3,357 research outputs found

    ParaFPGA 2011 : high performance computing with multiple FPGAs : design, methodology and applications

    Get PDF
    ParaFPGA 2011 marks the third mini-symposium devoted to the methodology, design and implementation of parallel applications using FPGAs. The focus of the contributions is mainly on organizing parallel applications in multiple FPGAs. This includes experiences from building a supercomputer with FPGAs, automatic and dedicated balancing of different tasks on heterogeneous FPGA constellations and designing optimal interconnects between collaborating FPGAs

    Hierarchical fractional-step approximations and parallel kinetic Monte Carlo algorithms

    Get PDF
    We present a mathematical framework for constructing and analyzing parallel algorithms for lattice Kinetic Monte Carlo (KMC) simulations. The resulting algorithms have the capacity to simulate a wide range of spatio-temporal scales in spatially distributed, non-equilibrium physiochemical processes with complex chemistry and transport micro-mechanisms. The algorithms can be tailored to specific hierarchical parallel architectures such as multi-core processors or clusters of Graphical Processing Units (GPUs). The proposed parallel algorithms are controlled-error approximations of kinetic Monte Carlo algorithms, departing from the predominant paradigm of creating parallel KMC algorithms with exactly the same master equation as the serial one. Our methodology relies on a spatial decomposition of the Markov operator underlying the KMC algorithm into a hierarchy of operators corresponding to the processors' structure in the parallel architecture. Based on this operator decomposition, we formulate Fractional Step Approximation schemes by employing the Trotter Theorem and its random variants; these schemes, (a) determine the communication schedule} between processors, and (b) are run independently on each processor through a serial KMC simulation, called a kernel, on each fractional step time-window. Furthermore, the proposed mathematical framework allows us to rigorously justify the numerical and statistical consistency of the proposed algorithms, showing the convergence of our approximating schemes to the original serial KMC. The approach also provides a systematic evaluation of different processor communicating schedules.Comment: 34 pages, 9 figure

    Load balancing techniques for I/O intensive tasks on heterogeneous clusters

    Get PDF
    Load balancing schemes in a cluster system play a critically important role in developing highperformance cluster computing platform. Existing load balancing approaches are concerned with the effective usage of CPU and memory resources. I/O-intensive tasks running on a heterogeneous cluster need a highly effective usage of global I/O resources, previous CPU-or memory-centric load balancing schemes suffer significant performance drop under I/O- intensive workload due to the imbalance of I/O load. To solve this problem, Zhang et al. developed two I/O-aware load-balancing schemes, which consider system heterogeneity and migrate more I/O-intensive tasks from a node with high I/O utilization to those with low I/O utilization. If the workload is memory-intensive in nature, the new method applies a memory-based load balancing policy to assign the tasks. Likewise, when the workload becomes CPU-intensive, their scheme leverages a CPU-based policy as an efficient means to balance the system load. In doing so, the proposed approach maintains the same level of performance as the existing schemes when I/O load is low or well balanced. Results from a trace-driven simulation study show that, when a workload is I/O-intensive, the proposed schemes improve the performance with respect to mean slowdown over the existing schemes by up to a factor of 8. In addition, the slowdowns of almost all the policies increase consistently with the system heterogeneity

    Parallel and Distributed Simulation from Many Cores to the Public Cloud (Extended Version)

    Full text link
    In this tutorial paper, we will firstly review some basic simulation concepts and then introduce the parallel and distributed simulation techniques in view of some new challenges of today and tomorrow. More in particular, in the last years there has been a wide diffusion of many cores architectures and we can expect this trend to continue. On the other hand, the success of cloud computing is strongly promoting the everything as a service paradigm. Is parallel and distributed simulation ready for these new challenges? The current approaches present many limitations in terms of usability and adaptivity: there is a strong need for new evaluation metrics and for revising the currently implemented mechanisms. In the last part of the paper, we propose a new approach based on multi-agent systems for the simulation of complex systems. It is possible to implement advanced techniques such as the migration of simulated entities in order to build mechanisms that are both adaptive and very easy to use. Adaptive mechanisms are able to significantly reduce the communication cost in the parallel/distributed architectures, to implement load-balance techniques and to cope with execution environments that are both variable and dynamic. Finally, such mechanisms will be used to build simulations on top of unreliable cloud services.Comment: Tutorial paper published in the Proceedings of the International Conference on High Performance Computing and Simulation (HPCS 2011). Istanbul (Turkey), IEEE, July 2011. ISBN 978-1-61284-382-

    A Simple Method for Dynamic Scheduling in a Heterogeneous Computing System

    Get PDF
    A simple method for the dynamic scheduling on a heterogeneous computing system is proposed in this paper. It was implemented to minimize the parallel program execution time. The proposed method decomposes the program workload into computationally homogeneous subtasks, which may be of the different size, depending on the current load of each machine in a heterogeneous computing system

    Asymmetric Load Balancing on a Heterogeneous Cluster of PCs

    Get PDF
    In recent years, high performance computing with commodity clusters of personal computers has become an active area of research. Many organizations build them because they need the computational speedup provided by parallel processing but cannot afford to purchase a supercomputer. With commercial supercomputers and homogenous clusters of PCs, applications that can be statically load balanced are done so by assigning equal tasks to each processor. With heterogeneous clusters, the system designers have the option of quickly adding newer hardware that is more powerful than the existing hardware. When this is done, the assignment of equal tasks to each processor results in suboptimal performance. This research addresses techniques by which the size of the tasks assigned to processors is a suitable match to the processors themselves, in which the more powerful processors can do more work, and the less powerful processors perform less work. We find that when the range of processing power is narrow, some benefit can be achieved with asymmetric load balancing. When the range of processing power is broad, dramatic improvements in performance are realized our experiments have shown up to 92% improvement when asymmetrically load balancing a modified version of the NAS Parallel Benchmarks\u27 LU application

    Resource Management in Large-scale Systems

    Get PDF
    The focus of this thesis is resource management in large-scale systems. Our primary concerns are energy management and practical principles for self-organization and self-management. The main contributions of our work are: 1. Models. We proposed several models for different aspects of resource management, e.g., energy-aware load balancing and application scaling for the cloud ecosystem, hierarchical architecture model for self-organizing and self-manageable systems and a new cloud delivery model based on auction-driven self-organization approach. 2. Algorithms. We also proposed several different algorithms for the models described above. Algorithms such as coalition formation, combinatorial auctions and clustering algorithm for scale-free organizations of scale-free networks. 3. Evaluation. Eventually we conducted different evaluations for the proposed models and algorithms in order to verify them. All the simulations reported in this thesis had been carried out on different instances and services of Amazon Web Services (AWS). All of these modules will be discussed in detail in the following chapters respectively

    Dynamic load balancing in parallel processing on non-homogeneous clusters

    Get PDF
    This paper analyzes the dynamic and static balancing of non-homogenous cluster architectures, simultaneously analyzing the theoretical parallel Speedup as well as the Speedup experimentally obtained. Three interconnected clusters have been used in which the machines within each cluster have homogeneous processors although different among clusters. Thus, the set can be seen as a 25-processor heterogeneous cluster or as a multi-cluster scheme with subsets of homogeneous processors. A classical application (Parallel N-Queens) with a parallel solution algorithm, where processing predominates upon communication, has been chosen so as to go deep in the load balancing aspects (dynamic or static) without distortion of results caused by communication overhead. At the same time, three forms of load distribution in the processors (Direct Static, Predictive Static and Dynamic by Demand) have been studied, analyzing in each case parallel Speedup and load unbalancing regarding problem size and the processors used.Facultad de Informátic

    Grid tool integration within the eMinerals Project

    Get PDF
    In this article we describe the eMinerals mini grid, which is now running in production mode. Thisis an integration of both compute and data components, the former build upon Condor, PBS and thefunctionality of Globus v2, and the latter being based on the combined use of the Storage ResourceBroker and the CCLRC data portal. We describe how we have integrated the middleware components,and the different facilities provided to the users for submitting jobs within such an environment. We willalso describe additional functionality we found it necessary to provide ourselves
    corecore