164 research outputs found

    ICWE 2016 rapid mashup challenge: Introduction

    Get PDF
    The ICWE 2016 Rapid Mashup Challenge is the second installment of a series of challenges that aim to engage researchers and practitioners in showcasing and discussing their work on assisting mashup development. This introduction provides the reader with the general context of the Challenge, its objectives and motivation, and the requirements contributions were asked to satisfy so as to be eligible for participation. A summary of the contributions that were selected for presentation in the 2016 edition anticipates the content of the remainder of this volume

    Proceedings of the First International Workshop on Mashup Personal Learning Environments

    Get PDF
    Wild, F., Kalz, M., & Palmér, M. (Eds.) (2008). Proceedings of the First International Workshop on Mashup Personal Learning Environments (MUPPLE08). September, 17, 2008, Maastricht, The Netherlands: CEUR Workshop Proceedings, ISSN 1613-0073. Available at http://ceur-ws.org/Vol-388.The work on this publication has been sponsored by the TENCompetence Integrated Project (funded by the European Commission's 6th Framework Programme, priority IST/Technology Enhanced Learning. Contract 027087 [http://www.tencompetence.org]) and partly sponsored by the LTfLL project (funded by the European Commission's 7th Framework Programme, priority ISCT. Contract 212578 [http://www.ltfll-project.org

    Enhancement of the usability of SOA services for novice users

    Get PDF
    Recently, the automation of service integration has provided a significant advantage in delivering services to novice users. This art of integrating various services is known as Service Composition and its main purpose is to simplify the development process for web applications and facilitates reuse of services. It is one of the paradigms that enables services to end-users (i.e.service provisioning) through the outsourcing of web contents and it requires users to share and reuse services in more collaborative ways. Most service composers are effective at enabling integration of web contents, but they do not enable universal access across different groups of users. This is because, the currently existing content aggregators require complex interactions in order to create web applications (e.g., Web Service Business Process Execution Language (WS-BPEL)) as a result not all users are able to use such web tools. This trend demands changes in the web tools that end-users use to gain and share information, hence this research uses Mashups as a service composition technique to allow novice users to integrate publicly available Service Oriented Architecture (SOA) services, where there is a minimal active web application development. Mashups being the platforms that integrate disparate web Application Programming Interfaces (APIs) to create user defined web applications; presents a great opportunity for service provisioning. However, their usability for novice users remains invalidated since Mashup tools are not easy to use they require basic programming skills which makes the process of designing and creating Mashups difficult. This is because Mashup tools access heterogeneous web contents using public web APIs and the process of integrating them become complex since web APIs are tailored by different vendors. Moreover, the design of Mashup editors is unnecessary complex; as a result, users do not know where to start when creating Mashups. This research address the gap between Mashup tools and usability by the designing and implementing a semantically enriched Mashup tool to discover, annotate and compose APIs to improve the utilization of SOA services by novice users. The researchers conducted an analysis of the already existing Mashup tools to identify challenges and weaknesses experienced by novice Mashup users. The findings from the requirement analysis formulated the system usability requirements that informed the design and implementation of the proposed Mashup tool. The proposed architecture addressed three layers: composition, annotation and discovery. The researchers developed a simple Mashup tool referred to as soa-Services Provisioner (SerPro) that allowed novice users to create web application flexibly. Its usability and effectiveness was validated. The proposed Mashup tool enhanced the usability of SOA services, since data analysis and results showed that it was usable to novice users by scoring a System Usability Scale (SUS) score of 72.08. Furthermore, this research discusses the research limitations and future work for further improvements

    EzWeb/FAST: Reporting on a Successful Mashup-based Solution for Developing and Deploying Composite Applications in the Upcoming Web of Services

    Get PDF
    Service oriented architectures (SOAs) based on Web Services have attracted a great interest and IT investments during the last years, principally in the context of business-to-business integration within corporate intranets. However, they are nowadays evolving to break through enterprise boundaries, in a revolutionary attempt to make the approach pervasive, leading to what we call a user-centric SOA, i.e. a SOA conceived as a Web of Services made up of compositional resources that empowers end-users to ubiquitously exploit these resources by collaboratively remixing them. In this paper we explore the architectural basis, technologies, frameworks and tools considered necessary to face this novel vision of SOA. We also present the rationale behind EzWeb/FAST: an undergoing EU funded project whose first outcomes could serve as a preliminary proof of concep

    End-user composition of interactive applications through actionable UI components

    Get PDF
    Developing interactive systems to access and manipulate data is a very tough task. In particular, the development of user interfaces (UIs) is one of the most time-consuming activities in the software lifecycle. This is even more demanding when data have to be retrieved by accessing flexibly different online resources. Indeed, software development is moving more and more toward composite applications that aggregate on the fly specific Web services and APIs. In this article, we present a mashup model that describes the integration, at the presentation layer, of UI components. The goal is to allow non-technical end users to visualize and manipulate (i.e., to perform actions on) the data displayed by the components, which thus become actionable UI components. This article shows how the model has guided the development of a mashup platform through which non-technical end users can create component-based interactive workspaces via the aggregation and manipulation of data fetched from distributed online resources. Due to the abundance of online data sources, facilitating the creation of such interactive workspaces is a very relevant need that emerges in different contexts. A utilization study has been performed in order to assess the benefits of the proposed model and of the Actionable UI Components; participants were required to perform real tasks using the mashup platform. The study results are reported and discussed

    Mashup Ecosystems: Integrating Web Resources on Desktop and Mobile Devices

    Get PDF
    The Web is increasingly used as an application platform, and recent development of it has introduced software ecosystems where different actors collaborate. This collaboration is international from day one, and it evolves and grows rapidly. In web ecosystems applications are provided as services, and interdependencies between ecosystem parts can vary from very strong and obvious to loose and recondite. Mashups -- web application hybrids that combine resources from different services into an integrated system that has increased value from user perspective -- are exploiting services of the Web and creating ecosystems where end-users, mashup authors, and service providers collaborate. The term "resources" is used here in a broad sense, and it can refer to user's local data, infinite content of the Web, and even executable code. This dissertation presents mashups as a new breed of web applications that are intended for parsing the web content into an easily accessed form on both regular desktop computers as well as on mobile devices. Constantly evolving web technologies and new web services open up unforeseen possibilities for mashup development. However, developing mashups with current methods and tools for existing deployment environments is challenging. First, the Web as an application platform faces numerous shortcomings, second, web application development practices in general are still immature, and third, development of mashups has additional requirements that need to be addressed. In addition, mobility sets even more challenges for mashup authoring. This dissertation describes and addresses numerous issues regarding mashup ecosystems and client-side mashup development. To achieve this, we have implemented technical research artifacts including mashup ecosystems and different kinds of mashup compositions. The artifacts are developed with numerous runtime environments and tools and targeted at different end-user platforms. This has allowed us to evaluate methods, tools, and practises used during the implementation. As result, this dissertation identifies the fundamental challenges of mashup ecosystems and describes how service providers and mashup ecosystem authors can address these challenges in practice. In addition, example implementation of a specialized multimedia mashup ecosystem for mobile devices is described. To address mashup development issues, this dissertation introduces practical guidelines and a reference architecture that can be applied when mashups are created with traditional web development tools. Moreover, environments that can be used on mobile devices to create mashups that have access to both web and local resources are introduced. Finally, a novel approach to web software development -- creating software as a mashup -- is introduced, and a realization of such concept is described

    Global Diffusion of the Internet XV: Web 2.0 Technologies, Principles, and Applications: A Conceptual Framework from Technology Push and Demand Pull Perspective

    Get PDF
    Web 2.0, the current Internet evolution, can be described by several key features of an expanded Web that is more interactive; allows easy social interactions through participation and collaboration from a variety of human sectors; responds more immediately to users\u27 queries and needs; is easier to search; and provides a faster, smoother, realistic and engaging user search capability, often with automatic updates to users. The purpose of this study is three-fold. First, the primary goal is to propose a conceptual Web 2.0 framework that provides better understanding of the Web 2.0 concept by classifying current key components in a holistic manner. Second, using several selective key components from the conceptual framework, this study conducts case analyses of Web 2.0 applications to discuss how they have adopted the selective key features (i.e., participation, collaboration, rich user experience, social networking, semantics, and interactivity responsiveness) of the conceptual Web 2.0 framework. Finally, the study provides insightful discussion of some challenges and opportunities provided by Web 2.0 to education, business, and social life
    • …
    corecore