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ABSTRACT 
 
This paper analyzes the dynamic and static 
balancing of non-homogenous cluster architectures, 
simultaneously analyzing the theoretical parallel 
Speedup as well as the Speedup experimentally   
obtained. 
Three interconnected clusters have been used in 
which the machines within each cluster have 
homogeneous processors although different among 
clusters. Thus, the set can be seen as a 25-processor 
heterogeneous cluster or as a multi-cluster scheme 
with subsets of homogeneous processors. 
A classical application (Parallel N-Queens) with a 
parallel solution algorithm, where processing 
predominates upon communication, has been chosen 
so as to go deep in the load balancing aspects 
(dynamic or static) without distortion of results 
caused by communication overhead. 
At the same time, three forms of load distribution in 
the processors (Direct Static, Predictive Static and 
Dynamic by Demand) have been studied, analyzing 
in each case parallel Speedup and load unbalancing 
regarding problem size and the processors used. 
 
Keywords: Parallel Systems. Cluster Architectures.  
Parallel Algorithms. Dynamic and Static Load 
Balancing. Parallel Speedup.  Homogeneous and 
Non-Homogeneous Processors. 
 
 

1.  INTRODUCTION 
 
1.1. Cluster and Multi-Cluster Architectures   
A cluster is a type of parallel/distributed processing 
architecture consisting of a set of interconnected 
computers that can work as a single machine [20]. 
The machines that make up a cluster can be   
homogeneous or heterogeneous, this being an 
important factor for the analysis of performance that 
can be obtained from a cluster as a parallel machine 
[1] [4] [8]. 
 
A multi-cluster architecture consists in   
interconnecting two or more clusters to configure a 
new parallel machine. In this configuration, each 
intervening cluster can conceptually be seen as a 
multiprocessor machine with certain performance 

parameters, interconnected to other multiprocessor 
machines to obtain a single global architecture 
capable of carrying out parallel processing by 
combining the resources of each cluster. The 
characterization of global performance parameters of 
a multi-cluster is complex owing to the number of  
intervening clusters, the degree of heterogeneity of 
processors and the inter-cluster communication 
system [14][19]. On occasions, a combination of 
interconnected homogeneous clusters, configuring a 
heterogeneous multi-cluster is used. Although the 
processing  model can be simplified resorting to a 
“super-cluster” with a processor with an 
interconnected cluster, the communication model is 
still complex and even inter-cluster communication 
can have a fixed band width or one that depends on 
the general flow of communications (e.g. clusters 
interconnected via the Internet) [26]. 
 
1.2. Master-Slave Scheme with Multi-Cluster 
Architecture  
The use of a Master-Slave paradigm with Multi-
cluster Architecture provides at least two 
possibilities: 
  
� If a single Master M processor - part of one the 

clusters of the system - is used, both its 
performance and the communication time from 
any other multi-cluster node need to be 
characterized.  
� If a Master Mi processor per cluster is used, an 

interaction model for the Mi should be defined so 
as to control information updating and 
communications among processors from different 
clusters. The scheme of the relation among Mi can 
be hierarchical or peer-to-peer. Again, the 
different communication times involved should be 
analyzed.  

 
Data and processes dynamic migration among multi-
cluster nodes will have a different scheme depending 
on the two models adopted. 
 
1.3. Load Balancing in Heterogeneous 
Architectures  
The load balancing of an application has a direct 
impact on the speedup to be achieved as well as in 
the performance of the parallel system [8][16]. 
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Usually, when working with heterogeneous clusters, 
the different calculation powers of the intervening 
machines are a factor that can be computerized to 
analyze the distribution of the work to be done. 
For the type of known work problems (e.g. matrix  
multiplication)   a “predictive” static load balancing 
considering the calculation  power of the multi-
cluster processors can be obtained; however, many 
real problems have a  variable or dynamic workload 
depending on the data [2][9][18][27]. In these cases, 
it is necessary to adjust data or processes allocation 
dynamically while the application is being executed.  
Note that any “predictive” load balancing formula 
should compute not only the calculation power, but 
also other factors proper of the architecture, such as 
the size and access time at the different levels of 
memory of each processor. [17][28]. In this paper,   
only the calculation power of each processor has 
been taken into account.  
Besides, in a multi-cluster scheme in which  
applications are resolved with the Master-Slave 
paradigm, any dynamic balancing solution used, 
implies a communication overhead that will be 
affected by the complexity of the communication 
scheme among the nodes of the different clusters, as 
mentioned before.  
 
1.4. Types of  Problems with  Variable Workload.  
There are certain types of data parallelism problems  
for which it is  possible to perform a static balancing 
allocation of the total workload. In these cases, 
provided there is a heterogeneous architecture, it 
will be possible to define a predictive F(Pi,Wt) 
function where Pi is  the calculation power of 
processor i and Wt the total work This function   
allows to distribute data “a priori” among processors 
[21]. 
If there is a variable workload due to the data 
particular characteristics (e.g. data arrangement, 
identification of image patterns), it is not possible to 
have a predictive function that assures load 
balancing among processors. Thus, it will be 
necessary to have a dynamic allocation policy that 
can be combined with a predictive initial distribution 
of a percentage of the total data [6][13][18].  
Any dynamic allocation policy used implies some 
overhead degree of communication, which will be 
more complex to model and predict in a 
heterogeneous multi-cluster architecture. 
 
 

2.  CHARACTERIZATION OF TYPE OF  
APPLICATION OF INTEREST. 

 
As analyzed in the introduction, there are different 
research axes on dynamic load balancing problems 
in multi-cluster architectures.  
An architecture model in which heterogeneity 
appears only in machines with different clusters and  

can be compared to a calculation power function of 
the machines of each cluster has been determined. 
Besides, it has been chosen to work with the Master-
Slave paradigm with one Master (usually located at 
the cluster with better processing services). 
Finally, the focus of this experimental work has been 
put on one type of  the problems in which 
communication time among Tc processes is not 
significant, considering Tp (Tp >> Tc) local 
processing time. This restriction allows to identify 
the differences among the static and dynamic load 
balancing schemes more clearly without overlapping 
an important communication overhead.  
 
 

3.  LOAD DISTRIBUTION MODELS TO BE 
STUDIED AND THEORETICAL SPEEDUP 

TO BE ACHIEVED 
 
Three ways of data parallelism  implementation  will 
be used: 
� Direct Static Distribution (DSD) where the total 

workload  Wt will be allocated to the architecture 
B processor in a homogeneous manner, so that  
each processor will have Wt/B, regardless the 
F(Pi,Wt) function. 
� Predictive Static Distribution (PSD) where the 

total workload  Wt will be allocated to the 
architecture B processor at the moment of starting 
the application, according to the prediction  
F(Pi,Wt) function. 
� Dynamic Distribution upon Demand (DDD) 

where a Li percentage of the total Wt workload 
will be allocated to the architecture B processor at 
the moment of starting the application, according 
to the prediction  F(Pi,Wi) function and then, each 
processor will demand more work on the part of 
the Master, as its task is being completed.  

 
The Li value and the amount of additional work to 
be allocated to each processor on demand are  
experimental research parameters that depend on the  
application and the relation between Tp and Tc. 
 
The theoretical Speedup to be achieved by multi-
cluster architecture will be a G(Pi) function. The 
experimental measuring of the real Speedup should 
directly correlate with the degree of balancing 
achieved with the total Wt work allocation during 
the execution of the application. 
 
 

4.  CONTRIBUTION OF THIS WORK 
 
A Master-Slave model with 3 heterogeneous clusters 
among them, each one having 8 homogeneous 
machines operating as a (B=24) multi-cluster with an 
additional processor as Master has been studied. The 
processors heterogeneity was analyzed, considering 
one of the functions of their calculation power. 
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 main () 
{ quantSol:=0 
   for  (pos= 1..N/2) 
      placeQueen (1,pos,board) 
      detPosValid (posValid,board,2) 
      quantSol:=quantSol + detSol (2,posValid,board) 
}  

  One problem case was studied, which responded to 
the hypothesis Tp >> Tc, with the three load  
distributions proposed (DSD, PSD, DDD) to carry 
out the data parallelism, specially analyzing the 
theoretical parallel Speedup. This Speedup was  
achieved in view of the calculation power of the 
processors, and the load unbalancing taking into 
account  the parameters B, Wt, Pi y Li mentioned 
before.  

(a) 
 

function quantSolutions (b) 
{ if (rot(b,90)=b) or (rot(b,90)=sym(b)) then return (2) 
   else if (rot(b,180)=b) or (rot(b,180)=sym(b)) then return (4) 
          else return (8) 
} 
 
rot(b,d): returns the board b rotated in d degrees. 
sym(b): returns the symmetrical board of b.  

 

 
 
5.  APPLICACIÓN TO PARALLEL SOLUTION 

ON A HETEROGENEOUS MULTI-
CLUSTER OF THE N-QUEENS PROBLEM  

 (b) The N-queens problem consists in placing N queens 
on an  NxN  board in such a way that they do not 
attacks one another [5][7][12].  A queen attacks 
another one if they are in the same diagonal, row or  
column. 

 
function detSol (row, posValid, board)  
{ i:= positionValid (posValid) 
   if (row = N) and (i < N ) then  
       placeQueen (row,i,board) 
       return (quantSolutions (board)) 
   else 
      total:=0 
      while (i < N) 
           placeQueen (row,i,board) 
           detPosValid (newPosValid,board, row+1). 
           total:= total + detSol (row+1,newPosValid,board) 
           i:= positionValid (posValid) 
      return total 
} 
 
detPosValid (p,b,r): determines the set p of valid positions for 
the row r in the board b. 
positionValid (p): returns the first valid position in p.  

 

  
 5.1  Sequential Solution  
An initial solution to the N-queens problem, using an  
sequential algorithm, consists in trying all  possible 
location combinations of the queens on the board,  
keeping those that are valid and disrupting the 
search whenever this is not achieved. 
Considering that a valid combination can generate 
up to 8  different solutions,  which are rotations of 
the same combination, the number of  distributions 
to be evaluated can be reduced. The best sequential 
algorithm found for this  problem is based on this 
fact [3][23][24]. There follows a brief description of 
said algorithm on an NxN board. 

(c) 
 Figure 1.    Sequential Solution Pseudocode 

 
5.2. Parallel Solution proposed based  on the 
Function of the Load  Distribution Models  

The algorithm performs N/2 iterations, and each one  
places the queen in a  different position on the first 
row. The remaining N/2 positions are not evaluated 
for they are symmetric combinations of the previous 
ones. 

For the parallel solution of this problem, the queen is 
placed on one or more rows, and all the solutions for 
that initial arrangement are obtained. Each processor 
is in charge of solving the problem for a subset of 
said solutions, in this way, the whole system works 
with all the possible combinations of those rows. 
Two things are to be taken into account:  

 
The vector of valid positions for the following row is 
determined from the queen placed on the first row, 
and for each of them, the solutions that they 
themselves generate are determined (Figure 1a). To 
determine the number of solutions as from row i (in 
such a way that the whole row j with j ≤ i has its 
queen placed), the vector of valid positions for row 
i+1, where the same step is repeated for each of 
them, is determined. This continues until a queen is 
placed on the last row, or until no more valid 
positions are left on a certain row (Figure 1b). When 
placing a queen on the last row, the number of 
different solutions that  such  combination and its 
symmetric one generate when rotated at  90º, 180º y 
270º are estimated  (Figure 1c). 

▪ How to make the combinations. 
▪ How to distribute the combinations among 

machines. 
 
5.2.1. How to make the Combinations 
When working with a heterogeneous architecture, 
the amount of work (combinations) that each 
processor must solve vary according to the existing 
relation regarding calculation power. To be able to  
distribute the work in a balanced way, it is 
convenient to use “fine grain”, that is,  many 
combinations  of little work each, so as to level up 
the work done  by each machine, and resolve several 
of them [10]. To this aim, the first three rows are 
used to form each of the combinations to resolve.   
In this way, different N3 combinations are obtained 
to be distributed among all the heterogeneous 
processors, N being the board size. 
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function detSolPartial (posRow1, posRow2, posRow3, board)  
{ placeQueen (1,posRow1, board) 
   placeQueen (2,posRow2, board) 
   placeQueen (3,posRow3, board) 
   detPosValid (posValid, board,4). 
   return detSol  (4, posValid, board) 
} 
 
detPosValid (p,b,r): determines the set p of valid positions for 
the row r in the board b  

5.2.2.  How to Distribute Combinations 
5.2.2.1- Direct Static Distribution (DSD) 
In this type of distribution, each processor mi 
calculates the    combinations to be resolved at the 
beginning of its   execution. These are distributed in 
a cyclic manner among the machines, so that each mi 
resolves Wt/B combinations distributed cyclically.  
 (c) 
5.2.2.2. Predictive Static Distribución (PSD) Figura 3. Pseudocode for  PSDp. The  detSol function is that of  

Figure 1 (b). In this type of distribution, each processor mi 
determines the combinations to be resolved at the 
beginning of its execution. To that purpose, the 
following  steps are carried out: 

 
5.2.2.3.  Dynamic Distribution upon Demand (DDD) 
 Given C  combinations to be  calculated by  B slave 
processors, and a master, the algorithm carries out 
the following steps: 

 
� Obtain the relative number of combinations crj 
∀ j = 1..B. ▪ The master processor (m0) distributes the initial  

combinations: 

ulMachinelessPowerf

j
j P

P
cr =  - m0  calculates the number of combinations 

(Ci) to be initially distributed. 
▪ Determine the number of combinations A that 

form a block. 100
LiWtCi ×

=  

∑ == B
j jcrA 1   

- m0 obtains the number of initial cci 
combinations that correspond to the mi 
processor according to  Pi  

▪ Calculate for each block, the combinations to  
be done, considering that they are allocated 
cyclically to each  machine mj that has not 
carried out any crj combinations in that block. ∑ == B

i ippowTotal 1                       

powTotal
PCi

cc i
i

×
=  

 
Figure 2 shows how the distribution is carried out 
for a six heterogeneous machine (two for each 
cluster) system in which the relative number of 
combinations are m1=3, m2=3, m3=2, m4=2, m5=1 
and m6=1.  

 
- m0 distributes the initial Ci combinations 

allocating consecutive cci combinations to  mi, 
with i = 1..B.   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ... 97 98 99 100
m1 m2 m3 m4 m5 m6 m1 m2 m3 m4 m1 m2 m1 m2 m3 m4 m5 m6 m1 m2 m3 m4 m1 m2 m1 m2 m3 m4

Remaining CombinationsBlock 1 Block 2

 
 
▪ The master processor (m0) distributes the 

remaining Cr combinations, where Cr = C – Ci. Figure 2: Predictive Static Distribution 
 - mi requests m0 more combinations to resolve 

when its work has finished. For any Figure 3 shows the complete algorithm pseudocode 
for this distribution:     i = 1..B.  

 - m0 sends consecutive Cb combinations to the  
mi processor that has made the request if there 
is still work to be done. 

 main ()    // processor 1  
{ quantSol:=0 
   while  (processor 1 has combinations) 
      determines the location for row 1 (p1) 
      determines the location for row 2 (p2) 
      determines the location for row 3 (p3) 
      quantSol:=quantSol+detSolPartial (p1,p2,p3,board) 
   for (i=2..B) 
      recv(quantOtherProc,i) 
      quantSol:=quantSol+quantOtherProc;   
  }  

- If  Cb > 1, m0 decreases its value in one point   
 
Figure 4 shows how the distribution is done for a  
system consisting of six slave heterogeneous 
machines (two for each cluster), in which the 
relative calculation powers are m1=3, m2=3, m3=2, 
m4=2, m5=1 and m6=1. Li = 12 %, and Cb = 5.  (a) 

  
 main ()   // processor i, where i = 2..B 

{ quantSol:=0 
   while  (processor i has combinations) 
       determines the location for row 1 (p1) 
       determines the location for row 2 (p2) 
       determines the location for row 3 (p3) 
       quantSol:= quantSol+detSolPartial (p1,p2,p3,board) 
   send(quantSol,1) 
 } 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ... 98 99 100

m5 m6 m3 m4 m1 m4 m4 m2

m3  - m6  - m1  - m2  - m3  - m4  - m1  - ...  - m4  - m4  - m2

m2

List of request

m1 m2

Initial Combinations  (CI)

m3 m4

Remaining Combinations (CR)

m3 m6 m1

 
Figure 4: Dynamic Distribution upon Demand 

 
Figure 5 presents the algorithm pseudocode for 
DDD. (b) 
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main ()    // processor 0 
{ quantSol:=0 
   for (i=1..B) 
       determines the first combinations (first) 
       determines the last combinations (last) 
       send(first,last,i)  
   while  (has combinations) 
      recv(request,i) 
      determines the first combinations (first) 
      determines the last combinations (last) 
      send(first,last,i)  
   for (i=1..B) 
      send(end,end,i) 
      recv(quantOtherProc,i) 
      quantSol:=quantSol+quantOtherProc;   
}  

(a) 
 

main ()      // processor i,  where i  = 1..B 
{ quantSol:=0 
   recv(first,last, 0) 
   while  (first<>end) 
       for (comb= first..last)  
          determines the location for row 1 (comb, p1) 
          determines the location for row 2 (comb, p2) 
          determines the location for row 3 (comb, p3) 
          quantSol:=quantSol+detSolPartial (p1,p2,p3, board) 
       send(request,i,0) 
       recv(first,last, 0) 
   send(quantSol,0) 
}  

(b) 
Figura 5. Pseudocode for DDDd. The detSolPartial function is 

that of Figure 4. 
 

 
6.  EXPERIMENTAL RESULTS OBTAINED 

 
In this section, the tests carried out are presented 
together with the results obtained, regarding the 
Speedup metrics and the unbalancing described 
below.  
 
6.1.  Metrics used  
To measure the load unbalancing among the 
processors that intervene in a parallel application, 
the relative work difference obtained is calculated 
from the following formula [4][5][24].  
 

)(
)(min)(max

..1

..1..1

iBi

iBiiBi

Workaverage
WorkTrabajoUnbalance

=

== −
=  

 
where  Worki = machine  timei. 

 
The  Speedup metrics is used to analyze the 
algorithm performance in the  parallel architecture: 

meParallelTi
TimeSequentialSpeedup =  

In the case of a heterogeneous architecture, the  
“Sequential Time” is given by the time of the best  
sequential algorithm executed in the machine with 
the greatest calculation power [1][8][11]. 
 
To evaluate how good the speedup obtained is, it is 
compared with the theoretical speedup of the  
architecture upon which work is being carried out. 
The speedup considers the relative calculation power 
of each  machine with respect to the power of the 

most powerful machine [25]. The theoretical 
Speedup is calculated following this formula: 

∑ == B
i iPlSpeedupTheoretica 1  

where 
B is the number of machines of the 
architecture used. 
Pi is the relative calculation power of the  
machine i regarding the best machine 
power. This relation is expressed in the 
following formula: 

)(
)(

imTimesequential
chinepowerfulMaTimesequential

iP =  

 
6.2.   Experiments 
The experiments were done on a multi-cluster 
architecture  consisting of three clusters: 
▪ an 8 Celeron 2 Ghz homogeneous cluster of  

128 Mb memory. 
▪ an 8 Duron 800Mhz homogeneous cluster of  

256 Mb  memory. 
▪ an 8 Pentium III 700 Mhz cluster homogeneous 

cluster of  256 Mb memory.  
 
Communication within each cluster is done via an  
Ethernet web, using a switch for communication 
among clusters.  
 
The language used for the implementations is C 
together with the MPI library to improve  
communications among processors [22]. 
 
Tests were carried out using 24 machines, adding 
one for the dynamic distribution, acting as  master, 
and with different board sizes. (N=17,18,19,20,21). 
 
In the case of dynamic distribution, it was 
experimented with different percentages of initial 
distribution (Li) and with a different initial number 
of combinations in the blocks to be distributed (Cb). 
Li = 0, 25, 50 and 75. 
Cb = 1, 5, and 10.   
 
6.3.  Results 
The data of Table 1 shows the percentage of load  
unbalancing produced by the algorithm  for the  
Direct Static, Predictive Static and Dynamic upon 
Demand distributions with different Li and Cb 
values. Some of these results can be seen in Graph 1. 
 

0% -  1 0% - 5 0% -10 25% -  1 25% - 5 25% -10
17 93% 45% 11% 11% 10% 11% 9% 61%
18 98% 23% 9% 10% 11% 11% 11% 11%
19 130% 58% 8% 9% 9% 9% 9% 9%
20 88% 32% 6% 6% 6% 8% 7% 37%
21 110% 29% 7% 6% 6% 5% 6% 4%

Size Direct 
Static

Predictive 
Static

Dynamic upon Demand

 
 

50% -  1 50% - 5 50% -10 75% -  1 75% - 5 75% -10
17 8% 13% 113% 39% 39% 47%
18 11% 8% 67% 35% 35% 40%
19 9% 8% 68% 20% 20% 37%
20 8% 6% 49% 36% 36% 43%
21 7% 4% 36% 30% 30% 31%

Size Dynamic upon Demand

 
Table 1: Percentage of unbalancing for each test. 
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From the results obtained, it can be seen that the 
speedup achieved with the dynamic upon demand 
distribution slightly increases as the size of N 
increases, in all cases being closer to the optimum. 
Besides, it can be seen that there is a significant 
difference regarding the speedup achieved by the 
algorithm that distributes in a direct static manner, 
and a little less for the predictive static distribution. 

0%

20%

40%

60%

80%

100%

120%

140%

17 18 19 20 21
Size N

%
 U

nb
al

an
ci

ng

Direct Static Predictive Static Dynamic upon Demand   
Graph 1: Load Unbalancing of Direct Static, Predictive Static 

and Dynamic upon Demand Distributions (with Li=25 and Cb=1). 
For N=17, 18, 19, 20, 21. 

 
7.  CONCLUSSION AND WORK GUIDELINES  
  
Analyzing the results obtained from the  
experimental work, we can  come to the following 
conclusions:   

Table 2 presents the speedup obtained for each  test 
mentioned before together with the optimal speedup 
(or theoretical) calculated for this machine 
combination. Table 3 shows the total time for each  
test. 

 
¾ Pure parallel solution (without considering work 

distribution) for the type of problems where 
Tp>>Tc, mainly the N-Queens requires a 
minimal communication among machines, thus 
making essential the choice of data distribution 
among clusters, to achieve an almost optimal  
Speedup. 

 
0% -  1 0% - 5 0% -10 25% -  1 25% - 5

17 16 9.42 13.49 14.78 14.82 14.80 14.83 15.16
18 16 9.28 14.25 15.12 14.98 14.89 14.89 14.89
19 16 8.09 12.80 15.13 15.12 15.15 15.22 15.14
20 16 9.82 13.61 15.39 15.27 15.32 15.26 15.30
21 16 8.96 13.56 15.36 15.40 15.36 15.42 15.45

Dynamic upon DemandSize Optimum Direct 
Static

Predictive 
Static

 
 

 
25% -10 50% -  1 50% - 5 50% -10 75% -  1 75% - 5 75% -10

17 10.22 15.16 14.61 7.72 12.19 12.19 12.19
18 14.91 14.90 15.12 9.82 12.43 12.43 12.34
19 15.15 15.17 15.20 9.85 13.89 13.89 12.27
20 12.02 15.25 15.43 11.09 12.39 12.38 11.89
21 15.68 15.39 15.54 12.03 12.73 12.73 12.67

Size Dynamic upon Demand

 

¾ Naturally, algorithms that take into account the 
calculation power of each machine for work 
distribution have a better behavior than Direct 
Static distribution. This improvement is clearly  
expressed in the Load Balancing and the 
Speedup. 

Table 2: Speedup. 
 
 

 
0% -  1 0% - 5 0% -10 25% -  1 25% - 5 25% -10

17 6.36 4.44 4.05 4.04 4.05 4.04 3.95 5.86
18 46.88 30.51 28.75 29.02 29.20 29.21 29.21 29.16
19 413.18 261.28 220.96 221.11 220.63 219.63 220.80 220.67
20 2735.21 1973.48 1745.32 1759.14 1752.54 1759.64 1755.23 2234.18
21 25296.55 16710.35 14752.70 14720.81 14750.63 14699.02 14673.81 14450.14

Size Direct 
Static

Predictive 
Static

Dynamic upon Demand

 

¾ Among the algorithm that take into account the 
calculation power, it can be seen that the 
algorithms that distribute dynamically can 
distribute work in a more balancing way among  
the  machines (as seen in Graph 1), without  
much affecting the  final time of execution (as 
shown by the speedup en Graph 2 and the data 
of Table 3). 

 
50% -  1 50% - 5 50% -10 75% -  1 75% - 5 75% -10

17 3.95 4.10 7.76 4.91 4.91 4.91
18 29.18 28.76 44.30 35.00 34.99 35.23
19 220.45 219.94 339.58 240.72 240.72 272.56
20 1760.48 1740.82 2422.17 2168.29 2169.02 2259.31
21 14721.65 14585.20 18846.13 17809.43 17810.01 17886.58

Size Dynamic upon Demand

  
Table 3: Algorithm Total Time. ¾ In dynamic distribution, the Speedup obtained is 

quite close to the optimum according to the   
parallel architecture used in this case. 

 
 
Graph 2 shows the speedup obtained with each of 
the distribution algorithms for some of the tests in 
Table 2, together with the optimal speedup of this  
architecture.  

 
At present, work is being done with a fourth cluster, 
using more powerful and sensitive machines than 
those of the three clusters used in this experimental 
work.   
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Likewise, tests are being done with clusters outside 
the UNLP, particularly at the UNSur (Bahía Blanca), 
UNComahue (Neuquen), UA Barcelona(Spain) and 
the Universidad Católica del Salvador (Brasil). 
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