
Dynamic Load Balancing in Parallel Processing on
Non-Homogeneous Clusters

Armando E. De Giusti, Marcelo R. Naiouf, Laura C. De Giusti, Franco Chichizola

Instituto de Investigación en Informática LIDI (III-LIDI)
 Facultad de Informática – UNLP

{degiusti, mnaiouf, ldgiusti, francoch}@lidi.info.unlp.edu.ar

This project is financially supported by the CIC and the YPF Foundation.

ABSTRACT

This paper analyzes the dynamic and static
balancing of non-homogenous cluster architectures,
simultaneously analyzing the theoretical parallel
Speedup as well as the Speedup experimentally
obtained.
Three interconnected clusters have been used in
which the machines within each cluster have
homogeneous processors although different among
clusters. Thus, the set can be seen as a 25-processor
heterogeneous cluster or as a multi-cluster scheme
with subsets of homogeneous processors.
A classical application (Parallel N-Queens) with a
parallel solution algorithm, where processing
predominates upon communication, has been chosen
so as to go deep in the load balancing aspects
(dynamic or static) without distortion of results
caused by communication overhead.
At the same time, three forms of load distribution in
the processors (Direct Static, Predictive Static and
Dynamic by Demand) have been studied, analyzing
in each case parallel Speedup and load unbalancing
regarding problem size and the processors used.

Keywords: Parallel Systems. Cluster Architectures.
Parallel Algorithms. Dynamic and Static Load
Balancing. Parallel Speedup. Homogeneous and
Non-Homogeneous Processors.

1. INTRODUCTION

1.1. Cluster and Multi-Cluster Architectures
A cluster is a type of parallel/distributed processing
architecture consisting of a set of interconnected
computers that can work as a single machine [20].
The machines that make up a cluster can be
homogeneous or heterogeneous, this being an
important factor for the analysis of performance that
can be obtained from a cluster as a parallel machine
[1] [4] [8].

A multi-cluster architecture consists in
interconnecting two or more clusters to configure a
new parallel machine. In this configuration, each
intervening cluster can conceptually be seen as a
multiprocessor machine with certain performance

parameters, interconnected to other multiprocessor
machines to obtain a single global architecture
capable of carrying out parallel processing by
combining the resources of each cluster. The
characterization of global performance parameters of
a multi-cluster is complex owing to the number of
intervening clusters, the degree of heterogeneity of
processors and the inter-cluster communication
system [14][19]. On occasions, a combination of
interconnected homogeneous clusters, configuring a
heterogeneous multi-cluster is used. Although the
processing model can be simplified resorting to a
“super-cluster” with a processor with an
interconnected cluster, the communication model is
still complex and even inter-cluster communication
can have a fixed band width or one that depends on
the general flow of communications (e.g. clusters
interconnected via the Internet) [26].

1.2. Master-Slave Scheme with Multi-Cluster
Architecture
The use of a Master-Slave paradigm with Multi-
cluster Architecture provides at least two
possibilities:

� If a single Master M processor - part of one the

clusters of the system - is used, both its
performance and the communication time from
any other multi-cluster node need to be
characterized.
� If a Master Mi processor per cluster is used, an

interaction model for the Mi should be defined so
as to control information updating and
communications among processors from different
clusters. The scheme of the relation among Mi can
be hierarchical or peer-to-peer. Again, the
different communication times involved should be
analyzed.

Data and processes dynamic migration among multi-
cluster nodes will have a different scheme depending
on the two models adopted.

1.3. Load Balancing in Heterogeneous
Architectures
The load balancing of an application has a direct
impact on the speedup to be achieved as well as in
the performance of the parallel system [8][16].

 JCS&T Vol. 5 No. 4 December 2005

272

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301030759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Usually, when working with heterogeneous clusters,
the different calculation powers of the intervening
machines are a factor that can be computerized to
analyze the distribution of the work to be done.
For the type of known work problems (e.g. matrix
multiplication) a “predictive” static load balancing
considering the calculation power of the multi-
cluster processors can be obtained; however, many
real problems have a variable or dynamic workload
depending on the data [2][9][18][27]. In these cases,
it is necessary to adjust data or processes allocation
dynamically while the application is being executed.
Note that any “predictive” load balancing formula
should compute not only the calculation power, but
also other factors proper of the architecture, such as
the size and access time at the different levels of
memory of each processor. [17][28]. In this paper,
only the calculation power of each processor has
been taken into account.
Besides, in a multi-cluster scheme in which
applications are resolved with the Master-Slave
paradigm, any dynamic balancing solution used,
implies a communication overhead that will be
affected by the complexity of the communication
scheme among the nodes of the different clusters, as
mentioned before.

1.4. Types of Problems with Variable Workload.
There are certain types of data parallelism problems
for which it is possible to perform a static balancing
allocation of the total workload. In these cases,
provided there is a heterogeneous architecture, it
will be possible to define a predictive F(Pi,Wt)
function where Pi is the calculation power of
processor i and Wt the total work This function
allows to distribute data “a priori” among processors
[21].
If there is a variable workload due to the data
particular characteristics (e.g. data arrangement,
identification of image patterns), it is not possible to
have a predictive function that assures load
balancing among processors. Thus, it will be
necessary to have a dynamic allocation policy that
can be combined with a predictive initial distribution
of a percentage of the total data [6][13][18].
Any dynamic allocation policy used implies some
overhead degree of communication, which will be
more complex to model and predict in a
heterogeneous multi-cluster architecture.

2. CHARACTERIZATION OF TYPE OF
APPLICATION OF INTEREST.

As analyzed in the introduction, there are different
research axes on dynamic load balancing problems
in multi-cluster architectures.
An architecture model in which heterogeneity
appears only in machines with different clusters and

can be compared to a calculation power function of
the machines of each cluster has been determined.
Besides, it has been chosen to work with the Master-
Slave paradigm with one Master (usually located at
the cluster with better processing services).
Finally, the focus of this experimental work has been
put on one type of the problems in which
communication time among Tc processes is not
significant, considering Tp (Tp >> Tc) local
processing time. This restriction allows to identify
the differences among the static and dynamic load
balancing schemes more clearly without overlapping
an important communication overhead.

3. LOAD DISTRIBUTION MODELS TO BE
STUDIED AND THEORETICAL SPEEDUP

TO BE ACHIEVED

Three ways of data parallelism implementation will
be used:
� Direct Static Distribution (DSD) where the total

workload Wt will be allocated to the architecture
B processor in a homogeneous manner, so that
each processor will have Wt/B, regardless the
F(Pi,Wt) function.
� Predictive Static Distribution (PSD) where the

total workload Wt will be allocated to the
architecture B processor at the moment of starting
the application, according to the prediction
F(Pi,Wt) function.
� Dynamic Distribution upon Demand (DDD)

where a Li percentage of the total Wt workload
will be allocated to the architecture B processor at
the moment of starting the application, according
to the prediction F(Pi,Wi) function and then, each
processor will demand more work on the part of
the Master, as its task is being completed.

The Li value and the amount of additional work to
be allocated to each processor on demand are
experimental research parameters that depend on the
application and the relation between Tp and Tc.

The theoretical Speedup to be achieved by multi-
cluster architecture will be a G(Pi) function. The
experimental measuring of the real Speedup should
directly correlate with the degree of balancing
achieved with the total Wt work allocation during
the execution of the application.

4. CONTRIBUTION OF THIS WORK

A Master-Slave model with 3 heterogeneous clusters
among them, each one having 8 homogeneous
machines operating as a (B=24) multi-cluster with an
additional processor as Master has been studied. The
processors heterogeneity was analyzed, considering
one of the functions of their calculation power.

 JCS&T Vol. 5 No. 4 December 2005

273

 main ()
{ quantSol:=0
 for (pos= 1..N/2)
 placeQueen (1,pos,board)
 detPosValid (posValid,board,2)
 quantSol:=quantSol + detSol (2,posValid,board)
}

 One problem case was studied, which responded to
the hypothesis Tp >> Tc, with the three load
distributions proposed (DSD, PSD, DDD) to carry
out the data parallelism, specially analyzing the
theoretical parallel Speedup. This Speedup was
achieved in view of the calculation power of the
processors, and the load unbalancing taking into
account the parameters B, Wt, Pi y Li mentioned
before.

(a)

function quantSolutions (b)
{ if (rot(b,90)=b) or (rot(b,90)=sym(b)) then return (2)
 else if (rot(b,180)=b) or (rot(b,180)=sym(b)) then return (4)
 else return (8)
}

rot(b,d): returns the board b rotated in d degrees.
sym(b): returns the symmetrical board of b.

5. APPLICACIÓN TO PARALLEL SOLUTION

ON A HETEROGENEOUS MULTI-
CLUSTER OF THE N-QUEENS PROBLEM

 (b) The N-queens problem consists in placing N queens
on an NxN board in such a way that they do not
attacks one another [5][7][12]. A queen attacks
another one if they are in the same diagonal, row or
column.

function detSol (row, posValid, board)
{ i:= positionValid (posValid)
 if (row = N) and (i < N) then
 placeQueen (row,i,board)
 return (quantSolutions (board))
 else
 total:=0
 while (i < N)
 placeQueen (row,i,board)
 detPosValid (newPosValid,board, row+1).
 total:= total + detSol (row+1,newPosValid,board)
 i:= positionValid (posValid)
 return total
}

detPosValid (p,b,r): determines the set p of valid positions for
the row r in the board b.
positionValid (p): returns the first valid position in p.

 5.1 Sequential Solution
An initial solution to the N-queens problem, using an
sequential algorithm, consists in trying all possible
location combinations of the queens on the board,
keeping those that are valid and disrupting the
search whenever this is not achieved.
Considering that a valid combination can generate
up to 8 different solutions, which are rotations of
the same combination, the number of distributions
to be evaluated can be reduced. The best sequential
algorithm found for this problem is based on this
fact [3][23][24]. There follows a brief description of
said algorithm on an NxN board.

(c)
 Figure 1. Sequential Solution Pseudocode

5.2. Parallel Solution proposed based on the
Function of the Load Distribution Models

The algorithm performs N/2 iterations, and each one
places the queen in a different position on the first
row. The remaining N/2 positions are not evaluated
for they are symmetric combinations of the previous
ones.

For the parallel solution of this problem, the queen is
placed on one or more rows, and all the solutions for
that initial arrangement are obtained. Each processor
is in charge of solving the problem for a subset of
said solutions, in this way, the whole system works
with all the possible combinations of those rows.
Two things are to be taken into account:

The vector of valid positions for the following row is
determined from the queen placed on the first row,
and for each of them, the solutions that they
themselves generate are determined (Figure 1a). To
determine the number of solutions as from row i (in
such a way that the whole row j with j ≤ i has its
queen placed), the vector of valid positions for row
i+1, where the same step is repeated for each of
them, is determined. This continues until a queen is
placed on the last row, or until no more valid
positions are left on a certain row (Figure 1b). When
placing a queen on the last row, the number of
different solutions that such combination and its
symmetric one generate when rotated at 90º, 180º y
270º are estimated (Figure 1c).

▪ How to make the combinations.
▪ How to distribute the combinations among

machines.

5.2.1. How to make the Combinations
When working with a heterogeneous architecture,
the amount of work (combinations) that each
processor must solve vary according to the existing
relation regarding calculation power. To be able to
distribute the work in a balanced way, it is
convenient to use “fine grain”, that is, many
combinations of little work each, so as to level up
the work done by each machine, and resolve several
of them [10]. To this aim, the first three rows are
used to form each of the combinations to resolve.
In this way, different N3 combinations are obtained
to be distributed among all the heterogeneous
processors, N being the board size.

 JCS&T Vol. 5 No. 4 December 2005

274

function detSolPartial (posRow1, posRow2, posRow3, board)
{ placeQueen (1,posRow1, board)
 placeQueen (2,posRow2, board)
 placeQueen (3,posRow3, board)
 detPosValid (posValid, board,4).
 return detSol (4, posValid, board)
}

detPosValid (p,b,r): determines the set p of valid positions for
the row r in the board b

5.2.2. How to Distribute Combinations
5.2.2.1- Direct Static Distribution (DSD)
In this type of distribution, each processor mi
calculates the combinations to be resolved at the
beginning of its execution. These are distributed in
a cyclic manner among the machines, so that each mi
resolves Wt/B combinations distributed cyclically.
 (c)
5.2.2.2. Predictive Static Distribución (PSD) Figura 3. Pseudocode for PSDp. The detSol function is that of

Figure 1 (b). In this type of distribution, each processor mi
determines the combinations to be resolved at the
beginning of its execution. To that purpose, the
following steps are carried out:

5.2.2.3. Dynamic Distribution upon Demand (DDD)
 Given C combinations to be calculated by B slave
processors, and a master, the algorithm carries out
the following steps:

� Obtain the relative number of combinations crj
∀ j = 1..B. ▪ The master processor (m0) distributes the initial

combinations:

ulMachinelessPowerf

j
j P

P
cr = - m0 calculates the number of combinations

(Ci) to be initially distributed.
▪ Determine the number of combinations A that

form a block. 100
LiWtCi ×

=

∑ == B
j jcrA 1

- m0 obtains the number of initial cci
combinations that correspond to the mi
processor according to Pi

▪ Calculate for each block, the combinations to
be done, considering that they are allocated
cyclically to each machine mj that has not
carried out any crj combinations in that block. ∑ == B

i ippowTotal 1

powTotal
PCi

cc i
i

×
=

Figure 2 shows how the distribution is carried out
for a six heterogeneous machine (two for each
cluster) system in which the relative number of
combinations are m1=3, m2=3, m3=2, m4=2, m5=1
and m6=1.

- m0 distributes the initial Ci combinations

allocating consecutive cci combinations to mi,
with i = 1..B.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ... 97 98 99 100
m1 m2 m3 m4 m5 m6 m1 m2 m3 m4 m1 m2 m1 m2 m3 m4 m5 m6 m1 m2 m3 m4 m1 m2 m1 m2 m3 m4

Remaining CombinationsBlock 1 Block 2

▪ The master processor (m0) distributes the

remaining Cr combinations, where Cr = C – Ci. Figure 2: Predictive Static Distribution
 - mi requests m0 more combinations to resolve

when its work has finished. For any Figure 3 shows the complete algorithm pseudocode
for this distribution: i = 1..B.

 - m0 sends consecutive Cb combinations to the
mi processor that has made the request if there
is still work to be done.

 main () // processor 1
{ quantSol:=0
 while (processor 1 has combinations)
 determines the location for row 1 (p1)
 determines the location for row 2 (p2)
 determines the location for row 3 (p3)
 quantSol:=quantSol+detSolPartial (p1,p2,p3,board)
 for (i=2..B)
 recv(quantOtherProc,i)
 quantSol:=quantSol+quantOtherProc;
 }

- If Cb > 1, m0 decreases its value in one point

Figure 4 shows how the distribution is done for a
system consisting of six slave heterogeneous
machines (two for each cluster), in which the
relative calculation powers are m1=3, m2=3, m3=2,
m4=2, m5=1 and m6=1. Li = 12 %, and Cb = 5. (a)

 main () // processor i, where i = 2..B

{ quantSol:=0
 while (processor i has combinations)
 determines the location for row 1 (p1)
 determines the location for row 2 (p2)
 determines the location for row 3 (p3)
 quantSol:= quantSol+detSolPartial (p1,p2,p3,board)
 send(quantSol,1)
 }

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ... 98 99 100

m5 m6 m3 m4 m1 m4 m4 m2

m3 - m6 - m1 - m2 - m3 - m4 - m1 - ... - m4 - m4 - m2

m2

List of request

m1 m2

Initial Combinations (CI)

m3 m4

Remaining Combinations (CR)

m3 m6 m1

Figure 4: Dynamic Distribution upon Demand

Figure 5 presents the algorithm pseudocode for
DDD. (b)

 JCS&T Vol. 5 No. 4 December 2005

275

main () // processor 0
{ quantSol:=0
 for (i=1..B)
 determines the first combinations (first)
 determines the last combinations (last)
 send(first,last,i)
 while (has combinations)
 recv(request,i)
 determines the first combinations (first)
 determines the last combinations (last)
 send(first,last,i)
 for (i=1..B)
 send(end,end,i)
 recv(quantOtherProc,i)
 quantSol:=quantSol+quantOtherProc;
}

(a)

main () // processor i, where i = 1..B
{ quantSol:=0
 recv(first,last, 0)
 while (first<>end)
 for (comb= first..last)
 determines the location for row 1 (comb, p1)
 determines the location for row 2 (comb, p2)
 determines the location for row 3 (comb, p3)
 quantSol:=quantSol+detSolPartial (p1,p2,p3, board)
 send(request,i,0)
 recv(first,last, 0)
 send(quantSol,0)
}

(b)
Figura 5. Pseudocode for DDDd. The detSolPartial function is

that of Figure 4.

6. EXPERIMENTAL RESULTS OBTAINED

In this section, the tests carried out are presented
together with the results obtained, regarding the
Speedup metrics and the unbalancing described
below.

6.1. Metrics used
To measure the load unbalancing among the
processors that intervene in a parallel application,
the relative work difference obtained is calculated
from the following formula [4][5][24].

)(
)(min)(max

..1

..1..1

iBi

iBiiBi

Workaverage
WorkTrabajoUnbalance

=

== −
=

where Worki = machine timei.

The Speedup metrics is used to analyze the
algorithm performance in the parallel architecture:

meParallelTi
TimeSequentialSpeedup =

In the case of a heterogeneous architecture, the
“Sequential Time” is given by the time of the best
sequential algorithm executed in the machine with
the greatest calculation power [1][8][11].

To evaluate how good the speedup obtained is, it is
compared with the theoretical speedup of the
architecture upon which work is being carried out.
The speedup considers the relative calculation power
of each machine with respect to the power of the

most powerful machine [25]. The theoretical
Speedup is calculated following this formula:

∑ == B
i iPlSpeedupTheoretica 1

where
B is the number of machines of the
architecture used.
Pi is the relative calculation power of the
machine i regarding the best machine
power. This relation is expressed in the
following formula:

)(
)(

imTimesequential
chinepowerfulMaTimesequential

iP =

6.2. Experiments
The experiments were done on a multi-cluster
architecture consisting of three clusters:
▪ an 8 Celeron 2 Ghz homogeneous cluster of

128 Mb memory.
▪ an 8 Duron 800Mhz homogeneous cluster of

256 Mb memory.
▪ an 8 Pentium III 700 Mhz cluster homogeneous

cluster of 256 Mb memory.

Communication within each cluster is done via an
Ethernet web, using a switch for communication
among clusters.

The language used for the implementations is C
together with the MPI library to improve
communications among processors [22].

Tests were carried out using 24 machines, adding
one for the dynamic distribution, acting as master,
and with different board sizes. (N=17,18,19,20,21).

In the case of dynamic distribution, it was
experimented with different percentages of initial
distribution (Li) and with a different initial number
of combinations in the blocks to be distributed (Cb).
Li = 0, 25, 50 and 75.
Cb = 1, 5, and 10.

6.3. Results
The data of Table 1 shows the percentage of load
unbalancing produced by the algorithm for the
Direct Static, Predictive Static and Dynamic upon
Demand distributions with different Li and Cb
values. Some of these results can be seen in Graph 1.

0% - 1 0% - 5 0% -10 25% - 1 25% - 5 25% -10
17 93% 45% 11% 11% 10% 11% 9% 61%
18 98% 23% 9% 10% 11% 11% 11% 11%
19 130% 58% 8% 9% 9% 9% 9% 9%
20 88% 32% 6% 6% 6% 8% 7% 37%
21 110% 29% 7% 6% 6% 5% 6% 4%

Size Direct
Static

Predictive
Static

Dynamic upon Demand

50% - 1 50% - 5 50% -10 75% - 1 75% - 5 75% -10
17 8% 13% 113% 39% 39% 47%
18 11% 8% 67% 35% 35% 40%
19 9% 8% 68% 20% 20% 37%
20 8% 6% 49% 36% 36% 43%
21 7% 4% 36% 30% 30% 31%

Size Dynamic upon Demand

Table 1: Percentage of unbalancing for each test.

 JCS&T Vol. 5 No. 4 December 2005

276

From the results obtained, it can be seen that the
speedup achieved with the dynamic upon demand
distribution slightly increases as the size of N
increases, in all cases being closer to the optimum.
Besides, it can be seen that there is a significant
difference regarding the speedup achieved by the
algorithm that distributes in a direct static manner,
and a little less for the predictive static distribution.

0%

20%

40%

60%

80%

100%

120%

140%

17 18 19 20 21
Size N

%
 U

nb
al

an
ci

ng

Direct Static Predictive Static Dynamic upon Demand
Graph 1: Load Unbalancing of Direct Static, Predictive Static

and Dynamic upon Demand Distributions (with Li=25 and Cb=1).
For N=17, 18, 19, 20, 21.

7. CONCLUSSION AND WORK GUIDELINES

Analyzing the results obtained from the
experimental work, we can come to the following
conclusions:

Table 2 presents the speedup obtained for each test
mentioned before together with the optimal speedup
(or theoretical) calculated for this machine
combination. Table 3 shows the total time for each
test.

¾ Pure parallel solution (without considering work

distribution) for the type of problems where
Tp>>Tc, mainly the N-Queens requires a
minimal communication among machines, thus
making essential the choice of data distribution
among clusters, to achieve an almost optimal
Speedup.

0% - 1 0% - 5 0% -10 25% - 1 25% - 5

17 16 9.42 13.49 14.78 14.82 14.80 14.83 15.16
18 16 9.28 14.25 15.12 14.98 14.89 14.89 14.89
19 16 8.09 12.80 15.13 15.12 15.15 15.22 15.14
20 16 9.82 13.61 15.39 15.27 15.32 15.26 15.30
21 16 8.96 13.56 15.36 15.40 15.36 15.42 15.45

Dynamic upon DemandSize Optimum Direct
Static

Predictive
Static

25% -10 50% - 1 50% - 5 50% -10 75% - 1 75% - 5 75% -10

17 10.22 15.16 14.61 7.72 12.19 12.19 12.19
18 14.91 14.90 15.12 9.82 12.43 12.43 12.34
19 15.15 15.17 15.20 9.85 13.89 13.89 12.27
20 12.02 15.25 15.43 11.09 12.39 12.38 11.89
21 15.68 15.39 15.54 12.03 12.73 12.73 12.67

Size Dynamic upon Demand

¾ Naturally, algorithms that take into account the
calculation power of each machine for work
distribution have a better behavior than Direct
Static distribution. This improvement is clearly
expressed in the Load Balancing and the
Speedup.

Table 2: Speedup.

0% - 1 0% - 5 0% -10 25% - 1 25% - 5 25% -10

17 6.36 4.44 4.05 4.04 4.05 4.04 3.95 5.86
18 46.88 30.51 28.75 29.02 29.20 29.21 29.21 29.16
19 413.18 261.28 220.96 221.11 220.63 219.63 220.80 220.67
20 2735.21 1973.48 1745.32 1759.14 1752.54 1759.64 1755.23 2234.18
21 25296.55 16710.35 14752.70 14720.81 14750.63 14699.02 14673.81 14450.14

Size Direct
Static

Predictive
Static

Dynamic upon Demand

¾ Among the algorithm that take into account the
calculation power, it can be seen that the
algorithms that distribute dynamically can
distribute work in a more balancing way among
the machines (as seen in Graph 1), without
much affecting the final time of execution (as
shown by the speedup en Graph 2 and the data
of Table 3).

50% - 1 50% - 5 50% -10 75% - 1 75% - 5 75% -10

17 3.95 4.10 7.76 4.91 4.91 4.91
18 29.18 28.76 44.30 35.00 34.99 35.23
19 220.45 219.94 339.58 240.72 240.72 272.56
20 1760.48 1740.82 2422.17 2168.29 2169.02 2259.31
21 14721.65 14585.20 18846.13 17809.43 17810.01 17886.58

Size Dynamic upon Demand

Table 3: Algorithm Total Time. ¾ In dynamic distribution, the Speedup obtained is

quite close to the optimum according to the
parallel architecture used in this case.

Graph 2 shows the speedup obtained with each of
the distribution algorithms for some of the tests in
Table 2, together with the optimal speedup of this
architecture.

At present, work is being done with a fourth cluster,
using more powerful and sensitive machines than
those of the three clusters used in this experimental
work.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

17 18 19 20 21
Size N

Sp
ee

du
p

Direct Static Predictive Static Dynamic upon Demand Optimum

Likewise, tests are being done with clusters outside
the UNLP, particularly at the UNSur (Bahía Blanca),
UNComahue (Neuquen), UA Barcelona(Spain) and
the Universidad Católica del Salvador (Brasil).

8. REFERENCIAS

[1] Al-Jaroodi J, Mohamed N, Jiang H, Swanson

D. “Modeling Parallel Applications
Performance on Heterogeneous System”. IEEE
Computer Society, 2003.

Graph 2: Speedup of the Direct Static, Predictive Static and
Dynamic upon Demand Distributions (with Li=50 and Cb=5) and

Optimum, for N=17, 18, 19, 20, 21.

 JCS&T Vol. 5 No. 4 December 2005

277

[2] Baiardi F, Chiti S, Mori P, Ricci L.
“Integrating Load Balancing and Locality in
the Parallelization of Irregular Problems”.
Future Generation Computer Systems, Elsevier
Science B.V., Vol 17, 2001, pp 969-975.

[3] Bernhardsson B. ”Explicit Solution to the n-
queens Problems for all n”. ACM SIGART
Bulletin,2:7,1991.

[4] Bohn C, Lamont G. “Load Balancing for
Heterogeneous Clusters of PCs”. Future
Generation Computer Systems, Elsevier
Science B.V., Vol 18, 2002, pp 389-400.

[5] Bruen A, Dixon R. “Then n-queens Problem.
Discrete Mathematics”. 12:393-395, 1997.

[6] Campos L, Scherson I. “Rate of Change Load
Balancing in Distributed and Parallel System”.
Proceeding of the 13th International Parallel
Processing Symposium and 10th Symposium on
Parallel and Distributed Processing, San Juan,
Puerto Rico, Pages 701-707. 1999.

[7] De Giusti L, Novarini P, Naiouf M, De Giusti
A. “Parallelization of the N-queens problem.
Load unbalance analysis”. Workshop de
Procesamiento Paralelo y Distribuido (WPPD),
Congreso Argentino de Ciencias de la
Computación (CACIC’03), 2003.

[8] Donaldson V, Berman F, Paturi R. “Program
Speedup in a Heterogeneous Computing
Network”. Journal of Parallel and Distributed
Computing 21:3 (6/1994), 316-322.

[9] Dongarra J, Foster I, Fox G, Gropp W,
Kennedy K, Torczon L, White A. “The
Sourcebook of Parallel Computing”. Morgan
Kauffman Publishers. Elsevier Science, 2003.

[10] Goldman. “Scalable Algorithms for Complete
Exchange on Multi-Cluster Networks”. In:
CCGRID'02, IEEE/ACM, Berlín, p.286-287,
2002.

[11] Grama A, Gupta A, Karypis G, Kumar V.
“Introduction to Parallel Computing”. Second
Edition. Pearson Addison Wesley, 2003.

[12] Hedetniemi S, Hedetniemi T, Reynolds R.
“Combinatorial problems on chessboards: II”.
Chapter 6 in Domination in graphs: advanced
topic, pag 133-162, 1998.

[13] Hui C, Chanson S. “Improve Strategies for
Dynamic Load Balancing”. IEEE Concurrency,
pages 58-67. 1999.

[14] Jiang, Yeung. “Scalable Inter-Cluster
Communication System for Clustered
Multiprocessors”. 1997.

[15] Jordan H, Alaghband G. “Fundamentals of
Parallel Computing”. Prentice Hall, 2002.

[16] Leopold C. "Parallel and Distributed
Computing. A survey of Models, Paradigms,
and Approaches". Wiley Series on Parallel and
Distributed Computing. Albert Zomaya Series
Editor, 2001.

[17] Menascé D, Almeida V. “Cost-Performance
Analysis of Heterogeneity in Supercomputer
Architectures”. Proc. ACM-IEEE
Supercomputing'90 Conference, New York,
Nov 1990.

[18] Naiouf M. “Procesamiento Paralelo. Balance
Dinámico de Carga en Algoritmos de Sorting”.
Tesis Doctoral. Universidad Nacional de La
Plata, 2004.

[19] Ogura S, Nakada H, Matsuoka S. “Evaluation
of the inter-cluster data transfer on Grid
environment”. Proceedings of CCGrid 2003 ,
pp. 374-381, May 2003.

[20] Pfister G. “In Search of Clusters”. Prentice
Hall, 2nd Edition, 1998.

[21] Ross K, Yao D. “Optimal Load Balancing and
Scheduling in a Distributed Computer System”.
Journal of Association for Computing
Machinery, 38 (3): 676-690.1991.

[22] Snir M, Otto S, Huss-Lederman S, Walker D,
Dongarra J. “MPI: The Complete Reference”.
Cambridge, MA: MIT Press, 1996. Available
in web site: http://www.netlib.org/utk/papers
/mpi-book/mpi-book.html.

[23] Somers J. “The N Queens Problem a study in
optimization”.
www.jsomers.com/nqueen_demo
/nqueens.html.

[24] Takaken, “N Queens Problem (number of
Solutions)”. http://www.ic-net.or.jp/home
/takaken /e /queen/.

[25] Tinetti F. “Cómputo Paralelo en Redes Locales
de Computadoras”. Tesis Doctoral. Univ.
Autónoma de Barcelona, 2004.
https://lidi.info.unlp.edu.ar/~fernando/publis/pu
bli.html

[26] Vaughan F, Grove D, Coddington P.
“Communication Performance Issues for Two
Cluster Computers”. Proceedings of the
twenty-sixth Australasian computer science
conference on Conference in research and
practice in information technology, p.171-180,
February 01, 2003, Adelaide, Australia.

[27] Watts J, Taylor S. “A Practical Approach to
Dynamic Load Balancing”. IEEE Transactions
on Parallel and Distributed Systems, 9(3),
March 1998, pp. 235-248.

[28] Zhang X, Yan Y. “Modeling and
Characterizing Parallel Computing
Performance on Heterogeneous Networks of
Workstations”. Proceeding of the 7th
Symposium on Parallel and Distributed
Processing. 1995.

 JCS&T Vol. 5 No. 4 December 2005

278

http://www.netlib.org/utk/papers /mpi-book/mpi-book.html
http://www.netlib.org/utk/papers /mpi-book/mpi-book.html
http://www.jsomers.com/nqueen_demo /nqueens.html
http://www.jsomers.com/nqueen_demo /nqueens.html
http://www.ic-net.or.jp/home /takaken /e /queen/
http://www.ic-net.or.jp/home /takaken /e /queen/
https://lidi.info.unlp.edu.ar/~fernando/publis/publi.html
https://lidi.info.unlp.edu.ar/~fernando/publis/publi.html

