2,803 research outputs found

    PRIORITIZED TASK SCHEDULING IN FOG COMPUTING

    Get PDF
    Cloud computing is an environment where virtual resources are shared among the many users over network. A user of Cloud services is billed according to pay-per-use model associated with this environment. To keep this bill to a minimum, efficient resource allocation is of great importance. To handle the many requests sent to Cloud by the clients, the tasks need to be processed according to the SLAs defined by the client. The increase in the usage of Cloud services on a daily basis has introduced delays in the transmission of requests. These delays can cause clients to wait for the response of the tasks beyond the deadline assigned. To overcome these concerns, Fog Computing is helpful as it is physically placed closer to the clients. This layer is placed between the client and the Cloud layer, and it reduces the delay in the transmission of the requests, processing and the response sent back to the client greatly. This paper discusses an algorithm which schedules tasks by calculating the priority of a task in the Fog layer. The tasks with higher priority are processed first so that the deadline is met, which makes the algorithm practical and efficient

    Gunrock: A High-Performance Graph Processing Library on the GPU

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs have been two significant challenges for developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We evaluate Gunrock on five key graph primitives and show that Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives, and better performance than any other GPU high-level graph library.Comment: 14 pages, accepted by PPoPP'16 (removed the text repetition in the previous version v5

    Engineering MultiQueues: Fast relaxed concurrent priority queues

    Get PDF
    Priority queues with parallel access are an attractive data structure for applications like prioritized online scheduling, discrete event simulation, or greedy algorithms. However, a classical priority queue constitutes a severe bottleneck in this context, leading to very small throughput. Hence, there has been significant interest in concurrent priority queues with relaxed semantics. We investigate the complementary quality criteria rank error (how close are deleted elements to the global minimum) and delay (for each element x, how many elements with lower priority are deleted before x). In this paper, we introduce MultiQueues as a natural approach to relaxed priority queues based on multiple sequential priority queues. Their naturally high theoretical scalability is further enhanced by using three orthogonal ways of batching operations on the sequential queues. Experiments indicate that MultiQueues present a very good performance-quality tradeoff and considerably outperform competing approaches in at least one of these aspects. We employ a seemingly paradoxical technique of "wait-free locking" that might be of more general interest to convert sequential data structures to relaxed concurrent data structures

    Architectural support for task dependence management with flexible software scheduling

    Get PDF
    The growing complexity of multi-core architectures has motivated a wide range of software mechanisms to improve the orchestration of parallel executions. Task parallelism has become a very attractive approach thanks to its programmability, portability and potential for optimizations. However, with the expected increase in core counts, finer-grained tasking will be required to exploit the available parallelism, which will increase the overheads introduced by the runtime system. This work presents Task Dependence Manager (TDM), a hardware/software co-designed mechanism to mitigate runtime system overheads. TDM introduces a hardware unit, denoted Dependence Management Unit (DMU), and minimal ISA extensions that allow the runtime system to offload costly dependence tracking operations to the DMU and to still perform task scheduling in software. With lower hardware cost, TDM outperforms hardware-based solutions and enhances the flexibility, adaptability and composability of the system. Results show that TDM improves performance by 12.3% and reduces EDP by 20.4% on average with respect to a software runtime system. Compared to a runtime system fully implemented in hardware, TDM achieves an average speedup of 4.2% with 7.3x less area requirements and significant EDP reductions. In addition, five different software schedulers are evaluated with TDM, illustrating its flexibility and performance gains.This work has been supported by the RoMoL ERC Advanced Grant (GA 321253), by the European HiPEAC Network of Excellence, by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P, TIN2016-76635-C2-2-R and TIN2016-81840-REDT), by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), and by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 671697 and No. 671610. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047.Peer ReviewedPostprint (author's final draft

    Gunrock: GPU Graph Analytics

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs, have presented two significant challenges to developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We characterize the performance of various optimization strategies and evaluate Gunrock's overall performance on different GPU architectures on a wide range of graph primitives that span from traversal-based algorithms and ranking algorithms, to triangle counting and bipartite-graph-based algorithms. The results show that on a single GPU, Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives and CPU shared-memory graph libraries such as Ligra and Galois, and better performance than any other GPU high-level graph library.Comment: 52 pages, invited paper to ACM Transactions on Parallel Computing (TOPC), an extended version of PPoPP'16 paper "Gunrock: A High-Performance Graph Processing Library on the GPU

    Scheduling data flow program in xkaapi: A new affinity based Algorithm for Heterogeneous Architectures

    Get PDF
    Efficient implementations of parallel applications on heterogeneous hybrid architectures require a careful balance between computations and communications with accelerator devices. Even if most of the communication time can be overlapped by computations, it is essential to reduce the total volume of communicated data. The literature therefore abounds with ad-hoc methods to reach that balance, but that are architecture and application dependent. We propose here a generic mechanism to automatically optimize the scheduling between CPUs and GPUs, and compare two strategies within this mechanism: the classical Heterogeneous Earliest Finish Time (HEFT) algorithm and our new, parametrized, Distributed Affinity Dual Approximation algorithm (DADA), which consists in grouping the tasks by affinity before running a fast dual approximation. We ran experiments on a heterogeneous parallel machine with six CPU cores and eight NVIDIA Fermi GPUs. Three standard dense linear algebra kernels from the PLASMA library have been ported on top of the Xkaapi runtime. We report their performances. It results that HEFT and DADA perform well for various experimental conditions, but that DADA performs better for larger systems and number of GPUs, and, in most cases, generates much lower data transfers than HEFT to achieve the same performance

    Efficient Task Scheduling and Fair Load Distribution Among Federated Clouds

    Get PDF
    The federated cloud is the future generation of cloud computing, allowing sharing of computing and storage resources, and servicing of user tasks among cloud providers through a centralized control mechanism. However, a great challenge lies in the efficient management of such federated clouds and fair distribution of the load among heterogeneous cloud providers. In our proposed approach, called QPFS_MASG, at the federated cloud level, the incoming tasks queue are partitioned in order to achieve a fair distribution of the load among all cloud providers of the federated cloud. Then, at the cloud level, task scheduling using the Modified Activity Selection by Greedy (MASG) technique assigns the tasks to different virtual machines (VMs), considering the task deadline as the key factor in achieving good quality of service (QoS). The proposed approach takes care of servicing tasks within their deadline, reducing service level agreement (SLA) violations, improving the response time of user tasks as well as achieving fair distribution of the load among all participating cloud providers. The QPFS_MASG was implemented using CloudSim and the evaluation result revealed a guaranteed degree of fairness in service distribution among the cloud providers with reduced response time and SLA violations compared to existing approaches. Also, the evaluation results showed that the proposed approach serviced the user tasks with minimum number of VMs
    corecore