t− s) ds =

∫ t

−∞
h(t− s)dg

dt
(s) ds = h ∗d g(t) .

(C.34)

Now returning to (C.30), it is easy to see the remarkable similarities with the regular

convolution as written in (C.33) and the Stieltjes convolution as written in (C.32), with C ./(X, ·)
playing the role of g (which does have the domain [0,∞) and satisfies lims→∞ C ./(X, s) = 0) and

E(X, ·) playing the role of h (which, consistent with the definition of the history, does have the

domain (−∞,∞)). Indeed, dropping the X, it follows,( ∂S
∂Et

d

(Ξ̄),Et
d

)
L2
w

= C ./(0) :E(t) +

∫ ∞
0

Ċ ./(s) :E(t− s) ds = Ċ ./ ∗·· E(t) = C ./ ∗··dE(t) , (C.35)

where the usual convolution and Stieltjes convolution involving a double dot product are denoted

by ∗·· and ∗··d respectively. It is important to note that the expression Ċ ./ ∗·· E assumes C ./ is the

zero extension of the original function to the whole domain (−∞,∞), so that C ./(X, s) = 0 if

s < 0 and is given by (C.28) if s ≥ 0. Thus, dropping the X, the distributional derivative is

Ċ ./(s) = C ./(0)δ0(s) + ∂S
∂Etd

(Ξ̄, s)wL2(s)H0(s). All other expressions in (C.35), including C ./ ∗··dE,

only require that C ./(X, s) be defined for s ≥ 0. Next, recall that C∞ is constant for s ≥ 0 so that

Ċ∞ = 0 for s > 0, and

C∞ :E(t)=C∞ :E(t) +

∫ ∞
0

Ċ∞ :E(t−s) ds= Ċ∞ ∗·· E(t)=C∞ ∗··dE(t)+C∞ : lim
s→∞

E(t−s) , (C.36)

where the expression Ċ∞ ∗·· E implicitly assumes C∞ is the zero extension to (−∞,∞) of the defini-

tion in (C.28), so that C∞(X, s) = ∂S
∂E (Ξ̄)H0(s) and Ċ∞(X, s) = ∂S

∂E (Ξ̄)δ0(s). Therefore, for every

X ∈ Ω and s ∈ (−∞,∞), define the full stiffness tensor as

C = C∞ + C ./ , (C.37)

where C∞ and C ./ are the zero extensions of the functions defined in (C.28) which have support in

[0,∞). Here, C∞ represents the equilibrium value, while C ./ represents the transient effects (thus
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the use of the hourglass, ./) due to the viscosity produced by the memory of the material. Naturally,

C inherits the minor and major symmetries from C∞ and C ./, so that Cijkl = Cklij = Cjikl for all

i, j, k, l = 1, 2, 3. Clearly, C(X, s) = 0 and Ċ(X, s) = 0 for all s < 0, and using (C.29), it follows

lim
s→∞

C(X, s) = C∞(X)|[0,∞) , Ċ(X, s) = Ċ ./(X, s) ∀s > 0 . (C.38)

Here, C∞(X)|[0,∞) = ∂S
∂E (Ξ̄), which is clearly independent of the time s ≥ 0, as defined in (C.28).

The full distributional time derivative is Ċ(s) = ( ∂S∂E (Ξ̄) + C ./(0))δ0(s) + ∂S
∂Etd

(Ξ̄, s)wL2(s)H0(s).

Finally, letting E−∞(X) = lims→−∞E(X, s) (which is independent of t), and combining the

expressions in (C.35) and (C.36), yields for all X ∈ Ω and t ∈ (−∞,∞),

∂S

∂E
(Ξ̄) :E(t) +

( ∂S
∂Et

d

(Ξ̄),Et
d

)
L2
w

= C(0) :E(t) +

∫ ∞
0

Ċ(s) :E(t− s) ds

= Ċ ∗·· E(t) = C ∗··dE(t) + C∞|[0,∞) :E−∞ .
(C.39)

Note in the preceding expression that the only term requiring C to be defined for negative times,

s < 0, is Ċ ∗·· E. Moreover, if E is assumed to vanish for all t < 0, which is often the case, then

E−∞ = 0 and the last term drops, so that Ċ ∗·· E = C ∗··dE = E ∗··dC as in (C.34).

Proceeding in an entirely analogous fashion, define the following material properties,

M∞(X)=
∂S

∂θ
(Ξ̄)=ρ

∂2ψ

∂θ∂E
(Ξ̄) ,

M ./θ(X, s)=−
∫ ∞
s

∂S

∂θtd
(Ξ̄, τ ′)wL2(τ ′) dτ ′=ρ

∫ ∞
s

∫ ∞
0

∂2ψ

∂θtd∂E
t
d

(Ξ̄, τ, τ ′)wL2(τ) dτ wL2(τ ′) dτ ′ ,
(C.40)

where s ≥ 0. Additionally, for all X ∈ Ω let M∞ = M ./θ = 0 whenever s < 0. Moreover, define for

all X ∈ Ω and s ∈ (−∞,∞),

Mθ = M∞ + M ./θ . (C.41)

Using the definitions, it follows Mθ(X, s) = 0 and Ṁθ(X, s) = 0 for all s < 0, and

lim
s→∞

Mθ(X, s) = M∞(X)|[0,∞) , Ṁθ(X, s) = Ṁ ./θ(X, s) =
∂S

∂θtd
(Ξ̄, s)wL2(s) , (C.42)

for all s > 0. As before, Ṁθ(s) = (∂S∂θ (Ξ̄) +M ./θ(0))δ0(s) + ∂S
∂θtd

(Ξ̄, s)wL2(s)H0(s) is the full distribu-

tional time derivative. Moreover, from the definitions, M∞ and M ./θ are seen to be symmetric, so
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that Mθ inherits that symmetry. That is, M∞ij = M∞ji , M

./θ
ij = M ./θ

ji and Mθ
ij = Mθ

ji for all i, j = 1, 2, 3.

Proceeding as with (C.30) and (C.35), this gives( ∂S
∂θtd

(Ξ̄), θtd

)
L2
w

= M ./θ(0) θ(t) +

∫ ∞
0

Ṁ ./θ(s) θ(t− s) ds = Ṁ ./θ ∗θ(t) = M ./θ ∗d θ(t) . (C.43)

Moreover,

Ṁ ./θ ∗θ̄(t) =

∫ ∞
−∞

Ṁ ./θ(s) θ̄ ds = M ./θ(0) θ̄ +

∫ ∞
0

M ./θ(s) θ̄ ds

= M ./θ(0) θ̄ + lim
s→∞

M ./θ(s) θ̄ −M ./θ(0) θ̄ = 0 .
(C.44)

Therefore, (C.43) becomes( ∂S
∂θtd

(Ξ̄), θtd

)
L2
w

= M ./θ(0) (θ(t)− θ̄) +

∫ ∞
0

Ṁ ./θ(s) (θ(t− s)− θ̄) ds

= Ṁ ./θ ∗(θ − θ̄)(t) = M ./θ ∗d (θ − θ̄)(t) .
(C.45)

One can then obtain an expression like (C.36) for M∞ (θ− θ̄), which in turn leads to the analogous

expression to (C.39),

∂S

∂θ
(Ξ̄) (θ(t)− θ̄) +

( ∂S
∂θtd

(Ξ̄), θtd

)
L2
w

= Mθ(0) (θ(t)− θ̄) +

∫ ∞
0

Ṁθ(s) (θ(t− s)− θ̄) ds

= Ṁθ∗(θ − θ̄)(t)

= Mθ ∗d (θ − θ̄)(t) + M∞|[0,∞) (θ−∞ − θ̄) ,

(C.46)

where θ(X)−∞ = lims→−∞ θ(s). As before, the only term requiring Mθ to be defined for negative

times, s < 0, is Ṁθ∗(θ− θ̄). Moreover, if θ = θ̄ for all t < 0, which is often the case, then θ−∞− θ̄ = 0

and the last term drops, so that Ṁθ∗(θ − θ̄) = Mθ ∗d (θ − θ̄) = (θ − θ̄) ∗dMθ as in (C.34).

Now, it is possible to return to the original linearized expression in (C.24), and use the

results in (C.39) and (C.46), so that

S(Ξ) = S(Ξ̄) +
∂S

∂E
(Ξ̄) :E +

( ∂S
∂Et

d

(Ξ̄),Et
d

)
L2
w

+
∂S

∂θ
(Ξ̄)(θ − θ̄) +

( ∂S
∂θtd

(Ξ̄), θtd

)
L2
w

+ O(δ)

=S+C(0):E(·)+

∫ ∞
0

Ċ(s):E(·−s) ds+Mθ(0)(θ(·)−θ̄)+

∫ ∞
0
Ṁθ(s)(θ(·−s)−θ̄) ds+O(δ)

= S + Ċ ∗·· E + Ṁθ∗(θ − θ̄) + O(δ)

= S + C ∗··dE + C∞|[0,∞) :E−∞ + Mθ ∗d (θ − θ̄) + M∞|[0,∞) (θ−∞ − θ̄) + O(δ) ,

(C.47)
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where S = S(Ξ̄). Next, notice the equation is linear in E, θ and their histories. However, it is

desired that the equation is linear in u, θ and their histories. For this, invoke the engineering strain

in (C.20), and note that O(δ2) = O(δ), so that

S =S+C(0):ε(·)+

∫ ∞
0

Ċ(s):ε(·−s) ds+Mθ(0)(θ(·)−θ̄)+

∫ ∞
0
Ṁθ(s)(θ(·−s)−θ̄) ds+O(δ)

= S + Ċ ∗·· ε+ Ṁθ∗(θ − θ̄) + O(δ)

= S + C ∗··d ε+ C∞|[0,∞) :ε−∞ + Mθ ∗d (θ − θ̄) + M∞|[0,∞) (θ−∞ − θ̄) + O(δ) ,

(C.48)

with ε−∞ = lims→−∞ ε(s). Clearly, (C.48) has the form S = S +O(δ), while it is already known

that F = I +∇u = I +O(δ). Using this, it follows that the first Piola-Kirchhoff stress tensor is,

P = FS = S +∇uS + C(0) :ε(·) +

∫ ∞
0

Ċ(s) :ε(· − s) ds

+ Mθ(0) (θ(·)− θ̄) +

∫ ∞
0

Ṁθ(s) (θ(· − s)− θ̄) ds+ O(δ)

= S +∇uS + Ċ ∗·· ε+ Ṁθ∗(θ − θ̄) + O(δ)

= S +∇uS + C ∗··d ε+ C∞|[0,∞) :ε−∞

+ Mθ ∗d (θ − θ̄) + M∞|[0,∞) (θ−∞ − θ̄) + O(δ) .

(C.49)

Notice that if S = 0 (or if ∇uS = S∇uT), then P is symmetric up to a “small” error. This

concludes the linearization of the equation for conservation of momentum, which is linear in P and

u (see (C.21)), with P being linear in u and θ up to a “small” error.

At this point, one can shift the attention to the equation for conservation of energy as

written in (C.23). From (C.16), assumptions of Fréchet differentiability, and the small variations

about Ξ̄, it follows that

∂ψ

∂Et
d

(Ξ) =
∂ψ

∂Et
d

(Ξ̄) +O(δ) = O(δ) ,
∂ψ

∂θtd
(Ξ) =

∂ψ

∂θtd
(Ξ̄) +O(δ) = O(δ) . (C.50)

Using this and that the histories Ė
t

and θ̇t are small as in (C.19), it follows∣∣∣( ∂ψ

∂Et
d

(Ξ), Ė
t
)
L2
w

∣∣∣ ≤ ∥∥∥ ∂ψ
∂Et

d

(Ξ)
∥∥∥
L2
w(0,∞;S)

‖Ėt‖L2
w(0,∞;S) = O(δ2) ,∣∣∣( ∂ψ

∂θtd
(Ξ), θ̇t

)
L2
w

∣∣∣ ≤ ∥∥∥ ∂ψ
∂θtd

(Ξ)
∥∥∥
L2
w(0,∞)

‖θ̇t‖L2
w(0,∞) = O(δ2) .

(C.51)
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Next, as in (C.14), note that η̇ is

η̇(Ξ) =
∂η

∂E
(Ξ) : Ė +

( ∂η

∂Et
d

(Ξ), Ė
t
d

)
L2
w

+
∂η

∂θ
(Ξ)θ̇ +

( ∂η
∂θtd

(Ξ), θ̇td

)
L2
w

. (C.52)

Assumptions of Fréchet differentiability and small variations about Ξ̄ yield

θ
∂η

∂E
(Ξ) = θ̄

∂η

∂E
(Ξ̄) +O(δ) , θ

∂η

∂Et
d

(Ξ, ·) = θ̄
∂η

∂Et
d

(Ξ̄, ·) +O(δ) ,

θ
∂η

∂θ
(Ξ) = θ̄

∂η

∂θ
(Ξ̄) +O(δ) , θ

∂η

∂θtd
(Ξ, ·) = θ̄

∂η

∂θtd
(Ξ̄, ·) +O(δ) .

(C.53)

Using this and that Ė, θ̇ and their difference histories are all small as in (C.19), it follows,

ρη̇θ = ρθ̄
∂η

∂θ
(Ξ̄)θ̇ + ρθ̄

( ∂η
∂θtd

(Ξ̄), θ̇td

)
L2
w

+ ρθ̄
∂η

∂E
(Ξ̄) :Ė + ρθ̄

( ∂η

∂Et
d

(Ξ̄), Ė
t
d

)
L2
w

+O(δ2) . (C.54)

Recalling from (C.15) that η = −(∂ψ∂θ − ∇θtdψ), using the results in (C.16), and proceeding as in

(C.25), (C.26) and (C.27), it follows that

∂η

∂θ
(Ξ̄) = −∂

2ψ

∂θ2
(Ξ̄) ,

∂η

∂E
(Ξ̄) = − ∂2ψ

∂E∂θ
(Ξ̄) = − ∂2ψ

∂θ∂E
(Ξ̄) ,

∂η

∂θtd
(Ξ̄, ·) =

∫ ∞
0

∂2ψ

∂θtd∂θ
t
d

(Ξ̄, τ, ·)wL2(τ) dτ ,

∂η

∂Et
d

(Ξ̄, ·) =

∫ ∞
0

∂2ψ

∂Et
d∂θ

t
d

(Ξ̄, τ, ·)wL2(τ) dτ =

∫ ∞
0

∂2ψ

∂θtd∂E
t
d

(Ξ̄, ·, τ)wL2(τ) dτ .

(C.55)

Before proceeding further, recall that e = ψ+ ηθ. Using that η = −(∂ψ∂θ −∇θtdψ) and the results in

(C.16), it follows
∂e

∂θ
(Ξ̄) =

∂ψ

∂θ
(Ξ̄) + η(Ξ̄) + θ̄

∂η

∂θ
(Ξ̄) = θ̄

∂η

∂θ
(Ξ̄) ,

∂e

∂θtd
(Ξ̄, ·) =

∂ψ

∂θtd
(Ξ̄, ·) + θ̄

∂η

∂θtd
(Ξ̄, ·) = θ̄

∂η

∂θtd
(Ξ̄, ·) .

(C.56)

As before, define the following material properties,

c∞v (X)=
∂e

∂θ
(Ξ̄)= θ̄

∂η

∂θ
(Ξ̄)=−θ̄ ∂

2ψ

∂θ2
(Ξ̄) ,

c ./

v(X, s)=−
∫ ∞
s

∂e

∂θtd
(Ξ̄, τ ′)wL2(τ ′) dτ ′=−θ̄

∫ ∞
s

∂η

∂θtd
(Ξ̄, τ ′)wL2(τ ′) dτ ′

=−θ̄
∫ ∞
s

∫ ∞
0

∂2ψ

∂θtd∂θ
t
d

(Ξ̄, τ, τ ′)wL2(τ) dτ wL2(τ ′) dτ ′ ,

(C.57)
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M∞(X)=−ρ ∂η
∂E

(Ξ̄)=ρ
∂2ψ

∂E∂θ
(Ξ̄)=ρ

∂2ψ

∂θ∂E
(Ξ̄) =

∂S

∂θ
(Ξ̄) ,

M ./E (X, s)=ρ

∫ ∞
s

∂η

∂Et
d

(Ξ̄, τ ′)wL2(τ ′) dτ ′=ρ

∫ ∞
s

∫ ∞
0

∂2ψ

∂Et
d∂θ

t
d

(Ξ̄, τ, τ ′)wL2(τ) dτ wL2(τ ′) dτ ′ ,

=ρ

∫ ∞
s

∫ ∞
0

∂2ψ

∂θtd∂E
t
d

(Ξ̄, τ ′, τ)wL2(τ) dτ wL2(τ ′) dτ ′ ,

(C.58)

for all s ≥ 0. Additionally, for all X ∈ Ω let c∞v = c ./

v = 0 and M∞ = M ./E = 0 whenever s < 0.

Notice, the definition of M∞ here is equal to that shown in (C.40), so it is valid to call it with

the same name. Also, notice that M ./E and M ./θ defined in (C.40) are extremely similar. Indeed,

M ./E (X, 0) = M ./θ(X, 0), but not for all s, since they differ in the variable that is being integrated

over. Next, define for all X ∈ Ω and s ∈ (−∞,∞),

cv = c∞v + c ./

v , ME = M∞ + M ./E . (C.59)

Their full distributional time derivatives are ċv(s) = (θ̄ ∂η∂θ (Ξ̄) + c ./

v(0))δ0(s) + θ̄ ∂η
∂θtd

(Ξ̄, s)wL2(s)H0(s)

and ṀE(s) = (−ρ ∂η∂E (Ξ̄) + M ./E (0))δ0(s) − ρ ∂η
∂Etd

(Ξ̄, s)wL2(s)H0(s) respectively. Hence, it is clear

that for all X ∈ Ω and s < 0, cv = ċv = 0 and ME = ṀE = 0. Meanwhile,

lim
s→∞

cv(X, s) = c∞v (X)|[0,∞) , ċv(X, s) = ċ ./

v(X, s) = θ̄
∂η

∂θtd
(Ξ̄, s)wL2(s) ,

lim
s→∞

ME(X, s) = M∞(X)|[0,∞) , ṀE(X, s) = Ṁ ./E (X, s) = −ρ ∂η

∂Et
d

(Ξ̄, s)wL2(s) ,

(C.60)

for all s > 0. Moreover, as with Mθ and M∞, M ./E and ME are seen to be symmetric, so M ./E
ij = M ./E

ji

and ME
ij = ME

ji for all i, j = 1, 2, 3.

With these definitions, invoking the engineering strain in (C.20), using (C.51), and pro-

ceeding in the same vein as before, it is possible to rewrite (C.54), so that the equation of energy

in (C.23) becomes

−div q+r= ρη̇θ +
( ∂ψ

∂Et
d

, Ė
t
)
L2
w

+
( ∂ψ
∂θtd

, θ̇t
)
L2
w

= ρθ̄
∂η

∂θ
(Ξ̄)θ̇+ρθ̄

( ∂η
∂θtd

(Ξ̄), θ̇td

)
L2
w

+ρθ̄
∂η

∂E
(Ξ̄) :Ė+ρθ̄

( ∂η

∂Et
d

(Ξ̄), Ė
t
d

)
L2
w

+O(δ2)

=ρcv(0)θ̇(·)+

∫ ∞
0
ρċv(s)θ̇(·−s) ds− θ̄ME(0) : ε̇(·)−

∫ ∞
0
θ̄ṀE(s) : ε̇(·−s) ds+O(δ2)

= ρċv∗θ̇ − θ̄ṀE ∗·· ε̇+O(δ2)

= ρcv ∗d θ̇ + ρc∞v |[0,∞) θ̇
−∞ − θ̄ME ∗··d ε̇− θ̄M∞|[0,∞) : ε̇−∞ +O(δ2) ,

(C.61)
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where θ̇−∞ = lims→−∞ θ̇(s) and ε̇−∞ = lims→−∞ ε̇(s). The only terms requiring cv and ME to be

defined for negative times, s < 0, are ċv∗θ̇ and ṀE ∗·· ε̇ respectively. Moreover, if θ̇ = 0 and ε̇ = 0 for

all t < 0, which is often the case, then θ−∞ = 0 and ε−∞ = 0, which further implies ċv∗θ̇ = cv ∗d θ̇
and ṀE ∗·· ε̇ = ME ∗··d ε̇, but the Stieltjes convolutions will not necessarily commute since θ̇ and ε̇

might have distributional singularities. Clearly, the equation is linear in q, u and θ up to a “small”

error, so it only remains to investigate the behavior of q as a function of u and θ.

With regard to q, proceed as with S in (C.24) by assuming it is Fréchet differentiable at

Ξ̄q, and use that q(Ξ̄q) = 0 and the results in (C.17) to conclude that

q(Ξq) =
( ∂q

∂Et
d

(Ξ̄q),Et
d

)
L2
w

+
( ∂q
∂θtd

(Ξ̄q), θtd

)
L2
w

+
∂q

∂∇θ (Ξ̄q) · ∇θ + O(δ) . (C.62)

Then, for all X ∈ Ω, define the material properties,

κ(X) = − ∂q

∂∇θ (Ξ̄q) ,

JE(X, s) = −
∫ ∞
s

∂q

∂Et
d

(Ξ̄q, τ ′)wL2(τ ′) dτ ′ ,

jθ(X, s) = −
∫ ∞
s

∂q

∂θtd
(Ξ̄q, τ ′)wL2(τ ′) dτ ′ ,

(C.63)

for all s ≥ 0, while JE(X, s) = 0 and jθ(X, s) = 0 for all s < 0. Their full distributional time deriva-

tives are J̇E(s) = JE(0)δ0(s)+ ∂q
∂Etd

(Ξ̄q, s)wL2(s)H0(s) and j̇θ(s) = jθ(0)δ0(s)+ ∂q
∂θtd

(Ξ̄q, s)wL2(s)H0(s)

respectively. Thus, for all X ∈ Ω and s < 0, JE = J̇E = 0 and jθ = j̇θ = 0. Also,

lim
s→∞

JE(X, s) = 0 , J̇E(X, s) =
∂q

∂Et
d

(Ξ̄q, s)wL2(s) ,

lim
s→∞

jθ(X, s) = 0 , j̇θ(X, s) =
∂q

∂θtd
(Ξ̄q, s)wL2(s) ,

(C.64)

for all s > 0. From the definition it follows that JE is symmetric in its last two indices, so JEijk = JEikj

for all i, j, k = 1, 2, 3. Lastly, it is known that vTκv ≥ 0 for all v ∈ R3 (see end of Section C.1).

Invoking ε in (C.20) along with these definitions and properties allow (C.62) to be rewritten as

q=
( ∂q

∂Et
d

(Ξ̄q),Et
d

)
L2
w

+
( ∂q
∂θtd

(Ξ̄q), θtd

)
L2
w

+
∂q

∂∇θ (Ξ̄q) · ∇θ + O(δ)

=JE(0) :ε(·)+

∫ ∞
0
J̇E(s) :ε(·−s) ds+jθ(0) (θ(·)−θ̄)+

∫ ∞
0
j̇θ(s)(θ(·−s)−θ̄) ds−κ·∇θ+O(δ)

= J̇E ∗·· ε+ j̇θ∗(θ − θ̄)− κ · ∇θ + O(δ)

=JE ∗··d ε+ jθ ∗d (θ − θ̄)− κ · ∇θ + O(δ) .

(C.65)
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As usual, the only terms requiring JE and jθ to be defined for negative times, s < 0, are J̇E ∗·· ε

and j̇θ∗(θ − θ̄) respectively. Note that in this case, there are no terms ε−∞ and θ−∞, because the

equilibrium values of JE and jθ vanish. Finally, if ε = 0 and θ = θ̄ for all t < 0, then the Stieltjes

integrals commute, so that JE ∗··d ε = ε ∗··d JE and jθ ∗d (θ− θ̄) = (θ− θ̄) ∗d jθ as in (C.34). This last

expression for q is linear in both u and θ up to a “small” error, so this concludes the linearization

of the equation of energy.

C.3 Linear first-order system

In the previous section the equations for conservation of momentum and energy in (C.21)

were linearized in u and θ, and their histories. Dropping the terms of the form O(δ) andO(δ2) = O(δ)

associated to the “small” error, the following first order system emerges,

ρü− divP = f ,

ρcv(0)θ̇+

∫ ∞
0
ρċv(s)θ̇

t(s) ds− θ̄ME(0) : ε̇−
∫ ∞

0
θ̄ṀE(s) : ε̇t(s) ds+ div q = r ,

P = S+∇uS + C(0) :ε+

∫ ∞
0

Ċ(s):εt(s) ds+ Mθ(0)(θ−θ̄)+

∫ ∞
0
Ṁθ(s)(θt(s)−θ̄) ds ,

q = JE(0) :ε+

∫ ∞
0

J̇E(s) :εt(s) ds+ jθ(0) (θ−θ̄)+

∫ ∞
0

j̇θ(s)(θt(s)−θ̄) ds− κ · ∇θ ,

(C.66)

with kt(s) = k(t − s), where k can be either ε = 1
2(∇u +∇uT), θ, θ̇ or ε̇. These equations hold

for all X ∈ Ω and all t ∈ (−∞,∞). Notice they are not typical differential equations, but rather

integro-differential equations.

The known time-dependent and possibly heterogeneous material properties are C(X, s),

the fourth order stiffness tensor; Mθ(X, s), the second order stress-temperature tensor; ME(X, s),

the second order entropy-strain tensor; cv(X, s), the (scalar) specific heat capacity; JE(X, s), the

third order heat-strain tensor; and jθ(X, s), the (vector) heat-temperature distribution. All time-

dependent material properties are assumed to vanish when s < 0. They attain equilibrium values

as s→∞ of C∞ for C, M∞ for Mθ and ME , c∞v for cv, and 0 for JE and jθ. Moreover, when acting

on general second order tensors (possibly non-symmetric), it is known that the stiffness tensor has

major and minor symmetries, the stress-temperature and entropy-strain tensors are symmetric,
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and the heat-strain tensor is symmetric in its last two indices. Additionally, the mass density

distribution, ρ(X), is assumed to be known, along with the second order heat conductivity tensor,

κ(X), the average temperature distribution, θ̄(X) (about which the equations were linearized),

and the residual stress distribution, S(X). The heat conductivity tensor is positive semidefinite,

but not necessarily symmetric. Finally, the time-dependent distributions of body force density, f ,

and heat source density, r, are also assumed to be known.

The unknowns are u, θ, P and q, where the latter two variables are present so that there

are no differentials of second order of θ and u. Indeed, P and q could be replaced into the first two

equations, leading to a second order system. But a first order system is preferred as one can argue

it is more “physical”. This argument is particularly valid when specifying boundary conditions,

as often stress and heat flux boundary conditions are natural, and these correspond to specifying

values of P · n̂ and q · n̂, where n̂ is the external unit normal to ∂Ω.

With this in mind, consider two relatively open partitions of the boundary ∂Ω, {Γu,ΓP }
and {Γθ,Γq}, so that they are relatively open sets in ∂Ω satisfying that ∂Ω = Γu ∪ ΓP = Γθ ∪ Γq

and ∅ = Γu ∩ ΓP = Γθ ∩ Γq. The boundary conditions are specified at these subsets of ∂Ω,

u(X, t) = uΓu(X, t) , X ∈ Γu ,

θ(X, t) = θΓθ(X, t) , X ∈ Γθ ,

P (X, t) · n̂(X) = P ΓP
n (X, t) , X ∈ ΓP ,

q(X, t) · n̂(X) = q
Γq
n (X, t) , X ∈ Γq ,

(C.67)

where n̂ is the external unit normal vector at ∂Ω and t ∈ (−∞,∞).

Note the equations hold for t ∈ (−∞,∞), in which case only the values of u and θ need to

be known in the limit of t → −∞ for the equations to be solved. When interested in solving the

problem for all X ∈ Ω and t ∈ (−∞,∞), it is convenient to write the equations with convolutions,

ρü− divP = f ,

ρċv∗θ̇ − θ̄ṀE ∗·· ε̇+ div q = r ,

P = S +∇uS + Ċ ∗·· ε+ Ṁθ∗(θ − θ̄) ,

q = J̇E ∗·· ε+ j̇θ∗(θ − θ̄)− κ · ∇θ .

(C.68)

Here, the convolutions are g1∗g2(t) =
∫∞
−∞ g1(s)g2(t−s) ds and G1 ∗·· G2(t) =

∫∞
−∞G1(s) :G2(t−s) ds.
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Written in this form, the equations are especially useful to transform to the frequency domain in

case a full time-harmonic scenario is of interest.

However, for many applications the functions are unknown at t < 0, and one often assumes

that the problem “starts” at t = 0. In this case, it can be assumed that u = 0 and θ = θ̄ for

t < 0, so that ε, ε̇ and θ̇ all vanish for t < 0. Under these vanishing assumptions, the system is

conveniently written in terms of Stieltjes convolutions as

ρü− divP = f ,

ρcv ∗d θ̇ − θ̄ME ∗··d ε̇+ div q = r ,

P = S +∇uS + C ∗··d ε+ Mθ ∗d (θ − θ̄) ,

q = JE ∗··d ε+ jθ ∗d (θ − θ̄)− κ · ∇θ ,

(C.69)

for all X ∈ Ω and t ∈ (−∞,∞). Being consistent with the physics, it is desirable to look at

the system and the variables only at t > 0. However, the Stieltjes convolution is defined as

g ∗dh(t) =
∫ t
−∞ g(t − s)ḣ(s) ds, and it involves considering values of ḣ(s) for s < 0. To dispose of

this requirement, it is opportune to write the Stieltjes convolution in a form which allows to look

at the variables and their derivatives only for t ≥ 0. Indeed, given g and h defined in (−∞,∞) and

with support in [0,∞), it follows that

g ∗dh(t)=g(t)h(0)+

∫ t

0
g(t−s)ḣ(s) ds=g(0)h(t)+

∫ t

0
ġ(s)h(t−s) ds=h ∗d g(t) ,

g ∗d ḣ(t)=g(t)ḣ(0)+ġ(t)h(0)+

∫ t

0
g(t−s)ḧ(s) ds=g(0)ḣ(t)+ġ(t)h(0)+

∫ t

0
ġ(s)ḣ(t−s) ds

=g(0)ḣ(t)+ġ(0)h(t)+

∫ t

0
g̈(s)h(t−s) ds=h ∗d ġ(t) ,

(C.70)

where t ∈ (−∞,∞). Clearly, the values of g, ġ, g̈, h, ḣ and ḧ only need to be known at t > 0

in order to compute the integrals. Note the former expression commutes, but the latter does not

commute (although roughly speaking, in the latter scenario g and h do commute under the relation

“ ∗d2 ”). The former expression applies to C ∗··d ε, Mθ ∗d (θ − θ̄), JE ∗··d ε and jθ ∗d (θ − θ̄), while the

latter expression applies to cv ∗d θ̇ and ME ∗··d ε̇.

Notwithstanding, there is a caveat to looking only at times t > 0. Indeed, consider the

term ü(t) at t > 0, which is evidently a second time derivative of a function u(t) defined for t > 0.
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However, its zero extension, ü(t)H0(t), defined for all t ∈ (−∞,∞) (where H0(t) is the Heaviside

step function centered at t = 0), is not a second time derivative of the zero extension u(t)H0(t)

defined for t ∈ (−∞,∞). In fact, ∂2uH0
∂t2

(t) = ü(t)H0(t) + u̇(0)δ0(t) + u(0)δ̇0(t) is the second

distributional time derivative of u(t)H0(t), where u̇(t) = ∂u
∂t (t) and ü(t) = ∂2u

∂t2
(t) are defined for

t ≥ 0 and t > 0 respectively, and where δ0 and δ̇0 are the Dirac delta distribution and its derivative

centered at t = 0. Fortunately ∂2uH0
∂t2

(t) = ü(t)H0(t) for t > 0, but it is clear the general expression

for ∂2uH0
∂t2

(t) suggests that certain information is needed at t = 0.

Put more simply, it must be assumed that initial conditions,

u0(X) = u(X, 0) , u̇0(X) = u̇(X, 0) , θ0(X)− θ̄(X) = θ(X, 0)− θ̄(X) , (C.71)

are known for all X ∈ Ω. Note that the initial conditions need to be compatible with the boundary

conditions at (C.67) when t = 0. Also, notice that the initial conditions for the variable θ− θ̄ were

written, since it is this variable (and not θ) that vanishes when t < 0.

The integro-differential first order system written in (C.68) and (C.69) merits some further

discussion. Indeed, it is so general that under some simple assumptions it collapses to several well-

known equations in the literature. First, assume that the material properties are time-independent

for t > 0, so that they take their equilibrium values, C(t) = C∞H0(t), Mθ = ME = M∞H0(t),

cv = c∞v H0(t), JE = 0 and jθ = 0. Essentially, this implies the material no longer depends on

its memory. In fact, the integrals disappear and the equations collapse to the differential first

order system of linear coupled dynamic thermoelasticity (see [53]) with nonzero residual stress. If

additionally M∞ = 0, then the equations decouple to the dynamic linear elasticity equation with

nonzero residual stress, and the anisotropic dynamic heat equation with nonzero forcing. Moreover,

it the equations are at a static equilibrium, then the time-dependence of all variables drops, and

the system further becomes the static linear elasticity equation with nonzero residual stress and

the static heat equation (Poisson equation if heat conductivity is also isotropic). Finally, if the

residual stress vanishes, S = 0, then the linearized P becomes symmetric and can be naturally

identified with the Cauchy stress tensor σ, so the first equation collapses to the classical static

linear elasticity equation.
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Similarly, when ME = 0 in (C.68) or (C.69), and the residual stress vanishes, S = 0,

then P is identified with the Cauchy stress σ and the constitutive model for the stress decouples

from the energy equation, so only the conservation of momentum is relevant to deduce mechanics.

Additionally, let C(t) = 0 for t < 0. The resulting equations are the classical equations of linear

viscoelasticity, which written in convolution form are

ρü− divσ = f ,

σ = Ċ ∗·· ε = C(0) :ε+

∫ ∞
0

Ċ(s):ε(· − s) ds .
(C.72)

To gain some physical intuition with these equations, consider a step displacement function of the

form u(t) = u0H0(t), with ε0 = 1
2(∇u0 +∇uT

0 ), so the stress is written as (see (C.70)),

σ(t) = C ∗··d ε0(t) = C(t) :ε0 +

∫ t

0
C(t− s) : ε̇0 ds = C(t) :ε0 . (C.73)

Hence, limt→∞ σ(t) = C∞ :ε0, which reflects precisely what occurs in a relaxation test of viscoelastic

materials, where the stress has a large discrete jump at first and then “relaxes” until it reaches

a nonzero equilibrium. Similarly, one can show that there exists a function S(t) such that the

engineering strain becomes ε(t) = S ∗··dσ(t). Thus, under a creep test with a step stress function

σ(t) = σ0H0(t) the strain is given by ε(t) = S(t) : σ0 and “creeps” to an equilibrium value of

limt→∞ ε(t) = S∞ :σ0 = (C∞)−1 :σ0.

To finalize this section, consider the assumption made by Gurtin in [141], where the infinites-

imal entropy production in each closed process was taken to be “invariant under time-reversal” and

the residual stress was assumed to vanish, S = 0. Under those conditions (and since no dependence

on the history of the temperature gradient was assumed in the first place) Gurtin showed that in

(C.68) or (C.69), ME = Mθ, JE = 0, jθ = 0 and κ = κT is symmetric. Thus, let M = ME = Mθ,

and reinterpret P as the Cauchy stress tensor σ. It can be shown that [53, 143],

M(X, t) = −Ċ ∗·· α(X, t) = −
∫ ∞
−∞

Ċ(X, s) :α(X, t− s) ds , (C.74)

where α(X, t) is a new time-dependent material property known as the tensor of coefficients of

linear thermal expansion. It is symmetric (α = αT) and relates the engineering strain to dynamic
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changes in temperature under no external stresses (i.e. when σ(t) = 0, then ε = α̇∗ (θ − θ̄)).

Therefore, the linear first-order system in convolution form, (C.68), can be rewritten as,

ρü− divσ = f ,

ρċv∗θ̇ + θ̄α̇ ∗·· Ċ ∗·· ε̇+ div q = r ,

σ = Ċ ∗··
(
ε− α̇∗(θ − θ̄)

)
,

q = −κ · ∇θ .

(C.75)

This system can then be rewritten in the frequency domain if necessary, where the Fourier trans-

forms of Ċ, α̇ and ċv, are C∗, α∗ and c∗v. These are complex-valued and are typically referred

to as the dynamic material properties (dynamic stiffness tensor, etc.), with their real part being

called the “storage” component, while their imaginary part is called the “loss” component. Ob-

viously, they depend on the frequency being analyzed, and dynamic mechanical analysis (DMA)

experiments are often used to determine their values experimentally.
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Appendix D

PolyDPG interpolation estimates

The objective of this chapter is to prove important interpolation estimates for polygonal

DPG (PolyDPG) methods. It complements Section A.6 of Appendix A, since in this case the choice

of discrete trial and test space is different. It is recommended for the reader to first go through the

material in Appendix A, especially that in Section A.5 and Section A.6.

D.1 Interface variables

Let K ∈ T be a polygonal element. First, consider the local discrete interface spaces

defined in (7.7) which form part of the discrete trial space, Uh, defined in (7.8). They are PpC(∂K)

and Pp−1(∂K). The idea is to show they are equal to trKgrad

(
W p(K)

)
and trKdiv

(
V p(K)

)
for some

spaces W p(K) and V p(div,K). To do this, denote by T(K) = {Ti(K)}i∈IK (with IK finite) the

shape-regular edge-compatible triangulations of each K ∈ T , and define the spaces,

W p(K) =
{
u ∈ H1(K) | u|Ti(K) ∈ Pp

(
Ti(K)

)
, ∀i ∈ IK

}
,

V p(K) =
{
q ∈H(div,K) | q|Ti(K) ∈ RT p

(
Ti(K)

)
,∀i ∈ IK

}
,

(D.1)

where Pp
(
Ti(K)

)
= Pp and RT p

(
Ti(K)

)
= RT p come from the classical Nédélec sequence of the

first type. Then, the fact that they are edge-compatible, and the edge-local definitions of PpC(∂K)

and Pp−1(∂K) do indeed yield that PpC(∂K) = trKgrad

(
W p(K)

)
and Pp−1(∂K) = trKdiv

(
V p(K)

)
.

Next, for each triangle Ti(K) ∈ T(K), notice the estimate in (A.60) applies, so that,

‖w −ΠHs(Ti(K))w‖H(Ti(K)) ≤ C̃T̂0
hsTi(K)‖w‖Hs(Ti(K)) ≤ C̃T̂0

hsK‖w‖Hs(Ti(K)) , (D.2)

where Hs(Ti(K)) stands for H1+s(Ti(K)) or Hs(div,Ti(K)), and w stands for elements in those

spaces, and where p ≥ s > 1
2 . The operators ΠHs(Ti(K)) are the projection-based interpolation

operators for each Ti(K) ∈ {Ti(K)}i∈IK , defined in Section A.6. Note that it was used that
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diam(Ti(K)) = hTi(K) ≤ hK = diam(K). Moreover, the constant C̃
T̂0

= C̃
T̂0

(s) is independent of

Ti(K) (and of K entirely), because the triangulations were assumed to be shape-regular. Therefore,

adding among all Ti(K) ∈ T(K) yields,

‖w −ΠHs(K)w‖2H(K) =
∑
i∈IK
‖w −ΠHs(Ti(K))w‖2H(Ti(K)) ≤ C̃2

T̂0
h2s
K‖w‖2Hs(K) . (D.3)

where now Hs(K) stands for H1+s(K) or Hs(div,K). Here, the element interpolation is defined

locally by the projection-based interpolation of the triangulation,

ΠHs(K) : Hs(K)→ Hph(K) ,
(
ΠHs(K)w

)∣∣
Ti(K)

= ΠHs(Ti(K))(w|Ti(K)) , (D.4)

for each Ti(K) ∈ T(K), where Hph(K) stands for W p(K) or V p(K) as defined in (D.1). This is well-

defined because the projection-based interpolation is designed to be compatible. Next, following

the steps in (A.61) and (A.62) for p ∈ N and s > 1
2 yields,

‖ŵK −ΠHs(∂K)ŵK‖H(∂K) ≤ CT̂0
h

min{s,p}
K ‖ŵK‖Hs(∂K) ∀ŵK ∈ Hs(∂K) . (D.5)

where Hs(∂K) stands for H1/2+s(∂K) or H−1/2+s(∂K) respectively and the ŵK lie in those spaces.

Meanwhile, C
T̂0

= C
T̂0

(s, p) does not depend on K. The boundary interpolation operator here,

ΠHs(∂K) : Hs(∂K) → Hph(∂K), is defined by (A.57) (but with ΠHs(K) defined by (D.4)), where

Hph(∂K) stands for PpC(∂K) and Pp−1(∂K).

D.2 Remaining variables

For the variables in (7.8) associated to L2(K) which are discretized by Pp−1(K), one could

proceed directly to get an estimate of the form in (A.60), but the constant would have an explicit

dependence on the polygonal shape, which we want to be as arbitrary as possible. To avoid this,

recall that the discretization is actually a restriction of the polynomials in the bounding triangle,

TK of K. Next, let w ∈ Hs(Ω) for some s > 1
2 , and use interpolation theory (see [170, 23]) applied

to the universal extension operators of Sobolev spaces of differential forms defined in [148] (which

is even more general than the universal extension operator defined by Stein in [212]), to establish

the existence of a continuous extension operator,

E : Hs(Ω)→ Hs(R2) , ‖Ew‖Hs(R2) ≤ CE‖w‖Hs(Ω) , (D.6)
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where s ≥ 0, Ω is the domain where the equations are being solved, and CE = CE(s,Ω) > 0. Then,

define a local interpolation operator as,

ΠHs(K)w|K =
(
ΠHs(TK)Ew|TK

)∣∣
K
, (D.7)

where ΠHs(TK) is the projection-based interpolation in the bounding triangle TK . Note the extension

is needed since the bounding triangles might be outside of Ω. In these calculations, obviously

Hs(K) = Hs(K), and similarly with Hs(TK). Clearly, (A.60) applies to the bounding equilateral

triangle TK , and the constant will only depend on the triangle of unit diameter T̂0. This means

TK is scaled by hTK = diam(TK) = 6√
3
rmax ≤

√
12hK , where rmax is the distance of the centroid

to the furthest vertex (see Figure 7.1) and hK = diam(K). Thus, (A.60) becomes,

‖w −ΠHs(K)w‖H(K) ≤ ‖Ew −ΠHs(TK)Ew‖H(TK) ≤ CT̂0
h

min{s,p}
K ‖Ew‖Hs(TK) , (D.8)

for every w ∈ Hs(K), where CT̂0
= CT̂0

(p, s) > 0 is now independent of K.

D.3 Final interpolation estimates

Define the global interpolation operators as in (A.56) to construct the bounded linear global

interpolation operator ΠUs : Us → Uh. Note that adding (D.8) associated with u ∈ Hs(Ω) among

K ∈ T , using the robust finite overlap condition, and the extension operator in (D.6), gives:

‖u−ΠHs(Ω)u‖2L2(Ω) ≤ C2
T̂0

∑
K∈T

h
2 min{s,p}
K ‖Eu‖2Hs(TK)

≤MovC
2
T̂0
h2 min{s,p}‖Eu‖2Hs(R2) ≤ C2

EMovC
2
T̂0
h2 min{s,p}‖u‖2Hs(Ω) ,

(D.9)

where h = supK∈T hK and CE = CE(s,Ω) is not dependent on p. The same estimate holds for the

variable q ∈ (Hs(Ω))2. Similar bounds (without using extension operators and the finite overlap

condition) hold for û ∈ H1/2+s
0 (∂T ) and q̂n ∈ H−1/2+s(∂T ) simply by summing the contributions in

(D.5), so the result is

‖û−Π
H

1/2+s(∂T )
û‖

H
1/2 (∂T )

≤ CH1+s(T̂0)h
min{s,p}‖û‖

H
1/2+s(∂T )

,

‖q̂n −Π
H−

1/2+s(∂T )
q̂n‖H−1/2 (∂T )

≤ CHs(div,T̂0)h
min{s,p}‖q̂n‖H−1/2+s(∂T )

,
(D.10)

where the constants CH1+s(T̂0) and CHs(div,T̂0) only depend on p and s, but not on K (they depend

on the uniform shape-regularity of the edge-compatible triangulations of all elements). Finally,
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since these constants come from triangles, the theory of projection-based interpolation [90] implies

that in the p-asymptotic limit,

CT̂0
= C̃T̂0

(ln p)p−s , CH1+s(T̂0) = C̃H1+s(T̂0)(ln p)
2p−s , CHs(div,T̂0) = C̃Hs(div,T̂0)(ln p)p

−s , (D.11)

where C̃T̂0
, C̃H1+s(T̂0) and C̃Hs(div,T̂0) are constants independent of p and of any K ∈ T across all

possible meshes being considered. Overall,

‖u−ΠUsu‖U ≤ Chmin{s,p}‖u‖Us , (D.12)

where u = (u, q, û, q̂n) ∈ Us, h = supK∈T hK , and C = C(p, s,Ω) > 0, but is independent of

the meshes being considered. In the p-asymptotic limit, C = (ln p)2p−sCs, where Cs = Cs(s) is

independent of p. Using these results and the theory of Fortin operators in Section 2.8, the results

summarized in Theorem 7.1 will follow.
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[99] Demkowicz, L., Gopalakrishnan, J., and Schöberl, J. (2008). Polynomial extension operators.

Part I. SIAM J. Numer. Anal., 46(6):3006–3031.

[100] Demkowicz, L., Gopalakrishnan, J., and Schöberl, J. (2009). Polynomial extension operators.
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