1,979 research outputs found

    Liquid Scintillator Time Projection Chamber Concept

    Full text link
    Results are presented from a small-scale experiment to investigate the use of room temperature organic liquid scintillators as the active medium for a time projection chamber (TPC). The optical properties of liquid scintillators have long been known, but their ability to transport charge has remained, until now, largely untested. The idea of using room temperature liquids as an active medium for an ionisation chamber was first presented in \cite{EnglerTMS}. Since then the range of liquid scintillators available has been greatly developed. We present successful transport of ionization charges in a selection of both, pure organic liquid solvents and liquid scintillator cocktails over 20 \,mm using a variety of electric drift field strengths. The target of this research is to offer a cost effective alternative to liquid noble gas detectors in neutrino physics.Comment: 6 pages, 5 figures, submitted to Proceedings 12th Pisa Meeting on Advanced Detectors, La Biodola, Isola d'Elba, Ital

    Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection

    Full text link
    Over the course of several decades, organic liquid scintillators have formed the basis for successful neutrino detectors. Gadolinium-loaded liquid scintillators provide efficient background suppression for electron antineutrino detection at nuclear reactor plants. In the Double Chooz reactor antineutrino experiment, a newly developed beta-diketonate gadolinium-loaded scintillator is utilized for the first time. Its large scale production and characterization are described. A new, light yield matched metal-free companion scintillator is presented. Both organic liquids comprise the target and "Gamma Catcher" of the Double Chooz detectors.Comment: 16 pages, 4 figures, 5 table

    Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection

    Full text link
    Over the course of several decades, organic liquid scintillators have formed the basis for successful neutrino detectors. Gadolinium-loaded liquid scintillators provide efficient background suppression for electron antineutrino detection at nuclear reactor plants. In the Double Chooz reactor antineutrino experiment, a newly developed beta-diketonate gadolinium-loaded scintillator is utilized for the first time. Its large scale production and characterization are described. A new, light yield matched metal-free companion scintillator is presented. Both organic liquids comprise the target and "Gamma Catcher" of the Double Chooz detectors.Comment: 16 pages, 4 figures, 5 table

    Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection

    Full text link
    Over the course of several decades, organic liquid scintillators have formed the basis for successful neutrino detectors. Gadolinium-loaded liquid scintillators provide efficient background suppression for electron antineutrino detection at nuclear reactor plants. In the Double Chooz reactor antineutrino experiment, a newly developed beta-diketonate gadolinium-loaded scintillator is utilized for the first time. Its large scale production and characterization are described. A new, light yield matched metal-free companion scintillator is presented. Both organic liquids comprise the target and "Gamma Catcher" of the Double Chooz detectors.Comment: 16 pages, 4 figures, 5 table

    Metal-loaded organic scintillators for neutrino physics

    Full text link
    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared.Comment: 46 pages, 5 figure

    Measurement of ortho-Positronium Properties in Liquid Scintillators

    Get PDF
    Pulse shape discrimination in liquid scintillator detectors is a well-established technique for the discrimination of heavy particles from light particles. Nonetheless, it is not efficient in the separation of electrons and positrons, as they give rise to indistinguishable scintillator responses. This inefficiency can be overtaken through the exploitation of the formation of ortho-Positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants currently used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties are suitable for enhancing the electron-positron discrimination.Comment: 4 pages, 1 figure. Contribution to proceedings of the Low Radioactivity Techniques 2013 Workshop at LNGS, Assergi (AQ), Italy, April 10-12 201

    Optical Properties of Quantum-Dot-Doped Liquid Scintillators

    Full text link
    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.Comment: version 2, minor text update
    • …
    corecore