
UN
CO

RR
EC

TE
D

PR
OOF

Journal of Visual Languages and Computing xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Journal of Visual Languages and Computing
journal homepage: www.elsevier.com

End-user composition of interactive applications through actionable UI components
Giuseppe Desolda a, *, Carmelo Ardito a, Maria Francesca Costabile a, Maristella Matera b

a Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4 – 70125 – Bari, Italy
b Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza L. da Vinci, 32 – 201233 – Milano

A R T I C L E I N F O

Keywords:
Web service composition
Mashup model
Utilization study

A B S T R A C T

Developing interactive systems to access and manipulate data is a very tough task. In particular, the develop-
ment of user interfaces (UIs) is one of the most time-consuming activities in the software lifecycle. This is even
more demanding when data have to be retrieved by accessing flexibly different online resources. Indeed, soft-
ware development is moving more and more toward composite applications that aggregate on the fly specific
Web services and APIs. In this article, we present a mashup model that describes the integration, at the presen-
tation layer, of UI components. The goal is to allow non-technical end users to visualize and manipulate (i.e., to
perform actions on) the data displayed by the components, which thus become actionable UI components. This ar-
ticle shows how the model has guided the development of a mashup platform through which non-technical end
users can create component-based interactive workspaces via the aggregation and manipulation of data fetched
from distributed online resources. Due to the abundance of online data sources, facilitating the creation of such
interactive workspaces is a very relevant need that emerges in different contexts. A utilization study has been per-
formed in order to assess the benefits of the proposed model and of the Actionable UI Components; participants
were required to perform real tasks using the mashup platform. The study results are reported and discussed.

1. Introduction

The development of user interfaces (UIs) is one of the most time-con-
suming activities in the creation of interactive systems. The need for
proper reuse mechanisms for building UIs has become evident in the
last years, especially as software development is moving more and more
toward component-based applications [14]. A considerable number of
resources are also available online. Thus, easy and effective mecha-
nisms to create UIs on top of the offered data are required. In this
article, we propose a mashup model that enables the integration at
the presentation layer of “Actionable UI components”. These are com-
ponents equipped with both data visualization templates and a proper
logic consisting of functions to manipulate the visualized data. The
model clarifies the main ingredients that are needed to design a plat-
form that enables non-technical end-users to create component-based
interactive workspaces by aggregating and manipulating data available
on distributed online resources. The main goal is to highlight the fea-
tures that can lead to frameworks able to reduce the end-users’ effort

for the development of interactive workspaces [5], by maximizing the
reuse of UI components.

In our approach, UI components not only constitute “pieces” of UIs
that can be assembled into a unified workspace. Each single component
can also provide views over the huge quantity of data exposed by online
Web services and APIs or in any data source, even personal or locally
provided sources. With respect to the definition of UI components given
in [10,42], we promote the notion of Actionable UI components, which
introduce varying functions to allow end users to manipulate the con-
tained data.

Our approach is positioned in a research context related to facilitat-
ing the access to online data sources through visual user interfaces, a
problem that has been attracting the attention of several researchers in
recent years [29,36]. An ever-increasing number of resources is nowa-
days available on the Web and provides content and functions in dif-
ferent formats through programmatic interfaces. The efforts of many re-
search projects have thus focused on letting laypeople, i.e., users with-
out expertise in programming (also called non-technical users), access
and reuse the available content [2,24]. In this respect, the reuse of eas-
ily programmable UI components is a step towards the provision of en

* Corresponding author.
Email addresses: giuseppe.desolda@uniba.it (G. Desolda); carmelo.ardito@uniba.it (C. Ardito); maria.costabile@uniba.it (M.F. Costabile); maristella.matera@polimi.it (M. Matera)

https://doi.org/10.1016/j.jvlc.2017.08.004
Received 15 January 2017; Received in revised form 22 June 2017; Accepted 13 August 2017
Available online xxx
1045-926/ © 2017.



UN
CO

RR
EC

TE
D

PR
OOF

G. Desolda et al. Journal of Visual Languages and Computing xxx (2017) xxx-xxx

vironments facilitating the End-User Development (EUD) of ser-
vice-based interactive workspaces [5]. In general, EUD refers to allow-
ing end users to modify and even create software artifacts while using
an interactive system [19,31]. EUD activities range from simple para-
meter setting to the integration of pre-packaged components, up to ex-
tending the system by developing new components.

Reusing is also typical of Web mashups [14], a class of applications
that emerged in the last decade, which can be created by integrating
components at any of the application stack layers (presentation, busi-
ness logics and data). The term mashup was originally coined in mu-
sic, where mashup indicates a song created by blending two or more
songs, usually by overlaying the vocal track of one song seamlessly over
the instrumental track of another. The real novelty introduced by Web
mashups is the possibility to synchronize components at the presenta-
tion layer by considering elements of their UI, for example, by means
of event-driven composition techniques. Thanks to the possibility of
reusing and synchronizing ready-to-use UI components, the mashup has
resulted in an effective paradigm to let end users, even non-experts in
technology, compose their interactive Web applications.

Over the last years, we have been working extensively on a mashup
platform called EFESTO that, by exploiting end-user development prin-
ciples, addresses the creation of component-based interactive work-
spaces by non-technical end users, via the aggregation and manipulation
of data fetched from distributed online resources [5,6,17]. This platform
also enables the collaborative creation and use of distributed interac-
tive workspaces [4]. The platform prototype keeps improving on vari-
ous aspects, based on field studies performed with real users who reveal
new requirements and features that are useful to foster the adoption
of mashup platforms in people's daily activities. Based on these experi-
ences, in which we observed people creating their interactive applica-
tions easily, in this article we aim to stress the importance of this type of
platforms as tools for the rapid creation of interactive applications en-
abling the access to Web services and APIs. In particular, the main con-
tribution of this article is a model for UI component mashup that other
designers and developers can adopt, in order to develop mashup plat-
forms that permit to easily compose interactive workspaces whose logic
is distributed across different synchronized components.

The paper is organized as follows. Section 2 illustrates the main func-
tionality offered by the EFESTO platform for the creation of interactive
workspaces. Section 3 describes the proposed mashup model; in particu-
lar, it highlights how the modus operandi supported by EFESTO is made
possible thanks to some abstractions, and, in particular, to the notion of
actionable UI components, around which the whole platform design has
been conceived. We specifically stress how the adoption of such concep-
tual elements leads to the notion of a distributed User Interface as an
interactive artefact that can be assembled according to lightweight tech-
nologies and that leverages on the logics of self-contained actionable UI
components. Section 4 discusses the Domain-Specific Languages (DSLs)
we introduced to describe the main elements of a mashup platform and
that can guide the dynamic instantiation and execution of the distrib-
uted UIs. Section 5 complements Section 3 by providing some technical
details on how the model elements are implemented in the EFESTO plat-
form architecture. Section 6 reports the results of a utilization study in
which participants performed reals tasks by using the EFESTO platform.
On the basis of the related literature, Section 7 presents some dimen-
sions for classifying mashup tools and discusses how EFESTO is charac-
terized with respect to such dimensions. Section 8 finally concludes the
article and outlines future work.

2. The EFESTO platform

This section describes the most important features of our mashup
platform, EFESTO, by showing how it is used to create a mashup [18].
The EFESTO composition paradigm extensively exploits Actionable UI

Components; therefore we illustrate it also showing how such compo-
nents support the creation of interactive workspaces. The main features
described in this section (highlighted in bold) will be then formalized
in the model reported in Section 3.

2.1. Operations for mashing-up data sources

In order to describe how EFESTO works, we refer to a scenario in
which a user, Tyrion, exploits the platform to compose an interactive
workspace that retrieves some needed information from distributed re-
sources and visualizes them. Tyrion does not know how to use program-
ming languages; more in general, he is not familiar with Computer Sci-
ence technical concepts.

Tyrion is going to organize his summer holidays during which he
would like to attend a concert. He uses EFESTO to create an applica-
tion (a mashup) that retrieves and integrates information about music
events. First, Tyrion looks for pertinent services among those registered
and organized by category (e.g., videos, photos, music, social) in the
platform. A wizard procedure guides him to make a selection. Tyrion
selects SongKick, a service that provides information on music events of
a specific singer. Afterward, Tyrion has to select how to display the re-
trieved data by choosing a visualization template (UI Template) among
the ones available in the platform. Tyrion actually selects a map tem-
plate, since he wants to visualize the retrieved music events geo-local-
ized in a map.

Among the different data attributes retrieved by SongKick, Tyrion
has to select those he is interested in. All SongKick data attributes are
visualized in a panel on the left (see Fig. 1, circle 1). Thus, Tyrion drags
& drops the latitude and longitude SongKick attributes into the respective
fields (called Visual Renderers [10]) of the map UI template (Fig. 1,
circle 2). Additional details about a music event, namely Event_name,
Artist and City, are visualized in a table template with three rows and
one column (Fig. 1, circle 3). He selects the three attributes from the left
panel (Fig. 1, circle 1) and drops them in the visual renderers of the UI
template (highlighted in yellow in Fig. 1, circle 2).

After performing this visual mapping, Tyrion saves the mashup with
the name “Upcoming events by artist name” . From now on, this mashup
is a UI Component in the user workspace, which is immediately exe-
cuted in the Web browser and represented as a map, as shown in the
central panel in Fig. 2. By typing “Maroon 5″ in the search box (thus for-
mulating a query), the result set of forthcoming events of this singer is
visualized as pins on the map. By clicking on a pin representing a mu-
sic event, details of that event (i.e., the attributes Event_name, Artist and
City) are shown.

Tyrion can later update the created mashup by integrating data com-
ing from other data sources through union and join data mashup op-
erations [17]. Since a non-technical user is not familiar with these op-
erations, EFESTO offers wizard procedures and drag&drop mechanisms
to express how data have to be integrated. For example, let's suppose
that Tyrion wants to retrieve additional music events from Eventful (an-
other service retrieving music events), i.e., he need to perform a union
operation between the SongKick and the Eventful result sets.

To perform this operation, Tyrion starts from the SongKick UI com-
ponent previously created, clicks on the gearwheel icon in the toolbar
(circle 1 in Fig. 2) and chooses the “Add results from new source” menu
item. A wizard procedure now guides Tyrion in choosing the new ser-
vice, Eventful, and in performing a new visual mapping between the
Eventful attributes and the UI template already used in the previous
mashup. If queried with an artist name, the newly created mashup (UI
Component) now visualizes results gathered both from the SongKick
and Eventful services.

Another data integration operation available in EFESTO is the join
of different sources; it is useful for merging a mashup already in place

2



UN
CO

RR
EC

TE
D

PR
OOF

G. Desolda et al. Journal of Visual Languages and Computing xxx (2017) xxx-xxx

Fig. 1. Screenshot of EFESTO platform, referring to the mapping between some SongKick attributes (circle 1) and the fields of the map template (circle 2).

Fig. 2. UI component originated from SongKick data source visualized as a map and joined with YouTube to show artist video.

with new data available in other services. For example, Tyrion now
would like to show videos that can be retrieved from YouTube. Techni-
cally, this operation is a join between the SongKick artist attribute and
YouTube video title attribute. Tyrion can perform this operation through
a new wizard procedure that guides him while choosing (a) the service
attribute to be used as join attribute (artist in this example), (b) the new
data source (YouTube) and (c) how to visualize the YouTube results.
Once the join operation is completed, when clicking on the artist name
in the map info window, another window visualizes the YouTube videos
related to the artist, as shown in the right panel of Fig. 2,

Another operation available in EFESTO is the change of visualiza-
tion for a given UI component. For example, during the interaction with
SongKick, Tyrion can decide to switch from the map UI template to the
list UI template (see the result in Fig. 3, circle 1). A wizard procedure
guides Tyrion to (a) choose a new UI template (list in this case), and (b)
perform a visual mapping between the SongKick attributes and the UI
template, as already described with reference to Fig. 1.

Fig. 3. Use of some tools available in EFESTO to manipulate mashup data.

3



UN
CO

RR
EC

TE
D

PR
OOF

G. Desolda et al. Journal of Visual Languages and Computing xxx (2017) xxx-xxx

2.2. A polymorphic data source

Despite the wide availability of data sources and composition oper-
ations, sometimes users can still encounter difficulties while trying to
accommodate different needs and preferences. Let us suppose, for exam-
ple, that during the interaction with EFESTO Tyrion wants to get some
details about the artists of the music events (e.g., genre, starting year of
activity and artist photo) that cannot be retrieved through the services
already registered in the platform. In order to overcome this drawback,
EFESTO provides a polymorphic data source that exploits the wide
availability of information published in the Linked Open Data (LOD)
cloud. It is called polymorphic because, when it is composed with an-
other source S, it can dynamically adapt the set of exposed attributes
depending on the source S, so that a “navigation” from the source S to
the polymorphic data source is possible [16].

EFESTO exploits DBpedia as LOD cloud as it provides a vast amount
of information. Thus, Tyrion can join the SongKick artist attribute with
a DBpedia-based polymorphic data source. The platform now shows a
list of attributes related to the musical artist class (available in the DBpe-
dia ontology), and Tyrion enriches the current UI Component with the
attributes genre, starting year of activity and artist photo. Henceforward,
Tyrion can find a list of upcoming events and also visualize artist's in-
formation when clicking on the artist's name.

2.3. Actionable UI component

Some field studies that we conducted in the past to validate our pro-
totypes [4,5] revealed that mashups generally lack data manipulation
functions that end users would like to exploit in order to “act” on the
extracted contents, e.g., functions that allow to perform tasks such as
collecting&saving favourites, comparing items, plotting data items on
a map, inspecting full content details, organizing items in a mind map
in order to highlight relationships. In this section, we remark another
very innovative feature of EFESTO: it offers tools that enable specific
tasks, allowing users to manipulate the information in a novel fashion,
i.e., without being constrained to pre-defined operation flows typical of
pre-packaged applications.

In order to perform more specific and complex sense-making tasks,
a set of Tools is available in the left-panel of the workspace (see Fig. 3,
circle 1). These Tools are added to the workspace by clicking the corre-
sponding icon. Let us describe an example of their usage with reference
to our scenario. Tyrion is looking for hotels in New York located nearby
the places where upcoming musical events will be held. He is more in-
terested in finding a good hotel and then looking for possible musical
events to attend. Therefore, first he adds the Hotel data source into his
workspace (see Fig. 3, circle 2) and then performs a search by typing
“New York” in the Hotel search bar. After including the Comparing tool
in the workspace, Tyrion drags&drops inside it the first five hotels from
the Hotel UI component. The Comparing tool supports Tyrion in the iden-
tification of the most convenient hotels, which are now represented as
cards providing further details, such as average price, services and cat-
egory (see Fig. 3, circle 3). Afterwards, he moves three hotels from the
Comparing tool inside the Locating tool (Fig. 3, circle 4) in order to visu-
alize them as pins on the map. Finally, Tyrion performs a search on the
SongKick data source by using “New York” as keyword and then moves
all the results, i.e., the upcoming musical events, inside the Locating con-
tainer. The map now shows pins indicating both the selected hotels (red
pins) and the upcoming musical events in New York (green pins). Tyrion
can now easily identify which musical events are close to the hotels he
has previously chosen.

As shown in the previous example, the EFESTO tools allow users
to interact with information within dedicated actionable UI components,

which enable specific tasks. Such flexible environments are based on the
model presented in [7] that promotes easy transitions of information be-
tween different contexts. This model implements some of the principles
defined within the Transformative User eXperience (TUX) framework
[8,30]. The goal of TUX is to overcome common application boundaries
enabling user interaction with information within dedicated, contextual
task environments called task containers. Depending on their situational
needs, users move data items along different task containers; the con-
tainer semantics then progressively transform data. Users are therefore
empowered to be more active upon the retrieved information.

3. Model for actionable UI mashups

The main contribution of this article is a model highlighting the most
important abstractions that allowed us to define the composition par-
adigm described in the previous section. With respect to other compo-
sition paradigms already presented in literature, the one we illustrate
in this article has been designed and validated through a series of user
studies that have also allowed us to focus on the main elements that can
promote the EUD of interactive workspaces. Therefore, the goal of the
model described in the rest of this section is to guide designers and soft-
ware engineers in the development of EUD environments able to sup-
port non-programmers to build UIs by reusing and synchronizing the
logic of different pieces of UI. The model also leads to the notion of dis-
tributed UIs, built by aggregating different components, each one inde-
pendent from the others but with the intrinsic capability to be synchro-
nized with the others.

The proposed model refines and extends the one presented in [10].
It has been iteratively refined by adding further components starting
from requirements we gathered during our research, namely: i) a differ-
ent way to integrate service data by means of join and union operations
for data mashup; ii) the Actionable UI Components that implement some
Transformative User eXperience principles [8,30]; iii) the polymorphic
data sources to access LOD. The new model is depicted in Fig. 5. In the
following, we report the definitions of the most salient concepts that
contribute to the notion of distributed UIs.

Definition 1. UI component
It is the core of the model since it represents the main modulariza-

tion object the user can exploit to retrieve and compose data extracted
from services. According to [42], a UI component is a JavaScript/HTML
stand-alone application that can be instantiated and run inside any Web
browser and that, unlike Web services or data sources, is equipped with
a UI that enables the interaction with the underlying service via stan-
dard HTML. In our approach, a UI component also allows the interaction
with services data and functions thanks to its own UI (see Fig. 4). More
specifically, it supplies a view according to specific UI Templates (see
Definition 2) over one or more services whose data can be composed by
means of data mashup operations. In addition, two or more UI compo-
nents can also be synchronized according to an event-driven paradigm:
each of them can implement a set E of events that the user can trigger
during the interaction with its user interface, and a set O of operations
activated when events are generated by others UI components.

Definition 2. UI template
It plays two fundamental roles inside the UI component: first, it

guides the users in materializing abstract data sources by means of a
mapping between the data source output attributes and the UI template
visual renderers; second, at runtime, it displays the data source accord-
ing to the user mapping. A UI Template can be represented as the triple

where type is the template (e.g., list, map, chart) selected by the

4



UN
CO

RR
EC

TE
D

PR
OOF

G. Desolda et al. Journal of Visual Languages and Computing xxx (2017) xxx-xxx

Fig. 4. Example of UI component that shows musical events on Google Maps.

user while VR is a set of visual renderers, i.e., UI elements that act as re-
ceptors of data attributes.

Definition 3. Actionable UI component (auic)
In addition to visualizing Web service data, as managed by UI com-

ponents, auic provides containers that encapsulate UI components to
supply task-related functions for manipulation and transformation of
data items retrieved from a source [7].

An auic can be defined as a pair:

where TF is the set of functions for manipulation and transformation of
data, while uit is a UI template used to visualize data to facilitate the
user's current task.

Definition 4. Event-driven coupling
It is a synchronization mechanism among two UI components that

the users define according to an event-driven, publish-subscribe inte

gration logic [42]. In particular, the users define that, when an event is
triggered on a UI component, an operation will be performed by another
UI component. This enables reusing the logic of single UI components,
still being able to introduce some new behaviour for the composite UIs.
More in general, given two UI Components uici and uicj, a coupling is a
pair:

Definition 5. Layout template
It is an abstract representation of the workspace layout defining the

visual organization of the UICs included in the interactive workspace
under construction. For example, the UI components can be freely lo-
cated or can be constrained to a grid schema, where in each cell only
one UI Component can be placed.

Definition 6. Actionable UI mashup
An Actionable UI Mashup is the final interactive application built by

the end users by means of the integration of different UI components
within a workspace. It can be formalized as the tuple:

where UIC is the set of UI Components integrated into the workspace,
AUIC is the set of Actionable UI Components to manipulate data ex-
tracted from UIC, C is the set of couplings the users established among
UIC and LT is the layout template chosen to arrange the UIC within the
workspace.

The following definitions are reported to clarify how actionable
UI components are instantiated by means of data extracted from data
sources.

Definition 7. Data component
It is an abstract representation of the resource that can be used to

retrieve data. In particular, a data source dc is a triplet:

where t indicates the type of resource, for example REST Data Source or
Polymorphic Data Source in our model, I indicates the set of input para-
meters to query the resources, A indicates the set of output attributes.
Data can be retrieved from data sources and aggregated through the fol-
lowing operations:

Fig. 5. The mashup model.

5



UN
CO

RR
EC

TE
D

PR
OOF

G. Desolda et al. Journal of Visual Languages and Computing xxx (2017) xxx-xxx

Definition 8.a. Selection
Given a data component dc, a selection is a unary operator defined

as:

where r is a result obtained by querying the data component dc and C is
a condition used to query dc.

Definition 8.b. Join
This operator allows one to establish connections among data in dif-

ferent data components. Given a couple of data components dci and dcj,
a Join is a binary operator on dci and dcj defined as:

dci ⋈F dcj=σ F (dci x dcj)

The result of this operation consists of all the combinations of in-
stances in dci and dcj that satisfy F. The condition F is applied on the
joined instances x ∈ dci and y ∈ dcj and it is true when an attribute ai of
x is related to (e.g., equal, minor, major) an attribute aj of the instance
y. For example, given two data components dci and dcj defined on top
respectively of SongKick and YouTube web services

SongKick

Event_name Artist City

Event_name1 Artist_1 City_1
Event_name2 Artist_2 City_2
Event_name3 Artist_3 City_3

Youtube
Title Video_URL City

Title_1 URL_1 City_1
Title_2 URL_2 City_2

all the combinations of instances in dci and dcj are represented in the
following table:

SongKick ⋈ YouTube
Even-

t_name
Artist City Ti-

tle
Video_URL City

Even-
t_name1

Artist_1 City_1 Ti-
tle_1

URL_1 City_1

Even-
t_name1

Artist_1 City_1 Ti-
tle_2

URL_2 City_2

Even-
t_name2

Artist_2 City_2 Ti-
tle_1

URL_1 City_1

Even-
t_name2

Artist_2 City_2 Ti-
tle_2

URL_2 City_2

Even-
t_name3

Artist_3 City_3 Ti-
tle_1

URL_1 City_1

Even-
t_name3

Artist_3 City_3 Ti-
tle_2

URL_2 City_2

The final data component is a sub-set of the previous table deter-
mined by applying the condition F. In our approach, the condition F is
true when the string of the dci attribute the user wants to extend (e.g.,
artist of SongKick) is contained in the string of the dcj attribute (e.g., ti-
tle of YouTube).

Definition 8.c. Union
Given a couple of data components dci and dcj, a Union is a binary

operator defined as:

The result of this operation consists of aggregating all the instances
in dci and dcj. In relational algebra, as prerequisites to apply the union
on two relations, the unified relations must have the same number of at-
tributes of the same type. In our union operation, the unified data com-
ponents must have the same number of attributes but there is not the
need to have the attributes of the same types. For example, given two
data components dci and dcj that are connected respectively to SongKick
and Eventful web services

SongKick Eventful
Even-

t_name
Artist Date Ti-

tle
Artist_-

name
Date

Even-
t_name1

Artist_1 Date_1 Ti-
tle_1

Artist_-
name_1

Date_1

Even-
t_name2

Artist_2 Date_2 Ti-
tle_2

Artist_-
name_2

Date_2

Even-
t_name3

Artist_3 Date_3

their union is an aggregation of their instances, as shown in the follow-
ing table.

SongKick U Eventful
Event_name1 Artist_1 City_1
Event_name2 Artist_2 City_2
Event_name3 Artist_3 City_3

Title_1 Artist_name_1 City_1
Title_2 Artist_name_2 City_2

The attributes of the unified data components can be of different
types, for example, their Date attributes can be formatted in different
ways.

Definition 9. Data mashup
It is the results of the integration of data extracted by different data

components. It is a pair:

where DC represents the set of data components involved in the com-
position; O is the set of operations (e.g., join and union) performed be-
tween data components in DC.

Data mashup represents an important advance w.r.t. the original
model presented in [10] where data mashup was conceived just as a vi-
sual aggregation of different data sources by means of union and merge
sub-templates. In that case, the result of the data mashup could not be
reused with other UI templates. In our model, the data mashup is a new
integrated result-set published as a new data source that in our platform
can be also visualized by means of user-selected UI templates.

4. Platform descriptors

In order to make the previous abstractions concrete in the imple-
mented platforms, we defined some Domain-Specific Languages (DSLs)
inspired to EMML [39]. New languages were adopted instead of EMML
because the composition logic implemented in the EFESTO refers only
to a small sub-set of the composition operators available in EMML. Each
of these new languages allows us to define internal specifications of
the main elements (e.g., UI components, service, UI template) that can
guide the dynamic instantiation and execution of the distributed UIs.

Fig. 6 reports an example of our XML language specifying a UI com-
ponent that renders a data mashup consisting of a union between two
services (YouTube and Vimeo) and a join of the unified services with a

6



UN
CO

RR
EC

TE
D

PR
OOF

G. Desolda et al. Journal of Visual Languages and Computing xxx (2017) xxx-xxx

Fig. 6. A UI component descriptor codified with our XML language.

third service (Wikipedia). In the XML file, the tag unions has two chil-
dren: services and shared. The services tag summarizes the unified ser-
vices. Each service is reported in a service tag, which has the attribute
name that indicates the name of the data source. This value is used by
the mashup tool to retrieve the source details to perform the query. The
shared tag describes the alignment of the attributes of the unified data
sources. For example, it has two children called shared_attribute, each
of them with two children attribute that represent the service attributes
that are mapped in a UI template.

Each service listed in the service tag is detailed in a separate ser-
vice descriptor XML file. In Fig. 7, the YouTube service descriptor is re

Fig. 7. An example of service descriptor codified with our XML language.

ported: inside the root tag called service, there are the tags source, inputs,
parameters, attributes and flags. The first three nodes represent all the in-
formation useful to query a data source. The fourth node, attributes, de-
scribes the instance attributes. The last node, flag, is introduced to solve
the heterogeneity problem of the data sources. In fact, the remote web
services typically send the results by using JSON files but the list of re-
sults is formatted in different ways (e.g. inside a JSON array).

Another XML descriptor introduced in our model regards the UI
Template. In Fig. 8, the list UI Template has been reported. It is char-
acterized by a set of sub-UI templates (different types of lists). In par-
ticular, the root node, template, has an attribute name that indicates the
template name. The root has a set of children that describe different al-
ternatives to visualize the UI template.

The UI template descriptor is linked with the VI schema through the
XML mapping descriptor. An example of mapping is reported in Fig. 9.
In this descriptor, the root node, mappings, has two attributes: template-
type and templatename. The first one recalls the name of a UI Template
(e.g. list), the second one the name of its sub-template (list_A).

5. From the model to the platform architecture

The model presented in Section 3 guides designers and software en-
gineers in developing mashup platforms targeting non-programmers.
The model highlights the main concepts of a mashup platform without
emphasizing technical aspects. In this section, we report a high-level
overview of the architecture of the EFESTO mashup platform, in order
to illustrate how it implements the mashup model.

The architecture is characterized by tree-layers (Fig. 10). On top, the
UI layer provides and manages the visual language that allows end users
to perform mashups without requiring technical skills. Such language is
based on UI Components that use UI Templates and Actionable UI Com-
ponents to allow users to visualize and manipulate data extracted from
remote sources. The UI layer runs in the user's Web browser and commu-
nicates with the Logic and Data layer that run on a remote Web server.

The Logic Layer implements components that translate the actions
performed by end users at the Interaction Layer into the mashup execut-
ing logic. In particular, the Mashup Engine is invoked each time an event,
requiring the retrieval of new data or the invocation of service opera-
tions, is generated. The Event Manager, instead, manages the UI Compo-
nents coupling. In particular, when users define a synchronization be-
tween two UI Components A and B, it instantiates a listener that waits
for an event on A that, when triggered, causes the execution of an oper-
ation on B, according to the coupling defined by the user.

Fig. 8. An example of list UI template descriptor codified with our XML language.

Fig. 9. An example of mapping descriptor.

7



UN
CO

RR
EC

TE
D

PR
OOF

G. Desolda et al. Journal of Visual Languages and Computing xxx (2017) xxx-xxx

Fig. 10. An high-level overview of the EFESTO three-layer architecture.

The Data Layer stores the XML-based descriptors described in
Section 2 into proper repositories. In addition, at this layer there are the
remote data sources that reside on different Web servers.

6. A utilizazion study

The benefits of the proposed model, and in particular of the Action-
able UI components, was assessed during a utilization study inspired
by the one in [22]. Participants were required to perform real tasks
using the system. The study took place during a scientific meeting in
which the prototype of EFESTO platform was presented. Participants
were asked to interact with EFESTO platform to express and satisfy their
information needs in a direct and dynamical way. By observing people
using the platform, we aimed to assess whether the notion of Action-
able UI Component actually provides an added value with respect to the
users’ needs and expectations.

6.1. Participants and design

We recruited a total of 7 participants (4 female), aged between 20
and 60. Single-user interactions with the platform were scheduled. To
guide participants in using the platform, they were provided with a sce-
nario consisting of 4 steps that the users had to follow during their in-
teractions.

The main persona of the scenario was Maria; she wants to attend
a musical event with her friends and uses the platform to search for
forthcoming music events. She also gathers information that can in-
form the discussion with her friends about which event to attend. Maria
logs in the Web platform that offers a workspace where she can re-
trieve information through the mashup functionality and act on the in-
formation through specific functions provided by task containers. The
platform is equipped with services offering data on music events and
some other services of generic utility, e.g., map services. The workspace
is also equipped with a collection of task containers. Each container
is represented as a box widget with a labelled icon that indicates its
primary task function, e.g., a world globe for browsing, two side-by-

side paper sheets for comparing, a call-out for communicating. When
needed, a container representation can be moved by Maria from this col-
lection into the main area of the workspace, in order to activate its full
functional scope.

(Step 1): Maria selects the task container “Events” and chooses “music”
as event type. A map is displayed: every music event is represented as
a pin at specific coordinates. The details of each event can be inspected
through the corresponding pin.
(Step 2): Maria includes the “Selecting” container where she makes a
pre-selection by dragging from the “Events” container those events she
is more interested in. She further refines her selection by means of a
“Comparing” container, which offers specific features supporting the
comparative inspection of items. After this analysis, Maria chooses the
three most promising events and removes the others from the “Select-
ing” container.
(Step 3): Maria drags the “Housing” container in the main area of the
workspace, in particular touching the “Selecting” container. In this way,
she synchronizes the two containers. Three lists of hotels, one for each
different event place, are visualized. For each hotel it is displayed a
thumbnail photo, name, price, guests’ rating. Maria performs those ac-
tions usually allowed by the hotel booking web sites, i.e., changing
dates, ordering, filtering, inspecting details, visualizing the hotels on a
map. She selects a couple of hotels for each location. On the basis of the
housing information, she decides to reduce the candidate events to only
two and eliminates the third from the “Selecting” container.
(Step 4): Maria wants to send an email with a summary of the informa-
tion related to the two chosen events. Thanks to the “Communicating”
container, she is not forced to use an email client external to the work-
space she is working on. She has just to drop items from the “Selecting”
to the “Communicating” container, where she selects the recipients and
the communication channel, e.g., a post on a social network, an email,
etc. She decides to send an email. The email addresses of her friends are
displayed and the email body is prefilled automatically with the infor-
mation about the events and the hotels. Maria can edit the message be-
fore sending it. It is noteworthy to remark that Maria is not con- strained
to a predefined flow: for example, she could directly move events from
“Selecting” to “Communicating”, thus deliberately skipping the “Com-
paring” or the “Housing” container.

6.2. Procedure

The study took place in a quiet and isolated laboratory where we in-
stalled the study apparatus. Two HCI researchers were involved in the
study. One of the two researchers acted as facilitator. The second re-
searcher took notes.

Each participant interacted for about 30 minutes for a total of 4
hours. They all followed the same procedure. First, each participant was
asked to sign a consent form. Then, the facilitator showed a quick demo
of EFESTO on a 15″ laptop. Then, the participant was invited to com-
plete the scenarios (also reported on a sheet) by using a 15″ laptop. At
the end, each participant filled in a printed version of the AttrakDiff
questionnaire.

6.3. Data collection

Different types of data were collected during the study. In par-
ticular, during the system interactions the observer took notes about
significant behaviour or externalized comments. All the interactions
were audio-video recorded to extract the participants’ utterances and
comments. The set of collected notes was extended by video and au-
dio analysis, performed by two researchers (audio transcription, dou-
ble-check, analysis following a semantic approach [9]).

8



UN
CO

RR
EC

TE
D

PR
OOF

G. Desolda et al. Journal of Visual Languages and Computing xxx (2017) xxx-xxx

The AttrakDiff questionnaire filled in by the participants at the end
of the scenario, helped us to understand how users personally rate the
usability and design of our system. This questionnaire records the per-
ceived pragmatic quality, the hedonic quality and the attractiveness of
an interactive system. In particular, the following system dimensions
are evaluated: Pragmatic Quality (PQ): describes the usability of a sys-
tem and indicates how successfully users are in achieving their goals us-
ing the system; Hedonic Quality - Stimulation (HQ-S): indicates to what
extent the system can support those needs in terms of novel, interest-
ing, and stimulating functions, contents and interaction- and presenta-
tion-styles; Hedonic Quality – Identity (HQ–I): indicates to what extent
the system allows the user to identify with it; Attractiveness (ATT): de-
scribes a global values of the system based on the quality perception.
Hedonic and pragmatic qualities are independent one of another, and
contribute equally to rating attractiveness.

6.4. Results and discussion

The main results of this study come from the AttrakDiff™ question-
naire. Fig. 11 depicts a portfolio diagram that summarizes the hedonic
quality (HQ) and pragmatic quality (PQ) system performances according
to the respective confidence rectangles. The values of hedonic qualities
are represented on the vertical axis (bottom=low value), while the hor-
izontal axis represents the value of the pragmatic quality (left=a low
value). With respect to this representation, EFESTO was rated as "neu-
tral", even if the confidence interval, represented as a small dark rec-
tangle around EFESTO, overlaps into the neighbouring zones. This in-
dicates that there is room for improvements in terms of usability. In
terms of hedonic quality, the users are stimulated by EFESTO, but there
is room for improvements. The pragmatic quality confidence interval is
quite large. This could be attributed to the limited sample of participant
who had varying experience with other similar systems and knowledge
about tasks performed.

Another perspective on the questionnaire results is provided by the
diagram shown in Fig. 12. In this presentation, hedonic quality distin-
guishes between the stimulation and identity aspects. The attractiveness
(ATT) rating is also presented. In terms of pragmatic quality, EFESTO
meets ordinary standards even if it is located in the average region.
Thus, we should improve assistance to users. With regard to hedonic
quality – identity (HQ-I), EFESTO is located in the average region. With

Fig. 11. Portfolio with average values of the dimensions PQ and HQ and the respective
confidence rectangles of the system.

Fig. 12. Mean values of the four AttrakDiff™ dimensions of our system.

respect to hedonic quality – stimulation (HQ-S), EFESTO is located in
the above-average region, thus meeting ordinary standards. Further im-
provements are needed to motivate, engage and stimulate users even
more. Finally, being the system attractiveness value located in the
above-average region, the overall impression is that it is very attrac-
tive. The diagram shown in Fig. 13 provides a detailed view of the rat-
ing given to the AttrakDiff adjective-pairs questions that determined the
values of the PQ, HQ-I, HQ-S and ATT dimensions discussed above.

From the qualitative data collected with notes and audio-video
analysis, different usability problems emerged, for example: drag&drop
mechanisms are required for including data sources and containers from
the left tool-bar into the workspace – a double click selection would be
preferred; the font size is too small for a 15′’ laptop; multiple selection
and filter mechanisms are not provided in data sources and containers;
a button for deleting all the data in a container is missing; data sources
and containers have to be synchronized.

Fig. 13. Mean values of the AttrakDiff™ adjective-pairs for EFESTO.

9



UN
CO

RR
EC

TE
D

PR
OOF

G. Desolda et al. Journal of Visual Languages and Computing xxx (2017) xxx-xxx

7. Classifying dimensions and EFESTO characterization

In this section, we present some classifying dimensions that can help
clarify the main concepts and techniques underlying mashup design
and development, which in turn lead to identify the salient ingredi-
ents of mashup composition platforms. The discussed dimensions take
into account the contribution of some works published in literature. The
book authored by Daniel and Matera is a comprehensive reference for
mashups [14], and systematically covers the main methods and tech-
niques for mashup design and development, the synergies among the
models involved at different levels of abstraction, and the way mod-
els materialize into composition paradigms and architectures of corre-
sponding development tools. Some other publications also outline sev-
eral mashups and mashup tool features identified by reviewing the lit-
erature on mashups [34]. In [1] the authors propose a design space of
mashup tools by surveying more than 60 articles on mashup tools and
pointing out that only 22 tools are online. Based on these 22 tools, they
propose a model focused on the main perspectives occurring in the de-
sign of mashup tools. On the basis of this model, and taking into account
what is reported in [14,34], in the rest of this section we provide a fur-
ther characterization of EFESTO in relation to the dimensions that most
characterize mashup tools. The considered dimensions are reported in
Table 1, indicating with * the ones derived from the design issues in [1].

7.1. Targeted end users

In terms of programming skills, the end users of mashup platforms
range from non-programmers to experienced programmers, with in the
middle professional end users without programming skills, but who are
interested in computers and technology - sometimes they are also called
local developers [33].

Non-programmers are users without any skill in programming and
represent the majority of web users. The tools they are interested in are
the ones that do not require learning/use of programming languages
and technical mechanisms common for ICT experts and engineers (e.g.,
the use of logical operators and complex process flows). Thus, non-pro-
grammers should be provided with tools that limit their involvement in
the development process to small customizations of predefined mashup
templates, or the execution of parameterized mashups.

Local developers are users with knowledge in ICT technology and
software usage, with an attitude to explore software. However, they
might lack specific skills for some technologies. Tools like mashup plat-
forms can thus provide them with composition functionality to assem

Table 1
Mashup tool dimensions.The * indicates the dimensions derived from [1].

Dimensions Categories

Tool Targeted
end users *

Non-programmers - local developers - expert
programmers

Automation
degree *

Full automatic - semi-automatic – manual

Liveness 1 – 2 – 3 – 4
Level *
Interaction
Metaphor *

Editable example – form based – programming by
example – Spreadsheets – Visual DSL – Visual
Language (Iconic) – Visual language (Wiring, Implicit
control flow) - Visual language (Wiring, Explicit
control flow) – WYSIWYG – Natural Language

Runtime
environment

Desktop – Mobile – Cloud

Supported
Resources

RESTful – SOAP – smart things – file – database –
CSV – excel – smart things

ble from scratch Web applications easily, by composing predefined com-
ponents or by customizing and changing existing examples and tem-
plates. Even for these end users, mashup tools have to provide a high
level of abstraction that ideally hides all the underlying technical com-
plexity of the mashup development.

Programmers are users with an adequate knowledge of programming
languages. They are the only users who can compose complex, rich
in features, and powerful mashups, by means of tools that also pro-
vide Web scripting languages for developing more complex, customized
mashups.

7.1.1. Prominent mashup tools
Typically, tools for experienced programmers are very powerful but

less usable. An example is Node-RED [27], a tool for wiring together
hardware devices, APIs and online services by means of nodes represent-
ing control statements, JavaScript functions and debug procedures. On
the contrary, tools for non-programmers implement simplified mecha-
nisms that sacrifice expressive power. An example has been described in
[20]: it supports the development of adaptive user interfaces that react
to contextual events related to users, devices, environments and social
relationships. In particular, non-programmers can define the context-de-
pendent behavior by means of trigger / action rules.

A tool for local developers is presented in [13], where the author
proposes a new perspective on the problem of data integration on the
web, the so-called surface web. The idea is to consider web page UI
elements as interactive artefacts that enable the access to a set of op-
erations that can be performed on the artefacts. For example, a user
can integrate into his personal web page a list of videos gathered from
YouTube and can append a list of Vimeo videos. This data integration
can be extended by means of filtering and ordering mechanisms. These
operations can be achieved, for example, by pointing and clicking ele-
ments (YouTube and Vimeo video lists), dragging and drop-ping them
into a target page (e.g. personal Web page) and choosing options (filter-
ing and ordering).

7.1.2. EFESTO classification
EFESTO and the model it implements are strongly oriented to

non-programmers and local developers. In fact, our approach is targeted
towards the End User-Development of Mashups, and is therefore de-
voted to non-technical users, to provide them with a composition para-
digm that fits their mental model.

7.2. Automation degree

This dimension refers to how much the mashup creation can be sup-
ported by the tool on behalf of its users. For this reason, in [1] the au-
thor identified two categories: semi-automation and full-automation. We
also introduce a new category, manual, to cover tools without any sup-
port in mashup creation.

Tools that offer a semi-automated creation of mashup partially sup-
port users by providing low levels of guidance and assistance. A
semi-automated tool requires users to have more skills, but guarantees
a high degree of freedom in creating a mashup that satisfies their needs.

A full automation in mashup development reduces the direct in-
volvement of users in the development process, since users are strongly
guided and assisted in the process, and play a supervisory role of just
providing input or validating mashup results. These tools require a short
learning curve and decrease the effort in mashup development. How-
ever, these facilities limit the possibility of creating a mashup that fits
all the user needs. The manual category then refers to those tools that
do not provide any support to the users during the mashup creation.

10



UN
CO

RR
EC

TE
D

PR
OOF

G. Desolda et al. Journal of Visual Languages and Computing xxx (2017) xxx-xxx

7.2.1. Prominent mashup tools
An example of semi-automated creation tool is We-Wired Web [3], a

web app that allows non-technical people to easily share data between
web services; it also allows technical people to extend the system by
adding new web services, triggers, and actions via wiring diagrams.

An example of full-automated tool is NaturalMash: it supports users
to express in natural language what services they want to include in
their mashup and how to orchestrate them [2]. However, to improve ac-
curacy of the user requests, NaturalMash constraints the expression of
requirements to a subset of a natural language with limited vocabulary
and grammar.

A tool in the manual category is the Yahoo! console where program-
mers can create data mashups by formulating queries written by using
the Yahoo! Query Language (YQL). No assistance is given to the users to
help them formulate their queries following the YQL syntax. If the query
is expressed correctly the JSON or XML result is produced, otherwise a
syntax error is shown.

7.2.2. EFESTO classification
With respect to this classifying dimension, EFESTO supports a full

automation degree. In fact, the tool composition paradigm is grounded
on wizard procedures that guide the end users in creating widgets on
top of web services amd in composing different web services by means
of operations like join or union.

7.3. Liveness level

The concept of liveness for visual languages presented in [37] is also
adopted in the mashup domain [1] with reference to the capacity of
tools to immediately interpret and execute the mashups under construc-
tion.

According to the classification reported in [1], Level 1 refers to tools
used to compose a mashup as a non-runnable prototype, i.e., not di-
rectly connected to any kind of runtime system. This prototype has just
a user interface, but does not implement any functionality. If on one
hand these tools don't require technical or programming skills, on the
other hand, in order to run the prototype, the end user is in charge to
manage the connection of the mashup presentation layer with an execu-
tion environment .

Level 2 refers to executable prototypes: tools in this category pro-
duce a mashup design blueprint with sufficient details to give it an ex-
ecutable semantics. The consistency (logical, semantical or syntactical)
of the produced mashups can be verified. However, the development of
mashups through these tools requires skills in programming, since users
need to define low-level technical details and thus their use is limited
only to programmers.

Level 3 refers to capabilities such as the edit-triggered updates: in this
case mashup tools generate mashups that can be easily deployed into
operation. Users produce their mashups without devoting too much ef-
fort in the manual deployment typically by using two environments: one
for the mashup editing and another for mashup execution. The deploy-
ment of the mashup under creation in the editing environment could be
obtained, for example, by just clicking a run button that produces a de-
ployment in the execution environment.

Level 4 finally refers to the stream-driven updates: it represents those
tools that support live modification of the mashup code, while it is be-
ing executed, without differences between editing and execution. In this
way, the mashup development is very fast and does not require particu-
lar programming skills.

7.3.1. Prominent mashup tools
Microsoft Visio is an example for level 1. It produces UI prototypes

that can be completed with data and executed by Microsoft Excel [40].

Activiti is a lightweight workflow and Business Process Management
(BPM) platform characterized by features such as modeling environ-
ment, validation and remote user collaboration. This tool can be consid-
ered as representative of Level 2 of liveness.

An example of a mashup tool for Level 3 is JackBe Presto, charac-
terized by a design environment to model the mashup and a detached
runtime environment that interprets and runs mashup models and can
be used for debugging and monitoring purposes [26].

DashMash supports Web APIs synchronization at the presentation
layer, by means of an event-driven paradigm [12]. It exploits a WYSI-
WYG composition language, which provides immediate feedback on any
composition action, thus creating an interleaving between mashup de-
sign and execution. DashMash can be considered a representative of
Level 4 because it supports live modification of the mashup under cre-
ation, without distinction between editing and execution time.

7.3.2. EFESTO classification
EFESTO supports live modification of mashups, since it blends into

a single environment both the editing and the execution phases (level
4 - Stream-driven updates). The end users edit and run their mashups
in the same environment, without needing to switch between two or
more different environments. This mechanism is in line with our goal of
proposing a mashup tool for non-technical end users. This level of live-
ness in fact provide the users with an immediate feedback of what they
are composing, which allow them understand and control the effect of
their composition actions.

7.4. Interaction metaphor

One of the most important aspects affecting the adoption of mashup
tools is the interaction metaphor to compose Web services. Actually, this
dimension is called Interaction Technique in [1]. This is one of the most
critical aspects that have limited the adoption of mashup tools in recent
years, since the interaction metaphors proposed by several tools were
not suitable for non-technical people. In the following, we outline the
most adopted interaction metaphors.

The domain specific language class requires technical skills since it
refers to script languages targeted to solve specific problems for specific
domains. These languages are characterized by a formal textual syntax,
proper of programming languages. They therefore require users to have
strong technical knowledge and skills.

A simpler but less powerful alternative is the class of Visual Program-
ming Languages, i.e., programming languages that use visual symbols,
syntax, and semantics. In [1] the authors identify two sub-dimensions
of visual programming languages: visual wiring languages and iconic vi-
sual languages. In the former case, mashup tools visualize each mashup
component or each mashup operation (e.g., filtering, sorting, merging)
as a box that can be wired to other boxes. Mashup tools often adopt this
mechanism being it the most explicit thanks to the one-to-one mapping
between the elements of the control flow (e.g., data passing from one
component to another) and the element of the visual notation (e.g., vi-
sual boxes wired to each other). In the latter case, tools that implement
iconic visual languages translate objects needed for mashup design into
visual icons. In this way, if the icons are properly designed, users are
facilitated in understanding how to compose these elements.

WYSIWYG (What You See Is What You Get) interaction mechanisms
permit the creation and modification of a mashup through a visual in-
terface, without any need to switch from an editing environment to an
execution environment (similar to the Liveness Level 4). These tools
are very useful and suitable for non-programmers, since users have the
mashup creation under control. However, sometimes they also repre-
sent a limitation, since users cannot access advanced features, like fil

11



UN
CO

RR
EC

TE
D

PR
OOF

G. Desolda et al. Journal of Visual Languages and Computing xxx (2017) xxx-xxx

tering and conversion, which are typically hidden in the tool backend
and thus are not available to the users.

An alternative to the previous interaction metaphors is Programming
by Demonstration, which supports programming starting from specifying
examples of the final artifacts or tasks. Typically, this metaphor is very
useful to reduce or remove the need to learn programming languages
and therefore it is also adopted in the context of mashup tools. With
these composition techniques, users can “show” to the mashup tools
how a mashup should be. Tools are then in charge of converting the
given examples into a runnable mashup.

Similar to the previous one, the Programming-by-Example Modifica-
tion paradigm allows users to modify a mashup instead of starting from
scratch. If the tool provides an adequate set of examples, in most cases
the customization of one of the available mashups requires a little effort
by users.

Spreadsheets are one of the most popular end-user programming ap-
proaches to store, manipulate and display data. Mashup tools that im-
plement spreadsheets are oriented towards data mashups, but typically
they don't support the creation of mashup with their own user interface
[28].

Finally, form-based interaction requires users to fill out forms to cre-
ate an object or to edit an already existing one. Since the form filling
is a common practice today on the Web for all kinds of users, mashup
tools that implement this technique are easy to use by a wide range of
users. However, these tools cannot produce complex mashups.

7.4.1. Prominent mashup tools
An example of approach based on specification through a Domain

Specific Language is Swashup [32]. It is a Web-based development en-
vironment where programmers can specify a textual mashup schema
based on the Ruby on Rails framework (RoR).

Spacebrew [21] is based on a visual programming language para-
digm. It is a toolkit for choreographing web services and smart objects
by means of event-condition-actions rules. Rules can be created in a
workspace vertically divided in two parts, the left-hand panel for the
configuration of the services publishing the events and the right-hand
panel for the configuration of services providing actions in response to
events. Such services can be connected in a wired fashion.

An example of tool based on the WYSIWYG paradigm is the SAP
Knowledge Workspace [35], a recently launched commercial platform.
It is inspired to the design principles and experience qualities defined
within TUX framework [8]. The distinctive feature of the approach is
that it provides containers that transform the data they include accord-
ing to a specific task semantics, and immediately show to the user the
results of this transformation. The task flow is not predefined, but it is
determined at runtime based on the users’ actions, as the users select
proper containers depending on the current situation and on the func-
tionality (e.g., data manipulations) needed to further proceed with their
task. The framework therefore promotes the definition of elastic envi-
ronments to natively support users in a variety of spontaneously self-de-
fined task flows, not limiting them to work along highly specific use
cases, as typical for applications which are driven by workflow engines
or which adopt pre-defined patterns of guided procedures.

Karma [38] is an example of tool based on a program-
ming-by-demonstration paradigm. It addresses the problems of extract-
ing data from Web sources, cleaning and modeling the extracted data,
and integrating the data across sources. Instead of requiring users to
select and customize a set of widgets, by using the program-
ming-by-demonstration paradigm, Karma can learn the operation that
the users want to perform indirectly by looking at the data provided by
them.

d.mix [23] offers a Programming-by-Example Modification para-
digm. It supports users to browse annotated web sites and select ele-
ments of interest. Starting from the user-defined examples, d.mix gen-
erates the underlying service calls that extract those elements. The user

can then edit, execute, and share the generated code in the d.mix's
wiki-based hosting environment. This sampling approach leverages
pre-existing web sites as example sets and supports fluid composition
and modification of examples.

Mashup tools often exploit spreadsheets to support users in creat-
ing mashups. For example, spreadsheet connectors are integrated in
tools like JackBe Presto, IBM Mashup Center, and Kapow, and also allow
end-users to easily re-use already-built mashups (outside spreadsheets)
in the spreadsheet environment. A different approach implemented in
tools like StrikeIron SOA Express for Excel and Extensio Extender for Mi-
crosoft Excel allow the data contained in the web services to be pulled
in Microsoft Excel workbook, to “live” in cells, and to be integrated di-
rectly by users while still take advantages of all the analytical powers
and flexibility of the spreadsheet tools. A different solution is imple-
mented in AMICO: CALC, an OpenOffice Calc extension used to create
mashup by manually writing formula to compose services. In [25] it
is reported a qualitative survey on a set of spreadsheet-based mashup
tools.

An example of form-based interaction is adopted by FeedRinse. Users
can exploit wizard procedures and form-based mechanisms to filter and
combine multiple RSS feeds, and republish the results in a single RSS
feed.

7.4.2. EFESTO classification
With respect to this dimension, EFESTO implements a WYSIWYG

interaction mechanism to make the mashup modification simpler. In
fact, during the wizard procedures that assist the users in editing their
mashups, all the Web service details are always visible and under the
control of the end users in a WYSIWYG fashion.

7.5. Runtime environment

Different devices can be used to run a mashup tool. The desktop PCs
are the most common ones since they are equipped with wide screens
that offer enough space to visualize mashup components.

7.5.1. Prominent mashup tools
All the tools already discussed for the previous dimensions are exe-

cuted on desktop PCs, typically within Web browsers. However, in some
cases, also mobile devices are used to create mashups. For example, the
Atooma app transforms a smartphone into a “personal assistant”, since
the users can automate all the manual operations they usually perform
with their phone, e.g., combining Wi-Fi, Mobile Data, Facebook, Twit-
ter, Instagram, Gmail and other services. In particular, with the Atooma
app the users can simply create automations exploiting an event-action
paradigm that enables the definition of rules following the syntax “IF
something happens DO something else” .

7.5.2. EFESTO classification
With respect to this dimension, the EFESTO runtime environment

runs on different environments that include tablets, desktop PCs and
large interactive displays. The tool “fits” the device on which it runs, op-
timizing the UI and functions, depending on the hardware peculiarities
and constraints (e.g. display size, interaction methods, etc.).

7.6. Supported resources

This dimension is related to the type of resources that can be
mashed-up. In order to create a mashup with different services, mashup
tools have to support invoking and composing different types of ser-
vices, e.g., RESTful and SOAP Web services, data sources, CSV files,
databases. The more types of resources the tool is able to support more
flexible and powerful the tool is.

12



UN
CO

RR
EC

TE
D

PR
OOF

G. Desolda et al. Journal of Visual Languages and Computing xxx (2017) xxx-xxx

7.6.1. Prominent mashup tools
The most common resource adopted in mashup tools are RESTful

web services. For example, tools like NaturalMash, Yahoo! console, Dash-
Mash, Atooma ground their approach on the use of RESTful web ser-
vices. Another common data source is the spreadsheet, exploited by
tools like StrikeIron SOA Express for Excel and Extensio Extender for Mi-
crosoft Excel, which we deeply discussed in the Interaction Metaphor di-
mension. In some cases, also the RSS feed are used as data source, as
in the case of FeedRinse that we described in the previous dimension. In
some cases, mashup tools also exploit private databases, as in the case
of SAP Knowledge Workspace that allows to dynamically work with in-
formation across all SAP and non-SAP applications and data sources.

7.6.2. EFESTO classification
With respect to this dimension, EFESTO implements a mashup en-

gine that permits the manipulation of different data sources such as
RESTful web services, Linked Open Data, CSV files and databases. The
modularity of this engine fosters an easily integration of new types of
data sources.

8. Conclusion

This article discussed some abstractions to promote mashup plat-
forms as tools that permit the easy creation (i.e., even by non-technical
end users) of interactive workspaces, whose logic is distributed across
different components that are, however, synchronized with each other.
One of the main contributions of mashups is the introduction of novel
practices, enabling integration of available service and data at the pre-
sentation layer, in a component-based fashion - an aspect that so far has
been scarcely investigated. Few papers, indeed, discuss and motivate
the so-called UI-based integration [10,15,41] as a new component-based
integration paradigm, which privileges the creation of fully-fledged ar-
tifacts, also equipped with UIs; this is in addition to the traditional ser-
vice and data integration practices that, instead, mainly act at the logic
and data layers of the application stack. In this direction, this article
highlights how interactive artifacts can be composed by reusing the pre-
sentation logics (i.e., the UIs) and the execution logics of self-contained
modules, the so-called Actionable UI Components, providing for the vi-
sualization of data extracted from data sources and for data manipula-
tion operations through task-related functions. A model is also provided
to describe the most salient elements that enable the integration, at the
presentation layer, of Actionable UI components. The results of a uti-
lization study with seven participants demonstrated that users are ade-
quately supported in creating interactive workspaces to access and ma-
nipulate data without a predefined task-flow.

By capitalizing on the experience that we gained in recent years in
the development of mashup platforms, this article aims to propose a sys-
tematic view on concepts and techniques underlying mashup platform
design and on the way such concepts materialize into composition par-
adigms and architectures of corresponding development tools. Indeed,
independently of our specific approach and the adopted technologies,
our research aims to stimulate a “new way of thinking” towards the def-
inition of systems that really support users in shaping the software they
interact with, according to their situational needs. Of course, this new
paradigm has to be extensively validated. Therefore, our current work
is devoted to enriching the EFESTO platform and to customize it to dif-
ferent application domains, such as e-health, home automation, and cul-
tural heritage. Further validation studies will be thus performed to ver-
ify in which measure the paradigm can be fruitfully exploited in such
different domains.

Additional efforts are needed to improve the composition paradigm
to offer assistance to the end users while composing their workspaces.
In some previous works, we already experimented mechanisms to pro

vide recommendations about services and composition patterns to be
exploited in a mashup [11]. In situations where a mashup platform has
to support the creation of complex workspaces, some mechanisms are
also needed to avoid errors, for example checking whether collisions
and inconsistencies occur among concurring events at the UI level. Our
future work will be also devoted to refine in this direction the composi-
tion paradigm and its implementation within the EFESTO platform.

References

[1] S. Aghaee, M. Nowak, C. Pautasso, Reusable decision space for mashup tool design,
In: Proc. of the ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS '12). Copenhagen (Denmark), ACM, New York, NY, USA, 2012, pp.
211–220, June 25–28.

[2] S. Aghaee, C. Pautasso, End-user development of mashups with naturalmash, J.
Vis. Lang. Comput. 25 (4) (2014) 414–432.

[3] We Wired Web. Retrieved from https://wewiredweb.com/. Last Access March 25.
[4] C. Ardito, P. Bottoni, M.F. Costabile, G. Desolda, M. Matera, M. Picozzi, Creation

and use of service-based distributed interactive workspaces, J. Vis. Lang. Comput.
25 (6) (2014) 717–726.

[5] C. Ardito, M.F. Costabile, G. Desolda, R. Lanzilotti, M. Matera, A. Piccinno, M. Pi-
cozzi, User-driven visual composition of service-based interactive spaces, J. Vis.
Lang. Comput. 25 (4) (2014) 278–296.

[6] C. Ardito, M.F. Costabile, G. Desolda, R. Lanzilotti, M. Matera, M. Picozzi, Visual
composition of data sources by end-users, In: Proc. of the International Conference
on Advanced Visual Interfaces (AVI '14). Como (Italy), ACM, New York, NY, USA,
2014, pp. 257–260, May 28-30.

[7] C. Ardito, M.F. Costabile, G. Desolda, M. Latzina, M. Matera, Making mashups ac-
tionable through elastic design principles, in: P. Díaz, V. Pipek, C. Ardito, C.
Jensen, I. Aedo, A. Boden (Eds.), End-User Development - Is-EUD 2015, 9083,
Springer Verlag, Berlin Heidelberg, 2015, pp. 236–241, Lecture Notes in Computer
Science.

[8] J. Beringer, M. Latzina, Elastic workplace design, Designing Socially Embedded
Technologies in the Real-World Computer Supported Cooperative Work, Vol. Part
I, Springer, 201519–33.

[9] V. Braun, V. Clarke, Using thematic analysis, Psychol. Qual. Res. Psychol. 3 (2)
(2006) 77–101.

[10] C. Cappiello, M. Matera, M. Picozzi, A UI-centric approach for the end-user devel-
opment of multidevice mashups, ACM Trans. Web 9 (3) (2015) 1–40.

[11] C. Cappiello, M. Matera, M. Picozzi, F. Daniel, A. Fernandez, Quality-aware
mashup composition: issues, techniques and tools, In: Proc. of the International
Conference on the Quality of Information and Communications Technology
(QUATIC '12), 2012, pp. 10–19, 3-6 Sept. 2012.

[12] C. Cappiello, M. Matera, M. Picozzi, G. Sprega, D. Barbagallo, C. Francalanci,
DashMash: a mashup environment for end user development (Lecture Notes in
Computer Science), in: S. Auer, O. Díaz, G. Papadopoulos (Eds.), Web Engineering
- ICWE 2011, 6757, Springer, Berlin Heidelberg, 2011, pp. 152–166.

[13] F. Daniel, Live, personal data integration through UI-oriented computing (Lecture
Notes in Computer Science), in: P. Cimiano, F. Frasincar, G.-J. Houben, D.
Schwabe (Eds.), Engineering the Web in the Big Data Era, 9114, Springer Interna-
tional Publishing, 2015, pp. 479–497.

[14] F. Daniel, M. Matera, Mashups: Concepts, Models and Architectures, Springer,
2014.

[15] F. Daniel, M. Matera, J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, Understanding
UI integration: a survey of problems, technologies, and opportunities, Internet
Comput. IEEE 11 (3) (2007) 59–66.

[16] G. Desolda, Enhancing workspace composition by exploiting linked open data as a
polymorphic data source (Smart Innovation, Systems and Technologies), in: E.
Damiani, J.R. Howlett, C.L. Jain, L. Gallo, G. De Pietro (Eds.), Intelligent Interac-
tive Multimedia Systems and Services (KES-IIMSS '15), 40, Springer International
Publishing, Cham, 2015, pp. 97–108.

[17] G. Desolda, C. Ardito, M. Matera, EFESTO: a platform for the end-user develop-
ment of interactive workspaces for data exploration (Communications in Computer
and Information Science), in: F. Daniel, C. Pautasso (Eds.), Rapid Mashup Develop-
ment Tools - Rapid Mashup Challenge in ICWE 2015, 591, Springer Verlag, Berlin
Heidelberg, 2015, pp. 63–81.

[18] G. Desolda, C. Ardito, M. Matera, EFESTO: a platform for the end-user develop-
ment of interactive workspaces for data exploration (Communications in Computer
and Information Science), in: F. Daniel, C. Pautasso (Eds.), Rapid Mashup Develop-
ment Tools - ICWE '15, 591, Springer International Publishing, 2016, pp. 63–81.

[19] G. Fischer, End-User development and meta-design: foundations for cultures of
participation (Lecture Notes in Computer Science), in: V. Pipek, M.B. Rosson, B. de
Ruyter, V. Wulf (Eds.), International Symposium on End-User Development -
Is-EUD 2009, 5435, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 3–14.

[20] G. Ghiani, F. Paternò, L.D. Spano, G. Pintori, An environment for end-user develop-
ment of web mashups, Int. J. Hum. Comput. Stud. 87 (2016) 38–64.

[21] Spacebrew. Retrieved from http://docs.spacebrew.cc/. Last Access May 9.
[22] P. Hamilton, D.J. Wigdor, Conductor: enabling and understanding cross-device in-

teraction, In: Proc. of the SIGCHI Conference on Human Factors in Computing Sys-
tems (CHI '14). Toronto, Ontario (Canada), ACM, New York, NY, USA, 2014, pp.
2773–2782, April 18 - 23.

[23] B. Hartmann, L. Wu, K. Collins, S.R. Klemmer, Programming by a sample: rapidly
creating web applications with d.mix, In: Proc. of the Symposium on User Interface
Software and Technology (UIST '07). Newport, Rhode Island, ACM, USANew York,
NY, USA, 2007, pp. 241–250.

13



UN
CO

RR
EC

TE
D

PR
OOF

G. Desolda et al. Journal of Visual Languages and Computing xxx (2017) xxx-xxx

[24] P. Hirmer, B. Mitschang, FlexMash–flexible data mashups based on pattern-based
model transformation (Communications in Computer and Information Science), in:
F. Daniel, C. Pautasso (Eds.), Rapid Mashup Development Tools - Rapid Mashup
Challenge in ICWE 2015, 591, Springer Verlag, 2016, pp. 12–30.

[25] D.D. Hoang, H.-y. Paik, B. Benatallah, An analysis of spreadsheet-based services
mashup, In: Proc. of the Conference on Database Technologies (ADC '10). Brisbane,
Australia, Australian Computer Society, Inc., Darlinghurst, Australia, Australia,
2010, pp. 141–150.

[26] Presto Enterprise Mashup Platform. Retrieved from http://mdc.jackbe.com/
prestodocs/v3.7/raql/cacheStore.html. Last Access Nov 26th.

[27] Node-RED. Retrieved from http://nodered.org/. Last Access May 9.
[28] W. Kongdenfha, B. Benatallah, J. Vayssière, R. Saint-Paul, F. Casati, Rapid develop-

ment of spreadsheet-based web mashups, In: Proc. of the International Conference
on World Wide Web (WWW '09). Madrid, Spain, ACM, New York, NY, USA,
2009, pp. 851–860.

[29] R. Krummenacher, B. Norton, E. Simperl, C. Pedrinaci, SOA4All: enabling
web-scale service economies, In: Proc. of the International Conference on Semantic
Computing (ICSC '09), 1679938, IEEE Computer Society, Berkeley, CA (USA),
2009, pp. 535–542, 14-16 September.

[30] M. Latzina, J. Beringer, Transformative user experience: beyond packaged design,
Interactions 19 (2) (2012) 30–33.

[31] H. Lieberman, F. Paternò, V. Wulf, End User Development, Springer, 2006.
[32] E.M. Maximilien, H. Wilkinson, N. Desai, S. Tai, A Domain-Specific Language For

Web Apis and Services Mashups, Springer, 2007.
[33] B.A. Nardi, A Small Matter of programming: Perspectives On End User Computing,

MIT Press, 1993.

[34] M.A. Paredes‐Valverde, G. Alor‐Hernández, A. Rodríguez‐González, R. Valen-
cia‐García, E. Jiménez‐Domingo, A systematic review of tools, languages, and
methodologies for mashup development, Software 45 (3) (2015) 365–397.

[35] The Knowledge Workspace for the Digital Enterprise. Retrieved from https://icn.
sap.com/projects/knowledge-workspace.html. Last Access March 10.

[36] J. Spillner, M. Feldmann, I. Braun, T. Springer, A. Schill, Ad-hoc usage of web ser-
vices with dynvoker (Lecture Notes in Computer Science), in: P. Mähönen, K. Pohl,
T. Priol (Eds.), Towards a Service-Based Internet - ServiceWave 2008, 5377,
Springer, Berlin Heidelberg, 2008, pp. 208–219.

[37] S.L. Tanimoto, VIVA: a visual language for image processing, J. Vis. Lang. Comput.
1 (2) (1990) 127–139.

[38] R. Tuchinda, C.A. Knoblock, P. Szekely, Building mashups by demonstration, ACM
Trans. Web 5 (3) (2011) 1–45.

[39] A. Viswanathan, Mashups and the enterprise mashup markup language (EMML),
Dr. Dobbs J. (2010).

[40] S. Wright, D. Bakmand-Mikalski, R. bin Rais, D. Bishop, M. Eddinger, B. Farnhill,
E. Hild, J. Krause, C. Loriot, S. Malik, Designing mashups with excel and vision,
Expert SharePoint 2010 Practices, Springer, 2011513–539.

[41] J. Yu, B. Benatallah, F. Casati, F. Daniel, Understanding mashup development,
IEEE Internet Comput. 12 (5) (2008) 44–52.

[42] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, M. Matera, A framework for
rapid integration of presentation components, In: Proc. of the International Confer-
ence on World Wide Web (WWW '07), ACM, Banff, AlbertaCanada, 2007, pp.
923–932, May 8-12.

14


	
	


