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ABSTRACT 

Rapid advances in data-rich domains of science, technology, and business has 

amplified the computational challenges of "Big Data" synthesis necessary to slow the 

widening gap between the rate at which the data is being collected and analyzed for 

knowledge. This has led to the renewed need for efficient and accurate algorithms, 

framework, and algorithmic mechanisms essential for knowledge discovery, especially in 

the domains of clustering, classification, dimensionality reduction, feature ranking, and 

feature selection. However, data mining algorithms are frequently challenged by the 

sparseness due to the high dimensionality of the datasets in such domains which is 

particularly detrimental to the performance of unsupervised learning algorithms. 

The motivation for the research presented in this dissertation is to develop novel 

data mining algorithms to address the challenges of high dimensionality, sparseness and 

large volumes of datasets by using a unique grid-based localized learning paradigm for 

data movement clustering and classification schema. The grid-based learning is 

recognized in data mining as these algorithms are inherently efficient since they reduce 

the search space by partitioning the feature space into effective partitions. However, these 

approaches have not been successfully devised for supervised learning algorithms or 

sparseness reduction algorithm as they require careful estimation of grid sizes, partitions 

and data movement error calculations. Grid-based localized learning algorithms can scale 

well with an increase in dimensionality and the size of the datasets. 
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To fulfill the goal of designing and developing learning algorithms that can 

handle data sparseness, high data dimensionality, and large size of data, in a concurrent 

manner to avoid the feature selection biases, a set of novel data mining algorithms using 

grid-based localized learning principles are developed and presented. The first algorithm 

is a unique computational framework for feature ranking that employs adaptive grid-

based data shrinking for feature ranking. This method addresses the limitations of 

existing feature ranking methods by using a scoring function that discovers and exploits 

dependencies from all the features in the data. Data shrinking principles are established 

and metricized to capture and exploit dependencies between features. The second core 

algorithmic contribution is a novel supervised learning algorithm that utilizes grid-based 

localized learning to build a nonparametric classification model. In this classification 

model, feature space is divided using uniform/non-uniform partitions and data space 

subdivision is performed using a grid structure which is then used to build a classification 

model using grid-based nearest-neighbor learning. The third algorithm is an unsupervised 

clustering algorithm that is augmented with data shrinking to enhance the clustering 

performance of the algorithm. This algorithm addresses the limitations of the existing 

grid-based data shrinking and clustering algorithms by using an adaptive grid-based 

learning. Multiple experiments on a diversified set of datasets evaluate and discuss the 

effectiveness of dimensionality reduction, feature selection, unsupervised and supervised 

learning, and the scalability of the proposed methods compared to the established 

methods in the literature. 
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CHAPTER 1 

INTRODUCTION 

The common characteristics of contemporary datasets are multi dimensionality, 

sparseness, and the large size of the data. These characteristics are the main motivation 

behind the development of novel algorithms and frameworks for automated and 

sophisticated data mining systems that search nontrivial, previously unknown, and 

potentially useful knowledge from the data. Many researchers and scientists have 

developed automated systems that address these problems. As a result, ample literature 

on these problems and potential solutions are available. However, there is always a need 

to improve the existing algorithms, frameworks, and systems to achieve better 

performance and address the shortcomings of the existing data mining techniques. 

Data mining techniques are commonly categorized based on the type of 

knowledge mined by these techniques. The most common data mining techniques are 

classification, and clustering. Classification is used to build models based on the data and 

known class labels that can describe data classes or groups [1, 2]. It predicts categorical 

class labels based on known examples. Therefore, it is also referred to as supervised 

learning. There are ample classification techniques, such as decision tree classifier, 

Bayesian classifier, rule based classifier, neural network classifier, support vector 

machine, k-nearest-neighbor classifier, and others. Unlike classification, clustering and 

unsupervised learning does not rely on predefined classes and class-labeled training 

1 
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examples. For this reason, clustering is a form of learning by observation, rather than 

learning by examples. 

The algorithms presented in this dissertation are created using the grid-based 

localized learning paradigm of data mining for knowledge discovery. To explain these 

paradigms, the understanding of the knowledge discovery process, data mining, machine 

learning, and localized learning are critical. Therefore, the process of knowledge 

discovery in databases (KDD), data mining, which is the core of the KDD process, 

machine learning, and localized learning and grid-based localized learning paradigms are 

outlined and explained in this chapter. 

1.1 Knowledge Discovery in Databases 

The phrase knowledge discovery in databases commonly (KDD) refers to the 

process of extracting nontrivial, implicit, previously unknown, valid, potentially useful, 

and understandable patterns/knowledge from data in databases by applying data mining 

algorithms [1]. Knowledge discovery in databases (KDD) is an interactive and iterative 

process that involves many decisions made by the end user. Knowledge discovery in 

databases process includes data selection, data preprocessing, data transformation, data 

mining, and data evaluation/interpretation. All the steps involved in the KDD process are 

defined and discussed below. Figure 1.1 depicts the KDD process. 
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Figure 1.1: KDD Process 

1. Data Selection: Data selection is the process of creating a target dataset on 

which knowledge discovery is to be performed. Extracting a target dataset refers to the 

selection of a subset of data attributes, data samples, or both attributes and samples that 

are relevant for the analysis task at hand [1]. 

2. Data Preprocessing: Data preprocessing is a data cleaning process, which 

involves operations such as removing noise, filling in missing values, and eliminating 

inconsistent data. It requires identification and selection of appropriate method for each 

operation. 

3. Data Transformation: Data transformation is the process of converting data 

into the format that is most appropriate for relevant data mining tasks. Data 
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transformation includes data aggregation, data smoothing, data normalization, data 

generalization, and feature construction [1]. 

4. Data Mining: Data mining in the KDD process is a step that involves 

extracting patterns/knowledge of interest in a particular representational form by applying 

an appropriate data modeling technique. These data modeling techniques include 

association rule discovery, classification models, clustering models, and prediction 

models [1]. 

5. Data Evaluation/Interpretation: Data evaluation and interpretation is the 

process in which discovered patterns/knowledge is evaluated. This step also involves the 

interpretation of patterns through visualization or other means of representation. 

1.2 Data Mining 

Data mining is the process of extracting or mining interesting and useful patterns 

or knowledge from the given data [2]. In data mining, the term 'extraction of patterns or 

knowledge' refers to fitting a model to data, finding implicit structure from the data, or 

describing the data through a high level of abstraction [3]. There are two prevalent 

perspectives regarding data mining. The first perspective treats data mining as a synonym 

for knowledge discovery in databases (KDD), and the second perspective treats data 

mining as an essential step in the process of knowledge discovery in databases (see 

Figure 1.1). In both cases, data mining is an interdisciplinary field, and it is a confluence 

of multiple disciplines. Disciplines that contribute to data mining are database systems, 

statistics, machine learning, visualization, and information science [2]. It relies heavily on 

machine learning, pattern recognition, mathematics, and statistical techniques to find 
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patterns/knowledge from data [2], Figure 1.2 depicts the interdisciplinary view of data 

mining. 

Figure 1.2: Data Mining as Confluence of Multiple Disciplines 

As shown in Figure 1.2, data mining is the process of applying specific methods 

to extract interesting patterns/knowledge from the data [1]. 

1.3 Learning Techniques 

Machine learning is a domain of artificial intelligence methods that are designed 

to automatically learn to recognize the evolving behavior of the system based on sample 

data. The term also refers to designing algorithms that optimize the performance criteria 

of the chosen mathematical model based on the input data [4]. These mathematical 

models can be predictive or descriptive. Predictive models are used to predict future 

outcomes, and descriptive models are used to gain knowledge about the data. Machine 

learning techniques can be broadly categorized into supervised learning and unsupervised 
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learning [4J. In subsections 1.3.1 and 1.3.2, supervised learning and unsupervised 

learning methods are explained. 

1.3.1 Unsupervised Learning 

Unsupervised learning is learning by observation, rather than learning by 

example. It does not rely on predefined classes and class-labeled training examples [2]. In 

unsupervised learning, the class label of each data point is not known. In some cases, the 

total number of classes to be learned may not be known in advance. The aim of the 

unsupervised learning is to identify patterns in the data that occur more often than others 

based on the structure of the data space [4, 5]. Commonly employed unsupervised 

learning techniques are clustering, subspace clustering, bi-clustering, and density 

estimation. The basic principle of all these techniques is to group the data into clusters 

such that data points within a cluster are very similar to each other but are very dissimilar 

to the data points in other clusters. 

1.3.2 Supervised Learning 

Supervised learning is learning by example. It relies on the knowledge about the 

class labels of each data point and the number of classes. Supervised learning is a two-

step process. In the first step, a learning model is built using the predefined number of 

classes and class labels of each data point. This learning step is called the training phase. 

Each data point is assumed to belong to a predefined class which is determined by a class 

label attribute. The class label attribute is categorical, and each value serves as a class 

identifier [2]. The data points that are part of the training phase are collectively referred 

to as a training set and are selected from the given dataset. In the second step, the model 

learned in the first step is used to assign class labels to the data points that do not have 

any class label. This step is also called the testing phase. The data points that are part of 



7 

the testing phase are collectively referred to as the test set and are also selected from the 

given dataset for validation. 

1.4 Localized Learning 

Two commonly used learning techniques are known as parametric learning and 

nonparametric learning, respectively [4]. In parametric learning, a valid model is assumed 

for the whole input space, whereas in nonparametric learning no model is assumed. In 

nonparametric learning, there is no single global model, but local models are built based 

on the local neighborhood [4]. Therefore, a nonparametric learning strategy can also be 

referred to as 'localized learning.' 

All the localized learning methods follow the same philosophy and can only be 

differentiated based on the similarity criteria of the neighborhood. Distance based 

nearest-neighbor learning is the most common form of neighborhood learning, but other 

methods such as grid-based nearest-neighbor learning and rule based nearest-neighbor 

learning are used in machine learning as well [2, 6, 7, 8, 9, 10]. Localized learning refers 

to the method of learning in which local models are learned or built based on a local 

neighborhood. 

1.4.1 Nearest-Neighbor Learning 

Nearest-neighbor learning is based on the intuition that an input data instance is 

more likely to be similar to input data instances that are in the neighborhood. 1-NN and 

k-NN are two common nearest-neighbor learning strategies. In the 1-NN nearest-

neighbor method only one nearest-neighbor is identified, whereas, in the k-NN nearest-

neighbor method the total 'k' numbers of nearest-neighbors are identified [5]. Nearest-

neighbor learning is also referred to as a prototype method [5]. Nearest-neighbor learning 
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has been used for both supervised (k-NN classifier) and unsupervised (k-NN estimator) 

learning. Grid-based nearest-neighbor learning, an important aspect of the research 

presented in the first part of the dissertation, is explained below. 

1.4.2 Grid-Based Nearest 
-Neighbor Learning 

The idea of grid-based nearest-neighbor learning originates from a class of 

clustering algorithms known as grid-based clustering algorithms [6,7, 8, 9,10, 11, 12]. In 

grid-based clustering algorithms, initially, dimensions are divided into two or more 

partitions, and a grid structure is imposed on the feature space. This grid structure then 

divides the feature space into small cells called grid cells (see Figure 1.3). Next, each data 

sample is mapped onto the grid structure and assigned to a corresponding grid cell. 

Finally, these grid cells are used for clustering, and neighbors are identified by searching 

for adjacent non-empty grid cells. Figure 1.3 depicts a two-dimensional grid structure. 

Neighbors Non-Empty Cell 

Grid 
Structure 

fS 
a 
•2 o <£ «n 
§ o 
E 
5 

<n 
<N 
o 

Grid Cells 

Data Point 

0.0 0.25 0.50 0.75 1 
Dimension 1 

Figure 1.3: Two-Dimensional Grid 
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Thus, in grid-based nearest-neighbor learning, the definition of a neighborhood is based 

on the concept of grid cells, rather than individual data points. 

1.5 Dissertation Organization 

The remainder of the dissertation is further divided into seven more chapters. The 

organization and the outline of the remaining dissertation are as follows. A pictorial 

representation of the key elements of this dissertation is presented in Figure 1.4. 

DlsVI l< I \1 ION 

Figure 1.4: Key Elements of This Dissertation 

Chapter 2: In Chapter 2, research related to the problem domain of this 

dissertation is presented. It includes discussion on pertinent literature review on data 

shrinking preprocessing, feature ranking, classification and clustering techniques. 
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Chapter 3: In Chapter 3, preliminaries of grid-based localized learning are 

presented. It includes description of notations that are used in subsequent chapters. It also 

includes formal definitions of various terminologies that are essential in understanding 

the concepts of grid-based localized learning paradigm. 

Chapter 4: In Chapter 4, the need for data preprocessing and various methods of 

data preprocessing techniques are discussed. However, special emphasis is given to data 

shrinking preprocessing techniques and its need for sparseness reduction in 

multidimensional data. This chapter also includes experimental studies that demonstrate 

the benefits of the newly developed sparseness reduction technique presented in this 

dissertation. 

Chapter 5: In Chapter 5, a feature ranking method is presented that uses the grid-

based localized learning method. This chapter discusses research motivation, problem 

statement, and methodology. Experimental studies are also presented in which 

comparative studies of the existing and newly developed feature ranking methods are 

performed. 

Chapter 6: In Chapter 6, a grid-based localized learning method is presented for 

classification. This chapter includes discussion on research motivation, problem 

statement and explains the developed grid-based classification framework. Finally, 

experimental studies are presented to compare the newly developed framework with 

existing methodology. 

Chapter 7: In Chapter 7, grid-based data shrinking and clustering algorithm is 

presented. This chapter includes motivation and the problem statement for the research. 
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The developed methodology is also explained in detail which is further supported by 

experimental study conducted. 

Chapter 8: In Chapter 8, the conclusions and future directions are presented. It 

also includes the outcomes of this dissertation. 



CHAPTER 2 

RELATED RESEARCH 

Many data mining algorithms have been developed to address the challenges of 

data sparseness, the curse of dimensionality, and the large size of the data [2,4, 5, 13, 

14]. Many learning techniques have been developed to address these challenges. These 

learning techniques are categorized into parametric and nonparametric approaches [2,4, 

5, 15, 16, 17, 18]. In parametric learning approaches, a global model is built for all data 

samples at once. In nonparametric learning approaches, local models are built using the 

local neighborhood [4, 5]. Therefore, nonparametric approaches can also be referred to as 

localized learning approaches. Nonparametric techniques of data modeling have 

advantages over parametric techniques because of its simplicity [4, 5]. In the past, several 

approaches have been developed for data mining using both parametric and 

nonparametric learning models [2,4, 5]. However, the focus of the research in this 

dissertation is on using grid-based localized learning techniques to address the challenges 

of data sparseness, the curse of dimensionality, and the large size of data in data mining. 

This chapter includes a discussion on the research related to clustering techniques , 

feature ranking techniques, data shrinking techniques, and classification techniques to 

provide the general idea of these techniques and demonstrate a need to develop grid-

based localized learning techniques in these areas to address data mining challenges. 

12 
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The remainder of the chapter is organized as follows. In Section 2.1, grid-based 

localized learning is explained and discussed. In Section 2.2, research related to data 

shrinking preprocessing, including existing grid-based shrinking approaches and non-

grid/point-based approaches, is explained [13,14, 20,21, 22, 23, 24]. In Section 2.3, 

research related to feature selection and ranking is discussed. In 2.4, research related to 

classification techniques. In Section 2.5, research related to clustering techniques is 

discussed in general. However, special emphasis is given to grid-based clustering 

techniques and clustering techniques that are augmented with data preprocessing 

techniques to boost their performance. Finally, in Section 2.6, the conclusions of this 

chapter are presented. 

2.1 Grid-Based Localized Learning 

Grid-based learning algorithms are nonparametric learning algorithms. In these 

algorithms, a grid structure is imposed on the data space that divides it into smaller 

partitions called grid cells. Data is mapped in these grid cells which are then used to build 

local models using grid-based neighborhood learning [2]. In the past, grid-based localized 

learning has been used extensively for designing unsupervised learning algorithms such 

as clustering, subspace clustering, and data shrinking [25, 26, 27, 28, 29,13,14]. In this 

dissertation, the scope of grid-based localized learning is further expanded into grid-

based data preprocessing techniques, such as data shrinking, grid-based supervised 

learning techniques, grid-based clustering techniques, and grid-based data shrinking and 

dimensionality reduction [30, 31]. Figure 2.1 depicts a schematic of a grid-based 

localized learning paradigm. 
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Figure 2.1: Grid-Based Localized Learning Paradigm 

The schematic depicts the applicability of gird-based localized learning in the area 

of clustering, classification, data shrinking and dimensionality reduction techniques. 

2.2 Data Shrinking 

Data shrinking is a data preprocessing technique that is used to reduce the 

sparseness in a multidimensional dataset. The sparseness of the data increases as the 

number of dimensions increases [13, 14]. As a result, clusters of data points lack distinct 

boundaries, and the detection of clusters with better accuracies is severely affected. The 

data shrinking process utilizes the inherent characteristics of data distribution and outputs 

a more condensed and reorganized dataset [13, 14]. In the data shrinking process, the 

movement of data points is performed through the principle of data gravitation. Points are 

attracted by their surrounding neighbors and move toward the center of their natural 

clusters along the direction of the density gradient [20, 21, 22, 23, 24], Furthermore, data 

shrinking approaches can be broadly categorized into grid-based approaches and non-
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grid/point-based approaches. A pictorial representation of the categorization of data 

shrinking approaches is presented in Figure 2.2. 

1. GRAVITATIONAL MODELS [20,21,22,23] 
2. CLUES [24] 

i r <jr 
NON-UNIFORM GRID-BASED UNIFORM GRID-BASED 

GRAVITATIONAL MODEL GRAVITATIONAL 
[PROPOSED] MODEL [13,14] 

Figure 2.2: Data Shrinking Approaches 

Grid-based data shrinking approaches employs grid-based partitioning to map the 

data in a grid structure. Initially, data is mapped on a grid structure and grid cell 

corresponding to each data point identified, and data points that are occupied in the same 

grid cells are also identified. Data points in the same grid cell move to other locations as a 

single unit. The movement of data points in each grid cell is then performed using the 

principle of data gravitation [13, 14]. Non-grid-based data shrinking approaches use the 

principle of data gravitation on individual data points. In these approaches, each data 

point is moved by a simulated movement of data points [20, 21, 22, 23, 24], Grid-based 

approaches are faster, scalable, and computationally less expensive than non-grid/point-

based approaches. 
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2.2.1 Point-Based Approach 

In the past, many point-based data shrinking approaches have been used to 

employ the principle of data gravitation or gravitational transform [20, 21, 22, 23, 24]. 

The essence of all the approaches is as follows. Initially, a model of attraction (data 

gravitation) is assumed between the data points and a force of attraction is applied on a 

data point by its surrounding/neighboring data points. Then, this force of attraction 

enables the simulated movement of the data points. This process is applied for a specified 

number of iterations or until some stopping criterion is satisfied. 

2.2.2 Grid-Based Approach 

In the past only one grid-based data shrinking approach has been developed [13]. 

The overall process for this approach can be summarized as follows. Initially, multi-scale 

uniform grids are generated. Next, data points are mapped on the uniform grid structure 

and corresponding grid cells. Then, data points in each dense cell are moved toward the 

data centroid of the surrounding dense cells. This process is repeated until a specified 

movement threshold is achieved or for a specified number of iterations. 

2.3 Feature Selection and Ranking 

Feature selection is a process of identifying and selecting a subset of features 

from a given set of features to reduce the dimensionality of the data by optimizing an 

evaluation criterion. Feature selection reduces the dimensionality by removing irrelevant, 

noisy, and redundant features from the feature set [32, 33, 34, 35]. Application of feature 

selection as a preprocessing step in a data mining algorithm can greatly improve the 

accuracies and overall learning time of those algorithms. Feature selection techniques are 

essential and better techniques are always needed. Feature selection is frequently used in 
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data mining, especially in the fields of Bioinformatics, web mining, and other high 

dimensional data domains. The datasets in these domains may contain features that are 

irrelevant and unimportant and may have no predictive power. In fact, for some 

problems, only a small subset of features is usually relevant. 

Feature selection techniques can be categorized into two categories, the filter 

model or the wrapper model [36, 37, 38, 39]. The filter model relies on general 

characteristics of the training data to select some features without involving any learning 

algorithm [40,41,42,43,44,45]. The wrapper model requires one predetermined 

learning algorithm in the feature selection and uses its performance to evaluate and 

determine which features are selected. The wrapper methods tend to be more 

computationally expensive than the filter model. The filter methods are usually chosen 

due to its computational efficiency. 

2.4 Classification 

Classification is a supervised learning technique and many classification 

techniques have been developed [46]. However, the design of each classifier addresses a 

different issue, such as handling high dimensional and large datasets or improving the 

performance of the existing classifier. The common motivation that inspires scalable 

classifier design is the desire to develop a classifier capable of handling high dimensional 

and large datasets without significant loss in a performance parameter, such as speed or 

accuracy [47,48,49, 50, 51]. Handling high dimensional data in a data mining task, such 

as classification, is challenging because of the curse of dimensionality. Several methods 

have been developed to address the high dimensionality and large size of the dataset. The 
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SVM, KNN, and decision tree classifiers have been used extensively to design scalable 

classifiers [2,46]. 

Decision tree based classification techniques, SLIQ and SPRINT are 

representative examples of scalable classifiers [49, 50]. The SLIQ algorithm consists of 

two phases, the tree growth phase and tree prune phase. It uses a one-time sort method 

instead of repeatedly sorting to split the numeric attribute. The algorithm is able to sort 

once rather than repeatedly, because it maintains separate lists for each attribute. It also 

maintains the 'class list' data structure that must remain in the memory all the time. It 

builds a single decision tree using the entire training dataset instead of using a sampled 

dataset. The size of the 'class-list' is the same as the number of data points; therefore, 

SLIQ can only handle data points that can be accommodated in the main memory. The 

SPRINT algorithm is an improvement over the SLIQ algorithm. The design goal of the 

researchers who developed SPRINT was to develop an accurate classifier for large 

datasets. SPRINT shares most of SLIQ's features, but it uses the 'attribute-list' instead of 

the 'class-list.' Unlike SLIQ, SPRINT has no memory restriction, and is fast and scalable 

[50]. 

A grid-based approach for the classification of network traffic data is presented in 

[19]. This method classifies data into normal and abnormal classes for anomaly detection. 

In this method, a two phase grid-based clustering algorithm was developed to partition 

the network traffic data. In the first phase, data points were divided into non overlapping 

cells for pre-clustering. In the second phase, k-hypercells clustering, the clusters returned 

from the algorithm were presented in the form of logical expressions to generate rules for 

the classification of network traffic data. 
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2.5 Clustering 

Clustering is an unsupervised machine learning technique that groups the 

unlabeled data points into their natural groups within a given dataset. The driving 

principle of clustering is to have the data points in a cluster such that the data points 

within the clusters have high intra-cluster similarity and the data points between clusters 

have low inter-cluster similarity [2]. Clustering algorithms are commonly categorized in 

partitioning algorithms , hierarchical algorithms, density-based algorithms and grid-based 

algorithms [2, 52,53,54, 55, 56,57]. They are also categorized in a specialized category 

called data shrinking based clustering algorithms [13, 14]. A detailed discussion about 

these clustering algorithms is as follows. 

2.5.1 Partitioning-Based Clustering 

Partitioning-based clustering algorithms employ an iterative approach to cluster 

the data points. This method starts with an initial configuration of k partitions. Initial k 

partitions are constructed by randomly or heuristically dividing the data points into k 

partitions specified by the user. Then, the data points in these k partitions are relocated or 

regrouped in other partitions by iteratively applying some relocation techniques. Well-

known representative examples of partitioning-based clustering techniques are k-means, 

k-medoids, EM algorithm, fuzzy c-means, CLARA, CLARANS, and PAM [2]. 

2.5.2 Density-Based Clustering 

Density-based clustering algorithms consider clusters as regions of high data point 

density separated by regions of low data points of density. Density-based clustering 

approaches start by growing a cluster until a density threshold is satisfied. A cluster that 

has a density greater or equal to the specified threshold is defined as a dense cluster and 

initially forms a cluster. Two dense clusters are merged if they share a common neighbor 
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[53, 54]. Well-known representative examples of density-based clustering techniques are 

DBSCAN, OPTICS, and DENCLUE [53, 54,7]. 

2.5.3 Hierarchical Clustering 

Hierarchical clustering algorithms create a tree-like decomposition of the given 

data [2]. Data is clustered at multiple levels of hierarchy. This method of clustering 

provides an opportunity to simultaneously analyze the clusters at different levels. 

Hierarchical clustering can start the clustering in bottom-up or top-down fashion. 

Hierarchical clustering techniques commonly use average-linkage, centroid-linkage, 

ward-linkage, single-linkage, and complete-linkage similarity criteria for clustering [2]. 

Dendrograms are generally used to represent the hierarchical decomposition of clusters. 

In most of the hierarchical clustering algorithms, once the merging of two clusters takes 

place, it cannot be undone. Therefore, most hierarchical clustering techniques are rigid. 

Well-known representative examples of hierarchical algorithms are CURE, 

CHAMELEON, ROCK, and BIRCH [52,55, 56, 57]. Hierarchical clustering algorithms 

can be agglomerative or divisive. 

2.5.3.1 Agglomerative Hierarchical 
Clustering 

The agglomerative hierarchical clustering approaches perform clustering in 

bottom-up fashion. These approaches first assign each data point into its own cluster. 

Then, these single data points are merged with the other closest data points to form a 

bigger cluster using some similarity criterion. This process is repeated until all the data 

points are in one big cluster [2]. 
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2.5.3.2 Divisive Hierarchical Clustering 

The divisive hierarchical clustering approaches perform clustering in top-down 

fashion by assigning all the data points into one cluster. In the subsequent steps, these 

bigger clusters are split into smaller clusters. This process is repeated until all the data 

points are in one cluster or the desired number of clusters has been achieved [2]. 

2.5.4 Grid-Based Clustering 

Grid-based clustering algorithms are based on grid-based localized learning. In 

these algorithms, a uniform or non-uniform grid structure is imposed on the data space, 

that is then partitioned into uniform or non-uniform grid cells. During this process, 

relevant statistical information is collected for each grid cell. Clustering is performed on 

grid cells instead of on individual data points. The most critical challenge of grid-based 

algorithms is the selection of the proper grid cell size. Finer grid cell sizes lead to the 

high computational cost and coarser grid cell sizes lead to poor clustering accuracies. 

Well-known representative examples of grid-based clustering algorithms are 

GRIDCLUS, DENCLUE, and WaveCluster [6,7, 8]. Grid-based clustering algorithms 

are broadly categorized into uniform grid-based clustering and non-uniform grid-based 

clustering. These algorithms are discussed in the following sections. Figure 2.3 depicts 

grids used in clustering. 
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Figure 2.3: Types of Data Grids 

2.5.4.1 Uniform Grid-Based Clustering 

Uniform grid structures partition the data space using hyperplanes that are parallel 

to the axis. These grid structures are also called axis-parallel grid structure. It imposes the 

same size grid cells and do not take into account the underlying data distribution. Then, 

relevant statistical information is collected for each grid cell and clustering is performed. 

Well-known representative examples are WaveCluster, DENCLUE, and GRIDCLUS 

[8,7, 6J. 

2.5.4.2 Non-Uniform Grid-Based 
Clustering 

Non-Uniform grid-based clustering algorithms impose a data adaptive grid 

structure. Non-Uniform grid-based clustering algorithms offer significant performance 

improvement over other uniform grid-based clustering algorithms. Well-known 

representative examples are MAFIA, DESCRY, and MMNG [22, 11, 12J. 

2.5.5 Data Shrinking Based Clustering 

A gravitational transform based clustering algorithm is presented in [20). In this 

method, gravitational transform is applied to multi component image classification to 
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highlight the modes, or centers of high density regions, of data. The authors propose a 

simple model of attraction in which only mutual attraction of neighboring data points is 

enabled. This process is applied for a specified number of iterations. Finally, various 

clustering algorithms are applied to test the effectiveness of the proposed gravitational 

transform. Similarly, a new gravitational clustering algorithm that considers data points 

as an object in a gravitational field has been introduced [22]. In this algorithm, each data 

object is moved by simulating data movement for a specified number of iterations. 

Finally, a cluster detection procedure is used to extract valid clusters at multiple 

levels of resolution. Following these methods, another gravitational clustering algorithm 

is presented in [23]. In this method, a force of attraction is applied between points, 

allowing each point to move slowly under the influence of the resultant force [23]. Data 

points that are close to each other during this movement process are merged to form a 

cluster. This merging process results in a hierarchical tree structure. Finally, clusters are 

obtained using an evaluation criterion. Further, a nonparametric clustering algorithm 

called CLUES is presented in [24]. It performs three functions: data shrinking, data 

clustering, and optimal cluster selection. The data shrinking process used in this 

algorithm is derived from the gravitational clustering. The movement of each data point 

is determined by the median of its k-nearest-neighbors because the median is more robust 

than the mean. The coordinates of each data point are updated in all iterations of the 

algorithm. This process is repeated until convergence is observed. Finally, data 

partitioning and optimal cluster selection is applied. 

A multi-scale uniform grid-based data shrinking and clustering algorithm that 

simulates data movement toward the density gradient is presented in [13, 14]. This 
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technique is a three part method. First, data is mapped into grid cells. Then, data points in 

each dense cell move toward the data centroid of the surrounding cells. This process is 

repeated until a specified movement threshold is achieved for a specified number of 

iterations. Ultimately, clusters are detected at multiple scales, and cluster evaluation is 

performed to obtain the final clusters. 

2.6 Conclusion 

This chapter explores all related research paradigm in machine learning that are 

part of this dissertation. It starts by discussing the localized learning paradigm and then 

swiftly switches the discussion to the grid-based localized learning paradigm. It then 

explains and discusses the data shrinking, data shrinking techniques and related issues. 

Next, the clustering in general and research related to the dissertation such as grid-based 

clustering, hierarchical clustering, and data shrinking based clustering are discussed. 

Furthermore, it discusses related research in supervised machine learning paradigm. 



CHAPTER 3 

PRELIMINARIES OF GRID-BASED 

LOCALIZED LEARNING 

Grid-based localized learning is a specialized form of learning in which data 

space is divided into small partitions called grid cells by imposing a grid structure. Thus, 

it is necessary to formally introduce frequently used terminology in this area. In this 

chapter, notations, formal definitions, and other important information relating to grid-

based localized learning are provided. 

The remainder of the chapter is organized as follows. In Section 3.1, basic 

notations used in explaining the algorithmic pseudo-code is discussed. In Section 3.2, 

formal definitions and theorems pertaining to grid-based localized learning are explained 

and discussed. 

3.1 Notations 

Let a set X = {X;}^ be a dataset of N d-dimensional data points, where X <= 5Hd 

(9? represents the set of real numbers), Xt represents an element of X. Let the element X, 

(Xj £ X) be a d-dimensional vector, which is represented by the vector Xt- = 

(Xj i, , X i  d) . Let the set of d-dimensions be denoted by ID) = {Dj}^ ^ For V j, 

1 < j < d, let Dj be normalized between [0,1], where [0,1] c 31. Let 3) = "Dx  x D2 x 

x Dd be the d-dimensional data space in a unit hypercube [0,l]d c 5Rd. 
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Then, let n y = [0,1] denote the value domain of the dimension D; , where 1 < j < d .  Let 

for V T>j, Pr = [I, h) denote a right-opened interval or partition and Pc = [/, h] denote a 

closed interval or partition, where I denotes the lower bound and h denotes the upper 

bound of the partition. Let the value domain Tzy of dimension Dj be divided into K* 

m u t u a l l y  e x c l u s i v e  p a r t i t i o n s .  L e t  / y  n  =  [ l j  n i  h j  n )  b e  t h e  n t h  p a r t i t i o n ,  w h e r e  1  <  j  < d ,  

1 < n < . Let Ij = {/;1, — JjXi] = rhe total-ordered 

set (Ij, <) that denotes the partitions in dimension Dj such that (lj x < lj>2 < ••• < lj ^j j 

^hj x < hj 2 < < hj jfi j. Let Object; be the total number of data points in the grid 

cell Cj. Let Volumej be the volume of the grid cell Cj. Let pj be the density of the grid 

cell Cj . Let Lj be the length of the ith partition of the grid cell Cj. 

3.2 Formal Definitions 

Using the above notations, the formal definitions of relevant terminologies in 

grid-based localized learning are presented here. 

Definition 3.1 (Grid): A grid G on a d-dimensional unit hypercube data space D that 

partitions the data space into nj=i number of partitions is given by a d-ary Cartesian 

product over d totally-ordered sets I\,L2> , ID- A d-dimensional grid G is given by 

Equation 3.1 or 3.2: 

G = LX x L2 x x ID, Eq. 3.1 

G ~ «i» ^2,n2' > IJ.rij' • • • > | IJ.rij ^ /;}• Eq. 3.2 

Definition 3.2 (Uniform Grid): A uniform/fixed size grid GUNIF0RM on a d-dimensional 

data space that partitions the data space X) into fljlf X-' number of partitions is a d-ary 
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Cartesian product over d totally-ordered sets I1,12, , Id such that /a = /2 = = 

Id = /, K' — K for V T)j and |hjn. — (/,n;| = 1/3^, for V rij. A d-dimensional uniform 

grid GUNIFORM is given by Equation 3.3 or 3.4. Figure 3.1 depicts a two-dimensional 

uniform grid: 

Guniform = h x h x x Id, Eq. 3.3 

Guniform — {('l.nj'h,n2> — >h.nj>•••> Wi) | b.nj G 'yj- Eq. 3.4 

9 

CS 

0.0 0.25 0.50 0.75 I 

Figure 3.1: A Two-Dimensional Uniform Grid 

Definition 3.3 (Non-Uniform Grid): A non-uniform grid GADAPTIVE on a d-dimensional 

data space that partitions the data space D into Y\JjZi number of partitions is a d-ary 

Cartesian product over d totally ordered sets llt l2, ld such that I± =£ /2 =£ =£ Id 

and 11 =£ 12 =£ =£ Id- A d-dimensional data adaptive grid GADAPTIVE is given by 

Equation 3.5 or 3.6. Figure 3.2 depicts a two-dimensional non-uniform grid: 

Gadaptive = h x ^2 x x Eq. 3.5 

GADAPTIVE - {('l.Ti!' h,ri2> - > Ij.rij' •••> Ai,nd) | Ij.nj G Ij]- Eq. 3.6 
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Figure 3.2: A Two-Dimensional Non-Uniform Grid 

Definition 3.4 (Grid Cell): A grid cell C in a d-dimensional grid G is a d-tuple such that 

each element /y ^of the d-tuple represents a partition lj:Tlj, hj in a dimension. A d-

dimensional grid cell C is given by Equation 3.7 or 3.8 and is depicted in Figure 3.3: 

C = h,n2> »b.rij' "• > Eq. 3.7 

C ~ ^1 .Tii)' — » \b.ri]> ty.Tij) > — •> [h,nd> hj.ntSj- Eq. 3.8 

© 

in (S 

0.0 0.30 0.75 1 

Figure 3.3: A Grid Cell Representation 
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Definition 3.5 (Uniform Grid Cell): A grid cell CUNIFORM in a d-dimensional uniform 

grid G is a d-tuple such that each element ljn., of the d-tuple represents a partition 

| lj,n}> hj,nj) a dimension where hj n. — ljn. | = 1/K, for V rij. A uniform grid cell 

Cuniform's given by Equation 3.9 or 3.10: 

CUniform ~ {jl.nj^i ^2,n2» fy,nj> Eq. 3.9 

GUniform ~ ^l,ni)> ••• > > — < [{/,n<j> fy,Tid)^" Eq. 3.10 

Definition 3.6 (Non-Uniform Grid Cell): A grid cell CNON_UNIFORM in a d-dimensional 

non-uniform grid G is a d-tuple such that each element IJ>N , of the d-tuple represents a 

partition |ljn.,hj.n-) in a dimension where |/i;n. - ljn. | =£ 1/JC, for V n;. A d-

dimensional grid cell CN0N„UNIF0RM is given by Equation 3.11 or 3.12: 

CNon-uniform = (jl.n-L' ^2,n2> Ij,nj> ••• > Eq. 3.11 

CNon-uniform = h-l,nx)> — > [(/,ny fy."/) \h,nd' fy.nd)^" ^ 

Definition 3.7 (Empty Grid Cell): A grid cell C in a d-dimensional grid G is called an 

empty grid cell if, and only if, no data point X t  =  ( X i : 1 ,  . . . , X i j  , X i d ) exists such 

that l j n .  <  X i j  <  h j n .  for V Xi;-. A d-dimensional empty grid cell C  is given by 

Equation 3.13: 

C = = Eq. 3.13 

Definition 3.8 (Non-Empty Grid Cell): A grid cell C in a d-dimensional grid G is called 

a  non-empty  g r id  ce l l  i f ,  and  on ly  i f ,  a t  l eas t  one  da ta  po in t  X t  =  ( X i  l t . . . ,  X i ; . . . ,  X i  d )  
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exists such that l j n j  <  X t j  <  h j n .  for V X t  j .  A d-dimensional non-empty grid cell C  is 

given by Equation 3.14: 

C = ••• > [(/,nd» fy>,nd)^ ^ Eq. 3.14 

Definition 3.9 (Neighboring/Connected Grid Cell): Let Cp and Cq be two grid cells in a 

d-dimensional grid G. Let Cp and Cq represent d-tuple Cp = ..., lj iPj,. •, Aj,Pd) an^ 

Cq =: (ji.qi' •••»b.Qj' -' Id.qd)' respectively. Grid cells Cp and Cq are called 

neighboring/connected grid cells if, and only if, \lj,Pj  ~ Ij,qj\ ^1 for V (1 < j < d). 

Definition 3.10 (Non-Empty Neighboring Grid Cell): Let two d-dimensional grid cells, 

Cp and Cq, be given by Cp = , IjiP), , /d>Pd) and 

Cq = ,/d ,qd)' respectively. Grid cells Cp and Cq are called non

empty neighboring grid cells if, and only if, Cp =£ 0, Cq =£ 0 and 

(1 < 7 < d). 

Definition 3.11 (Grid Cell Volume): Let grid cell C t  be a d-tuple in a d-dimensional 

grid G  such that each element I j n .  of the d-tuple represents a partition in a 

dimension. Let L; be the length of the i th  partition in the d-tuple. The volume Volumei 

of a grid cell Q is given by Equation 3.15: 

Volumei = -. Eq. 3.15 1 (tiX Ld) M 

Definition 3.12 (Grid Cell Density): Let Ct be a grid cell in a d-dimensional grid G ,  let 

Objecti be the total number of data points in the grid cell Q, let Volumei be the total 

volume of the grid cell Q and let p,- be the density of the grid cell C( . The density p; of a 

b.Pj-b.qjl —1 f°r V 
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grid cell Q is given by the ratio of Object and Volumei.  ̂  is expressed by 

Equation 3.16: 

p =£^£££l, Eq. 3.16 
Volumei 

Definition 3.13 (Dense Grid Cell): Let Cj be a grid cell in a d-dimensional grid G, let 

be its density, and let Thp be a density threshold. Grid cell C; is called a dense grid cell if, 

and only if, the density p£ is greater than or equal to Thp. It is expressed by 

Equation 3.17: 

Sparse, if pi <Thp 

Dense, if pi>Thp Eq. 3.17 Ci = 

Definition 3.14 (r th  Rank Neighbor): Let grid cell C and Cp be represented by d-tuples 

Id.ua) and respectively. Grid cell Cp is called the r 

rank neighbor of the grid cell C if, and only if the following condition is satisfied. This 

condition is expressed in Equation 3.18: 

fh.nj + 1 or /,-n. - 1, V j, (1 < ;' < r) 

th 

l w 
V;', (r + 1 < ;' < d)' Eq.3.18 

Definition 3.15 (Data Centroid): Let Cj be a grid cell that contains a set Xj of k data 

points Xj = {Xji, X ik], where Xj c X. The data centroid q of the grid cell Cj is 

given by Equation 3.19: 

Eq. 3.19 

Definition 3.16 (Overlapping-Cell): Let Q be a grid cell that contains a set Xj of k data 

points Xj = (Xjlr... where Xj c X. The grid cell Cj is called an overlapping-

cell if it contains training samples from multiple classes. 
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Definition 3.17 (Non-Overlapping Cell): Let be a grid cell that contains a set X* of k 

data points Xj = {Xil( where Xj c X. The grid cell Q is called a non-

overlapping cell if it only contains the training samples of a single class. 

Definition 3.18 (Micro-Partition): Let mr  be a micro-partition that contains k data 

points (mr l,mr u, ,mrk). A micro-partition mr is a smallest non-overlapping 

unit of data points in which data points are in close proximity (| mru  — mr(U+1)| « f, 

where £ is a small number) with each other. 

Definition 3.19 (Average Linkage): Let mr, and mr+1 be two contiguous micro-

partitions that are given by sets mr = (mr l,,.., mr k) and nv+j = (mr+11,..., nVn.fc). 

respectively. The average linkage between two contiguous micro-partitions is defined by 

Equation 3.20: 

AVERAGE{mr,mr+1) = - mr+1J|. Eq. 3.20 

Definition 3.20 (Centroid Linkage): Let mr, and mr+1 be two contiguous micro-

partitions in the transformed space that are given by sets mr = (mr l,..., mr k) and 

mr+1 = (mr+11,....,mr+l k,), respectively. The centroid linkage between two 

contiguous micro-partitions is given by Equation 3.21: 

CENTROID(mr,mr+1) = |m^— mr+1\, Eq. 3.21 

where mr,i, and m(r+i)j-

Definition 3.21 (Ward Linkage): Let mr, and mr+1 be two contiguous micro-partitions 

in the transformed space that are given by sets = (mr l,..., mr k) and mr+1 = 

mr+i,k )> respectively. The ward linkage between two contiguous micro-

partitions is given by Equation 3.22: 
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WARDimr.mr^) = (k * Eq. 3.22 

where rn~ = ±£f=1 and m~̂  = ^2f= 1 m(r+i)j-

Definition 3.22 (Z-Score Normalization): Assume j4 is a numeric attribute, its mean 

is nA, its variance is aa, and a specific attribute value is ValueA. Attribute value ValueA 

is mapped to a new attribute value Value'A by computing the following equation: 

ValueA = Eq. 3.23 
OA 

Definition 3.23 (Min-Max Normalization): Min-max normalization performs a linear 

transformation on the attribute values. Assume A is a numeric attribute, its maximum 

value is MaxA, its minimum value is MinA, and a specific attribute value is ValueA. 

Attribute value ValueA is mapped to a new attribute value ValueA in the range 

of [NewMinA , NewMaxA] by computing the following equation: 

Valued = NewMi ^ A (MaxA- M i n A) A M 

Theorem 1: Grid-Based Neighborhood 

Let G be a grid on a d-dimensional data space D that partitions the data space 

into mutually exclusive intervals or partitions. Let Cu be a d-dimensional grid cell that is 

a d-tuple Cu = h,n2> - //inj, •••»^d,nd) such that each element of the tuple 

represents a partition in the corresponding dimension. Then, a d-dimensional grid cell Cu 

can have distinct neighboring grid cells that are given by Equation 3.25, where 

Sj is the number of changes in the partition index value lj>Tlj  in dimension 2that satisfies 

the neighborhood criteria: 

^Neighbor = Flysi^y' — !• Eq. 3.25 
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Proof: Let a d-tuple (jx iPl, —, lj,Pj, • •,  ̂ d,pd) represent a grid cell Cp. The grid cell Cp is 

the neighboring grid cell of cell Cu = (/lni, l jn j,..., /dj„d) if, and only if, l jp. = 

| I j n .  — 1  or I j  n. + 1 or I j  n., V j, (1 < j < d). Therefore, each element I j > p .  of a 

neighboring grid cell Cp can have a maximum of three values that satisfy the 

neighborhood criterion. If Sj represents all possible changes for dimension 2); , then the 

number of neighboring grid cells is given by Equation 3.26: 

cNeighbor = (^1 * - * Sj * ... * Sd) - 1, Eq. 3.26 

(•Neighbor = (^1 * - * Sj * ... * Sd) - 1 = Y\j=i Sj - 1. Eq. 3.27 

It should be noted that -1 in Equation 3.26 indicates I j p .  =  I j n .  V j, (1 < j < d) 

when Cp = Cu. Equation 3.26 can also be represented in the form of Equation 3.27. 



CHAPTER 4 

GRID-BASED LOCALIZED LEARNING FOR 

DATA PREPROCESSING 

Most real world data is low quality, and the data used for the data mining tasks 

may be incomplete, noisy, inconsistent, and sparse. Consequently, it is necessary to 

improve the quality of the data by addressing these data deficiencies prior to data analysis 

through a series of steps collectively called data preprocessing. There are several 

challenges in preparing this data for data mining tasks such as clustering and 

classification among others. These challenges are categorized into challenges related to 

the characteristics of the raw data such as noisy, missing, and inconsistent data values and 

into challenges related to the characteristics of the data such as sparseness and the curse 

of dimensionality in multidimensional data space. 

Both these sets of challenges severely affect the data analysis and may lead to low 

quality and misleading conclusions. Therefore, data preprocessing is necessary before 

performing any type of data mining tasks. Many techniques have been developed to 

handle the noise, incomplete and inconsistent data. Similarly, many techniques have been 

developed to mitigate the effect of the curse of dimensionality and the sparseness of the 

data. The sparseness of the data, which is caused by the curse of the dimensionality, 

severely undermines the performance of data mining algorithms. Because of this potential 

deterioration of the performance, one emphasis of the research presented in this 
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dissertation is to develop better sparseness reduction algorithms and frameworks and 

integrate them with the clustering algorithms. 

The remainder of this chapter is organized as follows. In Section 4.1, a brief 

explanation of various data preprocessing techniques is provided. In Section 4.2, a 

discussion about data sparseness, its detrimental effects and sparseness reduction 

techniques are provided. In Section 4.3, research motivation for the non-uniform grid-

based sparseness reduction technique is discussed. In Section 4.4, an experimental study 

is presented to demonstrate the advantages of the non-uniform grid-based sparseness 

reduction technique. In Section 4.5, the conclusions of this chapter are presented. 

4.1 Data Preprocessing 

Data preprocessing refers to the process of improving the quality of data for the 

ease of the data mining or knowledge discovery process. Data preprocessing is a 

collection of a wide variety of operations. The process includes data cleaning operations, 

which usually compose the first set of operations performed on the data. The second set 

of operations is called data transformation operations, which converts the data into a 

specified format. The third set of operations is referred to as data reduction operations, 

which includes operations to reduce data such as aggregation and dimensionality 

reduction. The fourth set of operations is referred as data shrinking operations. It includes 

operations regarding sparseness reduction. Data processing can improve the overall 

quality of data and the data mining tasks for knowledge discovery [2]. A brief discussion 

about all four sets of operations is given below. 

1. Data Cleaning: Data cleaning refers to the set of operations performed to clean the 

data by removing noise from the data, filling in missing data values, and resolving 
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inconsistent data values. Common noise removal operations are binning, regression, 

and clustering. Common operations for filling in missing values involve the use of a 

global constant, the use of an attribute mean, and the use of a most probable value. 

Common operations for resolving inconsistent values are the use of domain 

knowledge and the use of rules discovery to find inconsistent relationships [2]. 

2. Data Transformation: Data transformation refers to the set of operations that 

transform the data into representations which are appropriate for the data mining task 

at hand [2]. The set of data transformation operations consists of data smoothing, 

aggregation, generalization, normalization, and attribute construction. Data 

smoothing involves binning, regression, and clustering. Data aggregation involves 

data summarization. Data generalization involves replacing raw data by higher level 

concepts. Data normalization involves scaling data values into the specified range. 

Attribute construction involves extracting new attributes from the given set of 

attributes. 

3. Data Reduction: Data reduction refers to the set of operations that are applied to 

obtain a reduced representation of the data without seriously compromising the 

integrity of the original data [2], Data reduction operations consist of data 

aggregation, attribute subset selection, dimensionality reduction, and sample 

reduction. Data aggregation involves data summarization. Attribute subset selection 

involves removing irrelevant, weak, or redundant attributes. Dimensionality reduction 

involves reducing dimensions by applying wavelet transform, principal component 

analysis, and Fourier transform, among other methods. Sample reduction involves the 

use of histograms, clustering, parametric models, and sampling techniques [2]. 
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4. Data Shrinking: Data shrinking refers to the process of sparseness reduction through 

the simulated movement of data points using the principle of data gravitation. In the 

simulated movement of data points, data points are attracted by their surrounding 

neighborhood because of data gravitation, and they move along the direction of the 

density gradient [13, 14, 20, 21, 22, 23, 24]. Data shrinking techniques include grid-

based approaches and point-based approaches. 

4.2 Data Sparseness 

Sparseness of the data refers to thinly scattered data points in the feature space. 

Sparseness is a common characteristic of multidimensional data. In sparse data, natural 

groups, or clusters of data points, are not well separated or well demarcated and have 

blurry cluster boundaries. The sparseness of the data increases as the dimensions increase 

because the number of data points required for filling the data space also increases 

exponentially. Therefore, data points are thinly scattered and lack distinct cluster 

boundaries, and the capability of clustering algorithms to detect clusters accurately is 

adversely affected in these datasets [13, 14]. Thus, it is necessary to develop sparseness 

reduction techniques that can override the sparseness of multidimensional data 

effectively. 

Furthermore, the sparseness of multidimensional data is usually handled by a 

specialized data preprocessing strategy called data movement or data shrinking [13, 14, 

20, 21, 22, 23, 24]. These data movement algorithms reduce the sparseness of 

multidimensional data while maintaining the original dimensional space. Data movement 

approaches diminish the sparseness of multidimensional data by moving data points 

along the direction of the density gradient, thus, providing more condensed and 
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demarcated clusters in the original dimensional space while retaining the dimensions [13, 

14]. These data movement algorithms are iterative and require a specified number of 

iterations or stopping criteria. Existing sparseness reduction techniques is either point-

based approaches or grid-based approaches [20, 21, 22, 23, 24,13, 14]. 

4.3 Research Motivation 

The existing grid-based data shrinking algorithms use uniform grid structure [13, 

14]. However, the uniform grid structure is insensitive to underlying data distribution and 

does not project the underlying distribution of the data. Consequently, the uniform grid 

structure does not shrink all data points effectively. This problem is further aggravated as 

the number of dimensions increases. Existing sparseness reduction approaches are either 

inherently unstable or time consuming. Non-Uniform/adaptive grid structure is data 

driven and captures the underlying data distribution in every dimension. Grid-based 

approaches are fast, scalable and require less iteration than point-based approaches [20, 

21, 22, 23, 24]. Therefore, an experimental study is conducted on synthetic and real 

multidimensional datasets to evaluate and demonstrate the effectiveness of the adaptive 

grid-based data shrinking approach. 

4.3.1 Limitations of Existing Techniques 

The limitations of existing data shrinking techniques are the instability of the 

shrinking and imposition of the uniform grid structure. These limitations are discussed 

below. 

1. Sensitivity towards the order of Input Data Points: In the existing algorithms, 

there is no order specified in processing the data points [13, 14, 20, 21, 22, 23, 24]. 

The order in which data points are moved to other positions depends on the order in 
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which data points are stored. Thus, if the order in which the data points are given as 

input to the algorithm changes, the order in which the data points are moved will also 

change. This change in order then changes the final output of the data shrinking, 

giving the existing data shrinking algorithms inherent sensitivity towards the order of 

the input data points. 

2. Imposition of Uniform Grid Structure: In the existing grid-based data shrinking 

algorithm, a sequence of uniform grid sizes is imposed on all dimensions [13,14]. 

The algorithm imposes a global grid cell size on all dimensions and ignores the 

unique underlying data distribution in individual dimensions. 

4.3.2 Advantages of Non-Uniform Grid 

In grid-based clustering approaches both uniform and non-uniform grids are used. 

non-uniform/adaptive grids offer various advantages over uniform/fixed size grids. These 

advantages are explained below. 

1. Splitting Dimensions in Low Density Regions: In a grid-based algorithm, 

dimensions are partitioned through split points; each point then becomes a cutting 

plane for multidimensional data. A cutting plane must partition a dimension in a low 

density region and discriminate clusters as much as possible [26]. Adaptive partitions 

are based on the data distribution in a dimension and split dimensions at low density 

regions [26], 

2. Computational Efficiency: There are fewer nonempty grid cells for a specified 

number of partitions in every dimension than nonempty grid cells in a uniform grid. 

The fewer nonempty cells reduce the overall computational time for a non-uniform 

grid-based algorithm [26]. 
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4.4 Experimental Study 

In this section, an experimental study is presented. These experiments are 

conducted to demonstrate the effect of sparseness with increasing dimensions and the 

advantages of a non-uniform adaptive grid over uniform grid. 

4.4.1 Datasets 

Both real and synthetic datasets are used for experiments and to compare the 

uniform partitioning and non-uniform partitioning. A detailed description of each of these 

datasets is as follows: 

1. Wine Recognition Dataset: The real dataset that is used in these experiments is the 

Wine Recognition dataset. The Wine Recognition dataset is used for the comparative 

study of uniform and non-uniform grid-based shrinking. This dataset has 13 

dimensions and 178 data points. The dataset contains three clusters, and each cluster 

contains 59, 71, and 48, respectively. The dataset is available at the UCI machine 

learning archive [58]. 

2. Synthetic Dataset: For these experiments, a set of synthetic datasets is generated 

with dimensions ranging from 5 to 60 with increments of five dimensions, and every 

dataset has 10,000 data points. The size of dataset is kept constant because this 

synthetic dataset is used to demonstrate the effect of sparseness with increasing 

dimensions while keeping the dataset size constant. Each dataset contains two 

clusters, each of which has an equal number of data points in respective datasets. 

Both the clusters are generated from a normal distribution with means 10,-10 and a 

standard deviation of 3. 
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4.4.2 Effect of Sparseness 

Multidimensional datasets are sparse and the sparseness of multidimensional data 

increases as dimensions increase. An experimental study is conducted on synthetic 

datasets to demonstrate this effect and it is presented in Figure 4.1. 

25 

5 10 15 20 25 30 35 40 45 50 55 80 

Dimantton* 

Figure 4.1: Average Pairwise Euclidean Distance v/s Dimensions 

The sparseness of the datasets is computed by calculating the average pairwise 

Euclidean distance between data points. Figure 4.1 shows the average pairwise Euclidean 

distance, which is plotted as a function of increasing dimensions. The average pairwise 

Euclidean distance is given below in Equation 4.1: 

. . £JJ=1 ZjLl N 
Average Pairwise Distance = . Eq. 4.1 

It is demonstrated from the plot that data sparseness increases with increasing 

dimensions for a constant number of data points. Similarly, the increase in the number of 

data points would result in the same exponential characteristic but the rate of increase in 

the distance between the data points would be less as compared to the dataset with less 

number of data points. 
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4.4.3 Comparative Study 

In this comparative study, two sets of experiments are conducted. The first set of 

experiments is conducted to compare the uniform and non-uniform grid-based 

partitioning. The second set of experiments is conducted to compare the uniform and 

non-uniform grid-based shrinking. These studies are discussed below. 

4.4.3.1 Comparison of Partitioning 
Methods 

A comparative study is performed on a synthetic dataset to demonstrate the 

advantage of non-uniform grid-based partitioning over the uniform grid-based 

partitioning. In this study, a comparison of the total number of nonempty grid cells that 

occupy data points is performed between uniform and non-uniform grids for the given 

synthetic datasets. Uniform grid partitions are generated using the algorithm presented in 

and non-uniform grid partitions are generated using the non-uniform grid generation 

presented in Chapter 6. Plots of the comparative study are presented below. Three cases 

are considered to compare the two partitioning methods. 

Case 1: In this experiment, uniform and non-uniform grid generation algorithms 

are applied, and two uniform partitions and two non-uniform partitions are generated for 

each dimension. Figure 4.2 presents a comparison of the log of the ratio of the total grid 

cells and the total non-empty grid cells occupied by all the data points in both 

approaches. It can be inferred from the plot that, in adaptive grid-based partitioning, data 

points are occupied in fewer grid cells in almost all cases, as compared to the uniform 

grid-based partitioning. 
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Figure 4.2: log2 (Total Grid Cells/Non-Empty Grid Cells) v/s Dimensions 

Case 2: In this example, a uniform grid generation algorithm is applied, and three 

uniform and non-uniform partitions are generated for each dimension. Figure 4.3 depicts 

a comparison of the log of the ratio of total grid cells and total non-empty grid cells 

occupied by all the data points in both approaches. It can be inferred from the plot that in 

an adaptive grid-based partitioning data points occupy fewer grid cells than the uniform 

grid-based partitioning. 

• Uniform Grid-Based Partitioning 

Q Adaptive Grid-Based Partitioning 
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Figure 4.3: log2 (Total Grid Cells /Non-Empty Grid Cells) v/s Dimensions 

Case 3: In this example, both uniform and non-uniform grid generation algorithms 

are applied, and four uniform partitions and four non-uniform partitions are generated for 

each dimension. Figure 4.4 depicts a comparison of the log of the ratio of the total grid 

cells and the total non-empty grid cells occupied by all the data points in both 

approaches. It can be inferred from the figure that in an adaptive grid-based partitioning 

data points are occupied in fewer grid cells or an equal number of grid cells than the 

uniform grid-based partitioning. It also implies that non-uniform grid-based shrinking 

and clustering algorithms can be computationally less expensive or may incur the same 

computational cost. 
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Figure 4.4: log2 (Total Grid Cells/Non-Empty Grid Cells) v/s Dimensions 

4.4.3.2 Comparison of Shrinking Methods 

To compare the uniform and non-uniform grid-based shrinking algorithms, these 

algorithms are applied on the Wine Recognition dataset. Uniform grid-based shrinking is 

performed using a existing data shrinking algorithm presented in [13, 14],Similarly, non

uniform grid-based shrinking is performed using the non-uniform grid-based shrinking 

algorithm presented in Chapter 6. Both uniform and non-uniform grid-based shrinking 

algorithms are applied to the grid structure with three partitions for each dimension. 

These methods are compared based on the energy, wavelet entropy, and information 

entropy of the data in principal component space. Principal components are obtained on 

the Wine Recognition dataset in three conditions. These conditions are, after uniform 

grid-based shrinking, after non-uniform grid-based shrinking, and without shrinking. 

Plots of the comparative study are presented below. In this experimental study wavelet 
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entropy, energy, and information entropy are computed for each dimension in principal 

component space. Case 1, Case 2, and Case 3 below presents these experiments. 

Case 1: In this experimental study, wavelet entropy is computed corresponding to 

each dimension in principal component space, and the percentage of the wavelet entropy 

contributed by each dimension is obtained. Finally, a plot is obtained that depicts the 

cumulative percentage of the wavelet entropy for each set of dimension in principal 

component space. Figure 4.5 depicts a comparison of the cumulative wavelet entropy. It 

can be observed from the plot that after non-uniform grid-based shrinking principal 

components retain the lowest cumulative wavelet entropy, which indicates that after 

performing non-uniform grid-based shrinking each dimension has less disorder. 
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Figure 4.5: Cumulative Wavelet Entropy v/s Dimensions 

Case 2: In this case, the energy of each dimension is computed in principal 

component space, and the percentage of the energy contributed by each dimension is 
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obtained. Finally, a plot is obtained that depicts the cumulative percentage of the energy 

for each set of dimension in principal component space. Figure 4.6 depicts a comparison 

of the cumulative energy. It can be observed from the plot that after non-uniform grid-

based shrinking, dimensions retain the highest cumulative energy, which indicates that 

after performing non-uniform grid-based shrinking, each set of dimensions has more 

cumulative energy than the cumulative energy of each set of dimensions after performing 

uniform grid-based shrinking. 

1.4 

1.2 

s 
W 
v 0.8 

0.6 

0.4 

0.2 

0 

• Data Without Shrinking 

• Data After Uniform Shrinking 

OData After Adaptive Shrinking 

J 
i:!: 

! ! :  

m 
3 
3 1 2 
2 
2 
2 
2 
2 
2 
2 
2 

.itdj 
1 1-2 1-3 1-4 1-5 1--6 1-7 1-8 1-9 1-10 1-11 1-12 1-13 

Dimensions 

Figure 4.6: Cumulative Energy v/s Dimensions 

Case 3: In this case, the information entropy of each dimension in principal 

component space is computed, and the percentage of the information entropy contributed 

by each dimension is obtained. Information entropy is a measure of disorder in the data 
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and its lower values are desired. Figure 4.7 depicts a comparison of the cumulative 

information entropy. 
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A comparative study is also conducted to demonstrate the computational benefits 

of non-uniform grid-based shrinking over the uniform grid-based shrinking. A plot of the 

comparative study is presented in Figure 4.8. In this comparative study, the average 

execution time of the uniform and the non-uniform grid-based shrinking is compared on a 

set of synthetic datasets. The uniform grid-based shrinking is performed using the 

algorithm presented in [13,14]. Similarly, the non-uniform grid-based shrinking is 

performed using the algorithm presented in Chapter 6. To maintain constant experimental 

conditions, five iterations are performed on all the datasets for both shrinking algorithms. 
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Figure 4.7: Cumulative Information Entropy v/s Dimensions 
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Figure 4.8: Average Execution Time v/s Dimensions 

It can be inferred from the plot that non-uniform grid-based shrinking algorithm is 

computationally more efficient than uniform grid-based shrinking algorithm. 

This chapter has highlighted the challenges of data preprocessing and emphasizes 

the need to develop better sparseness reduction algorithms to mitigate the detrimental 

effect of sparseness in multidimensional datasets. The limitations of existing sparseness 

reduction are also highlighted, and a need to develop a non-uniform grid-based shrinking 

approach is discussed. Furthermore, an experimental study is conducted to compare the 

uniform and the non-uniform grid-based partitioning and shrinking algorithms. The 

experimentations presented in Section 4.4 demonstrate that non-uniform grid-based 

partitioning and shrinking has a potential to be more effective than the existing uniform 

grid-based partitioning and shrinking algorithm. 

4.5 Conclusion 



CHAPTER 5 

GRID-BASED LOCALIZED LEARNING FOR 

FEATURE RANKING 

Many data preprocessing strategies have been proposed to sufficiently handle the 

high dimensionality of the data and avoid the infamous curse of dimensionality [2]. 

Dimensionality reduction methods, including feature selection, feature ranking, feature 

extraction, among other reduction strategies, have proven to be powerful in reducing this 

impediment [32, 33, 34, 35, 36, 37, 38, 39], The underlying assumption of dimensionality 

reduction approaches is that not all dimensions are important, i.e. some dimensions may 

be irrelevant and detrimental to the efficacy of further data analysis, and hence can be 

eliminated. In feature selection and feature ranking, irrelevant features are eliminated 

from further consideration, thereby leaving only important features to be considered for 

further analysis. Furthermore, the feature ranging approaches use a scoring function to 

rank features according to their individual predictive power. Some common scoring 

functions are distance measures, information measures, dependency measures, and 

consistency measures [40,41,42,43,44,45]. Most of the feature ranking methods rank 

each feature based on the feature's predictive power independently and ignore its 

dependency on other features. Thus, feature ranking methods are needed such that the 

feature ranking of an individual feature is also influenced by other features as well. 
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The remainder of the chapter is organized as follows. In Section 5.1 Research 

motivation is discussed. In Section 5.2, the problem statement and the hypothesis is 

discussed. In Section 5.3, developed feature ranking methodology is discussed. In Section 

5.4, experimental study is discussed. Finally, in Section 5.5, the conclusions of this 

chapter are presented. 

5.1 Research Motivation 

Feature ranking approaches use a scoring function to rank features based on 

intrinsic data characteristics. Feature ranking approaches are preferable because of their 

low computational complexity and statistical scalability. Feature ranking methods use 

independent criteria or scoring functions to evaluate and rank individual features based 

on the predictive power of the feature and ignore any dependencies in the data. Thus, 

there is a lack of feature ranking or feature scoring functions that are influenced by the 

presence of other features in the data. In data shrinking, the movement of the data points 

changes the overall distribution of the data in multidimensional space as well as in 

individual dimensions. The difference in data distribution projected on every dimension 

through data shrinking can be captured by a shrinking profile of the dimension, and it can 

be used as a scoring function that is influenced by the presence of other dimensions in the 

data. Thus, the motivation for this research is to develop a new data shrinking based 

feature ranking algorithm to address the deficiencies of existing feature ranking 

techniques. 
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5.2 Problem Statement 

Data shrinking is a data preprocessing technique that performs simulated 

movement of data points in multidimensional space, and data points move toward the 

center of their natural cluster [13, 14]. The movement of the data points changes the 

overall distribution of the data in the multidimensional space. The change in data 

distribution in a particular dimension is affected by the data distribution in every other 

dimension. Every dimension shrinks in a unique way, and some dimensions shrink more 

than others. Therefore, it is hypothesized that a scoring function based on the data 

shrinking can be used as a scoring function to measure the dimension's predictive power 

and can be utilized for feature ranking. Based on this hypothesis, the aim is to develop a 

framework that uses an adaptive grid-based data shrinking method for feature ranking. 

5.3 Methodology 

In this section, data shrinking based feature ranking framework is discussed. The 

developed feature ranking framework has four components. The first component is data 

preprocessing phase. The second component is data adaptive grid generation phase. The 

third component is the data adaptive grid-based shrinking phase and the fourth and final 

phase is the feature ranking and selection phase. All the components of data shrinking 

based feature ranking framework are explained below. The methodology is discussed as 

follows. In Section 5.3.1, data preprocessing operations applied on data are discussed. In 

Section 5.3.2, adaptive grid generation algorithm is discussed. In Section 5.3.3, the data 

shrinking algorithm is discussed. Finally, in Section 5.3.4 developed feature ranking 

framework is discussed. Figure 5.1 depicts the data shrinking based feature ranking 

framework that has been applied to a protein dataset. 
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Figure 5.1: Data Shrinking Based Feature Ranking Framework 

5.3.1 Data Preprocessing 

Data preprocessing is an essential step in this methodology. The dataset is first 

standardized by applying Z-score normalization. Each dimension is transformed based on 

the mean and standard deviation of the dimension. The data is further normalized into a 

unit hypercube [0, l]d to scale all the dimensions between the range of zero and one by 

applying min-max normalization on each dimension. In addition to this, those dimensions 

are eliminated from the datasets that do not provide significant variability within the 

dimension. It refers to the situation in which significant numbers of data values in a 

dimension are either zero or constant. 

5.3.2 Adaptive Grid Generation 

Grid structure is critical in grid-based data shrinking. With that in mind, a grid 

structure generation algorithm has been developed to utilize inherent data distribution 
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characteristics and generate adaptive grid boundaries for each dimension. The grid 

boundaries are determined by a wavelet transform based coefficient aggregation approach 

for the data adaptive grid structure. Initially, data is normalized in the unit 

hypercube [0, l]d, assuming there are d dimensions in the data. Figure 5.2 shows the 

algorithm that is applied for grid generation. The following procedure is followed for the 

generation of grid boundaries for single dimension and is then applied for all the other 

dimensions independently. 

Algorithm: d i t  W, Ow, Coeff 

1. Sort given dimension dj in increasing order. 

2. From sorted values, extract windows of size W and overlap Ow. 

3. Perform wavelet transform on each extracted window. 

4. Once the wavelet transform has been performed on every window, 

Choose specified number of wavelet coefficients Coeff from every 
window. 

5. Cluster transformed windows using hierarchical average linkage 
clustering. 

6. Once transformed windows are clustered, corresponding to each 
cluster, accumulate all the original windows of the same cluster. 

7. Finally, obtain grid boundaries from corresponding cluster 
boundaries. 

Figure 5.2: Adaptive Grid Generation Algorithm 

5.3.3 Data Shrinking 

The data adaptive grid-based shrinking algorithm begins once data adaptive 

partitions are obtained for all the dimensions. All the steps of the data shrinking 

algorithm are discussed below. 



56 

5.3.3.1 Data Movement Model 

A grid-based model of attraction is employed for data movement. Let Cu be a 

grid cell that contains a set Xu of k data points Xu = (Xul, Xuk), where Xu c X 

for which data movement is to be performed. Let CNBR = (Cnl, Cn2, Cni) be a set of 

neighboring grid cells that have (nlf n2, number of data points. Let the data 

centroid of all the data points in the set CNBR of grid cells be given by the Equation 5.1. 

Similarly, the data centroid of all the points in the grid cell Cu is given by Equation 5.2: 

?nb«= ^ l .  Eq.5.1 
ZjLini 

=£©=,*„,). Eq-5.2 

Therefore, the movement or the displacement of a data point Xui in the grid cell Cu is 

given by Equation 5.3 below: 

^ui = %ui + (CNBR ~ 4)- Eq. 5.3 

The movement or displacement of all the other data points in the grid cell Cu is 

performed. The movement of the data points is performed if it satisfies the movement 

threshold criteria given by Equation 5.4: 

Distance{cNBR,cu) > MTh. Eq.5.4 

The movement of data points is explained below. All the data points in a 

particular grid cell are moved as a single unit. First, identify all of grid cells Cu's 

nonempty neighboring grid cells. Second, compute the data centroid of the selected 

neighboring grid cells of the grid cell Cu and the data centroid of the grid cell Cu. Third, 

move all the data points in the grid cell Cu using the data displacement formula presented 
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in Equation 5.1. This process is repeated for all the grid cells that have data points in 

them. 

5.3.3.2 Data Shrinking Process 

The algorithm first maps all data points on the adaptive grid. The pseudo-code 

of the algorithm is presented in Figure 5.3. 

Algorithm: Data Shrinking Algorithm 

Input: Grid G t, Dataset X , Iterations ITh, Threshold MTh 

Output: Data after Shrinking X, 
01 N = Number of Datapoints in X 
02 d = Number of Dimensions in X 
03 for i=l to N 

04 C(i) = FindSellJd(X i,Gi) 
05 Add C(i) to Z 
06 Add Xi to Zdata(Count). data 
07 end 
08 / = 0 

09 while / < /77, 
10 for m=l to length(Z) 
11 V(m) = Compute _Volume(Z(m)) 

12 Rho(m) = Compute__Cell_Density(Z(m),V(m)) 
13 DenseZ = Find_Dense_Cells(Rho(m)) 
14 end 
15 n = 1 

16 while n < length(DenseZ) 
17 Find Neighboring Cells of Cell DenseZ(n) 
18 Compute Centroid cNBK of Neighboring Cells 
19 Compute Centroid cn of Cell DenseZ(n) 
20 if (Distance(cNBRl cu) > MTh ) then 
21 Compute Displacement of Datapoints in Zdata(n) 
22 end 
23 end 

24 if(JVo Movement between I and / + 1) then 
25 Exit 
26 end 
27 Z = DenseZ 
28 end 

Figure 5.3: Adaptive Data Shrinking Algorithm 
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During this process, it identifies all the non-empty grid cells and corresponding 

data points. It then accumulates all data points that are mapped to the non-empty grid 

cells. Next, volume and density of the nonempty grid cells which are populated with data 

points are computed. The density of a cell is defined as a fraction of the total number of 

data points in the cell over the cell volume. The volume of a grid cell is defined as a 

product of the side length of the grid cell over all the dimensions. Density threshold is 

used to identify dense cells and to discard others. Next, a dense cell is taken from the list 

of dense grid cells and its surrounding cells (that share an edge or a vertex with this cell) 

are captured in an adhoc cluster. The centroid of this cluster is computed. Then, all the 

data points in the grid cell are moved in the surrounding grid cells based on the model of 

data movement. This process is repeated for all the dense cells. The algorithm terminates 

after a specified number of iterations, or if termination criterion is satisfied. 

5.3.4 Feature Ranking Method 

The developed feature ranking algorithm is a two-step process. In the first step, 

feature weights are assigned based on their shrinking profile. In the second step, the 

features are ranked and selected based on their weights. Both the steps are as follows. 

The pseudo-code of the algorithm is presented in Figure 5.4. 

The first step begins by computing a shrinking profile corresponding to each 

feature. The shrinking profile is computed by calculating the percentage change in mean 

square distance between all pairs of data points before shrinking and after shrinking. 

Next, weights are assigned to each feature using their shrinking profile and this process is 

repeated for each class separately. For this purpose, shrinking profiles of all the features 

are normalized and it is repeated for all the configurations of the algorithmic parameters. 
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Finally, a cumulative weight is obtained for each feature by summing all the weights 

across different configurations of algorithmic parameters. 

Algorithm: Feature Ranking and Selection 

1. Calculate percentage of shrinking for every dimension: 

A. Calculate mean square distance between all pairs of data points for data 

'Before Shrinking' and 'After Shrinking'. 

B. Calculate percentage change between mean square distance for data 

'Before Shrinking' and 'After Shrinking'. 

2. Assign weight to dimensions for each class: 

A. Find dimensions with maximum and minimum percentage of shrinking. 

B. Perform min-max (1-10) normalization of percentage of shrinking. 

C. Repeat the process for all configurations of window size and 

coefficients. 

D. Sum all the weights across all window sizes and coefficients to obtain 

cumulative weight of dimension for each protein class. 

3. Perform ranking and selection of features: 

A. Sort features in increasing order of their weights. 

B. Select top ranked features containing 5% of overall energy of the weight 

signal for every class. 

C. Perform 'min-max' (1-10) normalization of the selected weights for 

every class. 

D. Sum all the weights of features present across all classes to obtain 

overall cumulative weight of selected features. 

E. Sort features in increasing order of their weights. 

F. Select top ranked features containing 5% of overall energy of the final 

weight signal. 

Figure 5.4: Feature Ranking and Selection Algorithm 

The second step begins by sorting normalized feature weights in increasing order 

of their weights. Next, top ranked features are selected that contain only 5% of the total 

weight. Next, selected feature weights are normalized. This process is repeated for all the 
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features in their respective classes. Finally, a cumulative weight is obtained for all 

selected feature. These weights are sorted and final top ranked features are selected that 

contain only 5% of the total weight. 

5.4 Results and Discussions 

A set of experiments is performed to validate the developed data shrinking based 

feature ranking framework. Data shrinking is first performed on individual protein 

classes, and then feature ranking and selection is performed. A set of comparative study 

is conducted using different classifiers and different feature ranking methods to evaluate 

the feature ranking method. The remainder of the section is organized as follows. In 

Section 5.4.1, a brief description of all the datasets used for the experiments is given. In 

Section 5.4.2, validation technique and validation measures are discussed. Finally, in 

Section 5.4.3, experiments related to the comparative analysis are presented. 

5.4.1 Datasets 

Experiments are conducted on a high dimensional proteomics dataset. Proteomics 

is high throughput data discipline, and multidimensionality is an inherent characteristic of 

the proteomic data. For example, hundreds of feature descriptors may be generated from 

the physiochemical properties of the proteins [59,60]. Proteomics dataset is 

characteristically high dimensional and exhibits sparseness. Therefore, a protein dataset is 

chosen for experiments that have been used in the past. The protein dataset contains both 

a training dataset and a test dataset and consists of five protein structural classes and 125 

feature descriptors. The training data has 408 training samples, and the test dataset has 

174 test samples from five protein structural classes. The features of the dataset are 
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extracted from the protein sequence information using the method discussed in [59, 60]. 

This data is available at this URL (http://ranger.uta.edu/~chqding). 

5.4.2 Validation 

Validation of the developed feature ranking method is done by comparing it with 

other existing feature ranking methods. For the purpose of validation, the RELIEF 

algorithm, the Chi-Square filter, the information gain based method, and SVM based 

feature ranking method are used [43, 61, 62,63, 64, 65]. The developed feature ranking 

algorithm is compared with other well-known feature ranking algorithms based on the 

their performance on classification methods. The classification performance of these 

methods is assessed through external validation measures precision, recall, F-measure, 

and classification accuracy. These measures are represented by Equations 5.5, 5.6, 5.7, 

and 5.8: 

TP 
Precision = - Eq. 5.5 

(TP+FP)  ^  

Recall = , TP Eq. 5.6 
(7P+FN) M 

„ „ (precision*recall\ „ _ 
F — measure =  2 x 1  —  ) ,  E q .  5 . 7  

Kprecision+recalU 

Classification Accuracy = -—(rp + Tfr>—_ Eq. 5.8 
J  s  (TP+FP+TN+FN)  M  

In the above equations, TP, TN, FP, FN refer to true positive, true negative, false 

positive, and false negative, respectively. 

5.4.3 Experiments 

Experiments are conducted on the datasets to demonstrate that the proposed 

method is capable of effective feature ranking and selection. To demonstrate that the 

feature ranking method works effectively, it is compared with classical feature ranking 

http://ranger.uta.edu/~chqding
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methods. Figure 5.5 also displays a comparative analysis of the common Top-10, Top-20, 

Top-30, and Top-41 features with other existing feature ranking methods. 

30 ' m Common Features in Top-10 

27 - BB Common Features in Top-20 

n Common Features in Top-30 

« 24 • H Common Features in Top-41 = 

1 21 • 

RELIEF SVM Chi-Square Information-Gain 

Classiflers 

Figure 5.5: Comparison of Top Ranked Features 

Table 5.1 displays the common top ranked features. Table 5.1 displays the top 

ranked 41 features for the comparative methods and for the data shrinking based feature 

ranking method. Table 5.1 shows approximately 45%-60% of feature commonality 

between the top 41 ranked features (those indicated in bold) and the top ranked features 

in comparative methods. 
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Table 5.1: Common Top Ranked Features 

Feature 
Selection 

Top ranked 41 features 

Information 
Gain 

84,85,88,95,89,100,86,92,94,2,96,93,90,98,97,91,99,105,110,18, 
27,121,79,111,32,69,116,1,106,53,6,37,48,58,74,19,52,87,36,10, 
109 

Chi Square 84,2,86,100,88,85,89,95,96,92,94,93,90,18,97,98,110,91,79,121, 
105,106,99,27,6,116,120,118,37,111,1,36,32,69,109,48,53,117,1 
0,19,119 

SVM 84,94,121,2,95,118,109,99,85,90,43,86,27,1,89,105,6,106,18,17, 
125,79,110,9,64,16,78,8,96,13,36,70,33,62,37,93,32,42,15,19,40 

RELIEF 84,94,99,93,88,98,89,92,85,2,86,97,95,91,96,90,1,18,106,100,10 
5,110,32,27,87,9,58,37,5,109,6,48,28,11,121,79,64,8,59,10,13 

Shrinking 
Method 

104,62,58,31,94,37,27,48,99,74,91,90,32,85,17,102, 
10,83,125,69,103,111,78,73,89,115,49,87,98,18,120,80,122,2,93, 
95,116,57,79,121,79 

The performance of data shrinking based feature ranking framework is compared 

with other existing feature ranking methods. The strength of all the feature ranking 

method is evaluated against a set of classifiers. Classification results of data shrinking 

based feature ranking framework is compared with information gain based feature 

ranking, and x2 feature ranking method [43, 64]. The classifiers that are used for 

comparison include, PART rule based classifier, Logistic regression and Neural Network 

[66, 67, 2]. This comparative analysis is conducted on protein data that has separate 

training and test set. 

1. Comparative Study of F-measure: 

The F-measure of shrinking based feature ranking algorithm are compared with 

the x2 method and information gain based feature ranking on the neural network 

classifier. In Table 5.2, the values of F-measure are compared over all the protein classes. 
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Table 5.2: Comparison of F-measure for Neural Network 

Classifier Feature Selection 
Method 

Chi-Square 
Method 

Info. Gain 
Method 

Shrinking 
Method 

Classes F-measure 
(%) 

F-measure 
(%) 

F-measure 
(%) 

Class a 78.90 82.90 84.80 

Neural Class (3 58.20 69.60 74.10 

Network 
Class a/P 74.80 76.10 76.10 

Class a 4- (3 35.30 30.80 44.40 

Class Small 100.00 100.00 100.00 

After comparing the values of the F-measure for each protein class, it can be said 

that shrinking based feature ranking either outperforms or gives comparable results. If the 

average F-measure value over all the class is compared, then the average F-measure 

values for x2 method and information gain method and shrinking based method are 

69.44%, 71.88%, and 75.88%, respectively. This comparison indicates that shrinking 

based feature ranking performs better than the other two methods. 

Similarly, the F-measure values of shrinking based feature ranking, x2 method 

and information gain based feature ranking are compared for a rule based classifier 

PART. In Table 5.3, the values of F-measure are compared over all the classes and it can 

be said that the shrinking based feature ranking gives comparable results. If the average 

F-measure value over all the class is compared, then the average F-measure values for x2 

method and information gain method and shrinking based method are 68.64% 73.64%, 

and 75.94%, respectively. This comparison indicates that shrinking based feature ranking 

performs better than the other two methods for rule based classifier PART [66]. 
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Table 5.3: Comparison of F-measure for PART 

Classifier Feature Selection 
Method 

Chi-Square 
Method 

Info. Gain 
Method 

Shrinking 
Method 

Classes F-measure 
(%) 

F-measure 
(%) 

F-measure 
(%) 

Class a 75.30 79.40 84.40 

PART 
Class /? 72.70 72.00 67.80 

PART 

Class a//? 74.10 73.30 73.00 

Class a 4- /? 21.10 43.50 54.50 

Class Small 100.00 100.00 100.00 

The F-measure values of shrinking based feature ranking, x2 method and information 

gain based feature ranking are also compared for logistic regression based classifier. In 

Table 5.4, the values of F-measure are compared over all the classes. It is observed from 

the table that shrinking based feature ranking outperforms or gives comparable results. 

The average F-measure value over all the class is also compared. The average F-measure 

values for x2 method and information gain method and shrinking based method are 

57.50%, 53.06%, and 64.66%, respectively. This comparison indicates that shrinking 

based feature ranking performs better than the other two methods for logistic regression 

classifier [67]. 
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Table 5.4: Comparison of F-measure for Logistic Regression 

Classifier Feature Selection 
Method 

Chi-Square 
Method 

Info. Gain 
Method 

Shrinking 
Method 

Classes F-measure 
(%) 

F-measure 
(%) 

F-measure 
(%) 

Class a 62.90 52.70 70.00 

Logistic 
Regression 

Class (3 56.80 44.40 66.10 Logistic 
Regression 

Class a/fl 71.80 66.10 69.80 

Class a + [3 0.00 6.10 21.40 

Class Small 96.00 96.00 96.00 

2. Comparative Study of Average Precision, Recall, and Accuracy: 

A comparison of average precision, recall and accuracy are also conducted to 

compare shrinking based feature ranking algorithm, x2 method and information gain 

based ranking method on the rule based classifier PART. In Table 5.5, a comparison of 

the average values of precision, recall and classification accuracy is presented. 

Table 5.5: Comparison of Avg. Precision, Recall, Accuracy for PART 

Classifier PART 

Feature Selection 
Method 

Average 
Recall (%) 

Average 
Precision (%) 

Overall 
Accuracy (%) 

All Features 71.60 70.54 72.41 

Chi-Square Method 69.80 70.86 72.99 

Info. Gain Method 73.00 75.58 74.14 

Shrinking Method 74.20 80.04 74.14 
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In Table 5.5, after comparing the average values of precision, recall and accuracy, it can 

be said that shrinking based feature ranking either outperforms or gives comparable 

results for all the measures. 

Similarly, a comparison of average precision, recall and accuracy is also 

performed to compare shrinking based feature ranking algorithm, x2 method and 

information gain based ranking method on the logistic regression classifier [67]. It is 

presented in Table 5.6. In Table 5.6, after comparing the average values of precision, 

recall and accuracy, it can be concluded that shrinking based feature ranking method 

gives superior and comparable results when compared with other methods. 

Table 5.6: Comparison of Avg. Precision, Recall, Accuracy for Logistic Regression 

Classifier Logistic Regression 

Feature Selection 
Method 

Average 
Recall (%) 

Average 
Precision (%) 

Overall 
Accuracy (%) 

All Features 63.60 74.38 67.24 

Chi-Square Method 60.20 57.70 64.37 

Info. Gain Method 53.80 55.16 53.45 

Shrinking Method 65.40 65.50 66.67 

Additionally, a comparison of average precision, recall and accuracy is also 

performed to compare shrinking based feature ranking algorithm, x2 method and 

information gain based ranking method on the neural network classifier. It is presented in 

Table 5.7. In Table 5.7, after comparing the average values of precision, recall and 

accuracy, it can be concluded that shrinking based feature ranking outperforms other 
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methods on average accuracy and recall. However, when compared with other methods 

on average precision, it does not give good comparable results. 

Table 5.7: Comparison of Avg. Precision, Recall, Accuracy for Neural Network 

Classifier Neural Network 

Feature Selection 
Method 

Average 
Recall (%) 

Average 
Precision (%) 

Overall 
Accuracy (%) 

All Features 72.40 80.60 72.98 

Chi-Square Method 68.80 84.80 71.84 

Info. Gain Method 72.20 72.40 74.14 

Shrinking Method 76.00 76.40 76.44 

5.5 Conclusion 

In this work a data shrinking based novel approach of feature ranking and 

selection have been presented. Every dimension participates in the shrinking process, but 

every dimension shrinks differently. Some shrink a great deal; others shrink only a little. 

Thus, the way the dimension shrinks decides its characteristics. These characteristics are 

used to find the most discriminating features. The experimental study suggests that 

features that shrink less exhibit good discriminating behavior. The results confirm this 

hypothesis. 



CHAPTER 6 

GRID-BASED LOCALIZED LEARNING FOR 

CLASSIFICATION 

The increase in the demand for data mining algorithms that are fast, scalable and 

accurate has resulted in the development of scalable classification models [48,49, 50, 

51]. Scalability, a central component in the design of a scalable classifier, refers to an 

algorithm's ability to handle the increase in the size and dimensionality of the dataset. A 

scalable classifier should scale well; i.e. its performance should not deteriorate drastically 

with the increased dataset size and dimensionality of the dataset. However, the existing 

classification algorithms that perform well for the small and medium dimension datasets 

fail to perform well when the dimensionality and size of the datasets increase. Therefore, 

there is a need to develop new classification methods that are fast, scalable and accurate. 

The remainder of the chapter is organized as follows. In Section 6.1, research 

motivation is discussed. In Section 6.2, the problem statement is discussed. In Section 

6.3, the methodology of the grid-based classification models is discussed. In Section 6.4, 

experimental results are discussed. Finally, in Section 6.5 conclusions and future 

directions are discussed. 

69 
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6.1 Research Motivation 

The potential of grid-based localized leaning is well recognized in unsupervised 

learning algorithms [2]. However, the potential of grid-based localized learning has not 

been exploited adequately in designing supervised learning algorithms. The grid-based 

localized learning algorithms can scale well with an increase in the dimensionality and 

size of datasets. The grid-based localized learning algorithms are inherently scalable 

because they reduce the search space by partitioning the feature space into uniform or 

non-uniform partitions [6, 7, 8, 9, 10, 11, 12]. Thus, the motivation is to develop grid-

based classification models to harness the scalable nature of the grid-based localized 

learning paradigm. 

6.2 Problem Statement 

Grid-based localized learning paradigm has been used in designing fast and 

scalable unsupervised learning algorithms that scale well with respect to the increase in 

size of the dataset and dimensionality of the dataset. Therefore, it is hypothesized that 

grid-based classification models can be developed using the grid-based nearest-neighbor 

learning approach to develop fast and scalable classification models. Based on this 

hypothesis, the aim is to develop the grid-based classification models that inherit the 

advantages of grid-based localized learning paradigm. 

6.3 Methodology 

In this section, fixed grid-based and adaptive grid-based classification models are 

discussed. The developed grid-based classification models consist of four phases. The 

first phase is the data preprocessing phase. The second phase is the grid generation phase. 
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The third phase is the training phase of the classifier design and the fourth phase is the 

test phase of the classifier design. All the phases of fixed grid-based classifier and 

adaptive grid-based classifier are identical except the grid generation phase. All the 

phases of the methodology are as follows. 

6.3.1 Data Preprocessing 

Data preprocessing is an essential step in this methodology. The dataset is first 

normalized by applying Z-score normalization. Each dimension is transformed based on 

the mean and standard deviation of the dimension. The data is further normalized into a 

unit hypercube [0, l]d to scale all the dimensions between the range of zero and one by 

applying min-max normalization on each dimension. 

6.3.2 Grid Generation 

Grid generation is essential for the grid-based classification model. Two methods 

of grid generation are discussed here. The first method generates uniform grid structure 

and the second method generates adaptive grid structure. 

6.3.2.1 Uniform Grid Generation 

Uniform grid structures are generated by creating uniform partitions of the desired 

size in each dimension. The uniform grid generation is a simple process. First, it is 

assumed that data is normalized between [0, 1]. Next, each dimension is partitioned into 

equal width of the desired number of partitions. The partition width is given by 

Equation 6.1: 

Mvsize=-rrr • Eq.6.1 
™PNumber 

Here, MpNumber represents user defined number of partitions and Mpsize represents the 

size of each partition. 
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6.3.2.2 Adaptive Grid Generation 

The adaptive grid structures are essential for the adaptive grid-based classification 

model. Therefore, an algorithm is developed that generates adaptive grids by creating 

data adaptive partitions in each dimension. The adaptive grid generation is a two-step 

process. First, each dimension is sorted and micro-partitions (see Definition 3.18) are 

created. Next, micro-partitions are clustered using the minimum variance based selective 

agglomerative hierarchical partitioning. The following steps are performed on each 

dimension to generate adaptive grid. 

Creating Micro-Partitions: Initially, the dimension is sorted in ascending order. 

The sorted one-dimensional data points are in close proximity with their neighbors. Non-

overlapping units of data points called micro-partitions are created by grouping k 

contiguous data points (k < N, where N is the total number of data points). A small 

value of k is chosen because micro-partitions should be as small as possible but not small 

enough to undermine the benefits of the overall grid generation process. The choice for 

the size of micro-partitions is inspired by [68, 69]. The size of a micro-partition is 

obtained by applying Equation 6.2 and the number of micro-partitions is obtained by 

applying Equation 6.3: 

Choosing a value smaller than N /10 will reduce the size of micro-partitions and 

will create too small micro-partitions and undermine the benefits of micro-partitioning 

and will have higher computational cost. 

Eq. 6.2 

M PNumber  - [MpsJ" Eq. 6.3 
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Variance-Based Partitioning: The variance-based hierarchical partitioning groups 

contiguous micro-partitions in bottom-up fashion. See Figure 6.1 for the pseudo-code of 

the algorithm. 

Algorithm: Variance Based Partitioning 
Input: Dataset X 
Output: Data Adaptive Grid G 
01 N - Number of Datapoints in X 
02 d = Number of Dimensions in X 
03 for j=l to d 
04 Sd = Sort(_Dj) 

05 Mps.e  = [TivTIo |  

06 ^Number " 

07 71 = MPflumber 
08 for r=l to (n - 1) 

10 end 
11 while n * 2 
12 Mergelndex = Find_minimum(VAR) 

13 Mn = Merge_micro_partitions(Mergelndex) 
14 n = n — 1 
15 end 

16 for n=2 to MpNumber  

17 M„(m) = Find_partitions(M n) 
18 end 
19 end 

Figure 6.1: Variance-Based Partitioning Algorithm 

The algorithm begins by creating micro-partitions of desired size, which is 

obtained using Equation 6.2. Next, the computation of the proximity between all the pairs 

of adjacent micro-partition is performed using the combined variance of adjacent micro-

partitions. Two contiguous micro-partitions are grouped together based on the minimum 

combined variance. This process of grouping adjacent micro-partitions continue in 

bottom-up fashion until all the micro-partitions are grouped together in one big partition. 
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Once the algorithm is terminated, corresponding micro-partitions are grouped and a 

hierarchical decomposition of partitions is obtained for the dimension. This process is 

repeated for all the dimensions in the similar fashion. 

6.3.3 Training Phase 

The training phase of the classifier is a two-step process. In the first step, the 

training data is mapped on the fixed grid structure or the adaptive grid structure 

depending on the classification model. Every training sample is mapped on the grid 

structure by assigning every training sample to its corresponding grid cell. This step is 

called class mapping. In the second step, the grid-based neighborhood model is built by 

identifying the neighborhood of every nonempty grid cell. This step is called 

neighborhood identification. Both the steps are intertwined in the training phase and are 

discussed here. 

Class Mapping: Class mapping is the process of assigning the training sample of a 

particular class to its corresponding grid cell. In this process, a given n-dimensional 

training sample is assigned to a corresponding cell by assigning each data value in a 

dimension to an appropriate partition of the dimension, thus identifying its cell ID. This 

cell ID is stored along with the training sample and its class label. For the next training 

sample the same process is applied and its grid cell is identified. The cell ID of the 

training sample is matched against previously added cell ID's. If a match is found, then 

this training sample and its class label is appended to the existing list. If no match is 

found, then this cell ID is added to the existing list of grid cells along with the training 

sample, its class label and the neighborhood information. This process is repeated for all 

the training samples. The pseudo-code of the training phase is presented in Figure 6.2. 
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Algorithm: Training Phase 

Input: Training Dataset X, Grid G l  

Output: Grid-Based Classification Model (Z, Zdata, Zneighbor) 
01 N = Number of Datapoints in X 
02 Count = 0 
03 for i=l to AT 

04 C(i) = Find_CellJd(X i,G l) 
05 NbrCount = 0 
06 NeighborList = 0 
07 for m=l to Count 
08 if (Z(m) == C(i)) then 
09 Z(m). count = Z(m). count + 1 

10 Add Xi to Zdata(m) 
11 break 
12 else 
13 if (Neighbor (Z(m),C(i))) then 
14 NbrCount = NbrCount + 1 

15 Add m to NeighborList 
16 end 
17 end 
18 end 
19 if ( C ( i )  €  Z )  then 
20 Count = Count + 1 
21 Add C(i) to Z 
22 Add X t  to Zdata(Count) 
23 Add NeighborList to Zneighbor (Count) 
24 for n=l to NbrCount 

25 Add Count to Zneighbor (Neighbor List (n)) 
26 end 
27 end 
28 end 

Figure 6.2: Training Phase of the Grid-Based Classifier 

Neighborhood Identification: Neighborhood identification refers to the process of 

identifying the neighboring grid cells (see Definition 3.9) of a grid cell. The 

neighborhood of a grid cell is identified by matching the cell ID of the training sample 

against previously added cell ID's in the list of grid cells. If the match satisfies the 

neighborhood criterion, then the index of the previously added cell ID is added to the list 

of the neighboring grid cell otherwise it is not added to the list. This process is repeated 

for the entire list of grid cells. The neighborhood list of all the existing grid ceils is also 
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updated after adding the newly identified grid cell to the list of grid cells. This process is 

repeated for every new grid cell that is added to the list of grid cells. 

6.3.4 Test Phase 

In the test phase, each ^-dimensional test sample is assigned to its corresponding 

grid cell by assigning each data value in a dimension to an appropriate partition of the 

dimension, thus identifying its cell ID. This procedure is repeated for all the test samples. 

Initially, the grid cell ID of the test sample is matched against the list of grid cell ID's of 

training data. If a match is found, then the training samples and the neighboring grid cells 

corresponding to the matched grid cell are obtained. Next, the distance between the test 

sample and the medoid of the training samples present in each neighboring cell is 

computed and k-nearest-neighbors are identified. The test sample is assigned to the class 

that has the majority votes in the k-nearest-neighbors list. Furthermore, if no match is 

found, then the distance between the test sample and the medoid of the training samples 

present in a grid cell which is the element of the list of grid cell ID's of training data is 

computed. This process is repeated for each grid cell present in the list of grid cells ID's 

of training data. Finally, k-nearest-neighbors are identified and the test sample is assigned 

to the class that has the majority votes in the k-nearest-neighbors list. The pseudo-code of 

the test phase is presented in Figure 6.3. 



Algorithm: Test Phase 

Input: Test Dataset X, Grid G(, Z, Zdata, Zneighbor 

Output: Predicted Class Labels PLabel 
01 N = Number of Datapoints in X 
02 Count = Number of Classes 

03 for i = 1 to N 

04 C ( i )  =  F i n d _ C e l l J d { X i ,  G t )  
05 NbrCount = 0 

06 NbrList = 0 

07 NbrData = 0 

08 for m =1 to length(Z) 

09 if (Z(m) == C ( i )) then 
10 Cellindex = m 

11 NbrList = Zneighbor(m) 
12 NbrData = Zdata(m) 
13 break 
14 else 
15 if (Neighbor(Z(m),C(0) ) then 
16 NbrCount = NbrCount + 1 

17 Add m to NbrList 
18 end 
19 end 
20 end 
21 for n = 1 to length(NbrList) 
22 KNNList = Find_KNearest Neighbor 
23 end 
24 PLabel(i) = Assign_Class_Label 
25 end 

Figure 6.3: Test Phase of the Grid-Based Classifier 

6.4 Results and Discussions 

The performance of the developed classifier is measured based on the time 

complexity of the classifier, scalability of the classifier and the correctness of the 

classifier. The time complexity of the classifier computes the time required by the 

classifier to build and test the model. The scalability of the classifier measures its time 

requirement with respect to the increasing dimensions and dataset size and the 

correctness of the classifier measures its ability to correctly classify the data. The 

remainder of the section is organized as follows. In Section 6.4.1, a brief description of 
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all the datasets used for the experiments is given. In Section 6.4.2, validation technique 

and validation measures are discussed. In Section 6.4.3, experiments pertaining to the 

scalability analysis and comparative analysis are presented. Finally, in Section 6.4.4 time 

complexity analysis of the classifier is presented. 

6.4.1 Datasets 

Both real and synthetic datasets with a wide range of dimensions and sample size 

are used for experiments and assess the capabilities of the classifier. A detailed 

description of each of these datasets is as follows: 

1. Letter Recognition Dataset: The letter recognition dataset consists of 16 primitive 

numerical features extracted from character images of 26 capital letters in the English 

alphabet. These numerical features are statistical moments and edge counts. The 

dataset has 20,000 sample images and 16 dimensions. The dataset has 26 classes and 

each class represents the 26 capital letters in the English alphabet. Each class has 

approximately 700 to 800 data samples. The dataset is available at the UCI data 

archive website (http://archive.ics.uci.edu/ml/datasets.html) [58]. 

2. Handwritten Numeral Recognition Dataset: The handwritten numerals recognition 

dataset consists of features extracted from the binary images of the ten numerals (0-9) 

that were obtained from a collection of Dutch utility maps. There are 200 samples per 

numeral and a total of 2000 samples overall. The dataset has 10 classes and each class 

represents 10 numerals. A feature set extracted from the binary images is used for 

experiments. The feature set consists of profile correlations of binary images and it 

has 216 dimensions. The dataset is available at the UCI data archive website 

(http://archive.ics.uci.edu/ml/datasets.html) [58]. 

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html


3. Protein Structural Classification Dataset: The protein dataset consists of feature 

vectors that are based on amino acid sequence of corresponding proteins. The feature 

construction is based on the amino acid composition, physical, and stereo chemical 

properties of amino acids. Each feature vector consists of 125 feature descriptor. The 

dataset has 582 samples and is divided into five protein structural classes, namely 

a, (3 , a + and Small proteins. The feature vector construction method is 

discussed in [60]. This data is available at (http://ranger.uta.edu/~chqding/protein/). 

4. Synthetic Dataset: Synthetic datasets are generated for the experiments pertaining to 

the scalability study. A set of 20 synthetic datasets is generated that consist of all the 

combinations of 25, 50,75,100, and 125 dimensions, and 10000,20000, 30000, and 

40000 data points. Each dataset contains four clusters, each of which has an equal 

number of data points in respective datasets. A R package is used for generating the 

synthetic datasets with the desired degree of separation [70]. The value of separation 

index ranges between -1 to 1. A value of separation index closer to one indicates that 

all the clusters are well separated. 

6.4.2 Validation 

The ability of the classifier to correctly identify the test samples is performed 

either by holdout method or a variant of k-fold cross-validation. Stratified k-fold cross-

validation which is a variant of standard k-fold cross-validation is used to estimate the 

classification performance of the classifier on all the datasets. Each class is divided into k 

disjoint subsets and approximately equal in size. In k-fold cross-validation, k-1 folds are 

used for training the classifier and the remaining one fold is used for evaluating the 

classifier. This process is repeated k times, leaving one different fold for evaluation each 

http://ranger.uta.edu/~chqding/protein/
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time. Classification accuracy and F-measure is used to compare the classification results. 

F-measure is the combination of precision and recall measure. These measures are 

represented by Equations 6.4, 6.5,6.6, and 6.7: 

TP 
Precision = . Eq. 6.4 

CTP+FP)  n  

Recall = , TP s, Eq. 6.5 
(TP+FN)  M  

„ „ (precision*recall \  _ , , 
F - measure = 2 x ( — , Eq. 6.6 

xprecision+recallJ 

Classification Accuracy = -—(~rP + TN^— E q .  6 . 7  
1  J  (TP+FP+TN+FN)  ^  

In the above equations, TP, TN, FP, and FN refer to true positive, true negative, 

false positive, and false negative, respectively. 

6.4.3 Experiments 

This section initially discusses the validation technique and validation measures 

used to evaluate the classifier. Then experiments are presented to demonstrate the 

scalability of the classifier with increasing dimensions and dataset size. Finally, 

experiments are presented to compare the ability of the developed grid-based classifier 

with other existing classifier to correctly identify the test samples. 

6.4.3.1 Scalability Analysis 

Experiments are conducted to establish the scalability characteristics of the 

developed classifiers. The scalability study of the training phase and the test phase of the 

fixed grid-based and adaptive grid-based classifier are presented below. The time 

requirements of the training phase and the test phase of both the classifiers do not 

deteriorate drastically and an appearance of linearity is observed as the number of 

dimensions and the size of the datasets increase. 
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Fixed Grid-Based Classifier: The scalability study pertaining to the training phase 

and the test phase of the classifier is as follows: 

Training Phase: Figure 6.4 plots the execution time of the training phase of the 

classifier on a set of twenty synthetic datasets. This figure demonstrates the scalability of 

the training phase of the classifier with respect to the increasing dimensions of the dataset 

while keeping the data size constant. It is demonstrated from Figure 6.4 that the training 

time required by the classifier appears to increase linearly with the increase in 

dimensions. Similarly, Figure 6.5 depicts the scalability of the training phase of the 

classifier with respect to the increasing size of the dataset while keeping the dimensions 

constant. Figure 6.5 plots the execution time of the training phase of the classifier with 

respect to the size of the dataset. It is demonstrated from the figure that the time required 

by the classifier appears to increase linearly with the increase in the size of the dataset. 
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Figure 6.4: Training Phase Execution Time v/s Dimensions 
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Figure 6.5: Training Phase Execution Time v/s Dataset Size 

Test Phase: Figure 6.6 demonstrates the scalability of the test phase of the 

classifier with respect to the increasing dimensions of the dataset while keeping the data 

size constant. Figure 6.6 depicts the average execution time taken by each test sample 

with respect to the increasing dimensions of the dataset. It can be interpreted from the 

figure that the average time taken by each test sample decreases slowly with the increase 

in dimensions. Similarly, Figure 6.7 depicts the scalability of the test phase of the 

classifier with respect to the increasing size of the dataset while keeping the dimensions 

constant. It is demonstrated from the figure that the average time taken by each test 

sample appears to increase linearly with the increase in the size of the dataset. 
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Figure 6.6: Average Execution Time/Sample v/s Dimensions 
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Adaptive Grid-Based Classifier: The scalability study related to the training phase 

and the test phase of the classifier is as follows: 

Training Phase: Figure 6.8 depicts the scalability of the training phase of the 

classifier with respect to the increasing dimensions of the dataset while keeping the data 

size constant. Figure 6.8 depicts the execution time taken by the training phase of the 

classifier with respect to the increasing dimensions for a given size of a dataset. It can be 

interpreted from the figure that the training time required by the classifier seems to 

increase linearly with the increase in dimensions. Similarly, Figure 6.9 depicts the 

scalability of the training phase of the classifier with respect to the increasing size of the 

dataset while keeping the dimensions constant. Figure 6.9 depicts the execution time 

taken by the training phase of the classifier with respect to the increasing size of the 

dataset for a given number of dimensions. It is demonstrated from the figure that the time 

required by the classifier appears to increase linearly with the increase in the size of the 

dataset. 
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Figure 6.9: Execution Time v/s Dataset Size 

Test Phase: Figure 6.10 presents the scalability of the test phase of the classifier 

with respect to the increasing dimensions of the dataset while keeping the data size 

constant, and it depicts the average execution time taken by each test sample with respect 

to the increasing dimensions of the dataset. It can be inferred from the figure that the 

average time taken by each test sample increases slowly with the increase in dimensions. 

Figure 6.11 depicts the scalability of the test phase of the classifier with respect to the 

increasing size of the dataset while keeping the dimensions constant. Figure 6.11 depicts 

the average execution time taken by each test sample with respect to the increasing size 

of the dataset. It is demonstrated from the figure that the average time taken by each test 

sample seems to increase linearly with the increase in the size of the dataset. 
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Figure 6.11: Average Execution Time/Sample v/s Dataset Size 

The experimental results presented in this section demonstrate that fixed grid-

based classifier and adaptive grid-based classifier are scalable and their training time and 

test time appear to increase linearly with the increase in data size and dimensions. 
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6.4.3.2 Comparative Analysis 

A comparative analysis is conducted on three different datasets to demonstrate the 

ability of the grid-based classifiers in correctly classifying the test data. Classification 

results of the grid-based classifiers are compared with classification results of other well-

known classifiers. The classifiers that are used for comparison include C4.5, Naive 

Bayes, Classification Tree, PART rule based classifier, KNN and Logistic regression [66, 

67,71, 72]. This comparative analysis is conducted using five fold cross-validation on all 

the datasets. Figure 6.12 shows the classification results of the letter recognition dataset. 

The classification results of the fixed grid-based and adaptive grid-based classifiers are 

compared with C4.5, Naive Bayes, PART, and Classification Tree. It is demonstrated in 

the plot that the average F-measure and classification accuracy of the grid-based 

classifiers are the highest and are better at correctly identifying the test samples. 
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Figure 6.12: Comparative Study on Letter Recognition Dataset 
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Furthermore, in Figure 6.13, the classification results of the handwritten numeral 

recognition dataset related to the profile correlation feature set are presented. It is 

demonstrated from the plot that average F-measure and classification accuracy of the 

grid-based classifiers are superior in comparison to C4.5, Naive Bayes, PART, and 

Classification Tree in correctly identifying the test data. Classification results are also 

compared on a protein structural classification dataset. A comparative study is presented 

in Figure 6.14. The study shows that the average F-measure and classification accuracy 

of the grid-based classifiers are better than Logistic and KNN classifiers. It is easy to 

interpret that grid-based classifiers demonstrate superiority over other selected classifiers. 
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Figure 6.13: Comparative Study on Profile Correlation Feature Set 
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Figure 6.14: Comparative Study on Protein Structural Classification Dataset 

6.4.4 Time Complexity Analysis 

The time complexity analysis related to the adaptive grid generation algorithm, 

training phase of the classifier, and test phase of the classifier is as follows: 

1. Grid Generation Algorithm: In this algorithm, the total number of micro-

partitions MpNumber is first calculated. Next, the minimum variance based selective 

agglomerative hierarchical partitioning is performed, which takes 0(MpNumber * 

(Mpsize)2 + MpNumber) time. This process is repeated for all the dimensions. Thus, 

the time complexity of the algorithm for all dimensions is 0(d* {MpNumber * 

(Mpsize) + MPNumber))• 

2. Classifier Training Phase: In the training phase, first assign every training sample to 

a cell. Each assignment takes 0(d) time. Second, to add a new grid cell to the list of 

grid cells and identify the neighborhood of the new grid cell, the new grid cell is 

compared with all previously identified grid cells in the list, which requires NTota[ 

comparisons and takes 0(d * NTotai) time. Here, NTotat represents the total number 
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of grid cells after mapping all the training samples. Third, to update the list of the 

neighbors of all the existing grid cells that are also neighbor to the newly added grid 

cell requires 0(d * NNbr) time. Here, NNbr is the number of neighboring grid cells. 

Thus, the overall maximum time required for the training phase can be given 

by 0(N*(d + dNTotal+ dNNbr)). 

3. Classifier Test Phase: In the test phase, first identify the grid cell of the test sample, 

which takes 0(d) time. Second, compare the grid cell ID of the test sample with the 

list of grid cell ID's of the training data. It takes 0(d * NTotai). Here, NTotai 

represents the total number of grid cells after mapping all the training samples. Third, 

compute the distance between the test sample and the medoid of the training samples 

present in each neighboring grid cell. This step takes 0(d * C * NNbr). Here, NNbr is 

the number of neighboring grid cells. Fourth, compute the distance between the test 

sample and the medoid of training samples present in NTotai grid cells. It takes 0(d * 

C * NTotal). Thus, the overall time complexity of the test phase for a test sample 

is 0(d + d* NTotal +d*C* NNbr + d*C* NTotal). 

6.5 Conclusion 

This chapter has outlined the potential of grid-based localized learning in 

designing fast and scalable classifier to process large datasets. Furthermore, two grid-

based classification models have been developed to harness the advantage of data space 

partitioning. The first grid-based classification model uses uniform grid structure and the 

second classification model uses adaptive grid structure. The developed grid-based 

classification models consist of four phases: Data preprocessing phase, Grid generation 

phase, Training phase, and Test phase. All the phases of fixed grid-based classifier and 
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adaptive grid-based classifier are identical except the grid generation phase. Experiments 

are conducted on synthetic datasets that demonstrate that developed grid-based classifiers 

are scalable and demonstrate a slow and linear increase in the execution time of their 

training phase and test phase with an increase in the number of dimensions and size of the 

datasets. The comparative study conducted on real datasets has demonstrated that 

developed grid-based classifiers performance better than other well-known classifiers. 

There are still some open questions such as what would be the effect of the integration of 

feature ranking with the classification model for high dimensional datasets and what 

would be the effect of supervised data partitioning method for grid generation. These 

open questions regarding the grid-based classification models can be explored as future 

directions. 



CHAPTER 7 

GRID-BASED LOCALIZED LEARNING FOR 

CLUSTERING 

Multidimensional datasets exhibit sparseness, which increases as dimensions 

increase [13,14]. The sparseness of multidimensional datasets is a serious impediment to 

clustering algorithms and severely affects the performance of these algorithms. This 

problem has been addressed in the past by augmenting clustering algorithms with 

specialized data preprocessing techniques that reduce the overall sparseness of the data 

[13, 14, 20, 21, 22, 23, 24], These data preprocessing techniques are categorized as 

sparseness reduction techniques and are commonly called data shrinking or data 

movement techniques. In such clustering techniques, first, a data shrinking algorithm is 

applied to diminish the sparseness of the data by moving the data points along the 

direction of the density gradient, which provides more condensed and demarcated 

clusters in the original dimensional space while retaining the dimensions [13, 14]. 

Clustering algorithms augmented with a data shrinking technique perform better than 

traditional clustering algorithms [13, 14]. However, existing data shrinking based 

clustering algorithms have deficiencies which need to be addressed. Therefore, there is a 

need to develop new algorithms that are efficient and better than existing algorithms. 

92 
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The remainder of the chapter is organized as follows. In Section 7.1, research 

motivation is discussed. In Section 7.2, a problem statement is discussed. In Section 7.3, 

the methodology of the non-uniform grid-based shrinking and clustering algorithm is 

discussed. In Section 7.4, experimental study is presented and discussed. Finally, in 

Section 7.5, conclusions are presented. 

7.1 Research Motivation 

The deficiencies of the existing data shrinking algorithms and the deficiencies of 

the existing grid-based clustering algorithms have motivated us to develop a new data 

shrinking based clustering algorithm. The existing data shrinking algorithms suffer from 

the inherent instability in the shrinking process and large computational time of these 

algorithms [13, 14, 20, 21, 22, 23, 24]. Similarly, the existing grid-based shrinking and 

clustering algorithms impose uniform grid structure on all the dimensions. However, non

uniform grids are more effective than uniform grids because they capture the underlying 

data distribution in every dimension and are computationally more efficient than uniform 

grids [26]. Thus, the motivation is to develop new grid-based data shrinking and 

clustering algorithm to address the deficiencies of existing techniques. 

7.2 Problem Statement 

Uniform grid-based data partitioning imposes a uniform grid structure on the data, 

partitions the multidimensional space into equal size partitions, and ignores the 

underlying data distribution. Thus, a uniform grid fails to effectively capture the 

underlying data distribution in each dimension. Consequently, uniform grid-based data 

shrinking algorithms do not perform better than traditional algorithms. On the other hand, 

non-uniform grid-based data partitioning is data driven and effectively captures the 
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underlying data distribution in each dimension. It is highly likely that non-uniform grid-

based shrinking will perform better, and it is hypothesized that non-uniform grid-based 

partitioning will provide effective movement of data points for data shrinking. Based on 

this hypothesis, the aim is to develop non-uniform grid-based data shrinking and 

clustering algorithm that uses non-uniform grid-based localized learning paradigm. 

7.3 Methodology 

The overall methodology of the developed adaptive grid-based data shrinking and 

clustering algorithm consists of four steps. The overall methodology is presented in 

Figure 7.1. 
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Figure 7.1: Adaptive Shrinking Based Clustering Approach 



95 

The overall methodology is divided into four sections. In Section 7.3.1, data 

preprocessing step is discussed. In Section 7.3.2, the non-uniform/adaptive grid 

generation step is discussed. In Section 7.3.3, the data shrinking step is discussed. 

Finally, in Section 7.3.4, the grid-based hierarchical clustering algorithm is discussed. 

7.3.1 Data Preprocessing 

Data preprocessing is an essential process in this methodology. In data 

preprocessing, the dataset is first normalized by applying Z-score normalization. Then, 

each dimension is transformed based on the mean and standard deviation of the 

dimension. The dataset is further normalized into a unit hypercube [0, l]d to scale all the 

dimensions between the range of zero and one by applying min-max normalization on 

each dimension [2]. In addition to this step, those dimensions are eliminated from the 

datasets that do not provide significant variability within the dimension. The removal of 

the dimensions occurs when significant numbers of data values in a dimension are either 

zero or constant. 

7.3.2 Adaptive Grid Generation 

The data adaptive grid generation algorithm is a data driven technique used to 

create data adaptive grid structure for shrinking and clustering. This algorithm generates 

a data adaptive grid by creating data adaptive partitions in each dimension. The data 

adaptive grid is generated in three steps. Initially, micro-partitions (see Definition 3.18) 

are created. Next, data space transformation is performed on each micro-partition using 

discrete wavelet transform. Feature extraction is then performed on each transformed 

micro-partition by extracting a compact spectral representation and, finally, these 

transformed micro-partitions are clustered using a multi-objective selective 
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agglomerative hierarchical partitioning (MOSAH partitioning) algorithm. The following 

three steps are performed on each dimension. 

7.3.2.1 Finding Micro-Partitions 

Initially, the dimension is sorted in ascending order. The sorted one-dimensional 

data points are in close proximity with their neighbors. To group these points together, 

micro-partitions are introduced. The use of the micro-partitions is motivated by the idea 

that this method will reduce the computation time of the overall grid generation process. 

Non-overlapping units of data points called micro-partitions are created by grouping k 

contiguous data points (k < N, where N is the total number of data points). A small 

value of k is chosen because micro-partitions should be as small as possible but not small 

enough to undermine the benefits for the overall grid generation process. The choice for 

the size of micro-partitions is inspired by [68, 69]. In [68] and [69], [VaFJ intervals are 

used to divide the attribute, and each interval contains approximately [VNJ intervals. The 

size of micro-partitions is obtained by applying Equation 7.1 and the number of micro-

partitions is obtained by applying Equation 7.2: 

Mpsize = 2Eq. 7.1 

MpNumber = Ecl- 12 

In Equation 7.1, log2 jN/10 is used to obtain the size of micro-partitions which 

ensures that the micro-partitions obtained are small enough. Choosing a value smaller 

than N/10 will reduce the size of micro-partitions and will create too small micro-

partitions and undermine the benefits of micro-partitioning. 
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7.3.2.2 Data Transformation 

Data space transformation is usually applied to transform data space and obtain a 

new representation of the data. This process is applied to each micro-partition for 

extracting a compact spectral signature and data reduction. An efficient wavelet 

transform method called discrete wavelet transform is selected [73]. In discrete wavelet 

transform, wavelet coefficients are calculated only for dyadic scales and positions. Thus, 

the method provides more concise and efficient transformation [73]. The discrete wavelet 

transform of a data vector x is given by Equation 7.3, where xp represents an impulse 

response called a mother wavelet. The discrete wavelet transform of a data vector x is 

calculated by passing it through a series of filters. The data vector x is decomposed 

simultaneously using both a high-pass and a low-pass filter. The output is outlined in the 

detail coefficients and in the approximation coefficients, respectively. The output of the 

transformation (detail and approximate coefficients) is given by Equations 7.4 and 7.5. 

The approximate coefficients are the high-scale, low-frequency components of the 

data, and the detail coefficients are the low-scale, high-frequency components of the data. 

Approximate coefficients are more important than detail coefficients because they 

contain more than 98% of the energy of the data [73,74,75]. For these experiments, the 

Haar wavelet is selected as a mother wavelet because it is the simplest wavelet 

imaginable. Only approximate coefficients are retained after transformation in order to 

extract a compact spectral signature of each micro-partition: 

W (j,  k) = Y,k x(k) 2 i/21/>(2 jn -  k), Eq. 7.3 

yrnghM = Znx[n]g[2k — n], Eq. 7.4 

yLowik] = %nx[n]h[2k-n]. Eq. 7.5 
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7.3.2.3 MOSAH Partitioning 

In multi-objective selective agglomerative hierarchical partitioning (MOSAH), all 

the transformed micro-partitions are clustered by applying a multi-objective criterion that 

groups contiguous micro-partitions in a bottom-up fashion until all the micro-partitions 

are in one cluster (see Figure 7.2). 

Micro 
Partition 

Figure 7.2: MOSAH Partitioning of Micro-partitions 

In this multi-objective framework, three objective functions are used to obtain the 

consensus for grouping micro-partitions. These three objective functions are average-

linkage, centroid-linkage, and ward-linkage. Since micro-partitions are created from a 

sorted dimension, all the micro-partitions are arranged in a contiguous or sequential 

order. The sequential order of micro-partitions also gives the MOSAH partitioning its 

unique characteristics. Since the micro-partitions are in sequential order, only contiguous 

micro-partitions are merged to form macro-partitions. 



7.3.2.4 Algorithmic Description 

Initially, all the transformed one-dimensional micro-partitions are given as an 

input to the algorithm. The pseudo-code of the algorithm is presented in Figure 7.3. 

Algorithm: Data Adaptive Grid Generation 
Input: Dataset X 
Output: Data Adaptive Grid G 
01 N = Number of Datapoints in X 
02 d = Number of Dimensions in X 
03 for j=l to d 
04 Sd = Sort(Vj) 

05 Mps|„ = 

N I 
06 Mp„ . = 

'Number 

07 for r=l to Mp.. . r Number 
08 m(r) = Find_micro_partition{ D j )  

09 DWm(r) = Find_discrete_wavelet_transform(m(r)) 
10 DWa(r) = Find_approx_wavelet_coeff(DWm(r)) 
11 end 
12 n = Mpsumber H Start of MOSAH partitioning 
13 for r=l to (n - 1) 

14 AVERAGER) = ' XLi \DWa(r,j) -  DWa(r + 1,))| (NV*N*-AII 11 J X 

15 CENTROID(r) = |DWa(r) -  DWa(r + 1)| 

16 

17 end 
18 while n =£ 2 
19 Minlndex( 1) = Find_minimum(AVERAGE) 
20 Minlndex( 2) = Find_minimum(CENTROID) 

21 Minlndexl 3) = FindjninimumlwARD) 
22 Merge lndex  = Majority_voting(MinIndex) 

23 Mn = Merge_micro_partitions(Merge jndex) 

24 n = n - 1 
25 end 
26 for n=2 to Mp,, , 

r Number 

21 Mn(m) = Find_partitions_in_original_space(Mn) 
28 end //End of MOSAH partitioning 
29 end 

Figure 7.3: Data Adaptive Grid Generation Algorithm 
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The algorithm begins with the computation of the proximity between all pairs of 

adjacent micro-partitions using the multi-objective framework to group micro-partitions. 

Next, two contiguous micro-partitions are grouped together to form macro-partitions 

based on the majority voting scheme. In this voting scheme, a pair of adjacent micro-

partition is grouped together if they obtain at least two out of three votes of being the 

closest of all pairs of adjacent micro-partitions. The process of grouping adjacent micro-

partitions continue in bottom-up fashion until all the micro-partitions are grouped 

together in one big partition. Once the algorithm is terminated, corresponding micro-

partitions are grouped in the original data space, and a hierarchical tree of partitions is 

obtained in the original space. 

7.3.3 Adaptive Grid-Based Shrinking 

The data adaptive grid-based shrinking algorithm begins once hierarchical 

decomposition of data adaptive partitions is obtained for all the dimensions. For this 

algorithm, the user must first select a level from the hierarchical decomposition of 

adaptive partitions. The steps to perform data shrinking at a specified level of hierarchical 

decomposition are given throughout this section. 

7.3.3.1 Ranking Neighboring Grid Cells 

In a grid-based data movement process, the neighborhood is defined based on the 

grid cell [13, 14]. In general, a d-dimensional grid cell C can have CNeighbor distinct 

neighboring grid cells. There are a total of riy=i Sj ~ 1 distinct neighbors. These 

Cneighbor distinct neighbors can be further categorized into d categories. The 

categorization of neighboring grid cells in d-dimensional data space is based on the 

number of facets shared between a grid cell C and its neighboring grid cells [6]. The grid 
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cells that share a maximum number of facets (d — 1) are the closest to the grid cell C. An 

example of ranking neighboring grid cells is shown in Figure 7.4. 

e o 
s 
s 

u 

hftidUi 

Dimension 1 

Figure 7.4: A Two-Dimensional Grid with Cell ID's 

In Figure 7.4, a two-dimensional grid is used to demonstrate the various 

neighboring grid cells that can be identified in a two-dimensional grid. In the grid 

structure, the horizontal axis represents dimension-1, and the vertical axis represents 

dimension-2. Each dimension is divided into four partitions. The grid cell numbering is 

based on the convention, C = (/i,Pl,/2>P2), where /l pi represents the partition number in 

dimension-1 and IZ p2 represents the partition number in dimension-2. A grid cell with ID 

(2.3) is depicted in green, and its neighboring cells are depicted in purple and orange. 

The orange grid cells that have the cell IDs (1,3), (3,3), (2,4), and (2,2) share one facet 

with the green grid cell in the center. Similarly, the purple grid cells that have the cell IDs 

(1.4), (3,4), (1,2), and (3,2) share no facet with the green cell in the center. Therefore, 

the grid cell with cell ID (2,3) has two categories of neighbors. Similarly, for higher 

dimensions d (d > 2), d types of neighbors can be identified based on the number of 

facets shared between the neighboring cells. 
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7.3.3.2 Data Movement Model 

A grid-based model of attraction is employed to move all the data points in a 

particular grid cell as a single unit. First, identify all of grid cell Cu's non-empty 

neighboring grid cells. Second, rank all neighboring grid cells using the ranking method. 

Third, choose all top ranked neighboring grid cells. Fourth, compute the data centroid of 

the selected top ranked neighboring grid cells of the grid cell Cu and the data centroid of 

the grid cell Cu. Fifth, move all the data points in the grid cell Cu using the data 

displacement formula. 

To formally describe the data movement for a grid cell, let Cu be a grid cell that 

contains a set Xu of k data points Xu = (Xul, %uk}> where Xu c X for which data 

movement is to be performed. Let CNBR = (Cnl, Cn2, Cni) be a set of selected top 

ranked neighboring grid cells that have (n l t  n2 ,  , nf) number of data points. Let the 

data centroid of all the data points in the set CNBR of grid cells be given by Equation 7.6. 

Similarly, the data centroid of all the points in the grid cell Cu is given by Equation 7.7: 

Therefore, the movement or the displacement of a data point XUi in the grid cell 

Cu is given by Equation 7.8: 

The movement or displacement of all the other data points is performed in the 

grid cell Cu. The movement of data points is performed if it satisfies the movement 

threshold criteria given by Equation 7.9: 

Eq. 7.6 

Eq. 7.7 

Eq. 7.8 
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Distance(cNBR, cu) > MTh. Eq. 7.9 

7.3.3.3 Data Shrinking Process 

The data shrinking algorithm is multilevel data adaptive grid-based shrinking 

algorithm in which data shrinking is performed at each selected level. The decomposition 

starts at level-0 which is the root level. At this level, all the data points are in a single 

partition. The next level is level-1 at which the data points partition into two data 

adaptive partitions, and so on and so forth (see Figure 7.5). The number of levels of 

hierarchical decomposition is chosen such that there are fewer non-empty grid cells than 

data points. Once the number of levels of hierarchical decomposition is selected then data 

shrinking is performed at each selected level. The pseudo-code of the algorithm is 

presented in Figure 7.6. 

[0,1] Level 0 

Level 1 [0,0.35) [0.35,1] 

Level 2 [0,0.35) [0.35,0.80) [0.80,1] 

Level 3 
[0,0.35) [0.35,0.60) [0.60,0.80) [0.80,1] 

Figure 7.5: Hierarchical Decomposition of Data Adaptive Partitions 
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Algorithm: Data Shrinking Algorithm 

Input: Grid G t ,  Dataset X,  Iterations lTh ,  Threshold M rh  

Output: Data after Shrinking X, 

01 N = Number of Datapoints in X 
02 d = Number of Dimensions in X 
03 Count= 0 

04 for i=l to N 

05 C(i) = Find_Cell_ld( X i ,  G t) 
06 if (C (i) g Z ) then 
07 Add C(i) to Z 
08 Count = Count + 1 
09 Add X, to Zdata(Count). data 
10 end 
11 for m=l to Count 
12 if ( Z(m) == C(i) ) then 
13 Z(m). count = Z(m). count + 1 
14 Add X, to Zdata(m).data 
15 end 
16 end 
17 end 
18 I = 0 

19 while / < lTh 

20 [Zs.Zsdata] = Sort(Z,Zdata) 
21 n = 1 

22 while n < Count 
23 Find Neighboring Cells of Cell Zs(n) 
24 Compute Centroid cNBR of Neighboring Cells 
25 Compute Centroid cn of Cell Zs(n) 
26 if (Distance(cNBR ,cu) > MTh ) then 
27 Compute Displacement of Datapoints in Zsdata(n) 
28 end 
29 end 

30 if(No Movement between I and I + 1) then 
31 Exit 
32 end 
33 end 

Figure 7.6: Pseudo-code for Data Shrinking Algorithm 

The algorithm first maps all the data points on the adaptive grid. During this 

process, it identifies all non-empty grid cells and corresponding data points, and 

accumulates all the data points that are mapped to the non-empty grid cells. The 

algorithm then sorts all non-empty grid cells in increasing order based on the number of 

data points in them. Grid cells are sorted in increasing order of the number of data points 
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to insure that the data points in sparse regions are processed first and then moved toward 

denser regions. In this step, all the grid cells are arranged in an order. As a result, the 

proposed shrinking algorithm is insensitive towards the order of the input data points and 

it does not suffer from this deficiency like other existing algorithms. Then, the first grid 

cell is taken from the sorted list of cells, and its neighboring grid cells are identified to 

select the top ranked neighboring cells. Once the neighboring grid cells are identified, the 

data points in the grid cell are moved according to the model of data movement and are 

reassigned to new grid cells. This process is repeated for all the grid cells in the sorted 

list. After the movement of the data points, all empty grid cells are removed from the list 

and all non-empty grid cells are kept. This process is repeated for the specified number of 

iterations or until the data points no longer move in any two contiguous iterations. 

7.3.4 Adaptive Grid-Based Clustering 

The developed clustering algorithm is a grid-based hierarchical clustering 

algorithm in which each grid cell is considered a single unit. See Figure 7.7 for a 

graphical representation of the algorithm. 

o 2 

Figure 7.7: Grid-Based Hierarchical Clustering 
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Therefore, a multi-objective voting scheme is used in the hierarchical clustering 

of nonempty grid cells. The voting scheme uses average linkage, centroid linkage, and 

ward linkage measures for the clustering. Once data shrinking is performed for the 

selected level of hierarchical decomposition, data is passed to the clustering algorithm. A 

pseudo-code of the algorithm is presented in Figure 7.8. 

Algorithm: Clustering Algorithm 
Input: Nonempty cells Cells, Nonempty cells data CellsData 
Output: Hierarchical Clusters 
01 Nc = Nonempty Cells 
02 Clusters = Nc 
03 Step = 1 
04 for j=l to Clusters 

05 AVERAGE(Cluster r ,  Cluster/) = (n  ~ *i,*l 

06 CENTROID(Cluster r ,  Cluster)) = |cr - c, |  

07 WARD(Cluster r ,  Cluster;) = (n r  * nf) („r~n]) 

08 end 
09 while Clusters =£ 1 
10 RMSSTD(Step, 1) = Compute_RMSSTD{CellsData s t ev) 

11 Minlndex(Y) = Find_minimum(AVERAGE) 
12 Minlndexl 2) = Find_minimum(CENTROID) 
13 Minlndex( 3) = Find_minimum(WARD) 

14 lndex r j  = Majority _voting(Min!ndex) 

15 Merge_Clusters(Index rj) 

16 Clusters = Clusters — 1 
17 Step = Step + 1 
18 end 

Figure 7.8: Pseudo-code for Adaptive Grid-Based Clustering 

The algorithm begins with the computation of the proximity between all pairs of 

data centroids of nonempty grid cells based on the proposed multi-objective framework 

that uses average linkage, centroid linkage, and ward linkage criterion to cluster 

nonempty grid cells. Two nonempty grid cells are clustered based on the majority voting 

scheme. In the proposed voting scheme, a pair of nonempty grid cells is grouped if they 
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obtain at least two of three votes from three linkage criterion for being the closest pair of 

nonempty grid cells. This process of clustering nonempty grid cells continues until all 

nonempty grid cells are grouped into one cluster and form a hierarchical tree. 

7.4 Results and Discussion 

This section presents all the experimental studies and discussions related to the 

developed algorithm. In this section, discussion about the time complexity analysis, 

clustering evaluation and validation, scalability study, and a comparative study is 

presented. 

7.4.1 Datasets 

Both real and synthetic datasets with a wide range of dimensions and sample size 

are used for experiments and to assess the capabilities of the developed clustering 

algorithm. A detailed description of each of these datasets is as follows. 

1. Wine Recognition Dataset: The first dataset is the Wine Recognition dataset. This 

dataset has 13 dimensions and 178 data points. The dataset contains three clusters and 

each cluster contains 59,71, and 48 data points, respectively. The dataset is available 

at the UCI machine learning repository [58]. 

2. Ecoli Dataset: The second dataset is the Ecoli dataset, which pertains to protein 

localization site data. This dataset has 7 dimensions and 336 data points. The dataset 

contains 8 clusters and each cluster has 143, 77, 52, 35, 20, 5, 2, and 2 data points, 

respectively. The dataset is available at the UCI machine learning repository [58]. 

3. Protein Structural Classification Dataset: The protein dataset consists of feature 

vectors that are based on amino acid sequence of corresponding proteins. The feature 

construction is based amino acid composition, physical and stereo chemical 
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properties of amino acids. Each feature vector consists of 125 feature descriptor. The 

dataset has 582 samples and is divided into 5 protein structural classes namely 

a, (3 ,a + (3, jj, and Small proteins. The feature vector construction method is 

discussed in [60]. This data is available at (http://ranger.uta.edu/~chqding/protein/). 

4. Synthetic Dataset: A set of synthetic datasets is used for the comparative analysis of 

the algorithms. Three synthetic datasets are generated with 50, 60, and 120 

dimensions and four clusters each. Datasets are generated randomly using the 

separation index of 0.1 which indicates that these generated clusters are close to each 

other [70]. The dataset with 50 dimensions contains 2049 data points in four clusters 

(c 1=414, c2=566, c3=652, c4=417). The dataset with 60 dimensions contains 2017 

data points in four clusters (c 1=515, c2=496, c3=549, c4=457) and the dataset with 

120 dimensions contains 2062 data points in four clusters (c 1=543, c2=580, c3=522, 

c4=417). Another set of synthetic datasets is also generated for the scalability analysis 

of the algorithms. A set of datasets with 10, 20, 30, 40, and 50 dimensions, and 2,000, 

4000, 6000, 8000, and 10,000 data points is generated. Each dataset contains two 

clusters, each of which has an equal number of data points in respective datasets. Two 

clusters are generated from a normal distribution with means of 10, -10 and a 

standard of deviation 3. 

7.4.2 Validation 

In this clustering method, clusters are obtained as hierarchical decomposition of 

the data points. The root-mean-square standard deviation (RMSSTD) measure is used to 

obtain the optimal number of clusters from the hierarchical decomposition, which is 

represented by Equation 7.10. The root-mean-square standard deviation (RMSSTD) 

http://ranger.uta.edu/~chqding/protein/
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measures the compactness or homogeneity of clusters formed at a given level of 

hierarchical decomposition [76, 77, 78,79]. A small value of RMSSTD indicates the 

clusters formed at a given level are formed by merging two homogeneous clusters and a 

large value of RMSSTD indicates that the clusters formed at a given level are formed by 

merging two heterogeneous clusters. The optimal number of clusters is obtained by 

employing the 'Elbow/ method' [79]. 

RMSSTD = Eq. 7.10 

The developed clustering algorithm is compared with other clustering algorithms using 

external clustering validation measures precision, recall and F-measure, which are 

represented by Equations 7.11,7.12, and 7.13. In Equations 7.11 and 7.12, the original 

clusters are represented by cf, detected clusters are represented by cf, and i represents the 

ith cluster: 

Precision = \ Eq. 7.11 
\ci\ 

lc?nc?l 
Recall = J¥SLi. Eq. 7.12 

l c i l  

r. <-) . /" precision*recall \  „ _ t  0  F —measure = 2x ; . Eq. 7.13 
Kprecision+recalU 

In the above equations, TP, TN, FP, and FN refer to true positive, true negative, 

false positive, and false negative, respectively. 

7.4.3 Experiments 

In this section, an experimental study is presented. These experiments are 

conducted to demonstrate the effect of sparseness with increasing dimensions and the 

advantages of using non-uniform grid over uniform grid. 
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7.4.3.1 Scalability Analysis 

The scalability of grid generation, data shrinking, and clustering algorithm is 

demonstrated by experimenting with synthetic datasets. For experiments, five iterations 

are maintained for all the datasets. The scalability study of the grid generation algorithm 

is presented in Figures 7.9 and 7.10. 
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Figure 7.9: Execution Time v/s Dataset Size (Analysis for Grid Generation Method) 

Figure 7.9 presents the scalability plot, showing the execution time with the 

increasing dataset size, and Figure 7.10 plots the execution time with the increasing 

number of dimensions. A grid generation algorithm is applied on each dataset to obtain a 

hierarchical decomposition of data adaptive partitions. It is observed from Figures 7.9 

and 7.10 that the execution time of the grid generation algorithm appears to increase 

linearly with the increase in dataset size and dimensions. 
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Figure 7.10: Execution Time v/s Dimensions (Analysis for Grid Generation Method) 

Similarly, the scalability study related to the data shrinking algorithm is presented 

in which the execution time of the algorithm is studied with respect to the increasing 

dataset size and the increasing number of dimensions. The data shrinking algorithm is 

applied on each synthetic dataset, using hierarchical decomposition level — 2 for the 

experiments. Minimum movement threshold value MTh ranging from 0.10 to 0.4 with the 

increments of 0.1 is used. For every dataset, the average execution time over all MTh 

values is plotted. It is observed in Figures 7.11 and 7.12 that the execution time of the 

data shrinking algorithm appears to increase non linearly with respect to the dataset size 

and linearly with repsect to the dimensions. 

Dataset size= 2000 
Dataset size= 4000 
Dataset size= 6000 
Dataset size= 8000 
Dataset size= 10000 

10 20 30 40 50 
Dimensions 
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Figure 7.11: Execution Time v/s Dataset Size (Analysis for Data Shrinking Method) 
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Figure 7.12: Execution Time v/s Dimensions (Analysis for Data Shrinking Method) 

Finally, the scalability study of the adaptive grid-based clustering algorithm is 

presented in Figures 7.13 and 7.14. Figure 7.13 presents the scalability plot, showing the 

execution time of the algorithm with an increasing dataset size, and Figure 7.14 shows 

the execution time of the algorithm with an increasing number of dimensions. 
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Figure 7.13: Execution Time v/s Dataset Size (Analysis for Clustering Method) 
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Figure 7.14: Execution Time v/s Dimensions (Analysis for Clustering Method) 
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The hierarchical clustering algorithm is applied on each synthetic dataset after the 

data shrinking algorithm and the average execution time of the clustering algorithm over 

all the MThvalue is computed. It can be observed in Figures 7.13 and 7.14 that the 
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average execution time of the clustering algorithm appears to increase non linearly with 

the increase in dataset size and dimensions. 

7.4.3.2 Comparative Analysis 

A set of experiments is conducted to evaluate the clustering algorithm. 

Experiments are also conducted to compare the developed algorithm with the uniform 

grid algorithm method and other clustering algorithms such as CURE and DBSCAN [13, 

52, 53]. A brief description of control parameters for these algorithms is as follows: 

CURE requires three input parameter options: -k for the number of clusters, -a for the 

shrinking factor of CURE, and -r for the number of representative points of the cluster. 

DBSCAN requires two input parameter options: Eps- a neighborhood distance and 

MinPts- the minimum number of data points in an Eps neighborhood. 

1. Experiments on Wine Recognition Dataset: Experiments on this dataset 

demonstrate that the proposed algorithm performs better than the benchmark method and 

other clustering algorithms. A data adaptive grid-based clustering algorithm is applied on 

the dataset. The minimum movement threshold MTh value is set at a range of 0.10 to 0.35 

with increments of 0.025. Experiments are run to obtain clusters for a combination of 

([MTh, level). Then RMSSTD is used to identify the number of clusters using the 'Elbow 

method'. The results of the adaptive shrinking based clustering and the benchmark 

algorithm are compared in Table 7.1. The F-measure is used to compare the overall 

performance of the two algorithms. The average F-measure between the two methods 

(benchmark approach=89.69% and adaptive shrinking based approach=93.75%) indicates 

that the adaptive shrinking based method achieves an overall better performance than the 

benchmark method. 
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Table 7.1: Benchmark v/s Adaptive Shrinking Based Method on Wine Dataset 

Cluster 
no. 

Algorithm I c f n c f l  Precision 
(%) 

Recall 
(%) 

F-measure 
(%) 

i=l Benchmark 59 53 53 100.00 89.83 94.64 i=l 

Proposed 59 64 57 89.06 96.61 92.68 

i=2 Benchmark 71 52 52 98.08 71.83 82.93 i=2 

Proposed 71 65 63 96.92 88.73 92.64 

i=3 Benchmark 48 46 43 93.48 89.58 91.49 i=3 

Proposed 48 50 47 94.00 97.92 95.92 

A comparative study is also conducted between the CURE clustering algorithm 

and the adaptive shrinking based clustering algorithm. These results are presented in 

Table 7.2. Clustering results of CURE were obtained from [13]. The comparison 

indicates that the adaptive shrinking based clustering algorithm performs a better cluster 

detection than the CURE clustering algorithm. Next, the DBSCAN algorithm is applied 

on the Wine Recognition dataset. Experiments are performed by setting Eps-parameter to 

values ranging from 0.10 to 0.90 with increments of 0.1, and setting the MinPts 

parameter to values ranging from one to ten with increments of one. A comparison of the 

DBSCAN algorithm and the adaptive shrinking based clustering are presented the Table 

7.3. The comparison of the results obtained from both the algorithms indicates that the 

adaptive shrinking based clustering performs better cluster detection than the DBSCAN 

algorithm. 
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Table 7.2: CURE v/s Adaptive Shrinking Based Method on Wine Dataset 

Cluster 
no. 

Algorithm c? k f n c f l  Precision 
(%) 

Recall 
(%) 

F-measure 
(%) 

i=l CURE 59 72 54 75.00 91.52 82.44 i=l 

Proposed 59 64 57 89.06 96.61 92.68 

i=2 CURE 71 50 41 82.00 57.77 67.78 i=2 

Proposed 71 65 63 96.92 88.73 92.64 

i=3 CURE 48 46 26 56.52 54.16 55.32 i=3 

Proposed 48 50 47 94.00 97.92 95.92 

Table 7.3: DBSCAN v/s Adaptive Shrinking Based Method on Wine Dataset 

Cluster 
no. 

Algorithm c? c* I c f n c f l  Precision 
(%) 

Recall 
(%) 

F-measure 
(%) 

i=l DBSCAN 59 103 58 56.31 98.31 71.61 i=l 

Proposed 59 64 57 89.06 96.61 92.68 

i=2 DBSCAN 71 2 2 100.00 2.82 5.49 i=2 

Proposed 71 65 63 96.92 88.73 92.64 

i=3 DBSCAN 48 51 46 90.20 95.83 92.93 i=3 

Proposed 48 50 47 94.00 97.92 95.92 

2. Experiments on the Ecoli Dataset: The data adaptive grid-based clustering 

algorithm is applied on the Ecoli dataset. The minimum movement threshold MTh value 

is set at a range of 0.10 to 0.35 with the increments of 0.025. Once clusters are obtained 

for all the combinations of (MTh, level), RMSSTD is computed to identify the number of 

clusters using the 'Elbow method'. The results of the adaptive shrinking based clustering 

are compared with the results of the benchmark method in Table 7.4, which compares the 

F-measure for the overall performance of the two algorithms. The Ecoli dataset contains 

eight clusters, but three clusters are insignificant and contain only 5, 2, and 2 data points. 
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Thus, only five clusters are included in the discussion. After comparing the average F-

measure between the two methods (benchmark approach =70.07% and adaptive shrinking 

based approach=77.82%), the adaptive shrinking based algorithm achieves an overall 8% 

better performance than the benchmark algorithm. 

Table 7.4: Benchmark v/s Adaptive Shrinking Based Method on Ecoli Dataset 

Cluster 
no. 

Algorithm cs 
•-i k f n c f l  Precision 

(%) 
Recall 

(%) 
F-measure 

(%) 

i=l Benchmark 143 135 130 96.30 90.91 93.53 i=l 

Proposed 143 158 143 90.51 100.00 95.02 

i=2 Benchmark 77 22 22 100.00 28.57 44.44 i=2 

Proposed 77 38 36 92.11 45.45 60.87 

i=3 Benchmark 52 68 43 63.24 82.69 71.67 i=3 

Proposed 52 52 44 84.62 84.62 84.62 

i=4 Benchmark 35 49 32 65.31 91.43 76.19 i=4 

Proposed 35 67 31 46.27 88.57 60.79 

i=5 Benchmark 20 11 10 90.91 50.00 64.52 i=5 

Proposed 20 21 18 85.71 90.00 87.80 

A comparative study was also conducted between the CURE clustering algorithm 

and the adaptive grid-based clustering algorithm on the Ecoli dataset which is presented 

in Table 7.5. The clustering results of CURE were obtained from [13]. The comparative 

study of the F-measure indicates that the adaptive shrinking based clustering algorithm 

performs better than the CURE clustering algorithm. 



118 

Table 7.5: CURE v/s Adaptive Shrinking Based Method on Ecoli Dataset 

Cluster 
no. 

Algorithm c? cf k f n c H  Precision 
(%) 

Recall 
(%) 

F-measure 
(%) 

i= l  CURE 143 120 115 95.83 80.41 87.45 i= l  

Proposed 143 158 143 90.51 100.00 95.02 

i=2 CURE 77 67 41 61.19 53.24 56.94 i=2 

Proposed 77 38 36 92.11 45.45 60.87 

i=3 CURE 52 32 30 93.75 57.69 71.43 i=3 

Proposed 52 52 44 84.62 84.62 84.62 

i=4 CURE 35 NA NA NA NA NA i=4 

Proposed 35 67 31 46.27 88.57 60.79 

i=5 CURE 20 NA NA NA NA NA i=5 

Proposed 20 21 18 85.71 90.00 87.80 

Next, the DBSCAN algorithm is applied to the Ecoli dataset and its results are 

presented in Table 7.6. The experiments on the DBSCAN algorithm are conducted for 

different parameter configurations. The Eps parameter is set to values ranging from 0.10 

to 0.30 with increments of .001 and the MinPts parameter to values ranging from one to 

30 with increments of one. In Table 7.6, The best clustering results obtained from the 

DBSCAN algorithm are compared with the results of adaptive shrinking based clustering 

algorithm. The comparison of precission, recall, and F-measure values corresponding to 

each cluster obtained from both the algorithms indicates that the adaptive shrinking based 

clustering algorithm performs a better cluster detection than the DBSCAN clustering 

algorithm on this dataset. 



119 

Table 7.6: DBSCAN v/s Adaptive Shrinking Based Method on Ecoli Dataset 

Cluster 
no. 

Algorithm I c f n c f l  Precision 
(%) 

Recall 
(%) 

F-measure 
(%) 

i=l DBSCAN 143 124 119 95.97 83.22 89.14 i=l 

Proposed 143 158 143 90.51 100.00 95.02 

i=2 DBSCAN 77 59 39 66.10 50.65 57.35 i=2 

Proposed 77 38 36 92.11 45.45 60.87 

i=3 DBSCAN 52 24 22 91.67 42.31 57.90 i=3 

Proposed 52 52 44 84.62 84.62 84.62 

i=4 DBSCAN 35 10 8 80.00 22.86 35.56 i=4 

Proposed 35 67 31 46.27 88.57 60.79 

i=5 DBSCAN 20 NA NA NA NA NA i=5 

Proposed 20 21 18 85.71 90.00 87.80 

3. Experiments on Protein Datasets: Initially, experiments with adaptive 

shrinking based clustering algorithm are performed. The minimum movement threshold 

MTh values are set ranging from 0.10 to 2.0 with the increments of 0.025 and hierarchy 

level of one, two and three. Once hierarchical clusters are obtained for all the 

combinations of {MTh, level), then the final clusters are selected. Similarly, experiments 

are conducted with the benchmark method. Experiments are conducted by setting the 

minimum movement threshold MThvalues ranging from 0.5 to 3.0 with the increments of 

0.05 and different grid scales for cluster detection [1]. A comparison of the results 

obtained from both the algorithms is shown in Table 7.7, which compares the precision, 

recall, and F-measure for the overall performance of the two algorithms. The average F-

measure between the two methods (benchmark approach=37.82% and adaptive shrinking 

based approach=60.13%) indicates that the adaptive shrinking based method achieves 

overall better cluster detection than the benchmark method. 
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Table 7.7: Benchmark v/s Adaptive Shrinking Based Method on Protein Dataset 

Cluster 
no. 

Algorithm *•1 I c f n c f l  Precision 
(%) 

Recall 
(%) 

F-measure 
(%) 

i=l Benchmark 112 NA NA NA NA NA i=l 

Proposed 112 64 62 96.88 55.36 70.46 

i=2 Benchmark 177 3 3 100.00 1.69 3.32 i=2 

Proposed 177 55 48 87.27 27.12 41.38 

i=3 Benchmark 203 232 178 76.72 87.68 81.83 i=3 

Proposed 203 279 180 64.52 88.67 74.69 

i=4 Benchmark 46 17 17 100.00 36.96 53.97 i=4 

Proposed 46 137 30 21.90 65.22 32.79 

i=5 Benchmark 44 24 17 70.83 38.64 50.00 i=5 

Proposed 44 47 37 78.72 84.10 81.32 

A comparative study is also conducted between the CURE clustering algorithm 

and the adaptive shrinking based clustering algorithm on this synthetic dataset, which is 

presented in Table 7.8. The clustering results of CURE were obtained by experimenting 

with different parameter settings [52].  Experiments are conducted by setting the a-

parameter to values ranging from .10 to .30 with increments of .05 and the MinPts 

parameter to values ranging from 10 to 60 with increments of five. The comparison of the 

average F-measure between the two methods (CURE clustering=32.19% and Adaptive 

shrinking based approach=60.13%) indicates that adaptive shrinking based clustering 

algorithm achieves better cluster detection than the CURE clustering algorithm. 
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Table 7.8: CURE v/s Adaptive Shrinking Based Method on Protein Dataset 

Cluster 
no. 

Algorithm c? i I c f n c f l  Precision 
( % )  

Recall 
( % )  

F-measure 
( % )  

i=l CURE 112 42 38 90.48 33.93 49.35 i=l 

Proposed 112 64 62 96.88 55.36 70.46 

i=2 CURE 177 206 65 31.55 36.72 33.94 i=2 

Proposed 177 55 48 87.27 27.12 41.38 

i=3 CURE 203 308 188 61.04 92.61 73.58 i=3 

Proposed 203 279 180 64.52 88.67 74.69 

i=4 CURE 46 3 1 33.33 2.17 4.08 i=4 

Proposed 46 137 30 21.90 65.22 32.79 

i=5 CURE 44 NA NA NA NA NA i=5 

Proposed 44 47 37 78.72 84.10 81.32 

Next, the DBSCAN algorithm is applied on this synthetic dataset and its resuls are 

presented in Table 7.9. The Eps parameter is set to values ranging from .10 to 1.0 with 

increments of. 1 and the MinPts parameter is set to values ranging from one to ten with 

increments of one to find the best clustering result for the DBSCAN algorithm. The 

comparison of the average F-measure between the two methods (DBSCAN 

clustering=25.13% and Adaptive shrinking based approach=60.13%) indicates that 

adaptive shrinking based clustering algorithm outperforms the DBSCAN clustering 

algorithm. 
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Table 7.9: DBSCAN v/s Adaptive Shrinking Based Method on Protein Dataset 

Cluster 
no. 

Algorithm c? i  I c f n c f l  Precision 
( % )  

Recall 
(%) 

F-measure 
(%) 

i=l DBSCAN 112 25 25 100.00 22.32 36.49 

Proposed 112 64 62 96.88 55.36 70.46 

i=2 DBSCAN 177 6 6 100.00 3.39 6.56 

Proposed 177 55 48 87.27 27.12 41.38 

i=3 DBSCAN 203 305 189 61.97 93.10 74.41 

Proposed 203 279 180 64.52 88.67 74.69 

i=4 DBSCAN 46 3 2 66.67 4.35 8.17 

Proposed 46 137 30 21.90 65.22 32.79 

i=5 DBSCAN 44 NA NA NA NA NA 

Proposed 44 47 37 78.72 84.10 81.32 

4. Experiments on Synthetic Datasets: A comparative analysis is also conducted 

on a set of synthetic dataset. The set of synthetic dataset contains data set with 50, 60 and 

120 dimensions. The experiments pertaining to these three datasets are as follows: 

1. Synthetic dataset with 50 dimensions: Initially, experiments are conducted with 

adaptive shrinking based clustering algorithm. Experiments are conducted by setting the 

minimum movement threshold MTh values ranging from 0.10 to 1.0 with the increments 

of 0.1 and hierarchy level of one, two and three. Once hierarchical clusters are obtained 

for all the combinations of (MTh, level), then best clusters are selected. Similarly, 

experiments are conducted with the benchmark method, the minimum movement 

threshold MTh-parameter is set to values ranging from 0.5 to 3.5 with the increments of 

0.1 and different scales for cluster detection [1]. A comparison of results obtained from 

both the algorithms is shown in Table 7.10, which indicates that adaptive shrinking based 

clustering has a better cluster detection than the benchmark method. 
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Table 7.10: Benchmark Method v/s Adaptive Shrinking Based Method on a Synthetic 
Dataset 

Cluster 
no. 

Algorithm 1 c? n cf | Precision 
(%) 

Recall 
(%) 

F-measure 
(%) 

i=l Benchmark 414 NA NA NA NA NA i=l 

Proposed 414 364 354 97.25 85.51 91.03 

i=2 Benchmark 566 993 566 57.00 100 72.61 i=2 

Proposed 566 541 522 96.49 92.23 94.31 

i=3 Benchmark 652 19 19 100 2.91 5.66 i=3 

Proposed 652 624 585 93.75 89.72 91.69 

i=4 Benchmark 417 10 9 90 2.16 4.22 i=4 

Proposed 417 520 410 78.85 98.32 87.51 

A comparative study is also conducted between the CURE clustering algorithm 

and the adaptive shrinking based clustering algorithm on this synthetic dataset, which is 

presented in Table 7.11. The clustering results of CURE were obtained by experimenting 

with different parameter settings [52]. Experiments are conducted by setting the a-

parameter to values ranging from .10 to .30 with increments of .05 and the MinPts 

parameter to values ranging from 10 to 60 with increments of five. The comparison 

presented in Table 7.11 indicates that our clustering algorithm achieves a much better 

cluster detection than the CURE clustering algorithm. Next, the DBSCAN clustering 

algorithm is applied on the dataset. Experiments are conducted by setting the Eps 

parameter to values ranging from .10 to 1.0 with increments of .1 and the MinPts 

parameter to values ranging from one to ten with increments of one and finding the best 

clustering result for the DBSCAN algorithm, which are presented in Table 7.12. It can be 

observed that adaptive shrinking based clustering outperforms the DBSCAN algorithm. 
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Table 7.11: CURE v/s Adaptive Shrinking Based Method on a Synthetic Dataset 

Cluster 
no. 

Algorithm tI | c f n c f |  Precision 
(%) 

Recall 
(%) 

F-measure 
(%) 

i=l CURE 414 NA NA NA NA NA i=l 

Proposed 414 364 354 97.25 85.51 91.03 

i=2 CURE 566 NA NA NA NA NA i=2 

Proposed 566 541 522 96.49 92.23 94.31 

i=3 CURE 652 1365 550 40.30 84.36 54.37 i=3 

Proposed 652 624 585 93.75 89.72 91.69 

i=4 CURE 417 684 415 60.67 99.52 75.39 i=4 

Proposed 417 520 410 78.85 98.32 87.51 

Table 7.12: DBSCAN v/s Adaptive Shrinking Based Method on a Synthetic Dataset 

Cluster 
no. 

Algorithm c? c? i k f n c f l  Precision 
(%) 

Recall 
(%) 

F-measure 
(%) 

i=l DBSCAN 414 60 59 98.33 14.25 24.89 i=l 

Proposed 414 364 354 97.25 85.51 91.03 

i=2 DBSCAN 566 359 210 58.50 37.10 45.41 i=2 

Proposed 566 541 522 96.49 92.23 94.31 

i=3 DBSCAN 652 5 5 100 0.77 1.53 i=3 

Proposed 652 624 585 93.75 89.72 91.69 

i=4 DBSCAN 417 NA NA NA NA NA i=4 

Proposed 417 520 410 78.85 98.32 87.51 

2. Synthetic dataset with 60 dimensions: Initially, adaptive shrinking based 

clustering algorithm is applied on the dataset and the minimum movement threshold 

MTh parameter is set to values ranging from 0.10 to 1.0 with the increments of 0.1 and 

hierarchy level of one, two and three. Once clusters are obtained for all the combinations 

of (MTh, level), then best clusters are selected. Similarly, experiments are conducted with 
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the benchmark method. For this method, the minimum movement threshold MT h-

parameter is set to values ranging from 0.5 to 3.5 with the increments of 0.1 and different 

grid scales are used for cluster detection [1]. The results of adaptive shrinking based 

clustering are compared with the results of the benchmark method in Table 7.13. After 

comparing the results between the two methods, the results indicate that adaptive 

shrinking based clustering shows a much better performance than the benchmark method. 

Table 7.13: Benchmark Method v/s Adaptive Shrinking Based Method on a Synthetic 
Dataset 

Cluster 
no. 

Algorithm c? ci *•1 I c f n c f l  Precision 
(%) 

Recall 
(%) 

F-measure 
(%) 

i=l Benchmark 515 9 9 100 1.75 3.44 i=l 

Proposed 515 630 498 79.05 96.70 86.99 

i=2 Benchmark 496 1401 496 35.40 100 52.29 i=2 

Proposed 496 439 404 92.03 81.45 86.42 

i=3 Benchmark 549 15 15 100 2.73 5.32 i=3 

Proposed 549 538 524 97.40 95.45 96.41 

i=4 Benchmark 457 9 9 100 1.97 3.87 i=4 

Proposed 457 410 395 96.34 86.43 91.11 

A comparative study is also conducted between the CURE clustering algorithm 

and the adaptive shrinking based clustering algorithm, which is presented in Table 7.14. 

The experiments are conducted for different parameter settings of the CURE clustering 

algorithm[52]. The a- parameter is set to values ranging from 0.10 to 0.30 with 

increments of .05 and the MinPts parameter is set to values ranging from 10 to 60 with 

increments of 5. The comparison indicates that the adaptive shrinking base clustering 

achieves better cluster detection than the CURE clustering algorithm. 
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Table 7.14: CURE v/s Adaptive Shrinking Based Method on a Synthetic Dataset 

Cluster 
no. 

Algorithm c- |c? n cfl Precision 
(%) 

Recall 
( % )  

F-measure 
(%) 

i = l  CURE 515 1344 471 35.04 91.46 50.67 i = l  

Proposed 515 630 498 79.05 96.70 86.99 

i=2 CURE 496 NA NA NA NA NA i=2 

Proposed 496 439 404 92.03 81.45 86.42 

i=3 CURE 549 673 526 78.16 95.81 86.09 i=3 

Proposed 549 538 524 97.40 95.45 96.41 

i=4 CURE 457 NA NA NA NA NA i=4 

Proposed 457 410 395 96.34 86.43 91.11 

Next, the DBSCAN algorithm is applied on this synthetic dataset and its results 

are presented in Table 7.15. The Eps parameter takes the values ranging from .10 to 1.0 

with increments of 0.1 and the MinPts parameter takes the values ranging from one to ten 

with increments of one to find the best clustering result for the DBSCAN algorithm. The 

comparison of the results from the DBSCAN clustering algorithm and the adaptive 

shrinking based clustering algorithm are presented in Table 7.15. These result 

demonstrate that on this dataset adaptive shrinking based clustering performs better 

cluster detection than the DBSCAN clustering algorithm. 
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Table 7.15: DBSCAN v/s Adaptive Shrinking Based Method on a Synthetic Dataset 

Cluster 
no. 

Algorithm *"i c-*•1 I c f n c f l  Precision 
(%) 

Recall 
(%) 

F-measure 
(%) 

i=l DBSCAN 515 1230 447 36.34 86.80 51.23 i=l 

Proposed 515 630 498 79.05 96.70 86.99 

i=2 DBSCAN 496 2 2 100 0.40 0.80 i=2 

Proposed 496 439 404 92.03 81.45 86.42 

i=3 DBSCAN 549 NA NA NA NA NA i=3 

Proposed 549 538 524 97.40 95.45 96.41 

i=4 DBSCAN 457 2 2 100 0.44 0.88 i=4 

Proposed 457 410 395 96.34 86.43 91.11 

3. Synthetic dataset with 120 dimensions: The aaptive shrinking based clustering 

algorithm is applied by setting the minimum movement threshold MTh values ranging 

from 0.10 to 2.0 with the increments of 0.1 and hierarchy level of one, two and three. 

After obtaining the clusters for all the combinations of (MTh, level), best clusters are 

selected. Similarly, experiments are conducted with the benchmark method. The 

minimum movement threshold MTh-parameter is set to values ranging from 0.5 to 4.0 

with the increments of 0.1 and different grid scales are used for cluster detection [1]. The 

Table 7.16 shows the comparison of both the clustering method, which compares the 

precision, recall, and F-measure for the two algorithms. After comparing the two 

methods, it is evident that adaptive shrinking based clustering performs better than the 

benchmark method. 



128 

Table 7.16: Benchmark Method v/s Adaptive Shrinking Based Method on a Synthetic 
Dataset 

Cluster 
no. 

Algorithm €f c? i c f n c f i  Precision 
( % )  

Recall 
( % )  

F-measure 
( % )  

i=l Benchmark 543 30 30 100 5.52 10.46 i=l 

Proposed 543 624 505 80.93 93.00 86.55 

i=2 Benchmark 580 973 580 59.61 100 74.67 i=2 

Proposed 580 511 469 91.78 80.86 85.97 

i=3 Benchmark 522 34 34 100 6.51 12.22 i=3 

Proposed 522 525 465 88.57 89.08 88.82 

i=4 Benchmark 417 34 34 100 8.15 15.07 i=4 

Proposed 417 402 344 85.57 82.49 84.00 

Next, a comparative study is conducted between the CURE clustering algorithm 

and adaptive shrinking based clustering algorithm for this dataset, which is presented in 

Table 7.17. Experiments on the CURE clustering algorithm are conducted for different 

parameter configuration [52]. The a- parameter is set to values ranging from .10 to .30 

with increments of .05 and the MinPts parameter is set to values ranging from 10 to 60 

with increments of five. The comparison presented in Table 7.17 demonstrates that the 

adaptive shrinking based clustering has a better cluster detection than the CURE 

clustering algorithm. Finally, the DBSCAN algorithm is used for the experiments. To 

find the best clustering result, the Eps parameter is set to values ranging from 0.50 to 1.5 

with increments of .1 and the MinPts parameter is set to values ranging from one to 10 

with increments of one. The results presented in Table 7.18 conclude that the adaptive 

shrinking based clustering algorithm has better performance than the DBSCAN 

algorithm. 
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Table 7.17: CURE v/s Adaptive Shrinking Based Method on a Synthetic Dataset 

Cluster 
no. 

Algorithm c° (?• i I c f n c f l  Precision 
(%) 

Recall 
(%) 

F-measure 
(%) 

i=l CURE 543 686 524 76.38 96.50 85.27 i=l 

Proposed 543 624 505 80.93 93.00 86.55 

i=2 CURE 580 1376 507 36.85 87.41 51.84 i=2 

Proposed 580 511 469 91.78 80.86 85.97 

i=3 CURE 522 NA NA NA NA NA i=3 

Proposed 522 525 465 88.57 89.08 88.82 

i=4 CURE 417 NA NA NA NA NA i=4 

Proposed 417 402 344 85.57 82.49 84.00 

Table 7.18: DBSCAN v/s Adaptive Shrinking Based Method on a Synthetic Dataset 

Cluster 
no. 

Algorithm c°- (f I c f n c f l  Precision 
(%) 

Recall 
(%) 

F-measure 
(%) 

i=l DBSCAN 543 2 2 100 0.37 0.7 i=l 

Proposed 543 510 479 93.92 88.21 86.55 

i=2 DBSCAN 580 1454 531 36.52 91.55 52.21 i=2 

Proposed 580 233 212 90.99 36.55 85.97 

i=3 DBSCAN 522 NA NA NA NA NA i=3 

Proposed 522 1150 501 43.57 95.98 88.82 

i=4 DBSCAN 417 NA NA NA NA NA i=4 

Proposed 417 169 157 92.90 37.65 84.00 

7.4.4 Time Complexity Analysis 

The time complexity analysis related to the grid generation algorithm, data 

shrinking algorithm, and clustering algorithm are explained in the following list. 

1. Grid Generation Algorithm: In this algorithm, the total number of micro-

partitions MpNumber is first calculated. Next, discrete wavelet transform is computed 
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for every micro-partition. This step takes 0{Mp s i z e) time. Thus, the time complexity 

of the overall process is 0(MpNumber * Mpsize). Next, multi-objective selective 

agglomerative hierarchical partit ioning is performed. This step takes 0(MpN u m b e r  * 

(Mpsize)2) time. Thus, the time complexity of the algorithm for all dimensions 

is 0{d * MpN u m b e r  * (MpsiZ e)2).  

2. Data Shrinking Algorithm: In this algorithm, first, map N data points on a grid 

structure and then find all  nonempty cells NC e U s .  This step takes 0(d * N * NC e n s) 

time. Next, perform shrinking which takes 0(NCeus
2) time for a single iteration. 

Therefore, the overall  t ime complexity of the algorithm for /  iterations is 0(1 * 

Ncells )• 

3. Clustering Algorithm: The clustering algorithm is a grid-based hierarchical 

clustering algorithm in which nonempty grid cell are clustered in agglomerative 

fashion. If NCeus represent the number of nonempty grid cells, then the time 

complexity of the algorithm is 0(NC eus
2 ) .  

7.5 Conclusion 

In this chapter, a new shrinking based clustering algorithm is presented. The 

developed algorithm is an adaptive grid-based data shrinking and clustering algorithm 

that addresses the limitations of existing data shrinking based clustering algorithms. 

Three unique algorithms have been explained in this chapter: a multi-objective selective 

agglomerative hierarchical partitioning algorithm to generate multilevel adaptive grids, 

an adaptive grid-based data shrinking algorithm to reduce the sparseness of the 

multidimensional datasets, and a grid-based hierarchical clustering algorithm to detect 

clusters. Experimental results have demonstrated that the developed algorithm can 
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produce superior and competitive results when compared with other shrinking based 

clustering algorithms and traditional clustering algorithms. 



CHAPTER 8 

CONCLUSIONS 

The research presented in this dissertation is aimed to develop novel learning 

techniques for data mining and addressing the important issues such as data sparseness, 

high dimensionality, and large size of the datasets. Application of the grid-based 

localized learning paradigm was envisaged to achieve this goal. As a result, supervised 

and unsupervised learning methods are developed that utilize grid-based localized 

learning paradigm [80, 81]. The details of the contribution of this dissertation are 

discussed in the following sections. 

8.1 Contribution to Grid-Based Supervised Learning 

In this dissertation, two methods are presented related to the supervised learning. 

The first method is a feature ranking method. It is based on the unique data shrinking 

profile of each feature, which is computed after performing the data shrinking operation. 

It is based on the hypothesis that every dimension that participates in the shrinking 

process shrinks in a unique way and can be used to find the most discriminating features. 

The experimental results also confirm the hypothesis. The second method is a 

classification algorithm. It utilizes the grid-based learning paradigm for the classification 

model. The classification models consist of the data preprocessing phase, the grid 

generation phase, the training phase and the test phase. The experimental study also 

indicates that grid-based classifiers are scalable and demonstrate a linear increase in the 
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execution time with an increase in the number of dimensions and size of the datasets. 

These two methods provide a unique contribution in the area of supervised learning and 

dimensionality reduction [80, 81]. 

8.2 Contribution to Grid-Based Unsupervised Learning 

In this dissertation, a clustering algorithm is presented which is related to the 

unsupervised learning paradigm. A novel approach of shrinking based clustering is 

presented that aims to address the limitations of the existing data shrinking approaches by 

utilizing the adaptive grid structures for data shrinking and clustering. It is based on the 

hypothesis that adaptive grid structures are more effective than uniform grid structures. 

The experimental study also confirms the hypothesis. This method provides a unique 

contribution in the area of unsupervised learning and sparseness reduction methods. 

The experimental studies have established the potential of adaptive grid-based 

localized learning for both supervised and unsupervised computational frameworks. The 

contribution of the above mentioned novel algorithms not only lays the foundation for 

research in this direction, but it also opens new venues for research in this direction. In 

this realm of data mining, there are still lots of open questions and opportunities that can 

be explored. As a future direction, these algorithms can be further enhanced by focusing 

on improving their computational time and memory space requirements. Similarly, these 

algorithms can be utilized for handling massive datasets by parallelizing these algorithms. 
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