2,171 research outputs found

    Cross-layer framework and optimization for efficient use of the energy budget of IoT Nodes

    Full text link
    Both physical and MAC-layer need to be jointly optimized to maximize the autonomy of IoT devices. Therefore, a cross-layer design is imperative to effectively realize Low Power Wide Area networks (LPWANs). In the present paper, a cross-layer assessment framework including power modeling is proposed. Through this simulation framework, the energy consumption of IoT devices, currently deployed in LoRaWAN networks, is evaluated. We demonstrate that a cross-layer approach significantly improves energy efficiency and overall throughput. Two major contributions are made. First, an open-source LPWAN assessment framework has been conceived. It allows testing and evaluating hypotheses and schemes. Secondly, as a representative case, the LoRaWAN protocol is assessed. The findings indicate how a cross-layer approach can optimize LPWANs in terms of energy efficiency and throughput. For instance, it is shown that the use of larger payloads can reduce up to three times the energy consumption on quasi-static channels yet may bring an energy penalty under adverse dynamic conditions

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Wireless Communication Based on Chirp Signals for LoRa IoT Devices

    Get PDF
    This paper presents the study of chirp signals for wireless communications between Internet of Thing devices used on low power wide area networks. Up and down chirp concept is introduced as well as the chirp spread spectrum concept. A computationally efficient symbol decoding method is presented based of discrete Fourier transform as an alternative to typical coherent detection. The proposed simulation LoRa model is implemented in MATLAB allowing the communication system evaluation based on bit error rate and packet error rate

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    IoT for measurements and measurements for IoT

    Get PDF
    The thesis is framed in the broad strand of the Internet of Things, providing two parallel paths. On one hand, it deals with the identification of operational scenarios in which the IoT paradigm could be innovative and preferable to pre-existing solutions, discussing in detail a couple of applications. On the other hand, the thesis presents methodologies to assess the performance of technologies and related enabling protocols for IoT systems, focusing mainly on metrics and parameters related to the functioning of the physical layer of the systems

    A Survey on Long-Range Wide-Area Network Technology Optimizations

    Get PDF
    Long-Range Wide-Area Network (LoRaWAN) enables flexible long-range service communications with low power consumption which is suitable for many IoT applications. The densification of LoRaWAN, which is needed to meet a wide range of IoT networking requirements, poses further challenges. For instance, the deployment of gateways and IoT devices are widely deployed in urban areas, which leads to interference caused by concurrent transmissions on the same channel. In this context, it is crucial to understand aspects such as the coexistence of IoT devices and applications, resource allocation, Media Access Control (MAC) layer, network planning, and mobility support, that directly affect LoRaWAN’s performance.We present a systematic review of state-of-the-art works for LoRaWAN optimization solutions for IoT networking operations. We focus on five aspects that directly affect the performance of LoRaWAN. These specific aspects are directly associated with the challenges of densification of LoRaWAN. Based on the literature analysis, we present a taxonomy covering five aspects related to LoRaWAN optimizations for efficient IoT networks. Finally, we identify key research challenges and open issues in LoRaWAN optimizations for IoT networking operations that must be further studied in the future

    Systematic literature survey: applications of LoRa communication

    Get PDF
    LoRa is a communication scheme that is part of the low power wide are network (LPWAN) technology using ISM bands. It has seen extensive documentation and use in research and industry due to its long coverage ranges of up-to 20Km or more with less than 14dB transmit power. Moreover, some applications report theoretical battery lives of upto 10years for field deployed modules utilising the scheme in WSN applications. Additionally, the scheme is very resilient to losses from noise, as well bursts of interference through its FEC. Our objective is to systematically review the empirical evidence of the use-cases of LoRa in rural landscapes, metrics and the relevant validation schemes. In addition the research is evaluated based on (i) mathematical function of the scheme (bandwidth use, spreading factor, symbol rate, chip rate and nominal bit rate) (ii) use-cases (iii) test-beds, metrics of evaluation and (iv) validation methods. A systematic literature review of published, refereed primary studies on LoRa applications was conducted. Using articles from 2010-2019. We identified 21 relevant primary studies. These reported a range of different assessments of LoRa. 10 out of 21 reported on novel use cases. As an actionable conclusion, the authors conclude that more work is needed in terms of field testing, as no articles could be found on performance/deployment in Botswana or South Africa despite the existence of LoRa networks in both countries. Thus researchers in the region can research propagation models performance, energy efficiency of the scheme and MAC layer as well as the channel access challenges for the region
    • …
    corecore