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Abstract

A hierarchical, two-level genetic algorithm to produce the rules for a fuzzy system is
proposed. The underlying architecture of fuzzy networks corresponds with the struc¬
tured, two-level representations used. At one level, a variable-length structure was

designed to represent entire rule sets as individuals in a population; at a lower level,
another population contains elements which represent single fuzzy rules. The two
populations co-evolve simultaneously in an interdependent fashion. This method has
been shown to be capable of producing effective fuzzy systems of an adequate size for
particular classes of problems; examples of a control task and a classification problem
are shown. Suitable replacement strategies for the elements population were devised,
introducing the definition of a heredity factor. Additionally, means for the adaptation
of system parameters like cut & splice probabilities were developed to further enhance
system performance.
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Chapter 1

Introduction

This chapter presents the aims and underlying motivations, within the context of the

Evolutionary Computation (EC) field, together with preliminary comments and an

outline of the thesis.

1.1 Motivations

The main inspiration for this work stems from research in the fields of evolutionary

computation, fuzzy logic and the possible interactions between the two. In the fol¬

lowing sections, a brief introduction to the fundamental issues involved is presented in

broad terms; detailed accounts of the most relevant topics will be given in subsequent

introductory chapters.

1.1.1 Evolution and Adaptation

"What limit can be put to this power, acting during long ages and rigidly

scrutinising the whole constitution, structure, and habits of each creature,
— favouring the good and rejecting the bad? I can see no limit to this

power, in slowly and beautifully adapting each form to the most complex

relations of life" [Darwin 59].

Scientific thinking has created many great ideas that, however complex, once the essen¬

tial meaning has been understood, even if some of the details remain unclear to us, they

are capable of changing the way we think about nearly everything that is around us.

1



CHAPTER 1. INTRODUCTION 2

Good examples are the different theories about fundamental issues in physics or chem¬

istry, even abstract mathematics, which are learnt during the early stages of academic
education. However, undoubtedly one of the greatest theories that scientific work has

ever produced, is often dismissed, misinterpreted or simply taken for granted: the idea

of evolution by cumulative selection.

Like in many other fields, the possibility to simulate natural processes in the computer

has attracted many scientists to experiment and observe virtual evolutionary systems.

Computer algorithms that implement simplified versions of natural phenomena often
make it possible to identify new, distinct aspects of the observed systems. Many —

but not all — computer simulations share a particular advantage over their natural

counterparts, which in the case of EC turns out to be absolutely crucial: speed. "Dar¬

winism is a theory of cumulative processes so slow that they take between thousands

and millions of decades to complete. All our intuitive judgements of what is proba¬

ble turn out to be wrong by many orders of magnitude. Our well-tuned apparatus

of scepticism and subjective probability-theory misfires by huge margins, because it is

tuned — ironically, by evolution itself— to work within a lifetime of a few decades"

[Dawkins 91]. Computer implementations of evolutionary systems, however demand¬

ing in computational terms, certainly help "the imagination to escape from the prison

of familiar timescale", without the need to wait for too long to observe and identify
the interesting and potentially useful properties.

As the above quote from Darwin explicitly indicates, an intimately related con¬

cept to evolution is that of adaptation. In fact, John Holland's book [Holland 75]

([Holland 92]) is often considered the seminal work that initiated the field of study
in Genetic Algorithms (GAs) and, more generally, in complex adaptive systems (cas)

([Holland 95]).

The fundamental concepts behind the theories of evolution and adaptation seem to

extend far beyond the biological domain. It is now possible to design algorithms that

exploit the main features of evolutionary processes, often in oversimplified versions,

producing extraordinary results for specific kinds of problems. These issues are dis¬

cussed in chapter 2. "Evolutionary algorithms are manifestly interesting algorithms
- interesting to us, at least — not because what they are guaranteed to do is inter-
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esting to us, but because what they are guaranteed to tend to do is interesting to us"

[Dennett 95]. Moreover, research in EC has started to produce significant insights into
the abstract properties of this kind of algorithms; it is now possible to begin to explore

aspects of evolutionary systems that were not directly observable in nature.

1.1.2 Function Estimators

Intelligent behaviour can be characterised in many different ways, so it is not surpris¬

ing that machine intelligence has been approached accordingly, from several different

angles. One such approach, that bears particular relevance to the present work, is

based on "the single abstract property of adaptive model-free function estimation: In¬

telligent systems adaptively estimate continuous functions from data without specifying

mathematically how outputs depend on inputs" [Kosko 92].

Even if the function, or behaviour, of a device is known, it is not possible to deduce

from this a unique structural description. However, given the external description

of the behaviour of a system, mathematical theory can provide the simplest internal

structure that could yield the observed behaviour ([Arbib 87]). Although it may be
too hard to explicitly program the behaviour seen in a black box, it may be possible to

drive a system by the actual input-output behaviour of that box, or by some description

of its trajectories, to cause it to adapt itself into a system with (approximately) that

given behaviour.

As will be described in greater detail in chapter 3, it is possible to train fuzzy systems

to "learn" input-output associations, later showing the capability to generalise and give

an adequate response to unseen stimuli. The training process may be cast as one of
search or optimisation which, in turn, may be carried out by an evolutionary process.

This idea sets the basic framework for this thesis.

1.1.3 Soft Computing

The term soft computing (SC) was recently introduced in [Zadeh 94]. Closely related
to the dichotomy between symbolic and sub-symbolic approaches to artificial intelli¬

gence (AI), SC is obviously regarded as the opposite alternative to hard computing.
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In the former, methods that have an inherent capacity to deal with uncertainty and

imprecision, often relying on stochastic algorithms, are used to find adequate solutions

at a very low cost in terms of relative calculation effort. In the latter, on the other

hand, only models using classical logic and based on formal methods are employed,

providing precise but brittle solutions, normally involving a high computational cost.
For several interesting classes of problems, the burden of deterministic accuracy be¬
comes prohibitive, even relying on an increasing degree of parallelism. Frequently, a

task is too difficult to acquire sufficient and adequate knowledge for its solution; tra¬

ditional AI techniques are therefore not applicable and even the augmentation of a

general problem solver by task-specific knowledge is not feasible.

Formalising knowledge in soft constraints rather than hard rules has important con¬

sequences. Hard constraints have consequences singly; they are context-independent

rules that can be applied separately, sequentially, irrespective of whatever other rules

may exist. But soft constraints have no implications singly; any one can be overridden

by the others. It is only the entire set of soft constraints that has any implications.

Inference must be a cooperative process, like the parallel relaxation processes typi¬

cally found in subsymbolic systems. Furthermore, adding additional soft constraints
can repeal conclusions that were formerly valid. Subsymbolic inference is therefore

fundamentally non-monotonic ([Smolensky 86]).

SC can be seen as a non-traditional approach to increase machine intelligence, where
methods from evolutionary computation, fuzzy logic and neural networks are used, of¬

ten in combination. Each of the three areas of SC has its advantages and disadvantages,
but the weaknesses of one seem to be naturally complemented by the strengths of at
least one of the other two: the ability to deal with uncertainty and to express knowl¬

edge using linguistic representations of fuzzy rules, may be complemented with the

robustness and learning capabilities of connectionist systems, or the effective, globally-
oriented search performed by an evolutionary process. The most important issues and

related relevant work are described in chapter 4.
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1.2 Objectives
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What is known about the principles of evolution can effectively be used to build adap¬

tive computational systems. GAs are a subclass of methods performing evolutionary

computation, commonly applied in search and optimisation problems. The principles

that lie behind the operation of a generic GA are allegedly simple and yield robust,

general, adaptive and efficient systems. For certain kinds of problems, however, the

generic GA is either practically incapable of finding a suitable solution or, when it

succeeds, its performance is poor in comparison with other techniques. Furthermore,

designing a GA for a particular problem, or analysing its behaviour and properties,

is usually not such an easy task. Normally there are a large number of possibilities

to explore at nearly every step in the GAs' design/analysis process — e.g. represen¬

tation (coding) schemes, selection procedures, combination (reproduction) methods,

replacement strategies, fitness evaluation, etc. Most of the variations on each of these
are the result of different attempts to overcome limitations in the basic model and its

operators.

The main goal of this research work is to investigate the possibilities of using higher

order representations and transformations through a multi-level organisation of the
overall GA structure. One particular aim is to explore the implications of adopting

hierarchical representation schemes, where the customary operations (e.g. selection,

reproduction, mutation, etc.) perform the usual (simple) transformations but at differ¬
ent levels of the representational structure. The purpose is to provide the evolutionary

process with the necessary means to perform an effective search, especially in a par¬

ticular kind of complex problem space, without the need to design more elaborate,

often problem-dependent, operators. Certain aspects of fundamental GA theory will

be addressed, but maintaining an essentially pragmatic stance.

Initially, the synthesis of fuzzy networks was chosen as a problem domain for several

reasons. One of them is that the underlying architecture of such networks lends itself

very well to the application of structured (yet flexible) multi-level representations: each
individual (i.e. rule set) is in turn composed of a variable number of smaller units (i.e.
rule-like entities). Also, the interaction between evolutionary computation and fuzzy
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systems seems to be a promising source of new ideas with immediate application to

real problems, particularly in the design of controllers and classification systems.

An important objective was not only to identify and describe relevant relations between

a specific representation and the performance and operation of a hierarchically organ¬

ised GA, but also to obtain suitable fuzzy systems efficiently. To this effect, several

new variations on the basic model were introduced. This has been done in as general

a way as possible, although a marked bias towards the aspects of integrating this kind
of GA and systems based on fuzzy rules was unavoidable.

1.3 Main Contributions

Below is a summary listing the main contributions of this thesis; see chapters 7 and 8

for a complete discussion on these topics:

• hierarchically organised GA

• variable-length representation for fuzzy networks

• suitable replacement strategies for the elements populations

• definition of a heredity factor

• means for the automatic adaptation of heredity, cut & splice probabilities

1.4 Outline of the Thesis

Chapter 2: Genetic Algorithms presents first a revision of GAs in general, then

concentrates on the unconventional aspects that were adopted in this work.

Chapter 3: Fuzzy Logic contains a broad presentation of fuzzy systems, introduc¬

ing the basic concepts and practical considerations. Particular emphasis is placed

on rule acquisition and design issues.

Chapter 4: Hybrid Systems reviews the current approaches to the combined use

of fuzzy systems and genetic algorithms, pointing out the most relevant previous

research that motivated and influenced this work.
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Chapter 5: 2LGA Described presents in detail the proposed architecture and the

operation of a hierarchical GA of a new kind. The basic building blocks this

work is based upon are introduced and an overall picture of how all the pieces fit

together is given. Special attention is paid to the more fundamental aspects and

unique features of the system.

Chapter 6: 2LGA at Work shows the results of the application of 2LGA to control

and classification problems. Several variations on the basic model are introduced,

both to enhance the performance of the system and to investigate different design

alternatives.

Chapter 7: 2LGA Analysed examines several considerations regarding the multi¬

level organisation of a GA. Observations are based on results obtained from

experiments.

Chapter 8: Summary and Conclusions contains a summary of achievements, to¬

gether with a discussion of the contribution of this thesis and the issues raised

herein. Some possible directions for future work are also included.

1.5 Disclaimer

Terminology

It is easy to abuse the terminology when working with systems inspired by analogies

to more familiar, natural phenomena — the word neuron is a good example. In this

work, as is the case in practically all the evolutionary computation literature, several

names for system entities and operations such as gene, chromosome, parents, offspring,

mating, reproduction, etc. were adopted. It should be clear that the use of these terms

is intended to facilitate the description of abstract properties of the system and the

elements involved; those names were intuitively chosen only because of the relative role

these elements play.
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No Free Lunch

8

The so-called No Free Lunch (NFL) theorems have recently generated much con¬

troversy in the EC community ([Wolpert & Macready 95], [Macready & Wolpert 95]).
These theorems indicate that there is no difference in performance, for all algorithms

used to search for an optimum solution of a cost function, when averaged over all pos¬

sible cost functions. "In particular, if algorithm A outperforms algorithm B on some

cost functions, then loosely speaking there must exist as many other functions where
B outperforms A" [Wolpert & Macready 95].

As stated in [Culberson 96], "The NFL theorems make it clear that any [claim about
an algorithm outperforming all others] is inherently false unless it is coupled with a

disclaimer such as 'under the prescribed assumptions' or 'on the functions tested'. In

particular, no such claim can ever be made with respect to all possible functions, or

even sufficiently large classes of functions". The main purpose of the work presented

in this thesis is to study a particular system, analysing the most interesting features it
seems to exhibit; certainly no claim about its superiority when compared against all
other algorithms, with respect to all possible functions, will be made.

Philosophical Omissions

Several different themes that are often considered controversial, especially regarding

fuzziness and Darwinism, were intentionally left out of this work, even when they

bear implicit relevance to the material presented in the following chapters. "But there

is no such thing as philosophy-free science; there is only science whose philosophical

baggage is taken on board without examination" [Dennett 95]. Unfortunately, a proper
discussion of the philosophical issues involved is certainly outside the scope of the

present thesis. [Dennett 95] and [Kosko 94] give particular accounts of some of the
fundamental questions and controversies concerned.



Chapter 2

Genetic Algorithms

This chapter presents a general review of genetic algorithms. The emphasis is placed
on elements and ideas that are most relevant to this thesis, paying special attention to

the origins and prior knowledge of the unconventional aspects that were developed in

this research.

2.1 Overview

Genetic algorithms (GAs) have been used in science and engineering as adaptive pro¬

cesses for solving practical problems, normally formulated in search or optimisation

terms, and as computational models of natural evolutionary systems. GAs are non-

deterministic, adaptive and robust computational methods; they are built upon rough

analogies to natural processes which are based on the principle of evolution by cumu¬

lative selection.

Several evolutionary approaches were proposed in the late fifties ([Box 57],

[Fraser 57], [Friedberg 58], [Friedman 59]), during the sixties ([Bremermann 62],

[Fogel et al. 66], [Rosenberg 67]) and in the early seventies ([Weinberg 70],

[Cavicchio 70], [Rechenberg 73]); see [Fogel 98] for an excellent compilation of the ma¬

jor historical events that account for the evolution of the field. However, it is generally

assumed that John H. Holland ([Holland 75]) set the stage for the development of re¬
search in GAs as such. Since then, interest from different research communities in the

field has been growing rapidly, as reflected by the increasing number of conferences

9
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and articles on related subjects.

"A major reason for this interest is that GAs really work. GAs offer robust

procedures that can exploit massively parallel architectures and, applied

to classifier systems, they provide a new route toward an understanding

of intelligence and adaptation." John H. Holland, from the Foreword in

[Goldberg 89c].

As pointed out by [Dennett 95]: "The 'genetic algorithms' devised by John Holland

[...] have demonstrated their power in the no-nonsense world of software development
and have mutated into a phylum of algorithmic variations." There are three dis¬

tinct paradigms in which evolutionary computation approaches are normally classified

([Fogel 93], [Back & Schwefel 93], [DeJong 96]):

Genetic Algorithms The simple GA was introduced in [Holland 75] as an adap¬
tation process; it was first analysed in [DeJong 75] using a set of optimisation
tasks. It is an abstract model of evolution, characterised by a population of indi¬

viduals represented by fixed-length binary strings. Population size and operator

parameters remain constant. Of special importance is the total absence of any

problem-specific features, both in the representation and in the operators used,

which normally comprise some form of recombination as a main operator and

bit-wise mutation as a background operator.

Evolution Strategies First suggested by [Rechenberg 73] and further developed by

[Schwefel 75], Evolution Strategies (ES) use integer and real representations for
numerical optimisation. Individuals are not only represented by the set of ob¬

jective variables; they also include a set of strategic parameters which control
certain aspects of the evolutionary process, i.e. variances and covariances.

Evolutionary Programming Initially proposed by [Fogel et al. 66] as an abstrac¬
tion of behavioural processes, Evolutionary Programming (EP) emphasises the
view of evolution as the adaptation and diversity of behaviours, rather than the

cumulative selection of increasingly fitter building blocks. It was first used to

evolve finite state machines to solve prediction tasks. [Fogel h Atmar 92] formu-
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lated EP's current form, relying upon real variables both for the object variables

and the strategy parameters, which are adapted according to exogenous rules.

Surprisingly, very different and often contrasting design principles are traditionally

emphasised by each research community. However, it would be difficult to draw a

defining line between them without assuming a simplified characterisation of each one

of the approaches. More recent systems normally incorporate techniques drawn from
different algorithms. Very often, unless stated otherwise, the name GA is used in the
broadest sense of the term, closely related to the evolution program concept, as defined
in [Michalewicz 92]:

"In [algorithms based on the principle of evolution (survival of the fittest)]
a population of individuals (potential solutions) undergoes a sequence of

unary (mutation type) and higher order (crossover type) transformations.
These individuals strive for survival: a selection scheme, biased towards

fitter individuals, selects the next generation. After some number of gener¬

ations, the program converges — the best individual hopefully represents

the optimum solution."

Several books and papers have been devoted to the presentation of the fundamental

aspects of GAs. [Goldberg 89c] is perhaps the most cited general reference on the

subject and is often regarded as the basic textbook; [Davis 91] and [Michalewicz 92]
offer more pragmatic treatments, including examples of GA applications for specific

classes of problems. [Mitchell 95] provides an accessible introduction, focusing partic¬

ularly on machine learning, scientific modelling and the connections with artificial life.

[Beasley et al. 93a] and [Beasley et al. 93b] present a succinct overview, describing the
fundamental aspects of GAs; how they work, theoretical and practical issues, together
with a short survey of research topics.

2.2 The Principles

The basic structure of a generic GA can be assumed to be as simple as the one shown

in the following figure:
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This elementary model depicts the essential components of a GA and the minimal

interactions between them. First, it is necessary to represent a set or population of

potential solutions. By means of a selection process, the relatively better individuals

are chosen from the population and used to generate new individuals. Normally two

kinds of operators are involved in this reproduction process: recombination and

mutation. The fitness or merit of each new solution candidate is assessed using an

evaluation function or method. Finally, the new individuals are introduced into

the population, commonly adhering to a replacement strategy. This cyclic process,

symbolising a generation, is iterated until a particular stopping criteria is met.

There are an increasing number of variations on each one of the components mentioned

above and in the ways they interact; a comprehensive review of all of them is beyond

the scope of this thesis. The first part of the following presentation focuses on the most

significant features of GAs in general, while the later sections introduce the particular

aspects that bear special relevance to this work.

2.3 Representation

As is the case with most problem solving techniques, an appropriate representation for

potential solutions must be designed a priori for each particular task. Although the

actual details of the final solution are obviously not known, it is necessary to define

what it must be made of. The following definitions, inherited from the basic ideas of

genetics, are generally used in the field:

Gene: the representation of a single parameter

Chromosome: the set of genes comprising a complete solution candidate
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Genotype: the underlying set of parameters represented by a chromosome

Phenotype: the particular solution as determined by a genotype

13

For a standard GA, a potential solution normally consists of a predetermined set of

parameters, described by the concatenation of their coded values. GAs work on a pop¬

ulation of individuals, i.e. chromosomes, each one representing a candidate solution.

These individuals traditionally consist of a fixed-length, binary coding of the param¬

eters involved, joined together on a linear structure. For example, assuming the task
consists in minimising a function of two variables F(x, y), each variable represented by
a 16-bit binary number, every chromosome would then contain two genes and consist

of 32 binary digits.

The distinction between genotype and phenotype becomes apparent when the set of

parameters, defined by the former, does not constitute a direct representation of the
solution. Instead, these parameters are used to build the latter, following a specific

development process, thus generating one possible solution originating from that par¬

ticular set of parameters.

The choice of representation plays a critical role in GA design. There are many issues

involved, both practical and theoretical. Once the other basic elements have been intro¬

duced, the most relevant implications concerning GA representations will be discussed

in section 2.10 below.

2.4 Fitness Evaluation

Fitness is a crucial concept in evolutionary systems. It corresponds to a measure of

the ability or utility of a particular individual to solve a specific problem. In GAs,
this is normally evaluated using a fitness function which, depending on the problem,

might range from a simple calculation, to multi-objective performance measures, to

complex simulations. In any case, the obtained value should be proportional to the

fitness of the individual to act as a potential solution to the problem, for this is the

main indication the GA is going to use in order to follow an evolutionary process. In

fact, once the coding scheme has been defined for a canonical GA, the fitness value is
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the only piece of information it needs to operate on a particular task, treating it like a

black box. Unlike the commonly used hill-climbing search techniques, traditional GAs
do not require explicit gradient information. Improved individuals are selected solely

by their objective function, hence, the procedure is completely general. Unfortunately,
the real value of a chromosome is not always easily or accurately assessed by a single

measure. In some cases, it can be very difficult to provide a useful single quantity to

guide genetic search.

Obviously, fitness evaluation is tightly related to the choice of representation, which

specifies the space to be searched. If the fitness function is applied to every point in

the search space, the hypersurface defined is known as the fitness landscape, which

is actually explored by the algorithm. Together, the search space and fitness land¬

scape provide an environment for the GA. As for any other search method, smooth

and regular landscapes that do not have too many local maxima nor a very isolated

global maximum, i.e. a needle in a haystack, are obviously preferred. Often, how¬

ever, a "harsh" environment is unavoidable, perhaps inherent to the problem itself,

but an adequate choice of representation/fitness evaluation combination can make a

big difference and ease the GA task.

2.4.1 Performance Evaluation

Deciding when to stop or re-initiate the GA search can be based on a simple and

deterministic strategy, e.g. after a fixed number of generations, or it might involve a

more complex calculation, taking into account population diversity and average fitness

statistics, for example. In certain situations, it makes sense to assess the performance

of the algorithm based solely on the fitness values of the solutions obtained, but this

is not always the case. [DeJong 75] defined two measures to quantify the effectiveness
of a particular GA:

On-line performance xe(s) gives an indication of the ongoing performance, for a

particular strategy s on environment e, comprising the average of all function

evaluations up to and including the current trial T:
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where fe{t) is the objective function value for environment e on trial t

Off-line performance xl(s) is aimed at measuring convergence (see below). It in¬

volves a running average of the best performance values to a particular time:

t=i

where f*(t) = best {/e(l),/e(2),...,/e(t)}.

As explained in [Goldberg 89c], "The names off-line and on-line refer to the difference
in emphasis between off-line and on-line applications. In an off-line application, many

function evaluations can be simulated and the best alternative so far saved and used

after the achievement of some stopping criteria. An on-line application does not afford
this luxury and function evaluations are achieved through real experimentation on line;

as a result, a premium is placed on getting to acceptable performance quickly."

2.5 Populations and Generations

Although the fundamental cyclic process prevails, several different global strategies
have been developed for GAs. A distinguishing feature is the number of individuals
that are directly affected on each iteration of the algorithm. The proportion of indi¬
viduals in the population that are replaced in each generation is called the generation

gap, as introduced by [DeJong 75]. There are obviously two extreme situations: 1)
the maximum number of individuals in a population, i.e. all of them, are replaced in

each generation, or 2) the small number of individuals created during the reproduction

stage, typically two, take the place of a number of individuals from the previous gen¬

eration. This leads to two different general strategies for dealing with the concept of a

"generation" in GA populations, called generational and steady-state, respectively.

2.5.1 Generational GA

In the first case, when the whole population is replaced on each cycle, no breeding
occurs between individuals of different generations: the generation gap is 1. This is

called a generational GA, characterised by non-overlapping populations. Most of the
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early systems operated in this way, probably influenced by De Jong's suggestions; this

approach is still very much in use in optimisation tasks, perhaps for the same reason.

2.5.2 Steady-state GA

In the second case, the new individuals, resulting after the reproduction process has

taken place, are introduced into the population straight away. They normally replace
an equal number of "old" individuals and are thus available for reproduction in the

next generation. This is known as a steady-state GA, characterised by overlapping

populations; an early example can be found in the GENITOR system ([Whitley 89]).
Occasionally the need for a particular replacement strategy becomes evident under this

scheme. In fact, selection and replacement methods are often very closely related (see
section 2.6 below).

The main difference between the steady-state and generational approaches is that, in
the former, the new offspring are immediately available for reproduction. Purportedly,

this characteristic would allow the GA to exploit a promising new combination of genes

as soon as it is produced. Although this might intuitively seem like a desirable feature,

no conclusive evidence has been presented to this effect so far ([Goldberg & Deb 91]).

Obviously, it is also possible to use an intermediate generation gap. [Schwefel 81] in¬

troduced, in the context of Evolution Strategies (ES), the idea of generating A offspring
that compete for survival, either amongst themselves or together with the whole popu¬

lation, preserving at the end of each generation a total of p individuals. Two examples

of ES are the (/a + A)-ES and (p, A)-ES. In the first one, p parents produce A offspring;
the population is then reduced again to p parents by selecting the best solutions from

among both the parents and the offspring. Thus, parents survive until they are re¬

placed by better solutions. The (/i, A)-ES is closer to the generational model used in

canonical GAs; offspring replace parents and then undergo selection. Recombination

operators for ES also tend to differ from from the typical crossover, allowing operations
such as averaging parameters, for example, to create an offspring.
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Not only can the basic components interact in a plurality of ways, but the various

subparts that make them up can also be specifically arranged, displaying diverse forms
of interrelation. It is common to have not just one population, but a small number

of them. Individuals evolve in isolation within their respective population for several

generations. When a predetermined condition is met, e.g. the system has evolved for
a certain number of generations, selected individuals are allowed to migrate between

populations. This is known as the island model, because partial geographical isolation
in nature is simulated by using multiple subpopulations and intermediate migration
rates ([Grosso 85]). This scheme is closely related to some of the object-based models
of parallel GAs proposed by Goldberg ([Goldberg 89c]), and has special bearing on the

concepts of niche and speciation discussed below (section 2.6.3).

2.6 Selection and Replacement

From biology, the idea of survival of the fittest is transferred to the GA analogy by
means of selection and replacement methods. In broad terms, the aim is to provide
the mechanisms through which highly fit individuals may acquire more opportuni¬
ties to survive longer and reproduce more often, so that they have better chances of

disseminating their valuable genetic material.

There are many different selection schemes and variations thereof. The actual im¬

plementation also depends on the choice of generation gap, but the principle is the
same: some individuals must be chosen for reproduction. This is done in such a way

that relatively fitter chromosomes are more likely to take part in reproductive trials.
Basic theory (see section 2.8.1) says that mating opportunities should be allocated to

individuals in direct proportion to their relative fitness. However, because actual GAs

operate on finite populations, selection strategies must be modified in order to avoid

premature convergence. One of the main problems faced by GAs is that it is possible

to have a few individuals that, although being far from optimal, have a comparatively

very high fitness. They may rapidly spread their genetic makeup, which will come
to dominate the entire population. As soon as the GA converges to this local maxi-
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mum, the effectiveness of recombination operators is severely hampered. The ability to

continue and advance with the search relies almost exclusively on mutation operators,

which at this stage will perform little else than slow random exploration.

It is possible to select parents according to fitness and replace old individuals by inverse

fitness, although sometimes either one or the other is performed randomly. It is obvious
that selection/replacement strategies that are too strongly biased towards selecting the

best/removing the worst can lead to premature loss of diversity and hence sub-optimal
solutions. However, "too little fitness bias results in unfocused and meandering search.

Finding a proper balance is important but difficult to determine a priori with current

theory" [DeJong 96].

It was in fact [DeJong 75] who introduced the first variations on biased sampling
mechanisms and [Brindle 81] proposed several further modifications. Analysis of
different categories of selection procedures can be found in [Baker 85], [Baker 87],

[Back & Hoffmeister 91]. According to [Beasley et al. 93a], parent selection techniques
can be divided into two types of methods, depending on whether fitness values are ex¬

plicitly remapped in order to allocate reproductive trials or not.

Some methods involve sorting individuals according to raw fitness values, and then

allocating reproductive opportunities based on this ranking. Scaling is another common

technique, where fitness values are remapped in order to compress the range; it can be

done linearly or exponentially, depending on the characteristics of the fitness landscape.

A very simple and commonly used sampling mechanism can be modelled as a "roulette

wheel", where the slots are sized according to fitness:

• Calculate the fitness value /(c,;) for each chromosome Cj (i = 1,...,1V) where N
is the population size.

• Obtain the fitness sum of the whole population
i=N

F=T, /W
i=1

• Compute the probability pi of selecting each chromosome Ci (i = 1, ...,N)

Pi = f(ci)/F
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• Calculate a cumulative probability qi for each chromosome Cj (i = 1, ...,N)
j=i

Qi =
3=1

Selecting S chromosomes now consists on "spinning" the roulette wheel S times:

• Generate a random number r in [0,1].

• If r < q\ then select c\\ otherwise select Cj such that < r < qi

An interesting improvement on this sampling mechanism, called stochastic universal

sampling, was devised in [Baker 87]. Instead of spinning the wheel S times using just
one marker, the wheel is spun only once but using S equally spaced markers. This

modified version does not introduce the sampling errors incurred by the original.

2.6.1 Tournament Selection

An alternative approach does not involve an explicit remapping of the fitness values,

but still performs reliable selection regardless of function scaling. Although there are

several variations on the theme, a class of techniques is based on what is known as

tournament selection: a set of M individuals is picked at random from the population

and the fittest one is given the opportunity to reproduce. The choice ofM is important,

because it has a direct effect on selection pressure. To reduce the risk of premature

convergence, the minimum value of M = 2 is commonly used, hence the name binary
tournament selection.

2.6.2 Elitism

Unless explicitly precluded, in a steady-state GA it is possible to have the best individ¬

ual replaced when new offspring are introduced into the population; in a generational

GA, it might just be left behind. GAs are highly robust methods and, as such, good

specimens just like the one that has been lost, are likely to be produced again in

a relatively short time. However, it is common practice to prevent this temporary

backward-step by always keeping the best individual found so far under protection

from replacement. In a generational GA, at least one copy of the best chromosome
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is carried over to the next generation. Selection/replacement techniques comprising

protectionism of this sort are called elitist.

2.6.3 Crowding, Niche and Speciation

In his pioneering work ([DeJong 75]), De Jong also introduced the concept of crowding.
When a new individual has been created, it will be introduced into the population re¬

placing an "old" one. Analogous to the tournament size, a crowding factor (CF)
is used: CF candidates for replacement are chosen from the current population at

random. The new individual will take the place of the one it resembles the most, us¬

ing some measure of similarity — e.g. a simple bit-by-bit comparison to calculate the

Hamming distance. Related concepts are niche exploitation and sharing ([Holland 75],

[Goldberg k Richardson 87]), where several individuals which occupy neighbouring ar¬

eas in the search space are made to share the fitness payoff among themselves.

The aim is not just to maintain diversity in the population: by enforcing this crowding

pressure, kinds of niches are created. This is of special interest if the GA is used with

a multi-objective evaluation function, when it is important to locate several peaks of

high fitness rather than just one. This is intended to be analogous to the speciation

phenomena in nature ([Perry 84]).

2.7 Reproduction

Once some individuals have been selected, they will be used to produce new offspring,
which will become part of the population in the next generation. The reproduction

process typically involves two classes of operators: recombination and alteration, ap¬

plied in that order. The former is normally performed by crossover operators, while

mutation is generally used for the latter. Depending on the overall strategy and the

chosen generation gap, these operators are applied with a certain probability. In fact,

crossover operators are often used with a relatively high frequency, whereas the prob¬

ability of mutation is usually kept low (see section 2.9). In broad terms, the use of

crossover is intended to attempt different arrangements of the genetic material already

present in the population, while mutation is used to introduce new gene values that
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2.7.1 Crossover

In traditional GAs, two parents are normally used to produce the same number of

children, but it is obvious that simple modifications to the basic model provide different

alternatives. Assuming chromosomes of fixed length I, one-point crossover works as

follows:

1. Choose randomly a cutting point c (0 < c < I).

2. Copy the first c genes from one parent and the last I — c from the other and put

them together to form the new chromosome. If required, create a second child in

a complementary fashion.

For example, if the following are the parent chromosomes (I = 7):

A B C D E F G

a b c d e f g

and the crossover point c turns out to be 3, these children would be produced:

A B C d e f g

a b c D E F G

Very frequently, a two-point crossover variation is used, where genes from each parent

are transferred to the offspring alternately between cutting points. Using the same

parents from the previous example, assuming crossover points at c\ = 2 and C2 = 5,

the following individuals would result:

A B c d e F G

a b C D E f g

Apart from the obvious extension to V-point, crossover, an interesting variation is
the so-called uniform crossover: each gene is, in turn, randomly chosen from either

parent ([Syswerda 89]). Optionally, a fitness-dependent bias can be introduced, so that
children receive relatively more genes from the fitter parent ([Eshelman et al. 89]).
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2.7.2 Mutation
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Before a new individual is evaluated and inserted in the population, each one of its genes

has a small probability of being altered. In the traditional binary string representation,
a random number in the range [0,1] is generated for each bit in the chromosome. If
the value is smaller than the current mutation probability pm, the corresponding bit

is flipped.

Many extensions of the basic ideas, derived from binary representations, have been

proposed for higher cardinality alphabets, such as direct integer or real number repre¬

sentations. Meaningful interpretations of recombination and alteration operators have
been thus defined. For example ([Beasley et al. 93b]):

• Recombination operators

Average — take the arithmetic average of the two parent genes.

Geometric mean — take the square-root of the product of the two values.

Extension — take the difference between the two values, and add it to the

higher, or subtract it from the lower.

• Alteration operators

Random replacement — replace the value with a random one.

Creep — add or subtract a small, randomly generated amount.

Geometric creep — multiply by a random amount close to one.

2.8 Theoretical Framework

"Theory is crucial. Serendipity may occasionally yield insight, but is un¬

likely to be a frequent visitor. Without theory, we make endless forays

into uncharted badlands. With theory, we can separate fundamental char¬

acteristics from fascinating idiosyncrasies and incidental features. Theory

supplies landmarks and guideposts, and we begin to know what to observe

and where to act" [Holland 95].
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Despite Holland's concerns and efforts, it could be difficult to talk about the theoretical

foundations of GAs, for this is still a rather controversial topic within the field. Evo¬

lutionary computation in general, and GAs in particular, often emphasise "traditional

engineering concerns: using simulated evolution as a method to expand the practical

design powers of programmers or software engineers" [Dennett 95]. The reason for
this pragmatic emphasis is probably the following: despite the fact that GA practical

applications, in general, lack a strong theoretical background, they very often per¬

form better than traditional systems and, not unusually, outperform the best-known

algorithm for a particular class of problems.

Some of the theoretical notions that provoked the interest in developing this research
are introduced in the following sections. Intentionally, these concepts are presented first
in rather general, abstract terms. More specific, concrete examples of some attempts

to explore and exploit these ideas are provided below.

2.8.1 Schema Theorem and Building-Block Hypothesis

The traditional description of a building-block (BB) involves the notion of schema

([Holland 75], [Goldberg 89c]). A GA operates over a population of individuals rep¬

resenting potential solutions to a problem, a subset of which can be defined using a

similarity template. Those individuals matching the values that were explicitly stated

in the template are said to be instances of it; this particular template is called a schema.

A schema which is tight (short), with few specified values (low-order), and with rel¬

atively high fitness, is called a building-block. Higher-order BBs are obtained over

time by combining information from low-order ones; this gradual, cumulative process

is said to involve mixing events ([Thierens & Goldberg 93]). In [Goldberg et al. 92],
an attempt is made to create analytical models of building-block exchange in linear

problems which are verifiable through computational experiments.

According to [Forrest &; Mitchell 92], "the building-block hypothesis states that the
GA works well when short, low-order, highly-fit schemas recombine to form even more

highly fit higher-order schemas. The ability to produce fitter and fitter partial solutions

by combining building-blocks is believed to be a primary source of the GA's power,

but the GA research community currently lacks precise and quantitative descriptions



CHAPTER 2. GENETIC ALGORITHMS 24

of how schema processing actually takes place during the typical evolution of a GA
search."

Although these statements regarding BBs are generally accepted, they are often consid¬
ered to be weak as predictors for the working of GAs ([Beyer 95]). The main emphasis
in schema-based theories is on the fitness proportionate selection. Mutation and re¬

combination appear in these theorems as disturbances changing the selection equation

into a weaker inequality. But even if selection is considered alone, such theories cannot

predict the performance of the GA, as can be seen in the case of deceptive problems.

Several alternatives have been proposed, such as Markov Chain Analysis

([Davis &; Principe 93]), which have been used to prove/disprove the convergence to

stationary state properties. The problem is that, although they are exact models, a

link is still missing that connects the microscopic level of description to macroscopic

variables such as the expected fitness change over time or the number of generations
needed to reach a certain state.

The Mesoscopic Approach ([Miihlenbein 92], [Thierens & Goldberg 94]), as the name

implies, is an attempt to incorporate exact microscopic theory together with some phe-

nomenologic ingredients obtained by empirical methods. Even though from the current

state of the theory it is not plausible to derive formal basic principles, the mesoscopic

approach is able to give estimates for optimal mutation rates and the expected run-time

complexity of the algorithms ([Miihlenbein & Schlierkamp-Voosen 94]).

Nevertheless, it is very likely that the "building-block" notion will be a crucial one in

the context of a more general theory of complex adaptive systems:

"[The theory's] mathematics would emphasise the discovery and recom¬

bination of useful components — building-blocks — rather than focusing

on fixed points and basins of attraction." [Holland 92]

While it seems that it is necessary for BBs of the appropriate size to come into existence,

grow, and be well selected, it is most important in a recombinative scheme that good

building blocks in one structure be combined with good building blocks on another
structure to form a new structure with a larger number of effective BBs. It should
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be possible to create new mechanisms to facilitate the observation and description

of BB manipulation in GAs. Once the underlying processes are understood in those

terms, suggestions for predictability and performance improvement should be more

easily drawn.

The way information is represented, i.e. the chromosome's coding scheme, plays a fun¬
damental role in the operation of the GA, as will be discussed next. Furthermore, how

BBs are formed, combined and preserved largely depends on the form of representation

and operators chosen.

2.8.2 Epistasis

In most cases, the influence that a particular gene has on the fitness of an individual

depends on the values of other genes in the chromosome. The term epistasis is used

to refer to any kind of strong interaction between the different genes that make up a

chromosome.

It is important to note that this idea extends beyond gene boundaries. BBs usually

interact with each other in complex, non-linear ways. Two or more separate BBs that

indeed contribute independently to the fitness of several individuals in a positive way,

might interact negatively when they are assembled together in one single chromosome,

resulting in a decrease in fitness for the individual that juxtaposed them. Therefore,

the GA not only has to find all the required BBs; it must also discover a good way to

combine them in order to yield an appropriate solution in the end.

2.9 Adapting Parameters

Unlike most deterministic methods, GAs are normally not highly sensitive to the choice
of system parameter values, which contributes enormously to their reputation of be¬

ing robust. Nevertheless, several attempts have been made to devise guidelines for

choosing optimal parameter values. Techniques that employ dynamic system param¬

eters seem very appealing, since the optimal use of each operator may vary during
the course of a GA run ([Grefenstette 86]). An intuitive approach is to apply a linear
variation to crossover and mutation probabilities ([Davis 85], [Syswerda 91]): GA op-
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eration starts with a relatively high value for the former and a low one for the latter;

as the generations pass by, the probability of crossover decreases while the probability

of mutation increases. The idea is to use the recombination powers of crossover to

find useful combinations of building blocks at the beginning, and to give more oppor¬

tunity for mutation to introduce the missing elements needed for refining individuals

in the final stages. This does not need to be done using a fixed schedule. [Booker 87]

proposed a dynamical crossover rate, which varies depending on the spread of fitness

values; when the population diversity is reduced, the crossover probability decreases

in order to augment the effects of mutation, thus preventing premature convergence.

Another adaptive technique is based on positive reinforcement ([Davis 89], [Davis 91]),
where credit is given to each operator according to the success with which it creates
fitter chromosomes. For each reproductive trial, an operator is selected with a certain

probability, depending on an associated weighting figure which is updated according
to its current effectiveness. These weights are adaptively modified during the course

of a GA run.

In most cases, self-adapting mechanisms present many advantages over fixed strategies

using predetermined parameter values. Moreover, the idea of self-adaptation can be

extended to other GA elements, such as representation, introduced in the next section.

2.10 Further Issues on Representation

It is clear that representation is a central question concerning GAs. For any given envi¬

ronment or problem domain, the choice of which features to represent on the genotype

and how to represent them is crucial to the performance of the GA. The trade-offs are

clear in that binary encodings and traditional operators have a much broader range of

applicability, but are normally outperformed by problem-specific representations which

exploit additional knowledge, when available, about a particular class of problems.

Thus, many applications and analysis of GAs have departed from the basic binary

string representation. Despite the fact that traditional GA theory suggests that low

cardinality alphabets yield enhanced schema processing, other representation schemes

such as real-coded genes ([Rechenberg 73], [Schwefel 81]) have been applied successfully
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in the solution of many practical problems. Theoretical analysis regarding the use

of high-cardinality coding in GA chromosomes has made some progress accordingly

([Goldberg 91b]), but much work is still required in this area.

One generally adopted approach is to design a problem-specific type of representation
and the appropriate new/modified genetic operators to work on it. Enhanced capa¬

bilities and improved performance are indeed commonly achieved, the price being a

severe loss of generality and the lack of a solid theoretical account for the behaviour

of that particular system.

2.10.1 Linkage Problem and Deception

For most chromosome representations, like the commonly applied binary strings with

fixed positions for each gene, the actual coding scheme has to be very carefully designed.

Operator-oriented views of fitness landscapes ([Jones 95]) emphasise the tightly cou¬

pled interaction between, on one hand, the choice of a certain representation and an

evaluation function defining a fitness landscape and, on the other hand, the operators

used to explore it. In particular, given the way in which crossover-like genetic operators

work, if two inter-related genes are not located or easily placed by the GA itself close
to each other in the chromosome, useful combinations will be both hard to identify

and easily disrupted. The same applies for higher-order BBs; this is known as the link¬

age problem. If the choice of chromosome coding does not allow the required building
block combinations to take place, the GA will converge to sub-optimal solutions, par¬

ticularly in the case of so-called deceptive problems ([Goldberg 89a], [Goldberg 89b],

[Goldberg 91a], [K. Deb 92]).

For example, [Bethke 80] used the Walsh-schema transform to construct functions that
mislead the GA, by directly assigning the values of Walsh coefficients in such a way

that the average values of low-order schemas give misleading information about the av¬

erage values of higher-order refinements of those schemas — i.e. higher-order schemas
contained by the lower-order schemas. Specifically, it is possible to choose such coef¬

ficients so that some short, low-order schemas have relatively low average fitness, and
then choose other coefficients so as to make these low-fitness schemas actually contain

the global optimum. Deception has been a central focus of theoretical work on GAs.
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Walsh analysis can be used to construct problems with different degrees and types of

deception, and the GA's performance on these problems can be studied empirically.

The goal of such research is to learn how deception affects GA performance, shedding

light on the reasons for the GA failure in certain cases, and to learn how to improve

the GA or the problem's representation in order to enhance performance.

2.10.2 Variable Length

Most current GAs use fixed-length chromosomes comprising specific genes at fixed po¬

sitions, normally incorporating one of the usual varieties of crossover operators. This
bias towards simple, basic structures and operators is undoubtedly caused by early

studies, mainly [Holland 75] and [DeJong 75], which adhered to a number of abstrac¬
tions and simplifications in their quest for fundamental principles. As pointed out in

[Goldberg et al. 89]: "It is interesting, if not ironic, that neither man intended for his
work to be taken quite so literally. Although De Jong's implementation simplifications
established [sic] usable technique in accordance with Holland's theoretical simplifica¬

tions, subsequent researches have tended to treat both accomplishments as inviolate

gospel".

However, the use of variable-length strings, although notably uncommon, is not new.

[Cavicchio 70] is an early example, presenting a study of GAs as a search tool in the con¬

text of pattern recognition detectors. [Smith 80] presented the LS-1 system in a study
of machine learning in a poker-playing task. Modified forms of crossover operators were

introduced; crosses both at and within rule boundaries were allowed. Additionally, the

inclusion of an inversion operator permitted the rearrangement of rules within a string,
with the purpose of bringing closely related rules together, thereby reducing the dis¬

ruptive effects of crossover. His work set the stage for machine learning applications

using variable-length representations and modified versions of recombination operators

([Cramer 85], [Fujiko h Dickinson 87]).

Over- and Under-specification

In some cases, although a variable-size representation is used, a chromosome of a

predetermined length is in fact required in order to perform fitness evaluation. On
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one hand, it is possible to have several instances of the same gene but with different

values; this is a case of over-specification. On the other hand, a chromosome might

also be lacking the presence of certain genes, in which case it is said to suffer from

under-specification.

Handling over-specification is relatively easy. The requirement is to choose between

conflicting instances of the same gene contained within the same chromosome. There

are several ways of dealing with this problem, choosing by means of a probabilistic or

deterministic voting procedure, adaptive precedence or, the one most commonly used,

simple positional precedence.

Under-specification is more difficult to deal with, especially without making strong

assumptions that might compromise the generality of the approach. One such assump¬

tion is the partial string, partial evaluation idea, which presupposes that the fitness

function may be calculated as a sum of sub-functions ([Goldberg et al. 89]):

j=m

f(xi) = € Kj)fi = !> •••*>
3= 1

where the fj are themselves functions of non-overlapping subsets of the Boolean vari¬
ables Xi and the sets Kj form a partition of the full index set 1,..., I.

Alternative approaches for dealing with under-specification are independent and in-

common averaging, both of which were found to be unacceptable in [Goldberg et al. 89]
due to a high schema-difference-to-noise ratio introduced by sampling errors. Instead,

they proposed the competitive templates alternative (see below).

Parsimony

Some of the fundamental issues associated with representations of variable size, in con¬

trast to linear strings of fixed length, have been described in different ways, particularly
in the Genetic Programming literature (see section 2.11.1). One obvious difficulty is

that these structures may grow too big, and too quickly, without any significant im¬

provement in the quality of the solution they represent. In [Nordin & Banzhaf 95], for

example, the effects of compression pressure in evolutionary algorithms using individ¬

uals of variable length are discussed; it is suggested that there are both positive and
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negative effects and that the key point is to balance the pressure towards low effec¬

tive complexity (i.e. the length of the active parts of an individual), according to the

equation for effective fitness, which takes into account this complexity factor.

Of particular interest to this thesis is the concept of parsimony, which is directly linked

to the fundamental relationship between the performance and complexity of evolved

individuals ([Zhang & Miihlenbein 95], [Zhang & Miihlenbein 93]). It has been mod¬
elled after the intuitive idea behind the principle of Occam's Razor ([Blumer et al. 87])
which simply indicates that a problem (or a solution, as it may be) should be stated in
its basic and simplest terms. This is in line with the Aristotelian principle that entities

must not be multiplied beyond what is necessary. In science, the simplest theory that

fits the facts of a problem is the one that should be selected. The rule is interpreted

to mean that the simplest of two or more competing theories is preferable and that
an explanation for unknown phenomena should first be attempted in terms of what is

already known.

2.11 Structured and Hierarchical Representations

As mentioned before, high-cardinality alphabets are often used to represent parameters

in a GA's chromosome. Additionally, a large number of different approaches, even if

they retain a binary-string representation, often impose a structure of some sort upon

the chromosomes they use. The most relevant examples are briefly discussed below. It

is important to note that few of these approaches had been developed at the time this

project commenced.

GENES

An interesting example of a structured representation was presented in

[Bickel & Bickel 87], They used a variable-length chromosome (a rule set), treated
as a linked list of genes, each gene being a tree-like structure (a single rule), used to

develop expert systems. The smallest units to handle, the nodes forming the tree in

each gene, were chosen from a table of possible options, so that the GA was used to

find:
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• good combinations of nodes within a gene — i.e. good rules

• good combinations of genes — i.e. good rule sets
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where the latter was obviously the final goal.

The mutation, crossover and inversion operators were modified so that they could be

used on that particular representation. A few variations of a mutation operator were

proposed, which could affect either a whole gene or just a node within a gene, thus

operating at two different levels of the representation. On the other hand, a crossover¬

like operator was designed to recombine complete genes, occurring at points between

rules only, with no recombination of tree nodes. Likewise, an inversion operator would

just exchange the order of complete genes within a chromosome. The actual number of

rules in each linked list was randomly determined via an average length parameter and
the number of rules allowed was optionally bounded. There was only one action node

per rule; additional nodes each representing a possible condition precedent to carrying

out the action, linked by boolean operators. In their system, named GENES, each

individual consists of a linked list of rules. Each rule is in turn parsed syntactically as

a tree structure. Thus, it could be said that their work bears resemblance, in several

aspects, to the Genetic Programming approach (see section 2.11.1).

sGA

Another form of structuring comes about by adopting hierarchical representa¬

tions. An interesting example is the so-called Structured Genetic Algorithm (sGA,

[Dasgupta & McGregor 92]), developed for the design of application-specific neural
networks. The main distinctive feature of the sGA is that a multi-level hierarchy is

represented within the (linear) chromosome. In this scheme, high-level genes determine

whether lower-level genes are active or not for that particular chromosome, making use

of genetic redundancy represented as a set of binary strings in a haploid genetic model.
Such redundancy is eliminated through regulatory genes that act as switching opera¬

tors to turn other genes on or off. An important consequence is that a genetic operator

may now produce, in a single high-level alteration, a result equivalent to multiple

changes at lower-level parts of the chromosome. Furthermore, the operators may per-
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form in a blind, uniform manner, regardless of the level of the gene(s) being affected.
It could be said that the sGA quasi-hierarchical representation implicitly introduces

an intra-chromosome operator.

GA-MINER

[Radcliffe &: Surry 92], [Radcliffe 92], [Radcliffe & George 93] study the limitations of
linear chromosome representations and the use of conventional recombination opera¬

tors. They introduce the concept of formae as a generalisation of the schemata used

in conventional GA theory. It is interesting to note that their work on non-linear

representations, in the context of formulating data mining as a search problem, led
them to the independent development of a system ([Radcliffe & Surry 94]) which is

structurally very similar to the one presented in this thesis. They adopted the view

that the most useful form in which the results of data mining can be presented is as

explicit rules, commonly expressed as predicates of the form (if x then y). There too,

the goal is not simply to find the single best rule describing a subset of the database in

question, but to find a selection of rules representing different kinds and instances of

patterns within the database. They acknowledged the need for a sort of niching tech¬

nique (see section 2.6.3) and thus proposed the "use of the implicit niching encouraged

by structured population models while strengthening this through the construction of
a two-level hierarchical genetic algorithm". In their approach, rules are taken from
each of the low-level populations to form a universal set of rules from which it will be

the task of the high level genetic algorithm to find the best set of some given size. In

this manner, competition at two different levels of the hierarchy results in the discovery

of co-operatively useful sets of rules.

The issue of determining a suitable evaluation function for both levels in the hierarchy

was addressed. For the low-level one, they postulated a number of desirable features,

in order to formulate a single numerical quantity encapsulating them; an ideal rule
would be [Radcliffe & Surry 94]:

• interesting—capturing some trend in the data which is of use to those using the

data-miner;
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• relevant—capturing meaningful trends, not simply "truisms" about the database;

• approachable—formulated and presented in a form easily digested by humans;

• general—rules which apply to larger portions of the database are preferred;

• accurate—so that truth of the conditional part of the rule implies truth of the

rule's prediction with high probability;

• covering—so that truth of the prediction part of the rule implies truth of the
rule's conditions with high probability;

• statistically meaningful—there must be a higher probability that the prediction

of the rule is true when the conditions are satisfied than when they are not.

In the end they defined the fitness of individual rules to be the product of two terms,

one measuring the quality of a rule, and the other measuring its generality.

With regards to the high-level GA, at first their work concentrated on coverage as the

key criterion for rule set fitness evaluation, but the fitness of the individual rules was

also taken into consideration. They defined a measure of the difference between two

rules and then evaluated a set of rules by multiplying the fitness of each rule by the
sum of its difference from each other rule, and summing over all rules, satisfying both
the requirement for coverage and that for high individual rule fitness. Their algorithm

starts with a large universal set of rules produced by genetic search in the low-level

algorithm. The high-level GA then searches over fixed-size subsets of this universal set

for good collections of rules.

They arrived at the conclusion that the hierarchical genetic algorithm was of relevance

not only to data mining, but also to general covering problems. However, they seem

to have later abandoned the idea of a hierarchical GA for data mining ([Radcliffe 95]).

GAANT

In the realm of engineering design, evolutionary and adaptive search algorithms have

been integrated at different levels within the global design process, from the concep¬

tual phase to the detailed design stages. However, [Parmee 96] introduced a dual-agent
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strategy to search the complex spaces involved in engineering design hierarchies de¬
fined by complete systems when taken as a whole. In general, such design hierarchies

comprise, at a first level, many discrete configurations which are described, in turn,

by dependent continuous variable sets. Often these sets of dependent variables dif¬
fer between discrete design paths, making it difficult to search across such hierarchies

without using a structured approach.

It is as an attempt to solve this problem that the GAANT system ([Parmee 96],

[Parmee 97]) was proposed, incorporating both a GA and elements of an ant colony
search paradigm ([Coloni et al. 92], [Bilchev k Parmee 95]). The distinction between
discrete and continuous variable sets is made evident in the overall architecture of the

system. In practice, however, the GAANT strategy uses a single chromosome to rep¬

resent both kinds of elements (see figure 2.1), but establishes a distinction between
individuals according to their discrete variables: crossover is only permitted amongst

solutions with identical discrete configurations, thus preserving information exchange

within members of the same kind. While the GA is guiding the continuous variable

set through an evolutionary process, the values of the discrete parameter set remain

constant for a predetermined number of generations, called an epoch. Then, an over¬

all chromosome fitness is calculated for each individual, based on a ratio of average

fitnesses and the mean fitness for the current generation. Using scaled values in ac¬

cordance with the standard deviation, upper and lower bounds are defined in order to

select which chromosomes are discarded, which ones are modified (mutated) and which
others are preserved for the next generations.

Variations of this dual-agent strategy have also been applied in different engineering

design domains ([Chen & Parmee 98]). In [Watson k Parmee 97], a genetic program¬

ming operator is used to deal with the discrete functional structure while the GA

performs the search in the continuous coefficient space. The GAANT system and vari¬

ations thereof have been used in practical settings to perform an efficient search across

the discrete/continuous design hierarchy. See [Parmee 99] for a concise presentation of
how the GAANT system fits into the whole domain of engineering design.
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Figure 2.1: Design hierarchy representation in GAANT

Design Grammars

The concept of using grammar-like mechanisms providing syntactic generative capabil¬

ities to represent design plans is not a new one ([Stiny 80]). It is possible to integrate
their representational power into an evolutionary system. Genes in a chromosome —

i.e. the genotype — are defined by specific grammar constructs which can be used

to generate a meaningful solution — i.e. a phenotype. Grammar rules can be re¬

garded as fundamental operators, which are capable of defining a certain design space

([Rosenman & Gero 99]). The role of the evolutionary system is to explore this space,

guided by the requirements as formulated in a fitness evaluation function. In the end,

a particular genotype will be found that embodies a set of grammar rules which are

capable of generating a satisfactory solution, given the interpretation of the actual phe¬

notype. This concept is closely related to the use of rewrite grammars ([Gruau 93]) to

represent connectionist systems as they are evolved by a GA of some sort; see section

4.6.



CHAPTER 2. GENETIC ALGORITHMS

2.11.1 Genetic Programming
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Often considered a variation of GAs, Genetic Programming (GP) has been gaining

increasing popularity within the Evolutionary Computation community. First intro¬

duced by [Koza 92], problem solving in GP is formulated as a search in the space of

computer programs, in an ad-hoc language, represented by structures of dynamically

varying size and shape. Populations of such individuals are genetically bred, based
on variations of the main genetic operations: reproduction, crossover and mutation.

Naturally, each operation is based on a previous selection of fit individuals.

Genetic programs are stored as complex expressions with a specific recursive format,
in the provided language, typically using prefix notation. Given that an expression
is the application of an operator to a specific number of operands, prefix notation

denotes that the ordering of the expression is the operator followed by the correct

number of operands. If in turn each operand is itself an expression, a recursive tree

structure develops with the operator as an internal node of the tree and the operands

as the leaves. Borrowing the syntactic convention of LISP, the traditional Artificial

Intelligence programming language, most GP notations denote complete subtrees in

evolved programs enclosed within parentheses.

The fitness of each member of the population is determined by evaluating the individual

program using domain dependent performance/cost functions. The usual selection
methods can be applied to obtain candidates for reproduction, just as in the generic

GA. Then, a special form of crossover is used to obtain (usually) two new programs

from an exchange of genetic material between two old programs: a node is randomly

chosen in the tree representing each parent and is used as a pivot, swapping subtrees

rooted at the two pivots between parents. Mutation is applied in such a way that

a newly generated subtree replaces the subtree rooted at a random pivot position in

a selected individual. Because all individuals in the population are represented as

recursive tree structures, simply removing a complete subtree and replacing it with
another automatically preserves all syntactic constraints.

Because expression trees are recursive, they are of variable depth and hence of unlimited

size. In practice, however, a specific system parameter is used to restrict the maximum
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size of the evolving expression trees, while a certain kind of mechanism (see section

2.10.2 above) is often used to discourage unjustified growth.

GP has been extended in several different ways ([Koza 94], [Kinnear 94a]). Such exten¬

sions have focused on the automatic discovery of functions that improve the ability to

search for solutions by exploiting opportunities to parameterise and reuse previously

generated code. Examples of these techniques are automatic definition of functions

([Koza 92], [Kinnear 94b]), which allows the evolution of reusable subroutines, and

adaptive representation ([Rosea & Ballard 94]), which is focused on the discovery of
useful building blocks of code; these blocks are identified by analysing their evolution¬

ary trajectory and then generalised and transformed into new functions which extend
the function set in an adaptive way.

2.12 Messy GAs

In order to circumvent some of the problems associated with traditional fixed-

length and fixed-coded GAs, mainly the linkage problem discussed earlier, a dif¬
ferent approach called the messy genetic algorithm (mGA) has been proposed
and analysed ([Goldberg et al. 89], [Deb 91], [Goldberg et al. 90]), implemented

([Deb & Goldberg 91]) and enhanced ([Goldberg et al. 93]). Several new variations

on the initial definition of an mGA have been put forward in the last few years

([Kargupta 97], [Knjazew & Goldberg 00]), but the main distinctive features remain,
as described below.

There are four basic differences between simple GAs and mGAs (for a succinct presen¬
tation of what mGAs are, see [Goldberg et al. 91]):

1. mGAs use a variable-length coding scheme that may lead to over- or under-

specification with respect to the problem being solved

2. mGAs use two complementary operators, cut and splice, instead of variations of

the usual, fixed-length crossover operator

3. mGAs divide the evolutionary process into two phases: a primordial phase and

a juxtapositional phase
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4. mGAs sometimes use competitive templates to accentuate salient BBs

In broad terms, the operation of a mGA is not unlike that of a traditional GA, us¬

ing selection and recombination procedures repeatedly on a population to make it

follow an evolutionary process. The main distinctive property of the mGA is that
it incorporates a very flexible coding scheme, which allows the reordering of genes
within the chromosome. This feature is said to promote the discovery and, more

importantly, the preservation of useful combinations of genes — i.e. building-blocks

([Watson & Pollack 99]).

Cut & Splice

The complementary cut and splice operators were introduced to recombine structures

of variable length (see figure 2.2). The cut operator divides a chromosome of length
A with probability pc = (A — l)pk, where pk is a predetermined bitwise cut proba¬

bility. The splice operator joins together a pair of chromosomes, end to end, with

specified probability ps. Once the parents have been selected for reproduction, using

the preferred selection method, the cut operator is applied according to the evalu¬

ated probability for each individual. The resulting chromosomes are then checked for

splicing in successive pairs.

The purpose of applying these two operators in combination is to reduce potential

disruption of BBs, while preserving the juxtapositional power of simple crossover op¬

erators. Cut and splice also have reordering capabilities, declared to be superior to

those of unary operators such as inversion.

Competitive Templates

Since the use of random templates is too noisy to detect salient building blocks reliably,
additional measures were taken to overcome the under-specification problem. A greedy

procedure to generate a locally optimal point is employed, and the result is used as a

competitive template, which is a string specifying a default value for each gene position.

Whenever a chromosome suffers from under-specification, the unspecified genes are

borrowed from the template.
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Figure 2.2: Cut & Splice operators

2.13 Classifier Systems

Learning Classifier Systems (CSs) have been used as models of stimulus-response be¬
haviour and of more complex cognitive processes ([Holland et al. 86]). A succinct
definition is given in [Goldberg 89c]: "A classifier system is a machine learning system

that learns syntactically simple string rules (called classifiers) to guide its performance
in an arbitrary environment." CSs comprise three basic components:

1. Rule and message system.

2. Apportionment of credit system.

3. Genetic algorithm.

These components reflect the underlying principles involved in CSs: hierarchies of
internal models that represent the environment, intermittent feedback from the en¬

vironment, and learning mechanisms. Traditional CSs are organised in three layers

corresponding to the components mentioned above. There is an internal performance

system, which operates using "messages" and controls its state with if-then rules, called

classifiers, that specify patterns of messages. The GA is used to discover useful rules,

based on intermittent feedback from the environment and an internal credit-assignment

algorithm, the most common being called the bucket brigade; profit-sharing and other
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alternatives from the literature on reinforcement learning have also been proposed

([Wilson & Goldberg 89]).

A parameter called strength is associated with each classifier. This measure reflects
the utility of that rule, based on the system's past experience. The apportionment

of credit mechanism, normally based on the bucket brigade algorithm, is responsible
for altering the strength of each rule. The algorithm is based on the metaphor of an

economy, with the environment acting both as the producer of raw materials and the
ultimate consumer of finished goods, and each classifier acting as an intermediary in

an economic chain of production. Using the bucket brigade, a classifier system is able
to identify and use the subset of its ride base that has proven useful in the past. The

GA interprets a classifier's strength as a measure of its fitness and periodically, after

enough time has passed for strengths to have stabilised under the bucket brigade, the
GA deletes rules with low strength, which have not been useful or relevant in the past,

and generates new rules by modifying existing high-strength rules through mutation,

crossover, and other special-purpose operators. See section 4.3.4 below for a brief

description of a particular kind of CS involving fuzzy logic concepts.

The main conceptual difference between CSs and GAs is that, in the latter, popula¬

tion members are functionally independent, normally interacting only in a competitive
fashion through the selective process ([Smith & Valenzuela-Rendon 94]). In contrast

to this, population members in a CS are interdependent. A balance between coop¬

eration and competition must be sustained: on one hand, classifiers must cooperate

in order to improve overall system performance; on the other hand, they compete for

valuable credit in order to survive the selective process.
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Fuzzy Systems

This chapter contains a general presentation of fuzzy systems (FSs), introducing the
basic concepts and practical considerations. Special attention is paid to rule acquisition

and design issues, since these topics are of particular relevance to the work presented
in this thesis.

3.1 Overview

The beginning of fuzzy logic is most widely associated with Loth Zadeh, whose original

paper [Zadeh 65] formally defined fuzzy set theory, from which fuzzy logic emerged. He
extended traditional set theory to resolve problems sometimes generated by the hard
and rigid bivalent classifications of Aristotelian logic. Traditionally, a logic condition

or expression can only be either absolutely true or absolutely false. However, in fuzzy

logic, values range from 0 to 100% true or false, so that statements have some degree

of truth between 0 and 1, inclusive. In this way, sets can be defined qualitatively using

linguistic terms and the elements of the sets assigned degrees of membership. Addi¬

tionally, any action or response resulting from a statement being at least partially true
executes to a strength reflecting the degree to which the statement is true. Thus, FSs

produce smooth and continuous outputs, regardless of inputs crossing set boundaries.

The principles of fuzzy logic have been successfully incorporated in many different ar¬

eas, such as signal processing, approximate reasoning, decision making, classification

and uncertainty handling; however, it is for control applications that the majority of

41
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FSs have been developed. There is no question that these controllers present sev¬

eral interesting features, often comparing favourably with conventional control theory

methods.

Notwithstanding the fact that fuzzy logic is a well-developed, broadly applied com¬

putational method, engineers and scientists in general still react with scepticism to¬

wards fuzzy theory and concepts ([Lindley 87], [Elkan 93]). Nevertheless, the prac¬

tical benefits of FSs are very compelling and include such claims over conventional
methods as shorter development time, increased maintainability, better performance,

less-expensive hardware, and more robustness. It is possible to design them in a rather

simple and consistent way, since knowledge can be represented in readable, explicit

rule-like structures, without requiring a mathematical model describing how the out¬

put functionally depends on the input — FSs are function estimators. Furthermore,

Fuzzy Logic Controllers (FLCs) are capable of modelling non-linear relations and their

performance has proven to be very competitive in commercial and industrial appli¬

cations. Thus, the first use of the particular kind of FS developed under this thesis'

framework will be in a control application. In order to demonstrate how the basic FS

model can be modified and extended, a second one will be applied to solve a classifi¬

cation problem.

There are many variations on the basic FS, e.g. the choice of membership functions

definition, the operators used to fuzzify/defuzzify input/output values, the rule-base

structure, etc. Traditionally, these systems are constructed starting with a knowledge

engineer-domain expert interaction, not unlike the rule acquisition process for an expert

system, to be further improved and fine-tuned at a later stage in the developing process,

usually in an ad hoc way. An expert may articulate linguistic associations based on

his/her domain knowledge, or another system may adaptively infer and modify these

fuzzy associations, usually from representative numerical samples. Good examples of

such auxiliary techniques include statistical and neural systems.

If a standard FS is adopted, there are two major components to design for a particular

problem, namely, 1) the input/output fuzzy sets and their membership functions and

2) the rules that establish a functional relationship between them — fuzzy associative

memory (FAM) rules [Kosko 92], For the former, there are generally applicable ways to
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characterise the domain of a fuzzy variable, assuming conventional fuzzy-set values and

membership functions. For the latter, knowledge engineering techniques are commonly

applied. However, both of these components can be automatically tuned, modified, or

even constructed from scratch by learning or searching mechanisms, such as GAs. In

this thesis, a particular framework based on evolutionary techniques is proposed for the

same purpose: to synthesise fuzzy rules directly from problem-domain sample data.

3.2 Basic Concepts

In fuzzy logic, relationships between imprecise concepts are evaluated instead of math¬

ematical equations. FSs store and process fuzzy rules in parallel, associating output

fuzzy sets with input fuzzy sets. Structured knowledge is directly encoded but, un¬

like traditional knowledge-based systems, this is done in a numerical framework. FSs

process information using parallel associative inference, with fuzzy or multivalued sets

instead of bivalent propositions. The basic process is described in the following sec¬

tions.

3.2.1 Fuzzification of Inputs

Each system input is associated with a group of qualitative classifications, called fuzzy
sets. An input has some degree of membership, possibly zero, in each of its fuzzy sets.

Such degree of membership in a fuzzy set is defined by a function, appropriately called

a membership function. Fuzzification is the process of determining a value to represent

an input's degree of membership in each of its fuzzy sets. The variable containing the

resulting degree of membership is called a fuzzy input.

3.2.2 Fuzzy Sets and Membership Functions

Central to the fuzzification process is the collection of membership functions. Tradi¬

tionally, it is the system designer or domain expert who must define these functions

based on intuition or experience, often involving a trial-and-error tuning phase. Gener¬

ally, once the system is in operation, the membership functions remain fixed. However,

it is possible to provide the system with adaptive means, so that membership functions
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may change in order to reflect alterations in the system's state, environment, operating

conditions, etc. Simple shapes such as triangles and trapezoids are commonly used to

define membership within fuzzy sets, but any suitable function can be used. Obvi¬

ously, the simpler the shape of the membership function, the easier the construction,

representation and execution of that function.

In conventional systems, the domain expert also decides on the number of fuzzy sets

per input/output variable. The fuzzy sets span the entire range or universe of dis¬
course for the system variables. Mapping to the y-axis typically ranges from 0 to 1
and represents the degree to which an input value is a member of that particular fuzzy

set. Overlapping between set boundaries permits membership in multiple sets, even

if seemingly contradictory. Binding imprecise, linguistic terms to membership func¬
tions gives them computational meaning. Consequently, it is possible to use "natural"

language to define the behaviour of a system, which enhances the ability to describe

complex tasks clearly and concisely. A standard way of defining fuzzy sets, usually over

a scaled or normalised input/output domain, is depicted in the figure below. Leaving
zero (ZE) aside, negative (N) and positive (P) values are further qualified as being

large (L), medium (M) or small (S), hence the abbreviated names:

3.2.3 Rule Evaluation

In a traditional setting, a domain expert develops a set of rules to express relationships
between imprecise concepts and govern the system's behaviour. Typically, each rule

has the form of an IF/THEN statement. As usual, the IF side of the rule contains one

or more conditions, or antecedents, and the THEN side contains one or more actions,

or consequents. The antecedents of rules correspond directly to degrees of membership

(fuzzy inputs) calculated during the fuzzification process.

A frequent design and implementation choice is to model fuzzy rules using decision

NL NM NS ZE PS PM PL

0.0
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(look-up) tables, or linguistic matrices ([Kosko 92]). For example, if the system has
two input and one output variables, using a reduced version of the standard mem¬

bership function definitions, a particular fuzzy rule set could be defined as follows

([Wasserman 93]):

NM NS ZE PS PM

NM PM

NS PS ZE

ZE PM PS ZE NS NM

PS ZE NS
PM NM

Columns are indexed by the fuzzy sets that quantise the universe of discourse of input\,
whereas rows are indexed by those for input2■ Each entry in the table represents a

fuzzy rule. For instance, the highlighted one is interpreted as:

IF inputi = PS AND input2 = NS
THEN output = ZE

During rule evaluation, rule strengths are computed based on antecedent values and
then assigned to the rule's fuzzy outputs. Generally, a minimum operation is applied,

making the rule strength equal to the weakest antecedent value; however, other alter¬

natives can also be used, like multiplying the antecedents together. Often, more than

one rule applies to the same fuzzy output, in which case the common practice is to use

the strongest rule.

3.2.4 Defuzzification of Outputs

After the rule evaluation process has assigned strengths to actions, further processing-
is required for two different purposes. First, it is necessary to decipher the meaning

of vague or fuzzy actions, in order to produce an exact, crisp output value. Second,

more than one action may have been triggered by certain conditions during the rule

evaluation process, so the system needs to resolve conflicts between competing actions.

A process that employs compromising techniques to resolve the vagueness and conflict

issues is called defuzzification.

One common defuzzification technique, called the centre-of-gravity method, consists

of several steps. Initially, a centroid point on the x-axis is determined for each output
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membership function. Then, the output membership functions are shortened in height

by the applied rule strength, and new output membership areas are computed. Finally,

the defuzzified output is derived by a weighted average of the x-axis centroid points

and the newly computed areas, with the areas serving as the weights.

3.3 The Implementation of a Fuzzy System

The principles and requirements of fuzzy logic systems are relatively simple and there
are a few public-domain systems available. For the work presented in this thesis,

however, a proprietary implementation of a FS was developed. In broad terms, the

design adhered to the generic FLC architecture depicted in figure 3.1, using constructs

derived from [Viot 93].

Figure 3.1: Generic Fuzzy Logic Controller

The operation of the basic system can be described as a (simplified) five-step process:

1. Read system inputs — the current value of state variables from the external

system to be controlled.

2. Translate these (real) values into qualitative classifications— calculate the degree

of membership for each of the fuzzy sets defined for each input. This is done using

the membership functions, generating the fuzzy inputs.

3. Evaluation of rules — the values of the rules' antecedents, corresponding to the

degrees of membership of the inputs' fuzzy sets, are propagated to the conse-
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quents using standard (min-max) conventions, generating fuzzy outputs. This

process is carried out in a (simulated) parallel fashion.

4. Translate the fuzzy outputs into an exact (crisp) value — calculate, for each

output variable, the centre of gravity of the degrees of membership for that

output's fuzzy sets.

5. Write system outputs — the updated values for the control variables.

Each particular system is characterised by 1) the set of rules and 2) the membership
functions. The program was designed in such a way that these two components can

be independently supplied either by the user or by other programs, using a standard
format. The system to control will be simulated using a computational model of it.

In most cases, it is not too difficult to define evaluation criteria for a particular system

in terms of performance, robustness, stability, compactness, etc. This information will

be crucial to define an adequate fitness evaluation function for a GA that is trying to

evolve a suitable controller or classifier. Section 5.2.3 presents a brief description of

the information used for fitness evaluation in this research.



Chapter 4

Hybrid Systems

A review of the different approaches to the combined use of fuzzy systems (FSs) and

genetic algorithms (GAs) is presented, pointing out examples of the most relevant
research that has motivated and influenced this work. A brief overview of the relevant

combinations of GAs and neural networks (NNs) is also included.

4.1 Overview

It is possible to combine fuzzy logic and evolutionary systems in several different ways.

Although most of these have been developed particularly for control tasks, a generic

architecture for a fuzzy system can be assumed to share the same basic properties (see

figure 3.1). The two obvious targets for a GA-based automated search/optimisation

process are

• the fuzzy set membership functions

• the fuzzy input/output associations — i.e. fuzzy rules

Early examples of how GAs could be effectively applied to synthesise FLCs can be found
in [Karr 91], [Thrift 91], [Valenzuela-Rendon 91] and, as described in more detail in
section 4.4 below, [Feldman 93]. These papers summarise the state of the art at the
time the research for this thesis began. They show how membership functions and/or
rule bases can be not only tuned, but even generated by a GA, producing FSs that

may outperform those developed in more traditional ways. Their work has shown that

48
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GAs are a potentially effective, robust tool for complex FSs design. They can be used

to both improve FSs performance and to gain insight into the problem at hand, letting
the GA generate a set of readable, explicit rules and the appropriate membership

functions.

Since then, many more alternatives of soft computing approaches have been

proposed, combining genetic algorithms, fuzzy logic and neural networks of
some sort ([Ishigami et al. 94], [Shaffer 94], [Zimmerman 94], [Fukuda Sz Shibata 94],

[Shimojima et al. 95], [Linkens & Nyongesa 96], [Russo 98], [Tang et al. 98]).

As is the case in any other discipline, it is not easy to uniquely classify research in the

field into different, concrete categories. The following classification scheme is based on

that proposed by [Cordon et al. 95] and [Cordon et al. 96]. It is particularly relevant
to note that different representational commitments might play a very important role
in establishing further categories for research within the field.

4.2 Fuzzy Genetic Algorithms

Concepts from fuzzy logic can be used to enhance GAs in many ways. A common

approach is to regard the parameter set of the GA as the control variables of a fuzzy

logic controller, according to some measure of performance. It is also possible to define

fuzzy versions of the usual genetic operators, such as crossover or mutation. On the
other hand, when a GA is used to solve problems that involve uncertain or imprecise

environments, it becomes necessary to provide it with the appropriate mechanisms to

deal with this kind of information; a frequent choice is to use fuzzy sets as a modelling

tool.

4.2.1 Improving GAs Using FL

In this case, techniques drawn from FSs are used to improve GA behaviour or model

GA components. Several different approaches have been reported; they can be grouped

as follows:
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The aim is often to establish fuzzy relationships between genotypes and phenotypes;

a FS can be used to define the fuzzy mapping between a chromosome and the po¬

tential solution it represents. It is normally required to design more flexible forms of

representation in order to work directly with the fuzzy sets that are used to define the

genotype/phenotype fuzzy relationship.

Dynamic Control of GAs Using FLCs

This category includes attempts to incorporate "expert knowledge" in the form of fuzzy
rules. These rules summarise what are generally considered as contributing factors
towards desirable behaviours of GAs. This rule base is then used by a FLC to guide

the evolutionary process, modifying the parameters of the GA in order to encourage

positive trends, such as an adequate balance between exploration and exploitation,

and prevent unwanted tendencies, like premature convergence. The obvious problem
with this approach is the requirement to define standard measures describing what the

positive features are and, perhaps more difficult still, the different relations between

GA parameters that can lead to them. [Lee & Takagi 93] have considered a GA as a

dynamical system and used an FLC to control the alteration of the parameters; the

FLC itself may in turn be evolved by a meta-GA.

Operator Definition

Fuzzy crossover and mutation operators can induce predefined diversity levels in the

population. These operators are especially designed for GAs using real-coded genes.

Assessing Solution Quality

It is often difficult to establish adequate criteria to decide when to stop a particular GA

run, especially in a non-interactive setting. It is possible to use fuzzy logic to deal with

predefined levels of accuracy or quality in order to assess overall system performance.
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There seems to be two basic different forms of dealing with fuzzy information using a

GA. First, the problem to be solved needs to be defined in fuzzy optimisation/search

terms, where imprecision, uncertainty or ambiguity measures are involved, and these

have been represented with fuzzy variables and their associated membership functions.

Then it is possible to either represent the values of fuzzy variables directly in the

chromosome, or to represent non-fuzzy values but use fuzzy fitness evaluation methods.

In other words, there is a choice of either representing explicitly fuzzy sets and values,

or using a non-fuzzy representation with a fitness evaluation comprising a fuzzification

step.

4.3 GAs in Search or Optimisation of FSs

It has been increasingly common to apply GAs in various optimisation and search

problems concerning FSs design. As mentioned in the previous chapter, there is a

wide range of applications for this kind of system. In many of these cases, expert

knowledge is either not available or is difficult to express in an adequate fuzzy rule-

form, and it is often complicated to characterise the domain adequately in terms of

fuzzy sets. However, adaptive FSs can use an evolutionary process to abstract fuzzy

principles from simulations or sampled data. It is feasible to obtain a complete fuzzy

knowledge base from scratch. However, if some components are previously available,

either initially proposed by an expert or obtained using other means, like neural or

statistical techniques, the GA can gradually refine them too.

As described in detail in section 3.2, a fuzzy knowledge base is made up of two ma¬

jor components: the membership function definitions of the fuzzy sets involved, and

the collection of linguistic associations that define transformations between input and

output fuzzy variables. Therefore, it has been common to classify reported studies on

GAs used to design FSs in three different categories as follows.
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When a suitable knowledge base is available, the main concern centres on the fine¬

grained characterisation of the domain in terms of fuzzy sets and variables. Although

standard ways of performing this characterisation are commonly assumed, fine-tuning

membership function definitions can often lead to significant improvements in perfor¬

mance for the resulting FS.

Fuzzy membership functions can be defined using several parameters, designating their

shape, size or position, even the actual number of linguistic terms or values of the fuzzy
variables — see section 3.2.2.

Each chromosome encodes a combination of values for the parameters chosen to rep¬

resent distinct membership functions. Normally, these functions are triangular, so a

centre and a base-width for each of them are used. A series of simulations or tests are

then used to evaluate the fitness of a particular individual. The GA is thus employed

as a search/optimisation tool to obtain suitable fuzzy membership functions.

As mentioned above, [Karr 91] shows a straightforward method to apply a GA to FLC

design by adaptation of membership functions of a fixed rule base. Defining these

functions consists of specifying a number of numerical parameters, which are tuned

by the GA. A direct chromosome representation that is simply a concatenation of the

pre-specified number of parameters encoding the membership functions is commonly
used.

[Sakurai et al. 94] and [Topchy et al. 96] also use a GA to optimise the membership
function parameters of a FS in a classification task. [Abbattista et al. 98] present an

"integrated approach to rule structure and parameter identification for fuzzy systems".

Although they work on both the rule structure and the optimisation of membership

function parameters, their approach uses a GA for the latter purpose only.

4.3.2 GAs Defining Fuzzy Rule Bases

This can be regarded as the complement of the previous case. Once suitable fuzzy

membership functions have been defined, characterising the input/output domains,
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the aim is to devise an appropriate set of fuzzy rules to operate on them. Nevertheless,

it is important to note that the adopted definition of the fuzzy membership functions

plays a crucial role, since it determines the number of input/output variables and the

fuzzy sets that characterise them. In most cases, the definition of rules depends on

this information.

Many of the systems belonging to this category employ what is known as a decision

table, or look-up table to represent fuzzy rule bases — see section 3.2.3. Fuzzy associa¬

tions consisting of n input variables and one output variable can be represented using

a n-dimensional decision table. Each "row" on each dimension represents a fuzzy set

value for that particular variable. There is a corresponding fuzzy set value on the table

cells for each intersection of rows, defining the value of the output variable for the cor¬

responding combination of input values. This structure is encoded in chromosome form

and used by the GA to search for a suitable set of rules. Examples of this approach

can be found in [Thrift 91], [Hwang & Thompson 94], [Ng &: Li 94] and [Li & NG 95].

Several alternatives have been proposed to overcome some of the limitations of the

decision table representation. For example, [Hoffmann & Pfister 94] present an alter¬
native hierarchical rule base structure, where "hidden" fuzzy variables are introduced

in an attempt to reduce the total number of rules; these variables are used to group

several premises together, dividing the rule base in smaller parts. It is important to

note that a reorder operator was necessarily introduced, in order to assure a unique

and consistent interpretation of the hidden fuzzy terms, before a crossover operator

could be applied.

[Ishibuchi et al. 94] propose a GA-based approach to the design of fuzzy classification

systems. First, a large number of rules are generated from numerical data. Second, a

rule selection task for constructing a compact system is formulated as a combinatorial

optimisation problem, which is then solved using a GA.

[Chowdhury &; Li 96] present a learning method based on the messy genetic algorithm

for the optimisation of neurofuzzy controllers. They adopt the conventional cut & splice

operators for mGAs, in order to recombine variable-length chromosomes representing

neurofuzzy structures, very similar indeed to the Fuzzy Networks adopted for this
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thesis. However, they retain a flat, non-hierarchical structure: rules are simply strung

together in a linear chromosome.

In fact, this thesis could be classified along with the previous examples in this cate¬

gory, since the actual product obtained by the two-level genetic algorithm (2LGA) is a

particular kind of fuzzy rule base representation. See section 4.4 below for a detailed

description of the work by Feldman that led to the interest in these systems as the sub¬

ject for this research. Since then, some attempts to overcome the problems associated

with fixed-length representations have been proposed. [Buhusi 94] presents a GA for
FSs synthesis featuring structures that represent a variable number of rules, introduc¬

ing an unequal crossover operator to work on these structures. [Cooper & Vidal 93]
and [Cooper h Vidal 94] propose an encoding scheme that maintains only those rules

necessary to control the target system, representing each FS as an unordered list of an

arbitrary number of rules. [Hoffmann &: Pfister 96] show another approach, similar to
the one that had been developed for this thesis, representing a fuzzy rule base by means

of a variable-length encoding scheme; it is also based on the principles of messy-GAs.

4.3.3 GAs Defining the Complete FSs Knowledge Base

It is obvious that the membership functions and the rule base of a particular FS are

tightly related. Establishing one of them and then searching for the other does facilitate
the task somewhat, but it is also possible to use a GA to synthesise both, either at the

same time or alternately in stages ([Wang et al. 98]).

[Cordon & Herrera 94], [Herrera et al. 95] and [Gonzalez k Herrera 96] describe the
use of a GA for learning fuzzy control rules from examples. They propose a 3-stage

methodology:

1. A genetic generating process for obtaining desirable fuzzy rules capable of in¬

cluding the complete knowledge from a set of examples, based on an iterative

rule-learning approach.

2. A post-processing method for combining and simplifying rules, avoiding the pos¬

sibility of "overlearning" and removing redundant fuzzy rules.
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An interesting aspect of this approach concerns stage 1 above. First, a generating

method is used to find one "good" rule over the set of examples. Then a covering method
determines the covering value this rule has over the set of samples and removes those

samples being "covered enough" by this rule, so that the next iteration will generate

another rule covering different samples. An earlier, similar approach can be found in

[Venturini 93].

[Liska & Melsheimer 94] use a GA for discovering fuzzy rules and membership func¬
tions simultaneously. Once the GA approaches convergence, conjugate gradient de¬
scent is used to further improve the best solutions by fine-tuning membership function

parameters.

4.3.4 Fuzzy Classifier Systems

Another method used is to cast the evolutionary search of fuzzy knowledge bases

in a classifier system framework (see section 2.13). [Valenzuela-Rendon 91] and

[Carse & Fogarty 94] show examples of the Michigan and the Pittsburgh approaches,

respectively. In the former, the model used is very similar to the conventional classifier

system; the operation of the system involves an 8-step basic cycle (see figure 4.1, taken
from [Valenzuela-Rendon 91]):

1. There is an input unit, which receives input values. These values are encoded

into fuzzy messages and added to a message list.

2. A classifier list is scanned to find all classifiers whose conditions are satisfied by

the messages in the message list.

3. The message list is erased.

4. All matched classifiers are fired and the produced messages are stored in the

message list.

5. An output unit detects the output messages and erases these messages from the

message list.
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input
values

payoff from
environment vaiues

Figure 4.1: Fuzzy Classifier System

6. Output messages are further decomposed into minimal messages in the output

unit.

7. Minimal messages are defuzzified and transformed into output values.

8. Payoff from the environment and classifiers is transmitted through the messages

to the classifiers.

4.4 Fuzzy Networks

The work presented in [Feldman 93] was fundamentally the starting point for this
research — a rational reconstruction of that system was in fact the first step. Thus,

the most important features of his approach are presented next.

According to Feldman, a fuzzy network (FN) "is a connectionist extension of a fuzzy

logic system allowing partially connected associations, or rules, that incorporate fuzzy

linguistic terms". Formally, it is defined as "a transformation from the fuzzy variable

domain space X = {mi,...,xn} to the fuzzy variable range space Y = {j/i, ...,yp}. The
rules are evaluated in parallel and the outputs are calculated based on a weighted
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average of the activated rules." As is the case with other fuzzy systems, a domain of

discourse U is defined for each fuzzy variable Xi, 1 < i < n and yj,l < j < p with its

corresponding fuzzy sets S, which are characterised using membership functions ps{%)
for each of the chosen fuzzy set values. Using the same short notation, fuzzy rules can

be represented by associations of the form (Ai,..., An\ Bi,..., Bp\ w), where the weight
term w indicates the relative strength or credibility of the connection between this

particular association and the output variables; it is considered to be analogous to the
rule:

IF x\ = A\ AND ... AND xn = An

THEN y\ = B\ constrained by w AND ... AND yp = Bp constrained by w

A fuzzy network is, therefore, a connectionist representation of a set of fuzzy rules,

where each rule indicates a set of connections between fuzzy inputs and outputs. The

definition of a FN given in this thesis (see figure 4.2) comprises of:

• an input node for each input variable

• an output node for each output variable

• an input subset node for each fuzzy set value for each input variable

• every input subset node is connected with its associated input node

• an output subset node for each fuzzy set value for each output variable

• every output subset node is connected with its associated output node

• a rule node for each fuzzy rule

• a connection between a rule node and each input subset node designated by the

antecedents in its associated rule

• a weighted connection between a rule node and each output subset node desig¬

nated by the consequents in its associated rule

• the activation of an input node depends on the value of its associated input

variable
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• the activation of an input subset node depends on the activation of the input

node; it is given by the membership function associated with the fuzzy set value

it represents — fuzzification

• the activation of a rule node depends on the activation of the input subset nodes

to which it is connected; it is given by the minimum of these values

• the activation of an output subset node depends on the activation of the rule

nodes and the weight of the connections between them — rule node activations
are multiplied by their respective connection weights and the output subset node

activation is set to the maximum of such products

• the activation of an output node, which indicates the value of the associated

output variable, depends on the centroid of the output waveform given by the

membership functions of the activated output subset nodes — defuzzification

Fuzzification Defuzzification

Figure 4.2: Example of a fuzzy network of four rules

By allowing the presence of a special value, represented by the symbol 0, it is possible to

indicate that a certain rule is not dependent on — or does not affect — the variable at

that position. In the connectionist model, this is considered a cut connection, meaning

there is no link between that particular fuzzy subset node and the rule node.
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4.5 Fuzzy Network Synthesis Using
Structured and Hierarchical Representations

Even for problems of moderate complexity, the optimum solutions will often have to

be found within a search space which is usually vast. Asuming the less stringent task

of finding a solution that is simply good enough, according to some acceptance criteria,

does not alleviate the problem, unless a proper exploration strategy is used that, at the

same time, exploits the information which is readily available to speed up the search. It

is clear that in the case of FNs, epistasis issues (see section 2.8.1) become particularly

relevant, as representation structures modeling rule sets are likely to inherently impose

a tighter link between possibly distant genes.

Sections 2.10 and 2.11 described some of the most important issues associated with

complications regarding GA representations, along with several relevant attempts to

address these in the literature. Most of the systems reviewed introduced a structured

approach to the problem, reflected in the representation itself, the architecture of the

system, or both.

It would be difficult to assess in an accurate way how well those schemes would fare, if

given the task to produce FNs suitable to solve a particular problem, without actually

implementing them and carrying out a comprehensive set of tests. However, it is still

possible to deduce a few important facts from both the known features of those systems,

on one hand, and the intrinsic properties and contrivancies of FNs and the problems

associated with their construction, on the other.

Presumably, the GENES system ([Bickel & Bickel 87]) could be easily extended to

accomodate the intricacies of FNs, as it already handled (expert system) rules, both

individually and at the set level. Although it had no predefined method to adjust
nor to optimise the chromosome's length, the system was capable of dealing with

representations of a variable size, within a certain range. Given that many fuzzy

system implementations assume standard fuzzy set coverages of the input and output

domains, the GENES system could incorporate these into the tables it uses to link

individual nodes to form each rule. The rest of the system could remain practically

intact, although the introduction of a crossover-type operator at the rule level might
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prove to be a worthwhile addition. The use of a tree-like representation for FNs would

certainly be an interesting path to explore (see section 8.3.5).

The basic system presented in [Feldman 93] could also be augmented with the
salient features of the sGA, as described in [Dasgupta & McGregor 92] (see also

[Ichimura et al. 95]), thus providing the original linear chromosome with quasi-
hierarchical properties. It is easy to see that, at least in principle, this scheme might

serve as an efficient mechanism to achieve a variable-size representation in practice, as

the control genes would effectively switch on and off other genes that would, presum¬

ably, represent individual rules. The tasks of interpreting the active genes, adapting

parameters and introducing relevant recombination and mutation operators at the dif¬
ferent levels, would still present themselves as nontrivial problems to be solved.

It was interesting to learn, at the later development stages of this research, that

[Radcliffe & Surry 94] had independently devised an analogous strategy to the one

presented in this thesis, in order to tackle a different kind of problem, namely a data

mining task, using conventional explicit rules in the form of causal predicates. Obvi¬

ously, their system could be readily adapted to the task of FN synthesis with minor

high-level modifications. However, their assumption that the fitness of individual rules

can be easily evaluated would have to be re-examined outside the data mining domain,

especially in the light of a generalised fuzzy rule characterisation of the problem at

hand. It is not always the case, in practice, that the value of a single rule can be ob¬

jectively assessed in isolation; more commonly, individual fuzzy rules only make sense

in the presence of other rules, reinforcing and/or counterbalancing each other. In any

case, the fact that their system and the one presented here share a considerable number

of structural features, reinforces the notion that the common basis of both strategies

exhibits desirable properties that are worth studying and pursuing further.

Although they were developed specifically to alleviate the problems associated with

the engineering design hierarchies defined by complete systems, an adaptation from

the dual-agent representations incorporated in the systems introduced in section 2.11

could certainly be relevant in the present context also. In fact, it seems intuitively

appealing to formulate them in terms of the basic FN features. In particular, an

approach similar to the one presented in [Watson & Parmee 97], where a GP operator
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would take care of the discrete rule sets, while a specifically adapted GA would deal

with individual rules, could be an adequate solution to the FN synthesis problem, in

close proximity to the proposition made above regarding the use of tree-like structures.

Alternatively, an ant colony search strategy could be used instead of the GP scheme,

more in line with the original GAANT system definition.

4.6 Combinations of Genetic Algorithms
and Connectionist Systems

Since the representation used in this thesis has been modelled as a connectionist struc¬

ture, this section presents a very brief overview of the main issues regarding the com¬

bination of GAs and NNs. However, due to the uniform nature of the structure for

the chosen representation, only some general aspects are in fact relevant to the work

developed for this thesis.

Apart from proposals to use GAs to replace a learning method, usually backpropa-

gation, a more promising domain of application is that of using a GA to evolve the

topology of a NN to solve a given problem. There are two general paradigms to design
a representation for a NN structure: direct, or low-level encoding, and indirect, or

high-level encoding. The former specifies each connection and unit individually, while

the latter uses growth rules of some form or another — e.g. rewrite grammars; see

[Gruau 93] for a notable example. Of course, some approaches fall somewhere in the

middle, using a sort of parametric encoding, where a list of parameters describes the

number of layers, their size and their interconnections.

As described in the previous section, the work presented in this thesis comprises FNs.

In the present context, these networks are modelled using a direct representation, since

the links and weights that define individual fuzzy rules are explicitly encoded, using a

particular structure for a given set of "nodes", as shown in figure 4.2.

A thorough survey that covered the research in combinations of GAs and NNs up to

1992 can be found in [Schaffer et al. 92], according to whom, the following tasks need
to be addressed by these approaches:
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• A representation must be devised for the class of topologies of interest. As
these schemes become more elaborate, the step of mapping the genotypes to the

phenotypes takes on a more prominent role.

• There must be a protocol for exposing the phenotypes to the task environment.

• There is usually, but not always, a local learning scheme where the phenotypes
tune themselves. Some researches have placed the dual burdens of learning the

topology and tuning the weights onto the GA.

• There must be an evaluation of fitness.

• There is the evolutionary step of producing new genotypes from the old ones.

The following chapter describes in detail how particular instances of these problems

were dealt with during the design stages of the 2LGA system.



Chapter 5

2LGA Described

This chapter describes in detail the proposed novel architecture and operation of a

hierarchical GA. The basic building blocks this work is based upon are introduced and
an overall picture of how all the pieces fit together is given. The chapter ends with a

description of the interactions that take place between the different parts that make

up the distinct two-level genetic algorithm (2LGA).

Special attention has been paid to the more fundamental aspects and unique features.

Because it is meant to be a simple introduction to the peculiarities of the new system,

it should be possible to perform a rational reconstruction of an elementary 2LGA based

on the description given here. Several variations on the basic model, enhancements

and implementation details were devised during the experimental stages, but these will
be discussed subsequently as they are introduced.

For practical purposes, it is possible to give a global view of the system in two parts:

1) the kind of fuzzy system that will be obtained and 2) the evolutionary system that

will be responsible for producing it. The inherent features of the former are closely

related to the representation and operational scheme devised for the latter. However,

it is important to note that, although the structure of the 2LGA owes much to the

intrinsic properties of the sort of fuzzy systems it works upon, its use is not in principle

restricted to the automated synthesis of such systems only.

63
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As described in section 4.4, a simple GA is used in [Feldman 93] to synthesise the
rule base of a specific kind of fuzzy system. The input/output fuzzy set membership
functions are fixed beforehand and the task of the GA is to find a suitable set of rules

to solve a particular problem. In the example shown in that paper, each single chro¬
mosome in the population represents a sequence of rules, whose fitness is determined

by testing its performance as a controller strategy against a model of the system to be

controlled.

Apart from the problems normally associated with traditional GAs, notably the linkage

problem discussed in section 2.10.1, an obvious limitation of the approach presented

there is that the coding scheme features a very low degree of flexibility: the size of the
rule base, i.e. the chromosome's length, must be predefined and fixed for each run; a

trial-and-error initial stage seems unavoidable under that scheme, as is suggested in

the paper itself. However, the formalism that was proposed then to model the rule

base of a FS, the so-called fuzzy network (FN), seemed to be a powerful yet simple one

(see figure 4.2). Thus, the use of FNs was adopted in this work.

The need to design a more flexible GA representation for FNs gave rise to one of the

main contributions of this research work: the development of a hierarchically structured

GA. This form of representation strongly influenced both the architecture and the

operation of the entire system, as is described in detail below.

FNs are made of rules, which in turn are made of links. Instead of concatenating groups

of links into a long string to form a rule set, it was decided to give the representation

a two-level structure. At one (high) level, there is a population of sets, i.e. rule bases.

At the other (low) level there is a population of elements, i.e. single rules. Each

set may contain a variable number of elements and each element may, in turn, be

contained in several sets (see figure 5.1). Sets are recombined with other sets while

elements are recombined with other elements, so that the two co-evolve in separate yet

interdependent populations.

At this level of description, it is convenient to think in terms of the entity/relationship
model ([Chen 76]) used in classical relational database systems ([Codd 70]): sets and
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Figure 5.1: Two-level GA

elements are different entities, associated by the (many-to-many) membership relation.

However, the actual design and implementation were based on closely related Object
Oriented concepts instead ([Cox 86], [Booch 91]).

Since representation plays such an important role, it is imperative to attempt to provide

GAs with the capability to somehow self-adapt or evolve their inner structure. This

would allow them to effectively alter their form of representation and/or the function¬

ality of their operators, according to the characteristics of the problem being solved.

Although the choice of coding scheme is a design decision which cannot be fully au¬

tomated, if the representation is flexible enough to self-adapt, thus reconfiguring itself

to better suit the problem's environment, a good balance between a problem-specific

representation and the universal binary encoding is achieved. That was the main ob¬

jective of the two-level architecture, together with the variable-length representation

used for the sets populations, described bellow.

5.2 The Sets Population — Rule Bases

The top level population is used to represent potential solutions as single units. Al¬

though the information is in fact indirectly represented at this level, it is here that the

entities, which the entire system is actually trying to evolve, reside.
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Each individual in the sets population will designate a particular FN. The basic idea

is to represent each one of these — a complete fuzzy rule base — as a chromosome

of variable length. Genes in these chromosomes will be indices into the elements

population, each one designating a particular rule:

RQ Ri R2 Rn

Under this scheme, the efforts of the GA working at this level will concentrate on

finding useful combinations of rules. The aim is to isolate the problem of searching
for the best way of putting together independent fuzzy rules, so that they interact as

positively and efficiently as possible. Furthermore, the adequate number of elements
that are actually needed to solve the problem at hand will be discovered, and optimised,

by the evolutionary process itself.

In contrast with other systems using a variable-length representation, it is important
to note that it is possible to sidestep the problems of over- and under-specification

altogether (see section 2.10.2), since any chromosome at least one gene long represents

a valid FN. This is one of the major distinctions between 2LGA and other approaches

utilising variable-length representations: each gene is in itself a complete solution; the

purpose of the GA working at this level concentrates on searching for useful combi¬
nations of individual genes that, when put together in a single chromosome, produce
a good quality solution. The actual information required per individual is thus very

simple: a list with all the "names" of the elements which it contains — but not the

elements themselves.

5.2.2 Operators

Selection

The operation of the system is not restricted to a particular selection mechanism. The

choice is entirely arbitrary and would not have any fundamental effect on the system's

components or their interactions. For practical reasons, and this is merely a case of
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personal preference (see section 2.6), a modified form of tournament selection, modelled
on the 'marriage problem' from dynamic programming, has been used for most of the

experiments:

1. choose one chromosome at random; call it best-so-far

2. repeat up to N times:

choose one chromosome at random; call it one-to-try

if fitness of one-to-try > fitness of best-so-far return one-to-try

3. return best-so-far

This selection strategy was devised by Peter Ross and it has been implemented in the
Parallel Genetic Algorithms testbed (PGA) system ([Ross h Ballinger 93], [Ross 96]).
It appears to be considerably less sensitive to the choice of N than conventional tour¬

nament selection is.

Recombination

Because they were specifically designed for variable-length representations, analogues
to the cut and splice operators from mGAs were adopted (see figure 2.2). Two parents

are selected for reproduction. Each of them can be cut into two parts with a certain

probability, which is proportional to the length of the chromosome. Each of the re¬

sulting parts — from 2 (none were cut) to 4 (both were cut) — can be spliced to the

others in a meaningful way, avoiding splicing back pieces that were just previously cut.

It is clear then that 1, 2, 3 or even 4 children can be produced in this way each time

these operators are applied (see figure 5.2).

Mutation

Before being introduced into the population, each gene of the newly created chromo¬

somes can be subjected to mutation with a given probability. When a gene is altered

in this way, another valid index to some element (rule) is picked at random to replace
the current one.
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OFFSPRING

Figure 5.2: Cut & Splice possibilities

Replacement

The new chromosomes replace individuals selected randomly from all but the best in

the population, so a form of elitism is enforced. Since both populations are tightly

interconnected, it is necessary to update those elements that are affected by the intro¬

duction of the new sets: each element contained in the new sets will have to add the

name of this new set to its list of sets to which it belongs. Likewise, the names of the
old sets being replaced will have to be deleted from the list of all those elements that

were members of them.

5.2.3 Fitness Evaluation

This is entirely problem-dependent and specific examples will be given in sections

6.1.1 and 6.2.3 in the next chapter. For explanatory purposes, a brief mention of the

approach that can be taken is included here. In a control task, for instance, the fitness

of each set is calculated using a function averaging the performance and stability of the

particular FN that it represents. This is done over a series of simulations as a FLC, for
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the specific control problem. The initial conditions for each simulation are uniformly

distributed over the range of possible values. In a classification problem, calculation

of fitness is based on the number of cases that the FN can classify correctly.

As will be presented in detail in the next chapter, the concept of parsimony (see section

2.10.2) was incorporated to further refine fitness evaluation. In the end, it played a

very important role in controlling the behaviour and performance of the 2LGA.

5.3 The Elements Population — Single Rules

The bottom level population is used to represent rules as independent individuals.

The aim is to isolate the problem of finding the appropriate elements that useful fuzzy
rules are made of, conforming to the requirements of the problem at hand. Thus, the

building blocks for the sets population are evolved at this level as single units.

5.3.1 Representation

The elements population uses an ordinary (bit-string) representation for each fuzzy
rule. Thus, fixed-length chromosomes with binary-coded parameters can be used to

represent each one of them, mainly based on what was suggested in [Feldman 93]:

Antecedents Consequents Weight
# # # # # # # # #

### FUZZY SUBSET

000 Negative large (NL)
001 Negative medium (NM)
010 Negative small (NS)
Oil Zero (ZE)
100 Positive small (PS)
101 Positive medium (PM)
110 Positive large (PL)
111 No link (CUT)

It was certainly possible to use an alternative representation for the individuals in the

elements populations. The choice of the traditional fixed-length, binary representation

was a practical one. It seemed reasonable to keep the system simple whenever possible,

in order to prevent obscuring the main features under investigation. Nevertheless, a

more flexible and integrated form of representation will be a desirable feature to include

in future versions of the system.



CHAPTER 5. 2LGA DESCRIBED 70

In practice, in order to keep computational costs to a minimum, each element also

contains a list of all those sets to which it belongs, establishing bi-directional links

between populations. This introduces a certain degree of redundancy, which must be

dealt with accordingly, but permits a rapid identification of membership relationships

that would be prohibitively expensive otherwise in computational terms.

5.3.2 Operators

Selection

No specific selection mechanism is required and the actual method used is simply a

matter of choice. In this case, the same modified version of tournament selection that

was used for the sets population (section 5.2.2) is used here.

Recombination and mutation

Since these are ordinary bit-string chromosomes, the usual two-point crossover (section

2.7.1) and bit-wise mutation (section 2.7.2) were chosen.

Replacement

In a large number of cases, the replacement mechanism plays a secondary role in

the functioning of an ordinary GA. A sort of "inverse selection" is commonly applied

to decide which individual will disappear in order to make space for the newcomer.

However, in this case it was also necessary to devise a suitable way to introduce new

elements taking the place of existing ones. The problem arises because something must

be done with the links belonging to the individual that is going to be replaced and,
more importantly, a way to assign the links for the new element must be carefully

designed.

Two different strategies have been tested. In both of them, the new chromosome

replaces another individual selected at random, with an elitist mechanism enforced

(for full details, see section 6.1.4):

Adopted The new chromosome maintains all the links from the sets population that
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the element being replaced had. As a result, every set containing the element that
was chosen for replacement will now contain the new element instead. However,

these sets (their indices) remain unaltered; it is only the contents of one of the
elements being pointed at, that has changed.

Inherited The new chromosome will 'inherit' some of the links from the sets pop¬

ulation from its parents: some of the sets that originally contained the parents

(randomly chosen with a given probability) will now contain the new child, either
'in addition to' or 'instead of'. In the first case, a set that contained one of the

child's parents will now contain both the parent and the child. In the second

case, it will no longer contain the parent and the child will take its place. The
links originally pertaining to the replaced individual are removed in both cases.

5.3.3 Fitness Evaluation

For most problems, it would be difficult to assess the worth of an individual rule

independently. One alternative is to use a scheme for apportionment of credit similar

to that taken by the Michigan or the Pittsburgh approaches to classifier systems (see
section 2.13). However, after obtaining encouraging results, it was decided that the
fitness of each element is simply a function of the fitness of all those sets in which it is

contained, i.e. the average. This scheme seems to provide an efficient way to estimate

its fitness and, at the same time, reinforce the interdependent nature of the relation

between the sets and the elements populations.

5.4 Interaction between Sets and Elements

Within each level, it was decided to adopt the island model, thus having multiple

subpopulations with intermediate migration rates. After the initial experimentation

phase, where different values for these system parameters were systematically tested,

it was decided to perform the majority of experiments using five populations at each

level, containing one hundred individuals each. One migration takes place every one

hundred generations, at both levels, from alternating populations. A steady-state

approach was adopted, so that newly produced individuals are inserted immediately in
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the population (see section 2.5 for the general issues, and section 6.2 for a comparison

of different parameter choices).

Obviously, the final solution(s) will be defined by one (or more) of the individuals in

the sets population, which is (are) in turn made of a number of specific individuals

from the elements population. Ideally, both the elements and the sets populations

would co-evolve in parallel, the former attempting to improve individual rules while
the latter is trying out different combinations of these. The current implementation

simulates this process in a serial fashion, the only disadvantage being the deterioration
in time-related performance. It is important to note that, while the fitness of a set

depends entirely on how well the elements it contains combine together, the fitness of

an element depends, in turn, on the fitness of those sets in which it is contained.

As a result of this dual, hierarchical representation, it is possible to define a separate

developmental pace for each population, i.e. different reproduction rates for each level

(see section 6.1.3). Thus, a complete stage will consist of M generations for the ele¬

ments population and N generations for the sets population. As will be shown later,

the values of M and N have direct implications on the operation of the system. This

can be exploited to enhance the behaviour and overall performance of the 2LGA.

5.5 Diagrammatic Overview

A schematic diagram of the elementary execution steps performed by the system is

shown below. It is evident that the fundamental evolutionary process prevails: the basic

GA cycle is essentially maintained within each population. The distinguishing features
of 2LGA reside in the underlying hierarchical representation, and the interactions

between system components and parameters. At the algorithmic level, apart from the

obvious high-level stage-related tasks, these implicit interrelations become apparent

when fitness is evaluated for either a set or an element, as shown in the diagram.
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Chapter 6

2LGA at Work

"But to achieve anything you must tackle the abstract property in a con¬

crete situation, that is you must build a program to do some task that

requires search to be controlled, knowledge to be represented, knowledge
to be learnt." [Bundy et al. 89]

The results of the application of 2LGA to control and classification problems are pre¬

sented in this chapter. The previously described basic model was used, but several
variations were introduced, both to enhance the performance of the system and to

investigate different design alternatives. Some of them led to interesting results and

were of great help in finding feasible explanations for the observed phenomena. The

first experiment was mostly used as a proof-of-concept model, derived in its most ele¬

mentary form from the research that inspired the development of 2LGA. The software

modules corresponding to the fuzzy system were implemented in C++, while the GA

modules were initially programmed in C, within a Unix operating system. The sub¬

sequent experiments served as testing grounds for more elaborate and complex ideas,
and the whole system was re-implemented in C++, observing object-oriented design

and programming methodologies. It has been ported to the Linux and Windows envi¬

ronments.

74
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6.1 First Experiment — a Control Problem

75

For comparison purposes, 2LGA was initially used to work on the same problem

that was presented in [Feldman 93] (see section 4.4) which, in turn, was taken from

[Thrift 91], namely the cart centring problem. Succinctly put, a good control strategy
should be capable of taking an imaginary cart, moving along a straight, frictionless rail
to a specific central point as quickly as possible. It should also keep the cart as close

to that point as it can and for as long as possible. Moreover, the controller should be
able to perform well regardless of the initial conditions for the position x and speed v

of the cart.

The cart is assumed to have a mass m and the variable to control is the external force

F exerted upon it to achieve the centring task. The simulation is based on Euler's

method to approximate the dynamical system, with a time step r = 0.02 sec, given by:

x(t + t) = x(t) + rv(t),

v(t + r) = v(t) + t——.
TO

The same fuzzy set values {NL,NM,NS,ZE,PS,PM,PL} were used for the two input

variables x and v. and for the output variable F, characterised by triangular member¬

ship functions, defined over each domain in the interval [-5, 5] as follows:

With the initial, intuitively chosen values for mutation (0.002), cut and splice probabil¬
ities (0.5), ordinary and simple selection/replacement strategies, the system produced
results comparable to those obtained using the conventional GA reconstructed from

Feldman's work. However, since a few new parameters had been introduced, an initial

exploration of the parameter space became an important task. Consequently, several

distinct aspects of the new system were tested, such as different cut and splice prob¬

abilities, reproduction rates between populations and various replacement strategies
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for the elements population. Before these issues are discussed, the next section gives

details about the fitness evaluation function used and the parsimony concept involved.

6.1.1 Fitness Evaluation

The fitness measure for each control strategy was initially calculated by the following

function:
, i=N

/ = jvECTmox-TiKi-ei)
2=1

where

• N : number of runs (varying initial conditions)

• Tmax : number of time steps to complete a simulation

• Ti : number of time steps to reach the target position in simulation i

• ei : normalised error term in simulation i

■j^ j—Tmax
Gl ~~

x IT —T — I) ^djmax\-Lmax ±i L)

• Xmax '■ maximum possible distance from target position

• Xij : distance from target position at time j in simulation i

Parsimony

In order to exert controlled pressure against unnecessarily big individuals, it is possible
to add explicitly to the fitness evaluation function a penalty factor, usually called

parsimony, (see section 2.10.2) which grows proportionally with the size of the solution.
The new fitness value can then be defined as

fnew = max{0, f0id • (1 - P ■ S))

where P is the parsimony factor and S is the size of the set, i.e. the number of rules it

contains. Suitable values of P yielded moderate and justified set growth patterns, so

that larger sets are fitter because of the quality of their genetic material, not because
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of its quantity. As will be discussed in section 6.2 below, although other parameters

also had a strong influence on the length of individuals, parsimony provided a direct

way to keep their size under control.

6.1.2 Cut and Splice Probabilities

The cut and splice operators work in a complementary fashion: while the former is re¬

sponsible for breaking down rather large chromosomes into smaller chunks, the latter

provides the means to build up fitter chromosomes out of separate blocks. Conse¬

quently, the probability assigned to the occurrence of one operator is likely to affect

the usability of the other, i.e. they are interdependent.

In order to explore the relation between the probabilities of the two operators, several

tests were carried out. As a first approach, every parameter was set to a default value

for all the experiments, while the cut and splice probabilities varied systematically over

the [0, 1] range, averaging each test over a series of 20 runs.

As is made evident later on, the relation between the cut and splice probabilities has

a strong influence in the quality of the final results, shaping the average size of sets

throughout the evolutionary process. In fact, it became possible to predict, for a given

replacement strategy (see section 6.1.4 below), whether a higher or a smaller probability
for either the cut or splice operator, or both, would lead to improved performance. In

the second experiment, discussed below (section 6.2.6), this idea was exploited to allow
the system to adjust these parameters automatically in an informed manner.

6.1.3 Reproduction Rates between Populations

A complete stage can be arbitrarily defined as M generations for the elements popu¬

lation and N generations for the sets population, making it possible to regulate the
relative speed at which both populations evolve with respect to one another. Different

fixed rate combinations were systematically tested in an attempt to see how these affect

the overall performance of the system and to disclose how they relate to each other.

The results were as expected: with M/N > 1, performance is severely degraded in the

initial stages but seems to have a rather positive effect towards the end of the experi-
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Figure 6.1: M/N = 3 vs. M/N = 1/3 — On-line performance

ment, when the evolutionary process starts to converge; conversely, with M/N < 1, a

very fast and effective initial progress is observed, but it is followed by a rather slow

improvement in the later stages. This is made evident by comparing the on-line per¬

formance — i.e. the accumulated sum of fitness values divided by the total number of

evaluations — of both strategies (figure 6.1).

As the graph comparing the average set size for both approaches suggests (see figure

6.2), a small M/N allows the system to find very quickly important combinations of
those rules that are readily available, but fails to help fine-tuning individual rules. On
the other hand, a large M/N prevents the system from building useful sets at first, but
allows it to improve the quality of the more elaborate rules found in the later stages.

These observations opened up new possibilities for self-adaptive mechanisms, which

will be described in section 6.2 and discussed further in chapter 8.

6.1.4 Replacement Strategies for the Elements Population

Once the new individuals have been produced in the elements population, a suitable

way to introduce them while replacing some of the existing ones poses a deceitfully

simple problem. Apart from the usual considerations concerning replacement methods,

two additional issues have to be dealt with:
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Figure 6.2: M/N = 3 vs. M/N = 1/3 — Average set size

• What to do about the sets that contained the elements to be removed

• How to appropriately assign the new elements to some sets

To account for both of these problems, two basic strategies were devised: adopted and

inherited replacement, with two variations for the latter.

Adopted Replacement

This is a rather naive but surprisingly effective approach: the new element simply

replaces the old one, arbitrarily adopting all the links to/from the sets population, i.e.
it will be contained by the same sets that contained the one it is replacing. In practice,

this is computationally very efficient, since no other elements are affected and there

is no need to identify relationships with the other population and make alterations to

the sets involved. Figures 6.3 and 6.4 show the typical observed behaviour.

Every time an element is replaced in this fashion, only the sets that previously con¬

tained it will be directly affected. Obviously, the new rule can be quite different from

the one it is replacing. For all intents and purposes, specially from the affected sets

point of view, this is a sort of external mutation. It can be seen in fact as an "indirect-

but-directed" form of set alteration: the material contained in new elements is always
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Figure 6.3: Adopted strategy — best set's fitness

Figure 6.4: Adopted strategy — average set size
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obtained from the relatively fitter ones.

It is important to note that unfit elements are probably not contained by many sets.

In fact, many of them are not contained by any set at all. That is why the elements to

be replaced were first chosen at random. Exerting pressure to select only the relatively

bad ones proved to produce too small (and slow) an impact to be of any help. This
is because new elements would not be used, at least not for a long time, unless they

replaced an element that was actually contained by one or more sets. A different

approach will be described for the second experiment, where a crowding bias was

incorporated into the replacement mechanism.

Under this replacement strategy, the best performance was obtained when the cut prob¬

ability and the splice probability were equal. No significant difference was perceived

within the [0.5, 0.75] range.

Inherited Replacement

This form of replacement was devised as an attempt to improve the way in which

new individuals from the elements population are assigned to individuals from the

sets population. Instead of using the information that the element to be replaced can

provide to this effect, which obviously in most cases bears no relation at all to the new

element, the idea is to obtain it from the parents themselves. New individuals, although

not necessarily better than their parents, often preserve their most important features.

Adding the new element to a set already containing one of the parents is therefore not

likely to produce a negative effect too often; in fact, if the offspring is identical or very

similar to the parent, it will produce no discernible effect and parsimony will certainly

help to discard either of them later. Two alternative ways for the offspring to inherit

information from its parents were designed and can be described as follows:

Substitution. The new element will inherit, with a given probability (see section 6.1.5

below), some of the links from its own parents, thus taking their place in some

sets, i.e. a number of links to the parents will be possibly substituted by links to

the offspring. The following steps are required:

1. Clear the element to be replaced:
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Figure 6.5: Inherited by substitution strategy — best set's fitness

Ask the sets containing it to remove it from their list.

2. Substitute the new element in some of its parents' sets:

With a given probability, take one of the sets containing one of the

parents and ask it point to the newly created child instead of pointing to

the parent.

Examples of the effects of this strategy are shown in figures 6.5 and 6.6 below.

Addition. The newly created element will be added, with a given probability, as a

member to some of the sets that already contain one of its parents. The aim is

to prevent fit parents from losing their links as generations pass by (see figures

6.7 and 6.8):

1. Clear the element to be replaced:

Ask the sets containing it to remove it from their list.

2. Add the new element to some of its parents' sets:

With a given probability, take one of the sets containing one of the

parents and ask it point to the newly created child in addition to pointing

to the parent.
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Figure 6.6: Inherited by substitution strategy — average set size

Figure 6.7: Inherited by addition strategy — best set's fitness



CHAPTER 6. 2LGA AT WORK 84

Figure 6.8: Inherited by addition strategy — average set size

In both cases, it clearly pays off to favour the selection of relatively unfit individuals

for replacement. Under these inheritance strategies, not only the sets that contain one

of the parents of the new element are affected, the replaced element is removed from

every set that previously contained it as well. Since the disappearing rule is likely to

be a bad one, this is in fact a desired consequence. Moreover, because it is possible

to occasionally render a set totally empty, it is necessary to reinitialise the rather

unfit ones when this happens. Thus, as another positive side effect, membership links

between the two populations are more uniformly distributed among individuals in the

elements population.

6.1.5 Heredity

In order to control the number of links that a new individual from the elements pop¬

ulation will inherit from its parents, a new parameter was introduced: the heredity

factor. It is a real number between 0 and 1 (typically 0.5) which simply designates
the probability of inheriting, either by substitution or by addition, each link from each

parent.

After an initial exploration of the parameter space, it became clear that, together with
both the cut & splice probabilities and the parsimony parameters, heredity played
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an important role in directly shaping the curve corresponding to the average set size.

This, in turn, is a determinant factor in the overall performance of the system.

Experimentally, keeping the parsimony factor constant and low (0.005 < p < 0.01),

optimal values for the cut & splice probabilities were found to be around 0.7 and 0.3,

respectively. This is in accordance with the intuitive notion that more cutting and less

splicing would tend to yield shorter individuals, keeping in balance with the increase in
set size encouraged by the inherited replacement strategies, particularly the addition

variety.

6.1.6 Suppressing Spurious Evaluations

Every time a new set is created, its fitness is evaluated before it is inserted in the

population, as is customary with most GAs. However, every time a new element is

created and inserted in the population, several sets (their links) might be altered too

as a result of this operation. While some sets have received a new element, some others

might have lost another one.

It is possible to keep a totally faithful fitness value for each set, but this implies a series

of update evaluations, performed necessarily every time a new element is introduced

into the population. Because elements may indeed be contained by a large number of

sets, and because fitness evaluation is often computationally a rather expensive process,

it was decided not to re-evaluate the fitness for the affected sets, allowing unfaithful
fitness values to occur. The rationale for this decision is as follows:

• The vast majority of alterations due to an element insertion have minimal im¬

mediate effect on most sets, particularly on the relatively fit ones. Evidence

supporting this assumption is presented in figure 6.9, which shows the histogram

for the difference in fitness values before and after the update evaluation was

performed for a typical run.

• New sets, obtained from old sets with or without faithful fitness values, will always

be evaluated before they are introduced into the population. The alterations

that might have affected the parents will now be reflected in the faithful fitness

value just calculated for the offspring, even if the parents' fitness values remain
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Figure 6.9: Histogram of fitness difference for update evaluations

outdated. It is clear that the influence of a single individual whose fitness has not

been updated could only be significant for a rather limited number of generations.

• Due to the elitist mechanism, the best set is never affected by the insertion of a

new element. Its fitness value is guaranteed to remain accurate until a new, better

individual comes along and proves to be the fittest set, up to that generation.

6.1.7 Summary of Results

2LGA did not fail to produce a suitable FN for the control task, literally, in thousands

of runs. It would sporadically take a long time to converge and, mostly during the first

stages of experimentation, it would occasionally come up with a rather large set of rules

to solve the problem. However, after the initial exploration of the new parameter space

had been performed, the relations between these parameters and the system started

to become clear. It was then possible to predict, to some extent, the behaviour of the

main aspects of the system. As discussed in the next chapter, it became feasible to

make informed decisions to tune up some of the different parameters in order to obtain

improved performance. This is often a difficult task when working with ordinary GAs.

2LGA was compared against the simple GA, as reconstructed from [Feldman 93]. Every
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system parameter, such as heredity and parsimony factors, mutation, cut and splice

probabilities, were explored in turn (see section 6.2). However, at this stage, the focus
was placed on:

• the newly developed replacement strategies for the elements populations,

• the different reproduction rates between populations.

The results are summarised in the table below, where [i-s] means inherited-substitution

replacement, [i-a] means inherited-addition replacement, M is the number of gener¬
ations for the elements population and N is the number of generations for the sets

population. The average over 10 different runs was used in every case.

GA Average max. fitness
Evaluations to reach 80%
of average max. fitness

Generic 5.92 5600

2LGA adopted, M/N — 1 6.24 5566

2LGA [i-s], M/N = 1 6.25 4158

2LGA [i-a], M/N = 1 5.94 4467

2LGA [i-s], M/N = 1/3 6.60 3686
2LGA [i-s], M/N = 3 6.34 13518

It is clear that, for this particular problem, the inherited-by-substitution replacement

strategy proved to be superior in terms of both convergence speed and quality of
results. Additionally, a faster reproduction rate for the sets populations resulted in a

considerable reduction in the number of evaluations needed to obtain a good solution.

6.2 Second Experiment — a Classification Task

In an attempt to investigate further the capabilities of the new approach, it was con¬

sidered important to apply the 2LGA to the solution of a different kind of problem.

The actual purpose of the system is still that of synthesising a FN capable to solve

a particular problem. However, the characteristics of the classification task provided

further insight into some of the system's important features.

On one hand, the size of both elements and sets was increased: 6 input variables

instead of 2, 3 outputs instead of 1, and solutions consisting of 20 rules or so instead
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of about 5. On the other hand, fitness evaluation turned out to be significantly faster,

making it practical to carry out several different runs and tests; this is a delicate and

important issue in evolutionary systems, specially at the early stages of development

and testing.

Most of the observations made for the control problem above recurred here in a very

similar fashion. What follows is a description of the new problem in detail and some

of the considerations that were applied differently, along with new findings, extended

testing and results.

6.2.1 The Problem Data

The data was obtained from the Machine Learning Database Repository, maintained by

the Department of Information and Computer Science at the University of California,

Irvine. In this case, the data consist of the results of a chemical analysis of wines

grown in the same region in Italy but derived from three different cultivars. The

analysis determined the quantities of 13 constituents found in each of the three types

of wines. All attributes are continuous.

Since the main purpose of the experiment was not to test the capabilities of fuzzy

networks as classifiers, but to investigate the operation of the multi-level GA in a dif¬

ferent problem domain, the original data was pre-processed in two ways, as is common

practice, in an attempt to simplify the task. First, a principal component analysis

was performed to reduce the dimensionality of the data; only the six most significant

components obtained in this way, whose eigenvalues showed a difference of over an

order of magnitude, were further utilised. Second, the class distribution was equalised,

randomly eliminating instances of overrepresented classes from the data set.

The exercise can then be summarised as follows: the 2LGA will be used to synthesise

fuzzy networks that are capable of classifying instances into three distinct categories,

based on the values of six continuous attributes. Commonly employed techniques such

as leave-one-out will be used to cross-validate performance measures.
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Figure 6.10: Standardised fuzzy sets and membership functions

6.2.2 Fuzzy Sets and Membership Functions

As was the case in the control problem, standard fuzzy sets and membership functions

were used. An auxiliary program was developed that analyses each variable's data

and defines a pre-specified number (7) of fuzzy sets, which have uniformly shaped
and spaced, overlapping membership function definitions (see figure 6.10). Under this

arrangement, it was not considered necessary to rescale data values. In the general

case, this arrangement will ensure that the linguistic semantics of the original fuzzy
terms are preserved.

6.2.3 Fitness Evaluation

The simplest way to evaluate a FN's fitness in this domain is perhaps to use the

percentage of instances it can correctly classify. Thus, an initial fitness function may

be simply defined as

1 i=N

2=1

where

• N : total number of training instances

• and C{i) is defined, for instance i. as

C(i) = 1, when |output - class of i\ < tolerance
0, when |output - class of i\ > tolerance
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Figure 6.11: Effects of parsimony on fitness values: P = 0.005

Parsimony

As in the previous experiment, long individuals ought to be penalised, in order to

induce a tendency to produce compact solutions. Therefore, a parsimony factor was

also incorporated to refine the fitness function that was actually used:

fnew = max(0, fold -(1-P-S))

where, again, P is the parsimony factor and S is the size of the set.

Since f0id is a value between 0 and 100, and acceptable values of S would be in a similar

range, allowed parsimony values were 0.005 < P < 0.01. Graphs 6.11 and 6.12 show

the effect on fnew at these two extremes. Figures 6.13, 6.14 and 6.15 show the actual

effects on a typical run with low, medium and high values for the parsimony factor,
with regards to the average set size and the training and testing fitnesses of the best

idividual.

6.2.4 Crowding Elements

Since the final solution will consist of several different rules, it was decided to facilitate

the production (and preservation) of dissimilar individuals in the elements populations.
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Figure 6.12: Effects of parsimony on fitness values: P = 0.01
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Figure 6.13: Effects of the parsimony factor on average set size
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Figure 6.14: Effects of the parsimony factor on best fitness
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Figure 6.15: Effects of the parsimony factor on testing fitness
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Figure 6.16: Effects of crowding on average set size

Instead of replacing a previously existing element at random, a kind of crowding mech¬
anism based on tournament selection was incorporated. When a new element is to be

introduced in the population, n candidates are randomly selected and the new one will

replace the candidate it resembles the most. In this case, Hamming distance was used

as a measure of similarity. The effects of crowding can be seen on graphs 6.16, 6.17

and 6.18.

6.2.5 Other parameters

"The Exception Principle: It rarely pays to tamper with a rule that

nearly always works. It's better just to complement it with an accumulation

of specific exceptions." [Minsky 85]

Elitism

It is generally assumed within the evolutionary computation community that holding

on to the best solution found so far is a good idea. GAs tend to be robust enough to

re-produce in the short term a relatively highly fit individual that has been replaced

by mistake: the genetic material necessary to build it is very likely to remain in the

pool for several generations. Nevertheless, empirical data shows that performance is
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Figure 6.17: Effects of crowding on best fitness
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Figure 6.18: Effects of crowding on testing fitness
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Figure 6.19: Effects of elitism on average set size

usually enhanced if a form of elitism is enforced. Several tests were performed using

2LGA with and without the elitist regime in force. The results are shown in graphs

6.19, 6.20, 6.21 and 6.22.

Island Model - Subpopulations and Migrations

In the following comparisons, because the number of subpopulations affects propor¬

tionally the number of evaluations per stage, the graphs indicate the number of stages
in the abscissa and not the total number of evaluations. As in the previous section,

it is often the case that the number and sizing of populations to use is not investi¬

gated properly, even though it can sometimes have a strong impact on the overall

performance of the system.

The next graphs show the outcome of different migration rates between sub-populations

(islands).

6.2.6 Adaptive Cut and Splice Probabilities

Assuming that the size of the best individual found so far gives a good indication of
the size of the solutions that the system should be considering, at that particular stage
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Figure 6.20: Effects of elitism on average fitness

Figure 6.21: Effects of elitism on best fitness
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Figure 6.22: Effects of elitism on testing fitness
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Figure 6.23: Effects of the number of islands on the average set size
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Stages

Figure 6.24: Effects of the number of islands on the average fitness
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Figure 6.25: Effects of the number of islands on the best fitness
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Stages

Figure 6.26: Effects of the number of islands on the testing fitness
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Figure 6.27: Effects of the migration rates on the average set size
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Figure 6.28: Effects of the migration rates on the average fitness
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Figure 6.29: Effects of the migration rates on the best fitness
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Evaluations

Figure 6.30: Effects of the migration rates on the testing fitness

in the evolutionary process, it was decided to compare that value with the average size

of all the sets populations. The difference was used to guide the adjustment of the cut

and splice probabilities.

It is clear that increasing the probability of the cut operator will induce the production
of smaller individuals, while decreasing it will result in larger ones. Likewise, the

inverse relation holds true for the splice operator — they perform complementary

tasks. With this in mind, a simple form of adaptation, guided by population statistics,

was implemented at the beginning of each generation:

• if the average length is smaller than the length of the best then decrease the cut

probability and increase the splice probability

• otherwise, increase the cut probability and decrease the splice probability

Maximum (0.8) and minimum (0.2) values for both parameters were always preserved
to guarantee the presence and influence of each operator at all times. It was found
that relatively small values for the increase/decrease adjustments (0.001) produced

smoother, more consistent behaviour, and better results too. Figures 6.31 and 6.32

illustrate the activity of these parameters subjected to automatic modification and the

behaviour of the size of individuals — compare with figure 6.33.
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Slower cut&splice adaptation. Cut & splice probabilities -- inherited replacement (addition)
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Figure 6.31: Automatic adjustment of the cut and splice probabilities

It is important to note that the optimum values obtained earlier, experimentally, are

very close to the ones obtained by self-adaptation. Very similar results were produced

using the other replacement strategies.

Adaptive Heredity and Parsimony

In the same vein, the heredity and parsimony factors were also subjected to similar self-

adaptation mechanisms. Like the cut h splice operators, heredity and parsimony play

antagonistic roles: a relatively large heredity factor induces an increase in individual
size while the opposite is true for the parsimony factor. Nevertheless, the nature

of the link between these parameters is not so obvious, as opposed to the natural

interrelationship between the cut & splice operators.

6.2.7 Adjusting Reproduction Rates

Observing the results obtained in the previous experiment, it became clear that having

different rates at which the two populations evolve can have a direct implication in the

performance of the system. Trying different, fixed rates for both populations provided

an indication of the role played by the M and N parameters and the relation between

them. As was the case in the first experiment, if fixed reproduction rates— i.e. number
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Slower cut&splice adaptation. Size of sets-- inherited replacement (addition)

Figure 6.32: Average size and size of best — adaptive probabilities

Non-adaptive probabilities. Size of sets -- inherited replacement (addition)

Stages

Figure 6.33: Average size and size of best — fixed probabilities



CHAPTER 6. 2LGA AT WORK 104

Figure 6.34: Average size — fixed reproduction rates

of generations per stage — were used, a 1/3 ratio yielded marginally better results; see

figures 6.34 and 6.35.

Before attempting a self-adaptive way to adjust reproduction rates for either popu¬

lation, different scheduled strategies were tried first. However, none of them showed

significant differences in performance or behaviour. As an example, figures 6.36 and

6.37 illustrate the results of applying a different reproduction rate in "burst mode":

each stage would consist of one generation of each population (M/N = 1) for a prede¬
termined number of stages, then change to a faster reproduction rate for one of them

(M/N = 1/3).

6.2.8 Alternative Recombination Operators

In an attempt to test the alleged recombinative power of the mGA operators, namely

cut and splice, a simple form of crossover was devised for 2LGA. Designed by analogy
to the usual uniform crossover method, commonly employed in binary, fixed-length

representations, a recombination mechanism called mixing was defined as follows:

Mixing: Take each gene of each of the two parents in turn, and assign it randomly to

one of the two children.



CHAPTER 6. 2LGA AT WORK

Evaluations

Figure 6.35: Average fitness — fixed reproduction rates
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Figure 6.36: Average size — reproduction rates in burst mode
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Evaluations

Figure 6.37: Average fitness — reproduction rates in burst mode

Obviously, this mechanism will take two parents and produce two offspring, unlike cut

& splice, which may produce a different number of new individuals each time they are

employed. Even though mixing does produce individuals with a variable number of

genes, it is clear that it induces a tendency to make homogeneous populations with

regards to size: the children tend to be the average size of the parents. Of course it
would be possible to set a certain bias, based on the parents' size differences or even

their fitness. However, the main purpose is to have a viable recombination operator to

compare against. The disruptive features of mixing are discussed in the next chapter.

6.2.9 Comparative Results

A brief summary of the results obtained trying out the different alternatives is presented

below. In every case, 20 runs were carried out, each one comprising of 4000 stages.

A standard t-test ([Bailey 81]) was then performed (with the aid of a small program

developed by Peter Ross) in order to assess the statistical significance of the results
obtained so far. T-tests are a special type of inferential statistic used to compare two

different means to each other. The t-test produces a statistic that is a ratio of the

difference between the means being compared to the variability of the observations

within each set of data on which the means are based. A 95% confidence interval is
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Figure 6.38: Effects of mixing on the average set size
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Figure 6.39: Effects of mixing on the average fitness
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traditionally required to be able to draw statistically valid conclusions.
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Parsimony

In section 6.2.3, it was described how a parsimony factor was included in the fitness

function, so that excessively large individuals were duly penalised, in an attempt to

promote a preference for succint solutions. Three different values for this parameter

were tried: 0.01 (high), 0.005 (medium) and 0.001 (low). The results of the t-test

are presented below; in this case it is particularly relevant to distinguish between the

results obtained for the training set and those obtained for the testing set.

For the training set:

Parsimony high medium low

high - 0.9999 1.0000
medium 1.0000 - 0.9999
low 1.0000 1.0000 -

Average 81.3140 85.5100 93.9079

Standard deviation 2.1296 1.5066 1.4054

For the testing set:

Parsimony high medium low

high - 0.8512 0.9990

medium 0.8512 — 0.7865

low 0.9990 0.7865 -

Average 68.1293 74.1393 78.3487

Standard deviation 7.7729 9.9151 2.8658

It can be observed that, as expected, the standard deviation in the testing set is

considerably larger than in the training set. It can be said that, although for the

training set a relatively small parsimony factor yields better results, for the testing

case the difference against a moderate parsimony factor is not conclusive. In both

cases, a high parsimony pressure appears to be detrimental to the performance of the

system.

Additionally, the effects of "over-training" are more visible in the case of low parsimony

pressure, where a considerably higher success rate for the training set was achieved,
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at the cost of requiring a much larger number of rules, without carrying over the

advantage difference to the testing set.

It appears that keeping a value between the low and medium level for the parsimony
factor could result in a balanced performance without increasing the risk of over¬

training.

Crowding

The rationale for the introduction of a crowding mechanism and its effects were pre¬

sented in section 6.2.4. A simple comparison against the same system without such a

mechanism yielded the following results for the training set:

Crowding yes no

yes - 0.7790

no 0.7790 -

Average 84.0882 82.8323

Standard deviation 1.9987 2.4115

The difference does not appear to be overly large; furthermore, the claim that a crowd¬

ing scheme enhances the performance of the system is not statistically valid under the

present testing conditions. The same is true for the testing set, where the difference
is considerably larger. It is likely that for more complex problems requiring a larger

number of rules, crowding could have a stronger impact than in this particular case.

Elitism

The generally acknowledged notion that a form of elitism should be enforced in order

to accelerate the search process has been confirmed for the 2LGA system. Again,

a comparison against an otherwise identical system reflected through the t-test the

validity of the original assumption:

Elitism yes no

yes - 1.0000

no 1.0000 -

Average 84.0882 58.9348

Standard deviation 1.9987 4.2868
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It is worth noticing that the variation of the results was considerably higher without an

elitist system; and it does show that such a mechanism directly influences the quality

of the final results. Presumably, for longer runs the absolute difference might not have

been so abrupt, as the inherent robustness of GAs would allow the system to recover

from the temporary losses of the best individuals.

Subpopulations

Another factor that seemed to play an important role was the adoption of the Island

Model, together with a migration scheme, whereby individuals are allowed to evolve

only within their respective subpopulations (islands) for a given interval and then,

according to a predefined migration rate, certain individuals are exchanged between

different subpopulations. 1 (none), 3 (low), 5 (medium) and 10 (high) subpopulations
were tried, producing the following results:

Migration none low medium high
none — 0.9999 0.9984 0.5488

low 0.9999 — 0.9460 1.0000

medium 0.9984 0.9460 - 1.0000

high 0.5488 1.0000 1.0000 -

Average 80.8133 85.9883 84.0882 80.3130

Standard deviation 1.9560 2.1205 1.9987 0.6278

These tests confirm the statistical validity of the choice of implementation using an

low/medium number of subpopulations with a moderate migration rate between them.

Top-down Induction of Decision Trees

2LGA was also compared against Quinlan's C4.5 algorithm ([Quinlan 92]). C4.5 builds
a decision tree using the standard TDIDT (top-down induction of decision trees) ap¬

proach, recursively partitioning the data into smaller subsets, based on the value of an
attribute. At each step in the construction of the decision tree, C4.5 selects the at¬

tribute that maximises the information gain ratio. The induced decision tree is pruned

using pessimistic error estimation. There are several parameters that can be adjusted
to alter the behaviour of C4.5. In the experiments with C4.5, the default settings for

all parameters were used (see figure 6.42). The results obtained by C4.5 are very good,
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reaching an estimated accuracy of roughly 90%. Keeping in mind that it was specifi¬

cally for this kind of task, is encouraging to see that 2LGA was capable of producing

comparative solutions, albeit in a rather longer period of time. It would be necessary to

compare the performance of both systems over a larger set of tests in order to produce

a meaningful assessment.

Several experiments were carried out using different training and testing sets for cross-
validation. Figure 6.43 presents the results obtained using half the data set for training
and the other half for testing, while figure 6.44 shows the results obtained using the
"leave-one-out" technique.
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C4.5 [release 8] decision tree generator

113

Tim Jul 10 16:13:40 1997

Options:
File stem <wine>

Trees evaluated on unseen cases

Read 144 cases (6 attributes) from wine.data

Decision Tree:

A1 <= 752.264 :

I A4 <= -3.6955 :

I | A5 <= -1.5909 : 2 (37.0/1.0)
I I A5 > -1.5909 :

I I I A3 <= 20.5716 : 2 (3.0)
I I I A3 > 20.5716 : 3 (5.0)
I A4 > -3.6955 :

I I A3 <= 16.9409 : 2 (5.0)
I I A3 > 16.9409 : 3 (38.0/1.0)
A1 > 752.264 :

I A4 <= -6.0623 :

I | A3 <= 22.9852 : 2 (3.0)
I I A3 > 22.9852 : 1 (3.0/1.0)
I A4 > -6.0623 :

I I A1 > 881.493 : 1 (38.0)
I | A1 <= 881.493 :

I I I A3 <= 20.6894 : 1 (6.0)
I I I A3 > 20.6894 : 3 (6.0)

Evaluation on training data (144 items):

Before Pruning After Pruning

Size Errors Size Errors Estimate

19 3( 2.1"/.) 19 3( 2.17.) (10.97.) «

Evaluation on test data (132 items):

Before Pruning After Pruning

Size Errors Size Errors Estimate

19 3( 2.37.) 19 3( 2.37.) (10.97.) «

(a) (b) (c) <-classified as

42 1 1 (a): class 1
1 43 (b): class 2

44 (c): class 3

Figure 6.42: C4.5 Solving the Wine Classification Problem
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Evaluations

Figure 6.43: Cross-validating (50%-50%)

Evaluations

Figure 6.44: Cross-validating (leave-one-out)



Chapter 7

2LGA Analysed

Practical and theoretical considerations regarding the multi-level organisation of 2LGA
are discussed. Although it is difficult to draw a precise line of demarcation because

they are intricately related, important issues have been grouped into sections describing

search, representation and learning aspects of the system.

7.1 Controlling Search

"It can save a lot ofmental work if one makes each arbitrary choice the way

one did before. The more difficult the decision, the more this policy can

save. The following observation by my associate, Edward Fredkin, seems

important enough to deserve a name:

Fredkin's Paradox: The more equally attractive two alternatives seem,

the harder it can be to choose between them—no mater that, to the

same degree, the choice can only matter less."

[Minsky 85]

Most practitioners in the field agree that, if particular knowledge about the class of

problems being solved is available, it should be incorporated into the GA to enhance its

search capabilities. As described in chapter 2, different GA approaches-can be extended

in many different ways, and 2LGA is no exception. The particular mechanisms that

were proposed and adopted in this work to enhance the system's search power are

discussed below.
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7.1.1 Adapting Parameters
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Theoretical results might be difficult to obtain, but the idea of having adaptive re¬

productive operators is supported by many empirical studies. The effectiveness of

adaptive operator probabilities has been demonstrated in several papers, both for mu¬

tation ([Fogarty 89], [Back & Hoffmeister 91], [Fogel & Atmar 92]) and recombination

([Schaffer & Morishima 87], [Davis 89]).

Self-adapting mechanisms present many advantages and obviously play an increasingly

important role in GA design. This trend is due in part to the absence of strong

predictive theories capable of specifying optimal parameter values. However, not only
can operator probabilities be modified dynamically; the idea of self-adaptation can be

extended to other GA elements, notably representation. This is a main feature of the

work presented in this thesis and the subject of section 7.2 below.

An adaptive mechanism requires some information on which to base the adaptations.

GAs are adaptive systems that use a population to maintain information about the

space being searched. This population is used by the GA to adaptively guide the

trajectories through the search space. It seems natural to consider using the GA as an

adaptive mechanism for adjusting itself as it solves a problem.

In this work, the recombination operators used are based on the cut & splice ones that

were defined for messy GAs and, therefore, are very similar to them. It was clear from

the beginning that, despite 2LGA's robustness and low sensitivity to small parameter

variations, the probabilities assigned to the application of each of these operators would

have a noticeable impact in overall system performance. That is the reason why it was

decided to devise a mechanism to allow the self-adaptation of these parameters (see
section 6.2.6).

The assumption that the size of the best individual found so far could give a good
indication as to the size of the solutions that the system should be considering, at each

particular stage in the evolutionary process, proved to be an effective one. Furthermore,

this idea was extended to incorporate the heredity and parsimony factors in the set

of self-adapting parameters. The results were also as expected, achieving balanced

levels of activity, although not as significant in enhancing system performance as the
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adaptive probabilities of the recombination operators. Further study of the properties

of parameter adaptation may certainly help to identify the complementary nature and

relationship between distinct parameters.

7.1.2 Crowding

In rule learning systems in general, fitness is a function of how well an individual

complements other individuals in the population. Rather than searching for an opti¬

mal group of genes assembled together in a single chromosome, the goal is to evolve

groups of individuals which collectively solve a particular problem. When the typi¬

cal optimisation-oriented GA is applied in this situation, the strong pressures towards

homogeneity in the population make it difficult to maintain different but cooperative

individuals. Either an additional mechanism for encouraging groupings of individuals,
as introduced in section 2.6.3, or a suitable structural imposition are required.

In 2LGA, pressure towards homogeneity is especially harmful in the elements popula¬

tion. Due to the inherent properties of fuzzy rules, their definition and evaluation, it

is certainly the case that a good solution, i.e. a set, must contain several rules that

are substantially different from one another. To circumvent this problem, a simple

crowding mechanism was enforced, as described in section 6.2.4. This method resulted

in a better fitness distribution in the elements populations, and more individuals of

relatively high fitness were allowed to coexist. That was exactly the desired behaviour.

Noticeable improvement was observed not only in the overall performance of the sys¬

tem, but also in the quality of the final solutions that were produced.

A similar problem, introduced in [Goldberg et al. 90] in the context of messy GAs,
relates to the differences between arbitrary substrings, which might pose a problem for

the sets populations at the time of tournament competition. The proposed solution will

be considered as a possible future extension to the 2LGA system (see section 8.3.3).

7.1.3 Parsimony

Genes that get "trapped" inside a building block but serve no useful purpose are

called parasitic. Even if they do not negatively affect the fitness value of the contain-
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ing building block directly, their presence might thereafter prevent the expression of

a larger building block. In [Goldberg et al. 90], they proposed the use of null bits,

acting as explicit placeholders, to guide a tie-breaking mechanism: strings with the

least effective length are preferred when fitness ties occur between building blocks.

This is similar to the treatment given to the hitchhiking effect, i.e. genetic material
with low contribution towards an individual fitness is carried along between segments

that do contribute positively to enhance it, as defined in the Artificial Life literature

([Forrest &; Mitchell 92], [Mitchell & Forrest 93]), where, paradoxically, the addition
of introns seems to alleviate the problem.

As a different approach, the effect of the introduction of a parsimony factor was very

positive. It provided a direct and explicit way of maintaing growth rates for individuals
in the sets populations under control. This is in agreement with the notion of effective
fitness and complexity compression described in [Nordin & Banzhaf 95]. Clearly, the

principle of Occam's Razor is evident in this case: a shorter solution is in essence

a more generic solution. Likewise, as pointed out above, hitchhiking genes become

less of a burden because they are more easily discarded. This is evidenced in section

6.2.3, where the sample graphs show that parsimony alone can make the difference
between over-fitting and generalisation ability. They also demonstrate that too strong

a parsimony factor might impede an efficient exploratory search, necessitating at times

the use of relatively large individuals, particularly during the early stages.

7.1.4 Exploration and Exploitation

Intuitively, without adhering to the analysis formalism provided by schemata, a BB can

be said to be a part or component that contributes significantly towards an increase

in the fitness of a complete individual, i.e. a partial solution. The task of the GA

is to identify those BBs and try to put them together in a single individual. This
is performed incrementally in such a way that promising combinations are tried first,

until a complete, satisfactory solution to the problem at hand is produced. But the GA

search is characterised by two coexisting factors with seemingly antagonistic purposes:

exploration and exploitation. The tension between exploitation and exploration is a

recurring theme in genetic algorithms, as initially suggested in [Holland 75]. A proper
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balance between these two aspects is crucial when adaptively searching an unknown

space for optimal solutions.

In 2LGA, premature convergence was hardly ever a problem. The reason for this
stems from the co-evolution of the two populations at different levels. Long phases of

exploration or exploitation did not take place in a synchronised way at both levels:

the occurrence of one of them at one level would be inevitably interrupted by the

complementary activity in the other level. A clear example is the effect produced by
the replacement strategies of the elements populations, which would be seen as an

externally induced mutation at the level of the sets populations.

It is interesting to note that, particularly when the 'adopted' strategy was being used,
it was possible to observe a sort of adaptation anomaly, as defined in [Davidor 90],

regarding the average set size. That paper postulates that adaptation in evolutionary

systems normally starts from a state of relatively high redundancy and complexity, so

that they can adapt to very diverse conditions by simplifying and rearranging the basic

components of the system first, followed by increased specialising and sophistication.
In this work, the evidence suggests that the high-level population must first turn the

disordered, randomly initialised sets into relatively small, non-redundant ones; these

will then start to grow and turn into useful, more complex combinations of increasingly

specialised and fine-tuned rules. This effect was emphasised when a faster reproduction

rate for the sets population was used, leading to an improved performance and overall

quality of the results.

7.2 Representation

Ideally, the generic GA requires only two problem-dependent pieces of information: a

fitness evaluation function and the length of the binary string used to represent each

chromosome — there may be many other parameters, but they relate to the inner

workings of the GA and are only tuned to prevent premature convergence and improve

performance considerations. The GA will operate on the specified chromosomes with

no additional information about the problem domain other than the value returned by

the evaluation function. Indeed, this can be regarded as an advantageous feature of
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GAs, making them a very general-purpose search technique. Alas, addressing the issue

of what kinds of problems are adequately solved by GAs, it is known that if a suitable

special-purpose, knowledge-based search technique does exist for a particular class of

problems, GAs are often outperformed. However, "if the space to be searched is not so

well understood and relatively unstructured, and if an effective GA representation of

that space can be developed, then GAs provide a surprisingly powerful search heuristic
for large, complex spaces" [DeJong 90].

One of the main objections to the traditional linear, fixed-length, binary representation
arises because the linkage between the necessary gene combinations is too weak. If the
choice of chromosome coding does not facilitate the required building block combina¬

tions, the GA will converge to suboptimal solutions. The simplest way to give some

structure to a basic representation is to define special treatment for particular genes

or explicit intra-chromosome boundaries — e.g. places where crossover points are per¬

mitted. One obvious drawback of these approaches is that domain-specific information

that used to reside in the evaluation function, such as the encoding details, must now

be at least partially incorporated within the functionality of the GA operators.

The idea of subjecting the representation itself to adaptation is not new ([Holland 75]),
but there are very few proposals that implement this approach. A remarkable example

appears in [Shaefer 87], where the ARGOT system "not only employs [...] Darwinian
evolution of the chromosome population, but also utilizes information from the current

trial solutions to modify the translation mapping between the chromosomes and the

parameter space".

The capacity to evolve the best representation for a particular problem depends on the

ability of the learning algorithm to modify its own structure and the way in which it

codes for potential solutions. Typical fixed-length GAs have little capacity, or none at

all, for adapting their genotype (their structure) because the length and meaning of
each component has been determined a priori. By evolving its structure, a variable-

length genotype may be able to discover not only the values of the parameters of a

solution, but also how many parameters there should be, what they would mean and

how they needed to interrelate. This variability introduces many degrees of freedom
into the evolutionary search that are missing in fixed length structures.
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With this two-level representation, it is easy to draw analogies between learning and

evolution as two adaptive processes, one taking place during the lifetime of an organism,
and the other over much larger periods of time, spanning several generations. However,

the different element and set generations interacting at different rates relate more to

the coexistence of different organisms, where the lifetime of one of them might spread
over several generations of the other; not unlike a host-parasite relationship, where the
health of the host depends to a large extent on how "benign" the current parasites are,

and viceversa, since a healthy host guarantees a suitable environment for the parasite.

Obviously, the possibility to simultaneously use another GA for tuning the membership
function definitions used by individual rules is an interesting option. This does not

appear to involve complicated modifications to the current system at different levels,

since the elements population encode the linguistic terms, not their interpretation. The

inclusion of a third GA could be done in an analogous way, expanding the hierarchical

structure of the system one more level, as discussed in the next chapter.

7.3 Learning Fuzzy Knowledge

Initially, the rules in the knowledge bases of FSs were obtained directly by interviewing

experts, using the same knowledge engineering techniques developed by mainstream

AI. Indeed, the original motivation for developing fuzzy logic was that it could be used

to neatly capture human statements involving vague quantifiers, providing a formal
framework to reason effectively with such statements. Obviously, the well-known dis¬

advantages of traditional knowledge engineering techniques were carried over to FSs

development.

Since the 2LGA system was mainly used to synthesise fuzzy networks, the discussion

of certain considerations regarding the engineering of fuzzy systems is in order. In

accordance with the introduction given in chapter 3, it is assumed that FSs in general,
and FNs in particular, present five important features which are relevant to this thesis:

1. Compact rule bases — knowledge bases of FSs are normally much smaller than

systems built using traditional artificial intelligence formalisms.
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2. Statically and dynamically shallow structure — rules do not produce conclusions

that are then used as premises in other rules. Statically, rules can be organised
in a flat list and, dynamically, there is no run-time chaining of inferences.

3. Knowledge recorded in a FS typically reflects immediate correlations between the

system's inputs and outputs, without the need of either a mathematical or a deep,

causal model of the system — i.e. they are function estimators; the antecedents

refer to system inputs, e.g. qualitative sensor observations, and consequents refer
to system outputs, e.g. qualitative actuator settings. This work demonstrates
the possibility of using an evolutionary algorithm to synthesise the rule base of
a FS.

4. Numerical parameters, such as membership function definitions, can also be

tuned by learning or searching algorithms, such as NNs or GAs.

5. Fuzzy logic operators are used — typically min and max, together with explicit

possibility distributions, usually of triangular or trapezoidal shape. Fuzzifica-

tion/defuzzification processes map between fuzzy values and their corresponding

crisp, real values.

These features, taken together, make FN synthesis an ideal problem domain for 2LGA.

In particular, the credit assignment problem appears to be solvable: it is possible to

discover how to modify part of a complex system in order to improve it, given only an

evaluation of its overall performance.

The fact that FSs normally do not need a large number of rules to solve real-life

problems, in practice represents an obvious advantage, because the knowledge base

becomes a small system to modify. 2LGA decidedly encourages the generation of

compact rule bases. The introduction of the parsimony factor has a direct implication

to this effect. Additionally, the coordinated, adaptive use of the cut &; splice operators

yielded supplementary assistance in achieving an adequate balance between system

size and performance.

The short paths between the inputs and outputs of a FN imply that the effect of a

particular change in the system tends to be localised, so it is easier to discover a change

that has a positive effect without having other undesired consequences. 2LGA permits
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the alteration of independent rules in isolation. Introducing a new individual in the

elements population will have a localised effect in those sets where it is contained, and

is immediately available for exploitation by the evolutionary process in subsequent

generations.

Two test cases were presented in chapter 6: one was a control problem, using a software

simulation to provide the means for system evaluation; the other was a classification

task, where a set of cases was used to construct "training" and "test" subsets. The

iterative way in which FNs are refined allows a large number of observations of in¬

put/output performance to be used for system improvement, without the need for a

formal or mathematical definition of it — FNs produced by 2LGA are evolved function

estimators.

FSs present several unique features. What makes them useful in practice, among other

things, is the combination of a rule-based formalism with numerical factors qualify¬

ing rules, and the simplicity and efficiency of fuzzy logic "reasoning". The principal

advantage of rule-based formalisms in general is that knowledge can be acquired incre¬

mentally: individual rules and premises can be refined independently, or at least more

independently than items of knowledge in other formalisms. This aspect is clearly

reinforced by 2LGA's structure, with one level containing a GA completely dedicated

to the evolution of individual rules, as opposed to comlete indivisible rule sets alone.



Chapter 8

Summary and Conclusions

A summary of achievements and a discussion of the contributions, issues raised and

future directions is the concluding part of the thesis.

8.1 Summary

In chapter 2, the basics of genetic algorithms were introduced. The underlying prin¬

ciples and fundamental concepts were first presented in relation to traditional GAs.

Important issues regarding selection/replacement mechanisms, fitness and performance
evaluation were discussed, such as convergence and selection pressure. Special empha¬
sis was placed on concepts relating to representation and organisation of the several

components that GAs comprise, including the notions of building block, recombina¬

tion and epistasis. Relevant issues such as adaptive parameters, variable-size and

structured representations, parsimony, crowding and messy genetic algorithms were

also introduced.

Chapter 3 presented an introduction to systems based on fuzzy logic. The basic el¬
ements involved in FSs were discussed, including the notions of fuzzy sets and rules.

A simplified step-by-step description of the general process was given, covering the

fuzzification/defuzzification and basic rule evaluation methods.

An overview of hybrid systems and soft computing was the subject of chapter 4. The

most relevant approaches to the combined use of fuzzy systems and genetic algorithms

were reviewed. Particular attention was paid to the role GAs have played as search or
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optimisation methods to synthesise FSs. A first description of fuzzy networks was pre¬

sented, including important issues regarding the combination of GAs and connectionist

systems.

In chapter 5, the basic two-level genetic algorithm was described. The presentation

included the details of 2LGA's novel architecture and its operation. The two essential

components — i.e. sets and elements, as used in this thesis — were fully described, in¬

cluding their forms of representation, operators and fitness evaluation. The important

aspects of the interacting, co-evolving populations were introduced, together with the

concepts of parsimony, adaptive parameters, heredity and the different replacement

mechanisms devised for 2LGA.

Chapter 6 presented applications of 2LGA for two different problems. Firstly, the

system was used to generate the rule base of a FLC to solve a simple, standard control

problem. The notion of different reproduction rates for sets and elements populations

was introduced, including a comparison of the different replacement methods that were
devised for the elements population. Secondly, 2LGA was used to solve a classification
task. The possibility to use the information available to the system in order to guide

the automatic modification of some system parameters was explored.

A discussion of the most important aspects of this work was presented in chapter

7. The way adaptive parameters, as developed for 2LGA, may affect the search per¬

formed by the system is analysed. Issues on representation, especially the hierarchical

organisation and variable-length chromosome structures were discussed. The ability of

2LGA to generate fuzzy rules was reviewed in the context of more general knowledge

engineering concerns.

8.2 Conclusions

As system complexity increases, it becomes difficult to distinguish between peculiar¬

ities that seem deceptively interesting and features that actually teach us something

important and general, either about how to design more efficient mechanisms or about

the intrinsic properties of the problem. In this hierarchically organised GA, the cut &:

splice probabilities for the sets population, the replacement strategies for the elements
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population, the heredity and parsimony factors are all important, interrelated features

that directly affect the performance of the system in different ways.

The tests demonstrate that the system is capable of finding very good solutions, in an

effective and robust manner, for the kind of problems on which it was tested. Perhaps

more importantly, the two-level architecture allows us to focus on more isolated features

of the evolutionary search carried out by the system. Future work involves a thorough

analysis of the interaction between the different levels and the application of the system

in different problem domains.

It is true that binary, linearly-ordered representations allow the use of standard mu¬

tation and crossover operators in a problem-independent way. Nevertheless, the flex¬

ible, variable-length representation devised for the individuals in the sets population

presents several advantages. The GA is able to manipulate short individuals not only

during the early stages, but all along the duration of a complete run. This allows the

system to combine short, well-tested building blocks into longer, more complex assem¬

blies. Furthermore, it becomes easy for the GA to "backtrack" whenever two building

blocks that are put together interact in a negative way, because the building blocks

are able to exist in isolation.

The cut & splice operators help reduce the inherent, positional bias in standard

crossover towards breaking up correlated genes that are widely separated on the chro¬

mosome. This is particularly important, since the strong positional dependence of
most typical representations is an artifact introduced by GAs.

Obviously, an additional advantage of using a variable-size representation is that the

adequate or even required size of the solution does not have to be known nor estimated

beforehand; the answer to that question is provided by the system itself as a by-product.

Suitable replacement strategies for the elements populations were required, so a few
different alternative schemes were devised. These produced not only somewhat different

results, but also distinct trends in the behaviour of the system. On one hand, the

'adopted' strategy seemed to induce an undesired increase in the number of rules per

set. However, a higher probability for the application of the cut operator, or a lower

probability for the splice operator, or a raised parsimony factor would all lead to less
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sizeable sets. Thus, the values of these parameters can be predictably set accordingly, in
order to account for that potential problem. Conversely, the 'inherited by substitution'

replacement strategy had an obvious tendency to decrease the average size of the sets;

this bias could be cancelled out by increasing the splice probability, or by decreasing

the cut probability or even the parsimony factor. Furthermore, a suitable combination

of all of these actions was easily obtained, without the need for extensive, sensitive

fine tuning; it is possible in practise to maintain a balance between these interacting

parameters in order to preserve the size of the solution within the desired range.

However, it became apparent that the difference in size between the best solution found

so far and the average size could provide the information needed to guide the automatic

adaptation of these parameters. As expected, once the cut and splice probabilities

were subjected to automatic adjustment, they consistently moved towards the values

that had been predicted and corroborated experimentally in the previous experiments.

These results confirmed that the sources being used to direct the adaptation of the

representation were providing the relevant information at the right time.

The introduction of replacement strategies brought with it the definition of a hered¬

ity factor. This system parameter joined the parsimony factor and the cut &: splice

probabilities in the set of self-adapting features of the system. Together, these param¬

eters created a balanced, self-regulated mechanism that allowed 2LGA to effectively

influence the size of the genotypes available to it, in order to conduct the evolutionary

search under the most promising conditions, as indicated by the status of the system

itself.

"Intelligence may be [...] an emergent property of an enormously com¬

plicated self-organising system that uses a large range of self-regulatory

mechanisms, rather than being directly the result of a small number of

fairly simple mechanisms." [Ross 94]

8.3 Future Directions

The number of open possibilities presented by the hierarchical organisation of 2LGA is

enormous. It would be impossible to enumerate every conceivable potential enhance-
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ment. What follows is a short list of promising directions, some of which are currently

under development.

8.3.1 MLGA

The first obvious addition is the extension of the hierarchical structure to more than

two levels. It was mentioned in section 4.3.1 that GAs have been successfully used to

evolve the membership function definitions for fuzzy sets. The numerical framework

offered by FSs presents a number of features that facilitate the automatic design of
several system components, as observed in section 7.3. Tuning the membership function
definitions by further introducing another level to the system is a logical extension to

the current implementation. The development of a 3LGA seems a plausible future

enhancement to the current system. Just as sets are made of elements, elements would

be, in turn, made ofmembership function definitions (see figure 8.1). The system would
be capable of further refining the quality of the solutions being produced. This is in

complete agreement with several of the hierarchical approaches that were mentioned

in chapter 2, and the trend in hybrid systems introduced in chapter 4.

Figure 8.1: Three-level GA (3LGA)

For this new "bottom" level GA, a first attempt could simply take a similar approach

to that presented in [Karr 91]: a predefined number of parameters are represented in a

linear genotype so that a GA, using standard recombination and mutation operators,

sets out to optimise the shape and position of these membership functions. Obviously,

FUNCTIONS

ELEMENTS

SETS
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a variable-size representation could also be used, allowing the GA to attempt to work

out the correct number of membership functions required to adequately characterise

each fuzzy set. Fitness evalutation could be guided in a similar fashion to the one

adopted for the middle level, i.e. taking the average of the fitness of those elements

(rules) to which each membership function belongs. This would imply a top-down

propagation of fitness, from whole rule sets, to indivitual rules, down to membership

function definitions; it would become important then to certify that the final fitness

value is genuinely representative of the aptitude of individual membership functions in
the appropriate context.

8.3.2 Adaptive Reproduction Rates between Populations

As mentioned in section 6.1.3, a faster reproduction of sets (A) allows the system to

promptly find useful combinations of available building blocks, but does not facilitate

fine-tuning individual rules. Conversely, faster reproduction of rules (M) induces slow

progress, but allows the system to improve the quality and sophistication of rules in

the later stages.

In an initial attempt to explore this particular feature of the system further, it would

be important to vary the M/N ratio in an dynamic way: start with a relatively small

(< 1) value and let it increase (>1) as the system progresses towards the final stages.
This can be done in several different ways, but a simple linear trend can be defined,

maintaining each parameter inversely proportional to the other, as depicted in figure
8.2 below.

Taking this idea further, instead of having a predefined rate change schedule, it seems

plausible to devise a mechanism to modify reproduction rates in an adaptive fashion.

In this case, diversity at the different representation levels, together with on-line perfor¬

mance measurements, could provide the information required to influence the decision

on which M/N ratio to have at the different stages of the evolutionary search. At any

rate, a similar trend to that which has been determined experimentally, outlined above

for the dynamic linear ratio adjustment, would be expected, as ilustrated in figure 8.3.
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Figure 8.2: Dynamic linear M/N ratio adjustment

N - sets reproduction rate

M - elements reproduction rate

Figure 8.3: Adaptive M/N ratio adjustment

8.3.3 Genie Selective Crowding

In [Goldberg et al. 90], the concept of genie selective crowding was introduced. The
idea is to compare individuals for selection purposes only when they are similar enough.

Tournament selection is carried out as usual, except that individuals can only take

part if they have at least some threshold number of genes in common. The aim is

to counter the problem of nonuniform subfnnction scaling and variable building block
size: comparison of partial evaluations are meaningful to the extent that they refer to

the same partial solution. Although rule modularity alleviates this problem for 2LGA,

the same line of reasoning could be extended, so that individuals in the sets population

can only compete with those other sets which share a minimum number of rules.
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It would be relatively easy to modify the selection scheme proposed in section 5.2.2,

in order to accomodate genie selective crowding. A new parameter would have to

be defined, and its value tuned, establishing the minimum number of rules that two

sets must share before they can be compared. Keeping in mind that there might be

significant differences in set sizes, this threshold could probably be better defined in

terms of the candidates' length— e.g. a fraction of their average size— instead of being
an absolute number. Furthermore, because under certain circumstances it is desirable

to allow distinct sets to recombine, a stochastic factor could be included, allowing

the selection of dissimilar candidates with a given, presumably small, probability. A
measure of diversity could be used to guide the adaptability of this new parameter,

in an analogous way to the temperature parameter used in simulated annealing, for

example.

8.3.4 Combination/Adaptation of Recombination Operators

As it was demonstrated in section 6.2.6, the automatic adaptation of the cut Sz splice

operators, based on the information provided by the difference in size between the best

solution found so far and the population's average, is an important contribution to

enhance the system's robustness and performance. It also means that the potential

user will not necessarily have to dedicate time to tune some of the system's parameters.

The introduction of the mixing operator (see section 6.2.8) was circumstantial, but it

demonstrated that it is possible to improve on-line performance of the system under

certain conditions. As is always the case, it is difficult to strike a balance between

exploration and exploitation, but many of the original claims made in that context in

favour of uniform crossover ([Syswerda 89], [Eshelman et al. 89]) could be in principle

extrapolated to the mixing operator. It would be important to carry out research

focusing on population analysis, monitoring the juxtapositional properties of mixing,

in particular with regards to the preservation of diversity, but keeping building block

disruption to acceptable levels at the same time. Careful analysis of the application

of alternative recombination operators would undoubtedly increase the usability of the

system under different settings.
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8.3.5 2LGP
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A more radical modification would be to use tree-like representations at either one or

both levels of the 2LGA, based on formulations derived from the Genetic Programming

literature. As introduced in section 4.5 (see also section 2.11.1), various analogies can

be drawn from GP and applied within the hierarchical organisation of the system

presented in this thesis.

A first attempt would be to substitute the variable-size linear genotypes of the sets

populations in favour of a tree-like representation. A rule set would thus be defined

by a structure of dynamically varying size and shape, using a recursive definition with

simple "concatenation" operator nodes linking the leaves in the tree containing links
to the elements populations, i.e. individual rules. As an illustration, the tree depicted

in figure 8.4 would represent the set containing rules f?l to R7.

Figure 8.4: Rule set representation in 2LGP

Once two individuals have been chosen for reproduction, the crossover operator would

be used to recombine individuals in the usual way: pivot nodes would be picked in

both parents and the corresponding subtrees swapped between them. Likewise, mu¬

tation could be carried out by replacing a particular subtree with a newly generated
one. Given that all genotypes share the same properties of recursive tree structures,

syntactic constraints are always preserved.

Similarly, automatic function definition and adaptive representation techniques such as
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those presented in [Rosea & Ballard 94], which are focused on the discovery of useful

building blocks, could be adapted to the 2LGP. Since the concatenation operator ac¬

cepts a variable number of arguments, two or more levels of a subtree can be collapsed

into one, effectively creating a larger building block. Proceeding in the opposite direc¬

tion, one node with several branches could be reorganised by creating an intermediate

new level, consisting of two or more new nodes, and distributing the original subtrees

below them. These mutually complementary operators would facilitate the creation

and destruction of more elaborate subsets (subtrees) or rules.

Obviously, the notions developed for the 2LGA regarding set size would still apply un¬

der the new scheme. The parsimony factor, the expansion and contraction of subtrees,

branch insertion and branch deletion could all be used by the system to aid in the

self-regulation of the average size of individuals.
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