2,194 research outputs found

    Low-Power Appliance Monitoring Using Factorial Hidden Markov Models

    Get PDF
    To optimize the energy utilization, intelligent energy management solutions require appliance-specific consumption statistics. One can obtain such information by deploying smart power outlets on every device of interest, however it incurs extra hardware cost and installation complexity. Alternatively, a single sensor can be used to measure total electricity consumption and thereafter disaggregation algorithms can be applied to obtain appliance specific usage information. In such a case, it is quite challenging to discern low-power appliances in the presence of high-power loads. To improve the recognition of low-power appliance states, we propose a solution that makes use of circuit-level power measurements. We examine the use of a specialized variant of Hidden Markov Model (HMM) known as Factorial HMM (FHMM) to recognize appliance specific load patterns from the aggregated power measurements. Further, we demonstrate that feature concatenation can improve the disaggregation performance of the model allowing it to identify device states with an accuracy of 90% for binary and 80% for multi-state appliances. Through experimental evaluations, we show that our solution performs better than the traditional event based approach. In addition, we develop a prototype system that allows real-time monitoring of appliance states

    Energy Disaggregation for Real-Time Building Flexibility Detection

    Get PDF
    Energy is a limited resource which has to be managed wisely, taking into account both supply-demand matching and capacity constraints in the distribution grid. One aspect of the smart energy management at the building level is given by the problem of real-time detection of flexible demand available. In this paper we propose the use of energy disaggregation techniques to perform this task. Firstly, we investigate the use of existing classification methods to perform energy disaggregation. A comparison is performed between four classifiers, namely Naive Bayes, k-Nearest Neighbors, Support Vector Machine and AdaBoost. Secondly, we propose the use of Restricted Boltzmann Machine to automatically perform feature extraction. The extracted features are then used as inputs to the four classifiers and consequently shown to improve their accuracy. The efficiency of our approach is demonstrated on a real database consisting of detailed appliance-level measurements with high temporal resolution, which has been used for energy disaggregation in previous studies, namely the REDD. The results show robustness and good generalization capabilities to newly presented buildings with at least 96% accuracy.Comment: To appear in IEEE PES General Meeting, 2016, Boston, US

    Robust energy disaggregation using appliance-specific temporal contextual information

    Get PDF
    An extension of the baseline non-intrusive load monitoring approach for energy disaggregation using temporal contextual information is presented in this paper. In detail, the proposed approach uses a two-stage disaggregation methodology with appliance-specific temporal contextual information in order to capture time-varying power consumption patterns in low-frequency datasets. The proposed methodology was evaluated using datasets of different sampling frequency, number and type of appliances. When employing appliance-specific temporal contextual information, an improvement of 1.5% up to 7.3% was observed. With the two-stage disaggregation architecture and using appliance-specific temporal contextual information, the overall energy disaggregation accuracy was further improved across all evaluated datasets with the maximum observed improvement, in terms of absolute increase of accuracy, being equal to 6.8%, thus resulting in a maximum total energy disaggregation accuracy improvement equal to 10.0%.Peer reviewedFinal Published versio

    Integration of Legacy Appliances into Home Energy Management Systems

    Full text link
    The progressive installation of renewable energy sources requires the coordination of energy consuming devices. At consumer level, this coordination can be done by a home energy management system (HEMS). Interoperability issues need to be solved among smart appliances as well as between smart and non-smart, i.e., legacy devices. We expect current standardization efforts to soon provide technologies to design smart appliances in order to cope with the current interoperability issues. Nevertheless, common electrical devices affect energy consumption significantly and therefore deserve consideration within energy management applications. This paper discusses the integration of smart and legacy devices into a generic system architecture and, subsequently, elaborates the requirements and components which are necessary to realize such an architecture including an application of load detection for the identification of running loads and their integration into existing HEM systems. We assess the feasibility of such an approach with a case study based on a measurement campaign on real households. We show how the information of detected appliances can be extracted in order to create device profiles allowing for their integration and management within a HEMS

    Non-parametric modeling in non-intrusive load monitoring

    Get PDF
    Non-intrusive Load Monitoring (NILM) is an approach to the increasingly important task of residential energy analytics. Transparency of energy resources and consumption habits presents opportunities and benefits at all ends of the energy supply-chain, including the end-user. At present, there is no feasible infrastructure available to monitor individual appliances at a large scale. The goal of NILM is to provide appliance monitoring using only the available aggregate data, side-stepping the need for expensive and intrusive monitoring equipment. The present work showcases two self-contained, fully unsupervised NILM solutions: the first featuring non-parametric mixture models, and the second featuring non-parametric factorial Hidden Markov Models with explicit duration distributions. The present implementation makes use of traditional and novel constraints during inference, showing marked improvement in disaggregation accuracy with very little effect on computational cost, relative to the motivating work. To constitute a complete unsupervised solution, labels are applied to the inferred components using a Res-Net-based deep learning architecture. Although this preliminary approach to labelling proves less than satisfactory, it is well-founded and several opportunities for improvement are discussed. Both methods, along with the labelling network, make use of block-filtered data: a steady-state representation that removes transient behaviour and signal noise. A novel filter to achieve this steady-state representation that is both fast and reliable is developed and discussed at length. Finally, an approach to monitor the aggregate for novel events during deployment is developed under the framework of Bayesian surprise. The same non-parametric modelling can be leveraged to examine how the predictive and transitional distributions change given new windows of observations. This framework is also shown to have potential elsewhere, such as in regularizing models against over-fitting, which is an important problem in existing supervised NILM

    Context-based energy disaggregation in smart homes

    Get PDF
    In this paper, we address the problem of energy conservation and optimization in residential environments by providing users with useful information to solicit a change in consumption behavior. Taking care to highly limit the costs of installation and management, our work proposes a Non-Intrusive Load Monitoring (NILM) approach, which consists of disaggregating the whole-house power consumption into the individual portions associated to each device. State of the art NILM algorithms need monitoring data sampled at high frequency, thus requiring high costs for data collection and management. In this paper, we propose an NILM approach that relaxes the requirements on monitoring data since it uses total active power measurements gathered at low frequency (about 1 Hz). The proposed approach is based on the use of Factorial Hidden Markov Models (FHMM) in conjunction with context information related to the user presence in the house and the hourly utilization of appliances. Through a set of tests, we investigated how the use of these additional context-awareness features could improve disaggregation results with respect to the basic FHMM algorithm. The tests have been performed by using Tracebase, an open dataset made of data gathered from real home environments

    Non-intrusive load monitoring of household devices using a hybrid deep learning model through convex hull-based data selection

    Get PDF
    The availability of smart meters and IoT technology has opened new opportunities, ranging from monitoring electrical energy to extracting various types of information related to household occupancy, and with the frequency of usage of different appliances. Non-intrusive load monitoring (NILM) allows users to disaggregate the usage of each device in the house using the total aggregated power signals collected from a smart meter that is typically installed in the household. It enables the monitoring of domestic appliance use without the need to install individual sensors for each device, thus minimizing electrical system complexities and associated costs. This paper proposes an NILM framework based on low frequency power data using a convex hull data selection approach and hybrid deep learning architecture. It employs a sliding window of aggregated active and reactive powers sampled at 1 Hz. A randomized approximation convex hull data selection approach performs the selection of the most informative vertices of the real convex hull. The hybrid deep learning architecture is composed of two models: a classification model based on a convolutional neural network trained with a regression model based on a bidirectional long-term memory neural network. The results obtained on the test dataset demonstrate the effectiveness of the proposed approach, achieving F1 values ranging from 0.95 to 0.99 for the four devices considered and estimation accuracy values between 0.88 and 0.98. These results compare favorably with the performance of existing approaches.This research was funded by Programa Operacional Portugal 2020 and Operational Program CRESC Algarve 2020, grant numbers 39578/2018 and 72581/2020. Antonio Ruano also acknowledges the support of Fundação para a Ciência e Tecnologia, grant UID/EMS/50022/2020, through IDMEC under LAETAinfo:eu-repo/semantics/publishedVersio

    Approaches to Non-Intrusive Load Monitoring (NILM) in the Home

    Get PDF
    When designing and implementing an intelligent energy conservation system for the home, it is essential to have insight into the activities and actions of the occupants. In particular, it is important to understand what appliances are being used and when. In the computational sustainability research community this is known as load disaggregation or Non-Intrusive Load Monitoring (NILM). NILM is a foundational algorithm that can disaggregate a home’s power usage into the individual appliances that are running, identify energy conservation opportunities. This depth report will focus on NILM algorithms, their use and evaluation. We will examine and evaluate the anatomy of NILM, looking at techniques using load monitoring, event detection, feature ex- traction, classification, and accuracy measurement.&nbsp

    Energy Disaggregation Using Elastic Matching Algorithms

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)In this article an energy disaggregation architecture using elastic matching algorithms is presented. The architecture uses a database of reference energy consumption signatures and compares them with incoming energy consumption frames using template matching. In contrast to machine learning-based approaches which require significant amount of data to train a model, elastic matching-based approaches do not have a model training process but perform recognition using template matching. Five different elastic matching algorithms were evaluated across different datasets and the experimental results showed that the minimum variance matching algorithm outperforms all other evaluated matching algorithms. The best performing minimum variance matching algorithm improved the energy disaggregation accuracy by 2.7% when compared to the baseline dynamic time warping algorithm.Peer reviewedFinal Published versio
    • …
    corecore