702 research outputs found

    Discrete and fuzzy dynamical genetic programming in the XCSF learning classifier system

    Full text link
    A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to neural networks. This paper presents results from an investigation into using discrete and fuzzy dynamical system representations within the XCSF learning classifier system. In particular, asynchronous random Boolean networks are used to represent the traditional condition-action production system rules in the discrete case and asynchronous fuzzy logic networks in the continuous-valued case. It is shown possible to use self-adaptive, open-ended evolution to design an ensemble of such dynamical systems within XCSF to solve a number of well-known test problems

    Abstraction, aggregation and recursion for generating accurate and simple classifiers

    Get PDF
    An important goal of inductive learning is to generate accurate and compact classifiers from data. In a typical inductive learning scenario, instances in a data set are simply represented as ordered tuples of attribute values. In our research, we explore three methodologies to improve the accuracy and compactness of the classifiers: abstraction, aggregation, and recursion;Firstly, abstraction is aimed at the design and analysis of algorithms that generate and deal with taxonomies for the construction of compact and robust classifiers. In many applications of the data-driven knowledge discovery process, taxonomies have been shown to be useful in constructing compact, robust, and comprehensible classifiers. However, in many application domains, human-designed taxonomies are unavailable. We introduce algorithms for automated construction of taxonomies inductively from both structured (such as UCI Repository) and unstructured (such as text and biological sequences) data. We introduce AVT-Learner, an algorithm for automated construction of attribute value taxonomies (AVT) from data, and Word Taxonomy Learner (WTL), an algorithm for automated construction of word taxonomy from text and sequence data. We describe experiments on the UCI data sets and compare the performance of AVT-NBL (an AVT-guided Naive Bayes Learner) with that of the standard Naive Bayes Learner (NBL). Our results show that the AVTs generated by AVT-Learner are compeitive with human-generated AVTs (in cases where such AVTs are available). AVT-NBL using AVTs generated by AVT-Learner achieves classification accuracies that are comparable to or higher than those obtained by NBL; and the resulting classifiers are significantly more compact than those generated by NBL. Similarly, our experimental results of WTL and WTNBL on protein localization sequences and Reuters newswire text categorization data sets show that the proposed algorithms can generate Naive Bayes classifiers that are more compact and often more accurate than those produced by standard Naive Bayes learner for the Multinomial Model;Secondly, we apply aggregation to construct features as a multiset of values for the intrusion detection task. For this task, we propose a bag of system calls representation for system call traces and describe misuse and anomaly detection results on the University of New Mexico (UNM) and MIT Lincoln Lab (MIT LL) system call sequences with the proposed representation. With the feature representation as input, we compare the performance of several machine learning techniques for misuse detection and show experimental results on anomaly detection. The results show that standard machine learning and clustering techniques using the simple bag of system calls representation based on the system call traces generated by the operating system\u27s kernel is effective and often performs better than approaches that use foreign contiguous sequences in detecting intrusive behaviors of compromised processes;Finally, we construct a set of classifiers by recursive application of the Naive Bayes learning algorithms. Naive Bayes (NB) classifier relies on the assumption that the instances in each class can be described by a single generative model. This assumption can be restrictive in many real world classification tasks. We describe recursive Naive Bayes learner (RNBL), which relaxes this assumption by constructing a tree of Naive Bayes classifiers for sequence classification, where each individual NB classifier in the tree is based on an event model (one model for each class at each node in the tree). In our experiments on protein sequences, Reuters newswire documents and UC-Irvine benchmark data sets, we observe that RNBL substantially outperforms NB classifier. Furthermore, our experiments on the protein sequences and the text documents show that RNBL outperforms C4.5 decision tree learner (using tests on sequence composition statistics as the splitting criterion) and yields accuracies that are comparable to those of support vector machines (SVM) using similar information

    Enhancing the scalability of a genetic algorithm to discover quantitative association rules in large-scale datasets

    Get PDF
    Association rule mining is a well-known methodology to discover significant and apparently hidden relations among attributes in a subspace of instances from datasets. Genetic algorithms have been extensively used to find interesting association rules. However, the rule-matching task of such techniques usually requires high computational and memory requirements. The use of efficient computational techniques has become a task of the utmost importance due to the high volume of generated data nowadays. Hence, this paper aims at improving the scalability of quantitative association rule mining techniques based on genetic algorithms to handle large-scale datasets without quality loss in the results obtained. For this purpose, a new representation of the individuals, new genetic operators and a windowing-based learning scheme are proposed to achieve successfully such challenging task. Specifically, the proposed techniques are integrated into the multi-objective evolutionary algorithm named QARGA-M to assess their performances. Both the standard version and the enhanced one of QARGA-M have been tested in several datasets that present different number of attributes and instances. Furthermore, the proposed methodologies have been integrated into other existing techniques based in genetic algorithms to discover quantitative association rules. The comparative analysis performed shows significant improvements of QARGA-M and other existing genetic algorithms in terms of computational costs without losing quality in the results when the proposed techniques are applied.Ministerio de Ciencia y Tecnología TIN2011- 28956-C02-02Junta de Andalucía TIC-7528Junta de Andalucía P12-TIC-1728Universidad Pablo de Olavide APPB81309

    Hierarchically organised genetic algorithm for fuzzy network synthesis

    Get PDF

    Adaptive grid based localized learning for multidimensional data

    Get PDF
    Rapid advances in data-rich domains of science, technology, and business has amplified the computational challenges of Big Data synthesis necessary to slow the widening gap between the rate at which the data is being collected and analyzed for knowledge. This has led to the renewed need for efficient and accurate algorithms, framework, and algorithmic mechanisms essential for knowledge discovery, especially in the domains of clustering, classification, dimensionality reduction, feature ranking, and feature selection. However, data mining algorithms are frequently challenged by the sparseness due to the high dimensionality of the datasets in such domains which is particularly detrimental to the performance of unsupervised learning algorithms. The motivation for the research presented in this dissertation is to develop novel data mining algorithms to address the challenges of high dimensionality, sparseness and large volumes of datasets by using a unique grid-based localized learning paradigm for data movement clustering and classification schema. The grid-based learning is recognized in data mining as these algorithms are inherently efficient since they reduce the search space by partitioning the feature space into effective partitions. However, these approaches have not been successfully devised for supervised learning algorithms or sparseness reduction algorithm as they require careful estimation of grid sizes, partitions and data movement error calculations. Grid-based localized learning algorithms can scale well with an increase in dimensionality and the size of the datasets. To fulfill the goal of designing and developing learning algorithms that can handle data sparseness, high data dimensionality, and large size of data, in a concurrent manner to avoid the feature selection biases, a set of novel data mining algorithms using grid-based localized learning principles are developed and presented. The first algorithm is a unique computational framework for feature ranking that employs adaptive grid-based data shrinking for feature ranking. This method addresses the limitations of existing feature ranking methods by using a scoring function that discovers and exploits dependencies from all the features in the data. Data shrinking principles are established and metricized to capture and exploit dependencies between features. The second core algorithmic contribution is a novel supervised learning algorithm that utilizes grid-based localized learning to build a nonparametric classification model. In this classification model, feature space is divided using uniform/non-uniform partitions and data space subdivision is performed using a grid structure which is then used to build a classification model using grid-based nearest-neighbor learning. The third algorithm is an unsupervised clustering algorithm that is augmented with data shrinking to enhance the clustering performance of the algorithm. This algorithm addresses the limitations of the existing grid-based data shrinking and clustering algorithms by using an adaptive grid-based learning. Multiple experiments on a diversified set of datasets evaluate and discuss the effectiveness of dimensionality reduction, feature selection, unsupervised and supervised learning, and the scalability of the proposed methods compared to the established methods in the literature

    Adaptive scaling of evolvable systems

    Get PDF
    Neo-Darwinian evolution is an established natural inspiration for computational optimisation with a diverse range of forms. A particular feature of models such as Genetic Algorithms (GA) [18, 12] is the incremental combination of partial solutions distributed within a population of solutions. This mechanism in principle allows certain problems to be solved which would not be amenable to a simple local search. Such problems require these partial solutions, generally known as building-blocks, to be handled without disruption. The traditional means for this is a combination of a suitable chromosome ordering with a sympathetic recombination operator. More advanced algorithms attempt to adapt to accommodate these dependencies during the search. The recent approach of Estimation of Distribution Algorithms (EDA) aims to directly infer a probabilistic model of a promising population distribution from a sample of fitter solutions [23]. This model is then sampled to generate a new solution set. A symbiotic view of evolution is behind the recent development of the Compositional Search Evolutionary Algorithms (CSEA) [49, 19, 8] which build up an incremental model of variable dependencies conditional on a series of tests. Building-blocks are retained as explicit genetic structures and conditionally joined to form higher-order structures. These have been shown to be effective on special classes of hierarchical problems but are unproven on less tightly-structured problems. We propose that there exists a simple yet powerful combination of the above approaches: the persistent, adapting dependency model of a compositional pool with the expressive and compact variable weighting of probabilistic models. We review and deconstruct some of the key methods above for the purpose of determining their individual drawbacks and their common principles. By this reasoned approach we aim to arrive at a unifying framework that can adaptively scale to span a range of problem structure classes. This is implemented in a novel algorithm called the Transitional Evolutionary Algorithm (TEA). This is empirically validated in an incremental manner, verifying the various facets of the TEA and comparing it with related algorithms for an increasingly structured series of benchmark problems. This prompts some refinements to result in a simple and general algorithm that is nevertheless competitive with state-of-the-art methods

    Competent Program Evolution, Doctoral Dissertation, December 2006

    Get PDF
    Heuristic optimization methods are adaptive when they sample problem solutions based on knowledge of the search space gathered from past sampling. Recently, competent evolutionary optimization methods have been developed that adapt via probabilistic modeling of the search space. However, their effectiveness requires the existence of a compact problem decomposition in terms of prespecified solution parameters. How can we use these techniques to effectively and reliably solve program learning problems, given that program spaces will rarely have compact decompositions? One method is to manually build a problem-specific representation that is more tractable than the general space. But can this process be automated? My thesis is that the properties of programs and program spaces can be leveraged as inductive bias to reduce the burden of manual representation-building, leading to competent program evolution. The central contributions of this dissertation are a synthesis of the requirements for competent program evolution, and the design of a procedure, meta-optimizing semantic evolutionary search (MOSES), that meets these requirements. In support of my thesis, experimental results are provided to analyze and verify the effectiveness of MOSES, demonstrating scalability and real-world applicability

    Explicit Building Block Multiobjective Evolutionary Computation: Methods and Applications

    Get PDF
    This dissertation presents principles, techniques, and performance of evolutionary computation optimization methods. Concentration is on concepts, design formulation, and prescription for multiobjective problem solving and explicit building block (BB) multiobjective evolutionary algorithms (MOEAs). Current state-of-the-art explicit BB MOEAs are addressed in the innovative design, execution, and testing of a new multiobjective explicit BB MOEA. Evolutionary computation concepts examined are algorithm convergence, population diversity and sizing, genotype and phenotype partitioning, archiving, BB concepts, parallel evolutionary algorithm (EA) models, robustness, visualization of evolutionary process, and performance in terms of effectiveness and efficiency. The main result of this research is the development of a more robust algorithm where MOEA concepts are implicitly employed. Testing shows that the new MOEA can be more effective and efficient than previous state-of-the-art explicit BB MOEAs for selected test suite multiobjective optimization problems (MOPs) and U.S. Air Force applications. Other contributions include the extension of explicit BB definitions to clarify the meanings for good single and multiobjective BBs. A new visualization technique is developed for viewing genotype, phenotype, and the evolutionary process in finding Pareto front vectors while tracking the size of the BBs. The visualization technique is the result of a BB tracing mechanism integrated into the new MOEA that enables one to determine the required BB sizes and assign an approximation epistasis level for solving a particular problem. The culmination of this research is explicit BB state-of-the-art MOEA technology based on the MOEA design, BB classifier type assessment, solution evolution visualization, and insight into MOEA test metric validation and usage as applied to test suite, deception, bioinformatics, unmanned vehicle flight pattern, and digital symbol set design MOPs

    学習戦略に基づく学習分類子システムの設計

    Get PDF
    On Learning Classifier Systems dubbed LCSs a leaning strategy which defines how LCSs cover a state-action space in a problem can be one of the most fundamental options in designing LCSs. There lacks an intensive study of the learning strategy to understand whether and how the learning strategy affects the performance of LCSs. This lack has resulted in the current design methodology of LCS which does not carefully consider the types of learning strategy. The thesis clarifies a need of a design methodology of LCS based on the learning strategy. That is, the thesis shows the learning strategy can be an option that determines the potential performance of LCSs and then claims that LCSs should be designed on the basis of the learning strategy in order to improve the performance of LCSs. First, the thesis empirically claims that the current design methodology of LCS, without the consideration of learning strategy, can be limited to design a proper LCS to solve a problem. This supports the need of design methodology based on the learning strategy. Next, the thesis presents an example of how LCS can be designed on the basis of the learning strategy. The thesis empirically show an adequate learning strategy improving the performance of LCS can be decided depending on a type of problem difficulties such as missing attributes. Then, the thesis draws an inclusive guideline that explains which learning strategy should be used to address which types of problem difficulties. Finally, the thesis further shows, on an application of LCS for a human daily activity recognition problem, the adequate learning strategy according to the guideline effectively improves the performance of the application. The thesis concludes that the learning strategy is the option of the LCS design which determines the potential performance of LCSs. Thus, before designing any type of LCSs including their applications, the learning strategy should be adequately selected at first, because their performance degrades when they employ an inadequate learning strategy to a problem they want to solve. In other words, LCSs should be designed on the basis of the adequate learning strategy.電気通信大学201

    Automated Alphabet Reduction for Protein Datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigate automated and generic alphabet reduction techniques for protein structure prediction datasets. Reducing alphabet cardinality without losing key biochemical information opens the door to potentially faster machine learning, data mining and optimization applications in structural bioinformatics. Furthermore, reduced but informative alphabets often result in, e.g., more compact and human-friendly classification/clustering rules. In this paper we propose a robust and sophisticated alphabet reduction protocol based on mutual information and state-of-the-art optimization techniques.</p> <p>Results</p> <p>We applied this protocol to the prediction of two protein structural features: contact number and relative solvent accessibility. For both features we generated alphabets of two, three, four and five letters. The five-letter alphabets gave prediction accuracies statistically similar to that obtained using the full amino acid alphabet. Moreover, the automatically designed alphabets were compared against other reduced alphabets taken from the literature or human-designed, outperforming them. The differences between our alphabets and the alphabets taken from the literature were quantitatively analyzed. All the above process had been performed using a primary sequence representation of proteins. As a final experiment, we extrapolated the obtained five-letter alphabet to reduce a, much richer, protein representation based on evolutionary information for the prediction of the same two features. Again, the performance gap between the full representation and the reduced representation was small, showing that the results of our automated alphabet reduction protocol, even if they were obtained using a simple representation, are also able to capture the crucial information needed for state-of-the-art protein representations.</p> <p>Conclusion</p> <p>Our automated alphabet reduction protocol generates competent reduced alphabets tailored specifically for a variety of protein datasets. This process is done without any domain knowledge, using information theory metrics instead. The reduced alphabets contain some unexpected (but sound) groups of amino acids, thus suggesting new ways of interpreting the data.</p
    corecore