4,280 research outputs found

    On Algebraic Decoding of qq-ary Reed-Muller and Product-Reed-Solomon Codes

    Full text link
    We consider a list decoding algorithm recently proposed by Pellikaan-Wu \cite{PW2005} for qq-ary Reed-Muller codes RMq(,m,n)\mathcal{RM}_q(\ell, m, n) of length nqmn \leq q^m when q\ell \leq q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of τ(1qm1/n)\tau \leq (1 - \sqrt{{\ell q^{m-1}}/{n}}). This is an improvement over the proof using one-point Algebraic-Geometric codes given in \cite{PW2005}. The described algorithm can be adapted to decode Product-Reed-Solomon codes. We then propose a new low complexity recursive algebraic decoding algorithm for Reed-Muller and Product-Reed-Solomon codes. Our algorithm achieves a relative error correction radius of τi=1m(1ki/q)\tau \leq \prod_{i=1}^m (1 - \sqrt{k_i/q}). This technique is then proved to outperform the Pellikaan-Wu method in both complexity and error correction radius over a wide range of code rates.Comment: 5 pages, 5 figures, to be presented at 2007 IEEE International Symposium on Information Theory, Nice, France (ISIT 2007

    AG codes achieve list decoding capacity over contant-sized fields

    Full text link
    The recently-emerging field of higher order MDS codes has sought to unify a number of concepts in coding theory. Such areas captured by higher order MDS codes include maximally recoverable (MR) tensor codes, codes with optimal list-decoding guarantees, and codes with constrained generator matrices (as in the GM-MDS theorem). By proving these equivalences, Brakensiek-Gopi-Makam showed the existence of optimally list-decodable Reed-Solomon codes over exponential sized fields. Building on this, recent breakthroughs by Guo-Zhang and Alrabiah-Guruswami-Li have shown that randomly punctured Reed-Solomon codes achieve list-decoding capacity (which is a relaxation of optimal list-decodability) over linear size fields. We extend these works by developing a formal theory of relaxed higher order MDS codes. In particular, we show that there are two inequivalent relaxations which we call lower and upper relaxations. The lower relaxation is equivalent to relaxed optimal list-decodable codes and the upper relaxation is equivalent to relaxed MR tensor codes with a single parity check per column. We then generalize the techniques of GZ and AGL to show that both these relaxations can be constructed over constant size fields by randomly puncturing suitable algebraic-geometric codes. For this, we crucially use the generalized GM-MDS theorem for polynomial codes recently proved by Brakensiek-Dhar-Gopi. We obtain the following corollaries from our main result. First, randomly punctured AG codes of rate RR achieve list-decoding capacity with list size O(1/ϵ)O(1/\epsilon) and field size exp(O(1/ϵ2))\exp(O(1/\epsilon^2)). Prior to this work, AG codes were not even known to achieve list-decoding capacity. Second, by randomly puncturing AG codes, we can construct relaxed MR tensor codes with a single parity check per column over constant-sized fields, whereas (non-relaxed) MR tensor codes require exponential field size.Comment: 38 page

    Generalized GM-MDS: Polynomial Codes are Higher Order MDS

    Full text link
    The GM-MDS theorem, conjectured by Dau-Song-Dong-Yuen and proved by Lovett and Yildiz-Hassibi, shows that the generator matrices of Reed-Solomon codes can attain every possible configuration of zeros for an MDS code. The recently emerging theory of higher order MDS codes has connected the GM-MDS theorem to other important properties of Reed-Solomon codes, including showing that Reed-Solomon codes can achieve list decoding capacity, even over fields of size linear in the message length. A few works have extended the GM-MDS theorem to other families of codes, including Gabidulin and skew polynomial codes. In this paper, we generalize all these previous results by showing that the GM-MDS theorem applies to any \emph{polynomial code}, i.e., a code where the columns of the generator matrix are obtained by evaluating linearly independent polynomials at different points. We also show that the GM-MDS theorem applies to dual codes of such polynomial codes, which is non-trivial since the dual of a polynomial code may not be a polynomial code. More generally, we show that GM-MDS theorem also holds for algebraic codes (and their duals) where columns of the generator matrix are chosen to be points on some irreducible variety which is not contained in a hyperplane through the origin. Our generalization has applications to constructing capacity-achieving list-decodable codes as shown in a follow-up work by Brakensiek-Dhar-Gopi-Zhang, where it is proved that randomly punctured algebraic-geometric (AG) codes achieve list-decoding capacity over constant-sized fields.Comment: 34 page

    Evaluation codes defined by finite families of plane valuations at infinity

    Get PDF
    We construct evaluation codes given by weight functions defined over polynomial rings in m a parts per thousand yen 2 indeterminates. These weight functions are determined by sets of m-1 weight functions over polynomial rings in two indeterminates defined by plane valuations at infinity. Well-suited families in totally ordered commutative groups are an important tool in our procedureSupported by Spain Ministry of Education MTM2007-64704 and Bancaixa P1-1B2009-03. The authors thank to the referees for their valuable suggestions.Galindo Pastor, C.; Monserrat Delpalillo, FJ. (2014). Evaluation codes defined by finite families of plane valuations at infinity. Designs, Codes and Cryptography. 70(1-2):189-213. https://doi.org/10.1007/s10623-012-9738-7S189213701-2Abhyankar S.S.: Local uniformization on algebraic surfaces over ground field of characteristic p ≠ 0. Ann. Math. 63, 491–526 (1956)Abhyankar S.S.: On the valuations centered in a local domain. Am. J. Math. 78, 321–348 (1956)Abhyankar S.S.: Lectures on expansion techniques in algebraic geometry. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 57. Tata Institute of Fundamental Research, Bombay (1977).Abhyankar S.S.: On the semigroup of a meromorphic curve (part I). In: Proceedings of the International Symposium on Algebraic Geometry (Kyoto) Kinokunio Tokio, pp. 249–414 (1977).Abhyankar S.S., Moh T.T.: Newton-Puiseux expansion and generalized Tschirnhausen transformation (I). J. Reine Angew. Math. 260, 47–83 (1973)Abhyankar S.S., Moh T.T.: Newton-Puiseux expansion and generalized Tschirnhausen transformation (II). J. Reine Angew. Math. 261, 29–54 (1973)Berlekamp E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968)Campillo A., Farrán J.I.: Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models. Finite Fields Appl. 6, 71–92 (2000)Carvalho C., Munuera C., Silva E., Torres F.: Near orders and codes. IEEE Trans. Inf. Theory 53, 1919–1924 (2007)Decker W., Greuel G.M., Pfister G., Schöenemann H.: Singular 3.1.3, a computer algebra system for polynomial computations (2011) http://www.singular.uni-kl.de .Feng G.L., Rao T.R.N.: Decoding of algebraic geometric codes up to the designed minimum distance. IEEE Trans. Inf. Theory 39, 37–45 (1993)Feng G.L., Rao T.R.N.: A simple approach for construction of algebraic-geometric codes from affine plane curves. IEEE Trans. Inf. Theory 40, 1003–1012 (1994)Feng G.L., Rao T.R.N.: Improved geometric Goppa codes, part I: basic theory. IEEE Trans. Inf. Theory 41, 1678–1693 (1995)Fujimoto M., Suzuki M.: Construction of affine plane curves with one place at infinity. Osaka J. Math. 39(4), 1005–1027 (2002)Galindo C.: Plane valuations and their completions. Commun. Algebra 23(6), 2107–2123 (1995)Galindo C., Monserrat F.: δ-sequences and evaluation codes defined by plane valuations at infinity. Proc. Lond. Math. Soc. 98, 714–740 (2009)Galindo C., Monserrat F.: The Abhyankar-Moh theorem for plane valuations at infinity. Preprint 2010. ArXiv:0910.2613v2.Galindo C., Sanchis M.: Evaluation codes and plane valuations. Des. Codes Cryptogr. 41(2), 199–219 (2006)Geil O.: Codes based on an Fq{\mathbb{F}_q} -algebra. PhD Thesis, Aalborg University, June (2000).Geil O., Matsumoto R.: Generalized Sudan’s list decoding for order domain codes. Lecture Notes in Computer Science, vol. 4851, pp. 50–59 (2007)Geil O., Pellikaan R.: On the structure of order domains. Finite Fields Appl. 8, 369–396 (2002)Goppa V.D.: Codes associated with divisors. Probl. Inf. Transm. 13, 22–26 (1997)Goppa V.D.: Geometry and Codes. Mathematics and Its Applications, vol. 24. Kluwer, Dordrecht (1991).Greco S., Kiyek K.: General elements in complete ideals and valuations centered at a two-dimensional regular local ring. In: Algebra, Arithmetic, and Geometry, with Applications, pp. 381–455. Springer, Berlin (2003).Høholdt T., van Lint J.H., Pellikaan R.: Algebraic geometry codes. In: Handbook of Coding Theory, vol. 1, pp. 871–961. Elsevier, Amsterdam (1998).Jensen C.D.: Fast decoding of codes from algebraic geometry. IEEE Trans. Inf. Theory 40, 223–230 (1994)Justesen J., Larsen K.J., Jensen H.E., Havemose A., Høholdt T.: Construction and decoding of a class of algebraic geometric codes. IEEE Trans. Inf. Theory 35, 811–821 (1989)Justesen J., Larsen K.J., Jensen H.E., Høholdt T.: Fast decoding of codes from algebraic plane curves. IEEE Trans. Inf. Theory 38, 111–119 (1992)Massey J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 15, 122–127 (1969)Matsumoto R.: Miura’s generalization of one point AG codes is equivalent to Høholdt, van Lint and Pellikaan’s generalization. IEICE Trans. Fundam. E82-A(10), 2007–2010 (1999)Moghaddam M.: Realization of a certain class of semigroups as value semigroups of valuations. Bull. Iran. Math. Soc. 35, 61–95 (2009)O’Sullivan M.E.: Decoding of codes defined by a single point on a curve. IEEE Trans. Inf. Theory 41, 1709–1719 (1995)O’Sullivan M.E.: New codes for the Belekamp-Massey-Sakata algorithm. Finite Fields Appl. 7, 293–317 (2001)Pinkham H.: Séminaire sur les singularités des surfaces (Demazure-Pinkham-Teissier), Course donné au Centre de Math. de l’Ecole Polytechnique (1977–1978).Sakata S.: Extension of the Berlekamp-Massey algorithm to N dimensions. Inf. Comput. 84, 207–239 (1990)Sakata S., Jensen H.E., Høholdt T.: Generalized Berlekamp-Massey decoding of algebraic geometric codes up to half the Feng-Rao bound. IEEE Trans. Inf. Theory 41, 1762–1768 (1995)Sakata S., Justesen J., Madelung Y., Jensen H.E., Høholdt T.: Fast decoding of algebraic geometric codes up to the designed minimum distance. IEEE Trans. Inf. Theory 41, 1672–1677 (1995)Sathaye A.: On planar curves. Am. J. Math. 99(5), 1105–1135 (1977)Shannon C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 and 623–656 (1948).Skorobogatov A.N., Vlădut S.G.: On the decoding of algebraic geometric codes. IEEE Trans. Inf. Theory 36, 1051–1060 (1990)Spivakovsky M.: Valuations in function fields of surfaces. Am. J. Math. 112, 107–156 (1990)Suzuki M.: Affine plane curves with one place at infinity. Ann. Inst. Fourier 49(2), 375–404 (1999)Tsfasman S.G., Vlăduţ T.: Zink, modular curves, Shimura curves and Goppa codes, better than Varshamov–Gilbert bound. Math. Nachr. 109, 21–28 (1982)Vlăduţ S.G., Manin Y.I. Linear codes and modular curves. In: Current problems in mathematics, vol. 25, pp. 209–257. Akad. Nauk SSSR Vseoyuz, Moscow (1984).Zariski O.: The reduction of the singularities of an algebraic surface. Ann. Math. 40, 639–689 (1939)Zariski O.: Local uniformization on algebraic varieties. Ann. Math. 41, 852–896 (1940)Zariski O., Samuel P.(1960) Commutative Algebra, vol. II. Springer, Berlin

    Subspace Designs Based on Algebraic Function Fields

    Get PDF
    Subspace designs are a (large) collection of high-dimensional subspaces {H_i} of F_q^m such that for any low-dimensional subspace W, only a small number of subspaces from the collection have non-trivial intersection with W; more precisely, the sum of dimensions of W cap H_i is at most some parameter L. The notion was put forth by Guruswami and Xing (STOC\u2713) with applications to list decoding variants of Reed-Solomon and algebraic-geometric codes, and later also used for explicit rank-metric codes with optimal list decoding radius. Guruswami and Kopparty (FOCS\u2713, Combinatorica\u2716) gave an explicit construction of subspace designs with near-optimal parameters. This construction was based on polynomials and has close connections to folded Reed-Solomon codes, and required large field size (specifically q >= m). Forbes and Guruswami (RANDOM\u2715) used this construction to give explicit constant degree "dimension expanders" over large fields, and noted that subspace designs are a powerful tool in linear-algebraic pseudorandomness. Here, we construct subspace designs over any field, at the expense of a modest worsening of the bound LL on total intersection dimension. Our approach is based on a (non-trivial) extension of the polynomial-based construction to algebraic function fields, and instantiating the approach with cyclotomic function fields. Plugging in our new subspace designs in the construction of Forbes and Guruswami yields dimension expanders over F^n for any field F, with logarithmic degree and expansion guarantee for subspaces of dimension Omega(n/(log(log(n))))
    corecore