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—— Abstract

Subspace designs are a (large) collection of high-dimensional subspaces {H;} of " such that
for any low-dimensional subspace W, only a small number of subspaces from the collection have
non-trivial intersection with W; more precisely, the sum of dimensions of W N H; is at most some
parameter L. The notion was put forth by Guruswami and Xing (STOC’13) with applications
to list decoding variants of Reed-Solomon and algebraic-geometric codes, and later also used for
explicit rank-metric codes with optimal list decoding radius.

Guruswami and Kopparty (FOCS’13, Combinatorica’16) gave an explicit construction of
subspace designs with near-optimal parameters. This construction was based on polynomials
and has close connections to folded Reed-Solomon codes, and required large field size (specifically
q = m). Forbes and Guruswami (RANDOM’15) used this construction to give explicit constant
degree “dimension expanders" over large fields, and noted that subspace designs are a powerful
tool in linear-algebraic pseudorandomness.

Here, we construct subspace designs over any field, at the expense of a modest worsening of
the bound L on total intersection dimension. Our approach is based on a (non-trivial) extension
of the polynomial-based construction to algebraic function fields, and instantiating the approach
with cyclotomic function fields. Plugging in our new subspace designs in the construction of
Forbes and Guruswami yields dimension expanders over F" for any field F, with logarithmic
degree and expansion guarantee for subspaces of dimension Q(n/(loglogn)).
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Subspace Designs Based on Algebraic Function Fields

1 Introduction

An emerging theory of “linear-algebraic pseudorandomness” studies the linear-algebraic
analogs of fundamental Boolean pseudorandom objects where the rank of subspaces plays the
role of the size of subsets. A recent work [4] studied the interrelationships between several
such algebraic objects such as subspace designs, dimension expanders, rank condensers, and
rank-metric codes, and highlighted the fundamental unifying role played by subspace designs
in this web of connections.

Informally, a subspace design is a collection of subspaces of a vector space Fg* (throughout
we denote by F, the finite field with ¢ elements) such that any low-dimensional subspace W
intersects only a small number of subspaces from the collection. More precisely:

» Definition 1. A collection Hy, Ha, ..., Hys of b-dimensional subspaces of Fy" form an (s, L)-

(strong) subspace design, if for every s-dimensional subspace W C Fy?, Ef\il dim(W N H;) <
L.

In particular, this implies that at most L subspaces H; have non-trivial intersection with
W. A collection meeting this weaker requirement is called a weak subspace design; unless
we mention otherwise, by subspace design we always mean a strong subspace design in this
paper. One would like the dimension b of each subspace in the subspace design to be large,
typically 2(m) for applications of interest, L to be small, and the number of subspaces M to
be large.

Subspace designs were introduced by the first two authors in [11], where they used them
to improve the list size and efficiency of list decoding algorithms for algebraic-geometric
codes, yielding efficiently list-decodable codes with optimal redundancy over fixed alphabets
and small output list size. A standard probabilistic argument shows that a random collection
of subspaces forms a good subspace design with high probability. Subsequently, Guruswami
and Kopparty [7] gave an explicit construction of subspace designs, nearly matching the
parameters of random constructions, albeit over large fields.

Intriguingly, the construction in [7] was based on algebraic list-decodable codes (specifically
folded Reed-Solomon codes). Recall that improving the list-decodability of such codes was
the motivation for the formulation of subspace designs in the first place! This is yet another
compelling example of the heavily intertwined nature of error-correcting codes and other
pseudorandom objects. The following states one of the main trade-offs achieved by the
construction in [7].

» Theorem 2 (Folded Reed-Solomon based construction [7]). For every e € (0, 1), positive
integers s,m with s < em/4, and a prime power q > m, there exists an explicit* collection
of M = ¢/ subspaces in Fy', each of dimension at least (1 — e)m, which form a
(s, 22)-(strong) subspace design.

Note the requirement of the field size ¢ being larger than the ambient dimension m in
their construction. To construct subspace designs over small fields, they use a construction
over a large extension field Fy-, and view b-dimensional subspaces of IFZ’Z«/ as br-dimensional
subspaces of ]Fgm/. However, this transformation need not preserve the “strongness" of
the subspace design, and an (s, L)-subspace design over the extension field only yields an
(s, L)-weak subspace design over F,,.

1 By explicit, we mean a deterministic construction that runs in time poly(g,m, M) and outputs a basis
for each of the subspaces in the subspace design.
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The strongness property is crucial for all the applications of subspace designs in [4]. In par-
ticular, the strongness is what drives the construction of dimension expanders (defined below)
of low degree. The weak subspace design property does not suffice for these applications.

» Definition 3. A collection of linear maps Ay, Ag, ..., Ag : F* — F" is said to be a (b, a)-
dimension expander if for every subspace V of F” of dimension at most b, dim(ZfZl A; (V) =
(1+«)-dim(V). The number of maps d is the “degree" of the expander, and « is the expansion
factor.

Using the subspace designs constructed in Theorem 2 in a black-box fashion, Forbes
and Guruswami [4] gave explicit (2(n),2(1))-dimension expanders of O(1) degree when
|F| > poly(n). Here explicit means that the maps A; are specified explicitly, say by the
matrix representing their action with respect to some fixed basis. Extending Theorem 2 to
smaller fields will yield constant-degree (2(n), (1))-dimension expanders over all fields. The
only known constructions of such dimension expanders over finite fields rely on monotone
expanders [3, 2], a rather complicated (and remarkable) form of bipartite vertex expanders
whose neighborhood maps are monotone. Even the existence of constant-degree monotone
expanders does not follow from standard probabilistic methods, and the only known explicit
construction is a sophisticated one using the group SLy(R) by Bourgain and Yehudayoff [1].
(Earlier, Dvir and Shpilka [2] constructed monotone expanders of logarithmic degree using
Cayley graphs over the cyclic group, yielding logarithmic degree (Q(n),2(1))-dimension
expanders.)

In light of this, it is a very interesting question to remove the field size restriction
in Theorem 2 above, as it will yield an arguably simpler construction of constant-degree
dimension expanders over every field, and which might also offer a quantitatively better
trade-off between the degree and expansion factor. We note that probabilistic constructions
achieve similar parameters (in fact a slightly larger sized collection with ¢f2em) subspaces)
with no restriction on the field size (one can even take ¢ = 2).

Our construction. The large field size in Theorem 2 was inherited from Reed-Solomon
codes, which are defined over a field of size at least the code length. Our main contribution
in this work is a construction of subspace designs based on algebraic function fields, which
permits us to construct subspace designs over small fields. By instantiating this approach
with a construction based on cyclotomic function fields, we are able to prove the following
main result in this work:

» Theorem 4 (Main Theorem). For every e € (0,1), a prime power q and positive integers

s,m such that s < em/4, there exists an explicit construction of M = Q(ql™/(25)] /¢)
subspaces in ¥, each of dimension at least (1 — e)m, which form an (s', w)

subspace design for all s’ < s.

-strong

Note that we state a slightly stronger property that the bound on intersection size
improves for subspaces of lower dimension s’ < s. This property also holds for Theorem 2
and in fact is important for the dimension expander construction in [4], and so we make it
explicit.

The bound on intersection size we guarantee above is worse than the one from the random
construction by a factor of log, m. The result of Theorem 2 can be viewed as a special case
of Theorem 4 since log, m < 1 when ¢ > m. The factor log, m comes out as a trade-off
of the explicit construction vs the random construction given in [11]. The extension field
based construction using Theorem 2 would yield an (s, O(s?/¢))-subspace design (since an
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(s, L)-weak subspace design is trivially an (s, sL)-(strong) subspace design). The bound we
achieve is better for all s = Q(logq m). In the use of subspace designs in the dimension
expander construction of [4], s governs the dimension of the subspaces which are guaranteed
to expand, which we would like to be large (and ideally Q(m)). The application of subspace
designs to list decoding [11, 9] employs the parameter choice m = O(s) in order keep the

m

alphabet size ¢ small. Therefore, our improvement applies to a meaningful setting of

parameters that is important for the known applications of (strong) subspace designs.

Application to dimension expanders over small fields. By plugging in the subspace designs
of Theorem 4 into the dimension expander construction of [4], we can get the following:

» Theorem 5. For every prime power q and positive integer n > q, there exists an explicit
construction of a (b =0 r—), 1/3) -dimension expander with O(log,n) degree.

log, log, n

For completeness, let us very quickly recap how such dimension expanders may be obtained
from the subspace designs of Theorem 4, using the “tensor-then-condense" approach in [4].
We begin with linear maps Ty, Ty : F* — F?", where T (v) = (v;0) and Ta(v) = (0;v) — these
trivially achieve expansion factor 2 by doubling the ambient dimension. Then we take the
subspace design of Theorem 4 with m = 2n, ¢ = 1/2, s = 2b, and M = 12[log, m| subspaces
H; (if b = Bn/(log, log, n) for small enough absolute constant 3 > 0, Theorem 4 guarantees
these many subspaces). Let E; : F2* — F” be linear maps such that H; = ker(E;). The
dimension expander consists of the 2 composed maps E;oTj fori=1,2,...,M and j = 1,2.
Briefly, the analysis of the expansion in dimension proceeds as follows. Let V' be a subspace
of F* with dim(V) = ¢ < b, and let W =T3(V) 4+ T5(V) be the 2¢-dimensional subspace of
F2" after the tensoring step. The strong subspace design property implies that the number
of maps E; for which dim(E;W) < 4¢/3 — which is equivalent to dim(W N H;) > 2¢/3 — is
less than 12[log, m]| = M. So there must be an 7 for which dim(E;W) > 4¢/3, and this E;
when composed with T7 and 75 will expand V' to a subspace of dimension at least % dim(V).

By using a method akin to the conversion of Reed-Solomon codes over extension fields to
BCH codes over the base field, applied to the large field subspace designs of Theorem 2, Forbes
and Guruswami [4] constructed (Q2(n/logn), 2(1))-dimension expanders of O(logn) degree.
In contrast, our construction here guarantees expansion for dimension up to Q2(n/(loglogn)).
The parameters offered by Theorem 5 are, however, weaker than both the construction given
in [2], which has logarithmic degree but expands subspaces of dimension Q(n), as well as the
one in [1], which further gets constant degree. However, we do not go through monotone
expanders which are harder to construct than vertex expanders, and our construction works
fully within the linear-algebraic setting. We hope that the ideas in this work pave the way for
a subspace design similar to Theorem 2 over small fields, and the consequent construction of
constant-degree (2(n), 2(1))-dimension expanders over all fields. In fact, all that is required
for this is an (s, O(s))-subspace design with a sufficiently large constant number of subspaces,
each of dimension (m).

Construction approach. The generalization of the polynomials-based subspace design from
[7] to take advantage of more general algebraic function fields is not straightforward. The
natural approach would be to replace the space of low-degree polynomials by a Riemann-Roch
space consisting of functions of bounded pole order ¢ at some place. We prove that such a
construction can work, provided the degree ¢ is less than the degree of the field extension
(and some other mild condition is met). However, this degree restriction is a severe one,
and the dimension of the associated Riemann-Roch space will typically be too small (as
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the “genus" of the function field, which measures the degree minus dimension “defect," will
be large), unless the field size is large. Therefore, we don’t know an instantiation of this
approach that yields a family of good subspace designs over a fixed size field.

Let us now sketch the algebraic crux of the polynomial based construction in [7], and
the associated challenges in extending it to other function fields. The core property of a
dimension s subspace W of polynomials underlying the construction of Theorem 2 is the
following: If f1, fa,..., fs € Fq[X] of degree less than ¢ — 1 are linearly independent over
F, (these s polynomials being a basis of the subspace W), then the “folded Wronskian,"
which is the determinant of the matrix M (f1, f2,..., fs) whose 4, j’th entry is f;(v*~1X), is
a nonzero polynomial in F,[X]. Here «y is an arbitrary primitive element of F,. One might
compare this with the classical Wronskian criterion for linear dependence over characteristic
zero fields (and also holds when characteristic is bigger than the degree of the f;’s), based on
the singularity of the s x s matrix whose i, j'th entry is 3;3,’[{ .

One approach is to prove this claim about the folded Wronskian is via a “list size" bound
from list decoding: one can prove that for any Ai,..., A; € F,[X], not all 0, the space of
solutions f € Fy[X].(q—1) to

AL(X)F(X) + A2(X) f(4X) + -+ A(X) f(* 71 X) =0 (1)

has dimension at most s — 1. (This was the basis of the linear-algebraic list decoding
algorithm for folded Reed-Solomon codes [6, 8].) Stating the contrapositive, if f1, fa,..., fs
are linearly independent over F,[X], then the rows of the matrix M(fi, fo,..., fs) are
linearly independent, and therefore its determinant, the folded Wronskian, is a nonzero
polynomial. On the other hand, being the determinant of an s X s matrix whose entries
are degree m polynomials, the folded Wronskian has degree at most ms. To prove the
subspace design property, one then establishes that for each subspace H; in the collection
that intersects W = span(fi,..., fs), the determinant picks up a number of distinct roots
each with dim(W N H;) multiplicity, the set of roots for different intersecting H; being disjoint
from each other. The total intersection bound then follows because the folded Wronskian
has at most ms roots, counting multiplicities.

One can try to mimic the above approach for folded algebraic-geometric (AG) codes,
with f7 for some suitable automorphism o playing the role of the shifted polynomial f(yX).
This, however, runs into significant trouble, as the bound on number of solutions f to the
functional equation analogous to (1), Ay f + Ao f® 4+ -+ A, f°" " =0, is much higher. The
list of solutions is either exponentially large and needs pruning via pre-coding the folded AG
codes with subspace-evasive sets [10], or it is much bigger than ¢!
based on cyclotomic function fields and narrow ray class fields where the folded AG codes
work directly [5, 12].

Let F'/K be a function field where the extension is Galois with Galois group generated
by an automorphism o. We choose the m-dimensional ambient space V = Fi* to be a
carefully chosen subspace of a Riemann-Roch space in F of degree £ >> m (specifically, we
require ¢ > m + 2g where g is the genus). We then establish that if fi, fo,..., fs € V are
linearly independent over F,, a certain “automorphism Moore matrix" M, (f1, f2,..., fs) is
non-singular. The determinant of this Moore matrix is thus a non-zero function in F, and
this generalizes the folded Wronskian criterion for polynomials mentioned above.

in the constructions

This non-singularity result is proved in two steps. First, we show that for functions in
V, linear independence over I, implies linear independence over K. Then we show that
for any fi1,...,fs € F that are linearly independent over K = F?, the automorphism
Moore matrix associated with ¢ is non-singular. With our hands on the non-zero function
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A = det(M,(f1, f2,.--,fs)), we can proceed as in the folded Reed-Solomon case — the
part about A picking up many zeroes whenever a subspace in the collection intersects
span(fi,..., fs) also generalizes. The pole order of A, however, is now ¢s instead of ms in
the polynomial-based construction. This is the cause for the worse bound on total intersection
dimension in our Theorem 4. The detailed analysis of the above function field generalization
will be presented in a full version of this paper. In the current version, we present only
constructions without proof and hence “automorphism Moore matrix" is not introduced.

Organization. We begin with a quick review of background on algebraic function fields in
general and cyclotomic function fields in particular in Section 2. We presentour constructions
of subspace designs from function fields in Section 3 In Section 4, we instantiate our
construction with specific cyclotomic function fields and derive our main consequence for
subspace designs and establish Theorem 4.

2 Preliminaries on function fields

Background on function fields. Throughout this paper, F, denotes the finite field of ¢
elements. A function field F' over F, is a field extension over F, in which there exists an
element z of F that is transcendental over F, such that F/F,(z) is a finite extension. F, is
called the full constant field of F if the algebraic closure of I, in F' is F, itself. In this paper,
we always assume that F, is the full constant field of F', denoted by F/F,.

Each discrete valuation v from F to ZU{oo} defines a local ring O = {f € F': v(f) > 0}.
The maximal ideal P of O is called a place. We denote the valuation v and the local ring O
corresponding to P by vp and Op, respectively. The residue class field Op/P, denoted by
Fp, is a finite extension of F,. The extension degree [Fp : F,] is called degree of P, denoted
by deg(P).

Let Pr denote the set of places of . A divisor D of F is a formal sum ) pcp, mpP,
where mp € Z are equal to 0 except for finitely many P. The degree of D is defined to be
deg(D) = EPE]PF mp deg(P). We say that D is positive, denoted by D > 0, if mp > 0 for all
P € Pp. For a nonzero function f, the principal divisor (f) is defined to be Y pcp, vp(f)P.
Then the degree of the principal divisor (f) is 0. The Riemann-Roch space associated with a
divisor D, denoted by £(D), is defined by

L(D):={f € F\{0}: (f)+ D >0} uU{0}. (2)

Then £(D) is a finite dimensional space over F,;. By the Riemann-Roch theorem [15],
the dimension of £(D), denoted by dimg, (D), is lower bounded by deg(D) — g + 1, i.e.,
dimg, (D) > deg(D)—g+1, where g is the genus of F'. Furthermore, dimg, (D) = deg(D)—g+1
if deg(D) > 2g— 1. In addition, we have the following results [15, Lemma 1.4.8 and Corollary
1.4.12(b)]:

(i) If deg(D) < 0, then dimg, (D) = 0;

(i) For a positive divisor G, we have dimg_ (D) — dimg, (D — G) < deg(G), i.e., dimp, (D —

G) = dimy, (D) — deg(G).
Let Aut(F/F,) denote the set of automorphisms of F' that fix every element of F, i.e.,

Aut(F/F,) = {r: 7 is an automorphism of F' and o” = « for all o € F,}.

For a place P € Pp and an automorphism o € Aut(F/F,), we denote by P? the set
{f?: f € P}. Then P’ is a place and moreover we have deg(P?) = deg(P). The place
P is called a conjugate place of P. ¢ also induces an automorphsim of Aut(Fp/F,). This
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implies that there exists an integer e > 0 such that a” = a? for all &« € Fp. o is called the
Frobenius of Pife=1,ie.,a” = a? for all &« € Fp. For a place P and a function f € Op, we

e

denote by f(P) the residue class of f in Fpp. Thus, we have (f(P))? = (f(P))? = f7(P?).

Background on cyclotomic function fields. Let z be a transcendental element over F, and
denote by K the rational function field F,(z). Let K be an algebraic closure of K. Denote
by F,[z] the polynomial ring F,[z]. Let End(K*¢) be the ring of homomorphisms from K¢

to K. We define p,(z) = z9+xz for all z € K. For i > 2, we define p,i(2) = pu(pri-1(2)).

For a polynomial p(z) = Y1 ja;z’ € Fylz], we define pp,)(2) = Y0 aip,i(z). For
simplicity, we denote pp(,)(2) by 2P(®). It is easy to see that zP(*) € F,[z][2] is a g-linearized
polynomial in z of degree ¢, where d = deg(p(x)).

For a polynomial p(z) € Fy[x] of degree d, define the set

Ap) = {a € K*: @) = 0}, (3)
Then A,y ~ Fy[2]/(p(x)) is an Fy[z]-module and it has exactly ¢¢ elements. Furthermore,
Ap(a) is a cyclic Fy[z]-module. For any generator A of Ay, one has Ap,) = M. Ac
Fy[2]/(p(x))} and A is a generator of A, if and only if ged(A, p(x)) = 1. The extension
K(\) = K(Apy)) is a Galois extension over K with Gal(K(A,))/K) ~ (Fyz]/p(x))*,
where (F,[z]/p(x))* is the unit group of the ring F,[z]/(p(z)). We use o4 to denote
the automorphism of Aut(K()\)/K) corresponding to A, i.e., A4 = A4, The size of
(Fylz]/p(x))* is denoted by ®(p(z)). If p(z) is an irreducible polynomial of degree d over
F,, we have ®(p(z)) = ¢% — 1. In this case, the extension K(A,))/K is cyclic and
Gal(K (Ay(a))/K) = (Fylal fp(z))* ~ F=,.

3 Construction of subspace design

Let 0 € Aut(F/F,) be an automorphism of a finite order. Denote by F° the fixed field by
(o), i.e.,, F* ={x € F: z° = z}. By the Galois theory, F/F? is a Galois extension and
Gal(F/F?) = (o). Let D be a divisor of F such that D? = D. Assume that @’ is a place of
F lying above a rational place @ of F? and Q' ¢ supp(D). Furthermore, assume that V is
an F,-subspace of £(D) such that VN L(D — Q') = {0}.

For each place P € Py such that P & supp(D) and P, P’ ... P°
define the subspace Hp:

—(t-1) .
are distinct, we

t—1
sz{feV:f(P"i):Oforeachie{0,...,t—1}}:Vﬂ£<D—ZP"i). (4)
=0

Recall that f(P) is defined to be the residue class of f in the residue field Op/P. Hence, it
is clear that

t—1
dimg, (Hp) > dimg, (V) + dimp, (D - Z PUI> — dimp, (D) > dimg, (V) — tdeg(P).
i=0

i

Let f(P)? = f(P)4" for some integer e > 0. Thus, we have fo (P"i) = f(P)° = f(P)qei for
all integers 7 > 0.

Define Sp = {P”fi :1€{0,...,t—1}}, and denote by F, a set of places P with degree
r such that Sp are disjoint and |Sp| = t.
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» Theorem 6. For any integers s,t with 1 < s < t, the collection (Hp)pcr, of subspaces
of V, each of codimension at most rt, is an (s strong subspace design, where

¢ = deg(D).

) r(t—s+1) §+1)

In the above construction, there is no upper bound on the degree of the divisor D. This
makes it possible to compute the dimension of the Riemann-Roch space £(D). The next
construction is for the case when the degree of D is upper bounded by [F' : F?]. This
construction works for function fields of small genus.

Suppose that there exists a rational place @ in F? such that there is only one place Q' of
F lying above @. Let D be a positive divisor of F' Wlth Q ¢ supp(D) and deg(D) < n. For
each place P € Pr such that P ¢ supp(D) and P, P° , P Y are distinct, we define
the subspace Zp:

Ip={fe€L(D): f(P° ') =0 for cach i € {0,...,t —1}}. (5)

» Theorem 7. For any integers s,t with 1 < s < t, the collection (Zp)per, of subspaces

of L(D), each of codimension at most rt, is an (s strong subspace design, where

¢ = deg(D).

ls
’r(t—s+1)

4  Subspace design from cyclotomic function fields

In this section, we will present subspace design from the construction given in Section 3 by
applying cyclotomic function fields. We start with the subspace design in an ambient space
of smaller dimension.

The small dimension case. If deg(D) is smaller than n = [F': F?] and n is smaller than
the genus g(F') of F, in general it is hard to compute dimension of the Riemann-Roch space
L(D). Therefore, we cannot use the construction given in Theorem 7. In this subsection, we
apply Theorem 7 to the case where we can estimate the dimension of £(D).

Let F be the rational function field F,(z). Let 0 € Aut(F/F,) be given by « + ~yx, where
7 is a primitive element of F;. By Theorem 7, one can obtain the subspace design given in
[7]. Below we show that the subspace design given in [7] can be realized by using cyclotomic
function fields.

Put K = Fy(z). Let pi(z) be a monic linear polynomial. For instance, we can simply
take p1(x) = 2. Then the cyclotomic function field Fy := K(A,,) is a cyclic extension over
K with Gal(Fy/K) ~ F;. In fact, F1 = K(\) = Fg(\) with X satisfying A9~' + 2 = 0.
Thus, K = F,(A?7!). Let v be a primitive root of F, and let o € Gal(F/K) be defined by
A% = A7 = ~«\. This gives the exactly the same function fields and automorphism o as in [7].
Therefore, we conclude that this cyclotomic function field also realizes the subspace design
given in [7].

Next we consider a monic primitive quadratic polynomial ps(x) = 22 + ax + 8 with
a, f € F,. Then the cyclotomic function field F» := K(A,,) is a cyclic extension over K with
Gal(Fy/K) ~ (Fy[z]/(p2)*. In fact, F» = K(X\) with A satisfying AL N (g g a) +
22 + ax + B = 0. (see [14]). Let o be a generator of Gal(Fy/K). Then by the Galois theory,
the fixed field Fy is the rational function field K = F,(z). The genus of the function field F;
is g(Fp) = (=20t 113 1),

The zero of p(z) is the unique ramified place in F,(x) and it is totally ramified. Let P’
be the unique place of F that lies over the zero of ps(x). Let £ be an even positive integer
with ¢ < ¢ — 1 and let D = (¢/2)P’. Then deg(D) = ¢ and D? = D. Furthermore, we know
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that the the zero of (x — «) is fully inert in F»/K. By Theorem 7, we have the following
result.

» Theorem 8. For all positive integers s,r,t,m and prime powers q satisfying s <t < m =
¢q? for some ¢ € (0,1/2], the above construction yields a collection of M = Q(%L) spaces

Th,..., Iy CF, each of codimension rt, which forms an (s’, %

design for all s’ < s.

) strong subspace

Proof. Choose ¢ such that the dimension of £((¢/2)P’) is m = (q?. By the Riemman-Roch
Theorem, we have (¢ > deg((¢/2)P') — g(F») + 1, i.e., £ <(q>+g—1<(1/2+()¢* The
desired result follows from Theorem 7. |

The large dimension case. In this subsection, we will make use of Theorem 6 due to large
genus. Let p(x) € Fy[z] be a monic primitive polynomial of degree d > 2. Consider the
cyclotomic function field I := K (Ap(,)), where K is the rational function field F,(x). Then
F/K is a Galois extension with Gal(F/K) ~ (F,[z]/(p(x)))*. Thus, Gal(F/K) is a cyclic
group of order ¢ — 1. Let o be a generator of this group. Then by the Galois theory, the
fixed field F'7 is the rational function field F,(z).

The zero of p(z) is the unique ramified place in Fy(x) and it is totally ramified. Let P’
be the unique place of F' lying over the zero of p(x). Let @’ be the unique place of F' that
lies over the zero of x. Since Q' is totally inert, we have deg(Q') = [F : F°] = ¢ — 1 :=m.

The genus of the function field F is g = 3 (d— 2+ g%?) (¢ —1)+1. Put D =

[%W P'. Then ¢ = deg(D) > 2g +m and hence, dimp, (D — Q') = deg(D — Q') — g+ 1.
Choose V C L(D) such that V and £(D — Q') are a direct sum of £(D). Thus, we have
VN LD - Q') = {0} and dimg, (V) = dimp, (D) — dimg, (D — Q") =¢* -1 =m.

By Theorem 6, we have the following.

» Theorem 9. For all positive integers s, r,t, d, m and prime powers q satisfying ged(r,m) = 1
and s < t < m/r = (¢* — 1)/r, there is an eplicit collection of M = Q(™L) spaces
Hi, ..., Har C FY, each of codimension at most rt, which forms an (s, %)—
strong subspace design for all s’ < s. Furthermore, the subspace design can be constructed in

poly(q, m,r) time.

Proof. The subspace design property follows from Theorem 6 since ¢ = deg(D) < (d —
1/(g — 1))m. The construction of the subspace design mainly involves finding a basis of V
and evaluations of functions at places of degree r which can be computed in poly(q, m,r).
We can enumerate over all degree r irreducible polynomials R € F,[z] by brute-force in g™
time. None of these places are ramified, and each of these places R splits completely into m
places of degree r, say {P"P1 | 1 <i<m},in F. So we can pick b = [ 7] of these places
P, P"f’, ceey P”(b_m, and define a particular subspace of co-dimension rt associated with each
of them as in (4). <

By setting t ~ 2s and 7 ~ | 5= | in Theorem 9, we obtain the Main Theorem 4.
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