1,081 research outputs found

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Nonrepetitive Colourings of Planar Graphs with O(logn)O(\log n) Colours

    Get PDF
    A vertex colouring of a graph is \emph{nonrepetitive} if there is no path for which the first half of the path is assigned the same sequence of colours as the second half. The \emph{nonrepetitive chromatic number} of a graph GG is the minimum integer kk such that GG has a nonrepetitive kk-colouring. Whether planar graphs have bounded nonrepetitive chromatic number is one of the most important open problems in the field. Despite this, the best known upper bound is O(n)O(\sqrt{n}) for nn-vertex planar graphs. We prove a O(logn)O(\log n) upper bound

    Graph coloring with no large monochromatic components

    Full text link
    For a graph G and an integer t we let mcc_t(G) be the smallest m such that there exists a coloring of the vertices of G by t colors with no monochromatic connected subgraph having more than m vertices. Let F be any nontrivial minor-closed family of graphs. We show that \mcc_2(G) = O(n^{2/3}) for any n-vertex graph G \in F. This bound is asymptotically optimal and it is attained for planar graphs. More generally, for every such F and every fixed t we show that mcc_t(G)=O(n^{2/(t+1)}). On the other hand we have examples of graphs G with no K_{t+3} minor and with mcc_t(G)=\Omega(n^{2/(2t-1)}). It is also interesting to consider graphs of bounded degrees. Haxell, Szabo, and Tardos proved \mcc_2(G) \leq 20000 for every graph G of maximum degree 5. We show that there are n-vertex 7-regular graphs G with \mcc_2(G)=\Omega(n), and more sharply, for every \epsilon>0 there exists c_\epsilon>0 and n-vertex graphs of maximum degree 7, average degree at most 6+\epsilon for all subgraphs, and with mcc_2(G)\ge c_\eps n. For 6-regular graphs it is known only that the maximum order of magnitude of \mcc_2 is between \sqrt n and n. We also offer a Ramsey-theoretic perspective of the quantity \mcc_t(G).Comment: 13 pages, 2 figure

    Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count

    Full text link
    We show that triangle-free penny graphs have degeneracy at most two, list coloring number (choosability) at most three, diameter D=Ω(n)D=\Omega(\sqrt n), and at most min(2nΩ(n),2nD2)\min\bigl(2n-\Omega(\sqrt n),2n-D-2\bigr) edges.Comment: 10 pages, 2 figures. To appear at the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Compact Labelings For Efficient First-Order Model-Checking

    Get PDF
    We consider graph properties that can be checked from labels, i.e., bit sequences, of logarithmic length attached to vertices. We prove that there exists such a labeling for checking a first-order formula with free set variables in the graphs of every class that is \emph{nicely locally cwd-decomposable}. This notion generalizes that of a \emph{nicely locally tree-decomposable} class. The graphs of such classes can be covered by graphs of bounded \emph{clique-width} with limited overlaps. We also consider such labelings for \emph{bounded} first-order formulas on graph classes of \emph{bounded expansion}. Some of these results are extended to counting queries

    Additive Non-Approximability of Chromatic Number in Proper Minor-Closed Classes

    Get PDF
    Robin Thomas asked whether for every proper minor-closed class G, there exists a polynomial-time algorithm approximating the chromatic number of graphs from G up to a constant additive error independent on the class G. We show this is not the case: unless P=NP, for every integer k >= 1, there is no polynomial-time algorithm to color a K_{4k+1}-minor-free graph G using at most chi(G)+k-1 colors. More generally, for every k >= 1 and 1 <=beta <=4/3, there is no polynomial-time algorithm to color a K_{4k+1}-minor-free graph G using less than beta chi(G)+(4-3 beta)k colors. As far as we know, this is the first non-trivial non-approximability result regarding the chromatic number in proper minor-closed classes. We also give somewhat weaker non-approximability bound for K_{4k+1}-minor-free graphs with no cliques of size 4. On the positive side, we present an additive approximation algorithm whose error depends on the apex number of the forbidden minor, and an algorithm with additive error 6 under the additional assumption that the graph has no 4-cycles
    corecore