
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Fall 2012

Adaptive grid based localized learning for
multidimensional data
Sheetal Saini

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Databases and Information Systems Commons

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.latech.edu%2Fdissertations%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages

ADAPTIVE GRID BASED LOCALIZED LEARNING

FOR MULTIDIMENSIONAL DATA

by

Sheetal Saini, B. Eng.

A Dissertation Presented in Partial Fulfillment
of the Requirements of the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

November 2012

UMI Number: 3534292

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI 3534292

Published by ProQuest LLC 2012. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.

All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

LOUISIANA TECH UNIVERSITY

by_

entitled

THE GRADUATE SCHOOL

9/21/2012

Date

We hereby recommend that the dissertation prepared under our supervision

Sheetal Saini

Adaptive Grid Based Localized Learning for Multidimensional Data

be accepted in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in Computational Analysis and Modeling

Supervisor oQ)issctiation Research

Head ofDepartment

Computational Analysis and Modeling
Department

Recommendation concurred in:

yfijmj W TKrmjtJon/ S-P

Apprised: C J

Director of Graduate Studies

—/ [I
Dean of the College

Advisory Committee

Approved:

Dean of tfte Graduate School

CiS I orm 13a
(6/07)

ABSTRACT

Rapid advances in data-rich domains of science, technology, and business has

amplified the computational challenges of "Big Data" synthesis necessary to slow the

widening gap between the rate at which the data is being collected and analyzed for

knowledge. This has led to the renewed need for efficient and accurate algorithms,

framework, and algorithmic mechanisms essential for knowledge discovery, especially in

the domains of clustering, classification, dimensionality reduction, feature ranking, and

feature selection. However, data mining algorithms are frequently challenged by the

sparseness due to the high dimensionality of the datasets in such domains which is

particularly detrimental to the performance of unsupervised learning algorithms.

The motivation for the research presented in this dissertation is to develop novel

data mining algorithms to address the challenges of high dimensionality, sparseness and

large volumes of datasets by using a unique grid-based localized learning paradigm for

data movement clustering and classification schema. The grid-based learning is

recognized in data mining as these algorithms are inherently efficient since they reduce

the search space by partitioning the feature space into effective partitions. However, these

approaches have not been successfully devised for supervised learning algorithms or

sparseness reduction algorithm as they require careful estimation of grid sizes, partitions

and data movement error calculations. Grid-based localized learning algorithms can scale

well with an increase in dimensionality and the size of the datasets.

iii

iv

To fulfill the goal of designing and developing learning algorithms that can

handle data sparseness, high data dimensionality, and large size of data, in a concurrent

manner to avoid the feature selection biases, a set of novel data mining algorithms using

grid-based localized learning principles are developed and presented. The first algorithm

is a unique computational framework for feature ranking that employs adaptive grid-

based data shrinking for feature ranking. This method addresses the limitations of

existing feature ranking methods by using a scoring function that discovers and exploits

dependencies from all the features in the data. Data shrinking principles are established

and metricized to capture and exploit dependencies between features. The second core

algorithmic contribution is a novel supervised learning algorithm that utilizes grid-based

localized learning to build a nonparametric classification model. In this classification

model, feature space is divided using uniform/non-uniform partitions and data space

subdivision is performed using a grid structure which is then used to build a classification

model using grid-based nearest-neighbor learning. The third algorithm is an unsupervised

clustering algorithm that is augmented with data shrinking to enhance the clustering

performance of the algorithm. This algorithm addresses the limitations of the existing

grid-based data shrinking and clustering algorithms by using an adaptive grid-based

learning. Multiple experiments on a diversified set of datasets evaluate and discuss the

effectiveness of dimensionality reduction, feature selection, unsupervised and supervised

learning, and the scalability of the proposed methods compared to the established

methods in the literature.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to

reproduce, by appropriate methods, upon request, any or all portions of this Dissertation. It is understood

that "proper request" consists of the agreement, on the part of the requesting party, that said reproduction

is for his personal use and that subsequent reproduction will not occur without written approval of the

author of this Dissertation. Further, any portions of the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author of this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions of this Dissertation.

Author _ SHEETAL SAINI

Date 09/21/2012

GS Form 14
(5/03)

DEDICATION

To my family and elders for their sacrifices, support, patience, and endless

prayers for me.

vi

TABLE OF CONTENTS

ABSTRACT iii

DEDICATION vi

LIST OF TABLES xii

LIST OF FIGURES xiv

ACKNOWLEDGEMENTS xvii

CHAPTER 1 INTRODUCTION 1

1.1 Knowledge Discovery in Databases 2

1.2 Data Mining 4

1.3 Learning Techniques 5

1.3.1 Unsupervised Learning 6

1.3.2 Supervised Learning 6

1.4 Localized Learning 7

1.4.1 Nearest-Neighbor Learning 7

1.4.2 Grid-Based Nearest-Neighbor Learning 8

1.5 Dissertation Organization 9

CHAPTER 2 RELATED RESEARCH 12

2.1 Grid-Based Localized Learning 13

2.2 Data Shrinking 14

2.2.1 Point-Based Approach 16

2.2.2 Grid-Based Approach 16

vii

2.3 Feature Selection and Ranking 16

2.4 Classification 17

2.5 Clustering 19

2.5.1 Partitioning-Based Clustering 19

2.5.2 Density-Based Clustering 19

2.5.3 Hierarchical Clustering 20

2.5.3.1 Agglomerative Hierarchical Clustering 20

2.5.3.2 Divisive Hierarchical Clustering 21

2.5.4 Grid-Based Clustering 21

2.5.4.1 Uniform Grid-Based Clustering 22

2.5.4.2 Non-Uniform Grid-Based Clustering 22

2.5.5 Data Shrinking Based Clustering 22

2.6 Conclusion 24

CHAPTER 3 PRELIMINARIES OF GRID-BASED LOCALIZED LEARNING 25

3.1 Notations 25

3.2 Formal Definitions 26

CHAPTER 4 GRID-BASED LOCALIZED LEARNING FOR DATA
PREPROCESSING 35

4.1 Data Preprocessing 36

4.2 Data Sparseness 38

4.3 Research Motivation 39

4.3.1 Limitations of Existing Techniques 39

4.3.2 Advantages of Non-Uniform Grid 40

4.4 Experimental Study 41

ix

4.4.1 Datasets 41

4.4.2 Effect of Sparseness 42

4.4.3 Comparative Study 43

4.4.3.1 Comparison of Partitioning Methods 43

4.4.3.2 Comparison of Shrinking Methods 46

4.5 Conclusion 50

CHAPTER 5 GRID-BASED LOCALIZED LEARNING FOR FEATURE
RANKING 51

5.1 Research Motivation 52

5.2 Problem Statement 53

5.3 Methodology 53

5.3.1 Data Preprocessing 54

5.3.2 Adaptive Grid Generation 54

5.3.3 Data Shrinking 55

5.3.3.1 Data Movement Model 56

5.3.3.2 Data Shrinking Process 57

5.3.4 Feature Ranking Method 58

5.4 Results and Discussions 60

5.4.1 Datasets 60

5.4.2 Validation 61

5.4.3 Experiments 61

5.5 Conclusion 68

CHAPTER 6 GRID-BASED LOCALIZED LEARNING FOR CLASSIFICATION 69

6.1 Research Motivation 70

X

6.2 Problem Statement 70

6.3 Methodology 70

6.3.1 Data Preprocessing 71

6.3.2 Grid Generation 71

6.3.2.1 Uniform Grid Generation 71

6.3.2.2 Adaptive Grid Generation 72

6.3.3 Training Phase 74

6.3.4 Test Phase 76

6.4 Results and Discussions 77

6.4.1 Datasets 78

6.4.2 Validation 79

6.4.3 Experiments 80

6.4.3.1 Scalability Analysis 80

6.4.3.2 Comparative Analysis 87

6.4.4 Time Complexity Analysis 89

6.5 Conclusion 90

CHAPTER 7 GRID-BASED LOCALIZED LEARNING FOR CLUSTERING 92

7.1 Research Motivation 93

7.2 Problem Statement 93

7.3 Methodology 94

7.3.1 Data Preprocessing 95

7.3.2 Adaptive Grid Generation 95

7.3.2.1 Finding Micro-Partitions 96

xi

7.3.2.2 Data Transformation 97

7.3.2.3 MOSAH Partitioning 98

7.3.2.4 Algorithmic Description 99

7.3.3 Adaptive Grid-Based Shrinking 100

7.3.3.1 Ranking Neighboring Grid Cells 100

7.3.3.2 Data Movement Model 102

7.3.3.3 Data Shrinking Process 103

7.3.4 Adaptive Grid-Based Clustering 105

7.4 Results and Discussion 107

7.4.1 Datasets 107

7.4.2 Validation 108

7.4.3 Experiments 109

7.4.3.1 Scalability Analysis 110

7.4.3.2 Comparative Analysis 114

7.4.4 Time Complexity Analysis 129

7.5 Conclusion 130

CHAPTER 8 CONCLUSIONS 132

8.1 Contribution to Grid-Based Supervised Learning 132

8.2 Contribution to Grid-Based Unsupervised Learning 133

REFERENCES 134

LIST OF TABLES

Table 5.1: Common Top Ranked Features 63

Table 5.2: Comparison of F-measure for Neural Network 64

Table 5.3: Comparison of F-measure for PART 65

Table 5.4: Comparison of F-measure for Logistic Regression 66

Table 5.5: Comparison of Avg. Precision, Recall, Accuracy for PART 66

Table 5.6: Comparison of Avg. Precision, Recall, Accuracy for Logistic Regression... 67

Table 5.7: Comparison of Avg. Precision, Recall, Accuracy for Neural Network 68

Table 7.1: Benchmark v/s Adaptive Shrinking Based Method on Wine Dataset 115

Table 7.2: CURE v/s Adaptive Shrinking Based Method on Wine Dataset 116

Table 7.3: DBSCAN v/s Adaptive Shrinking Based Method on Wine Dataset 116

Table 7.4: Benchmark v/s Adaptive Shrinking Based Method on Ecoli Dataset 117

Table 7.5: CURE v/s Adaptive Shrinking Based Method on Ecoli Dataset 118

Table 7.6: DBSCAN v/s Adaptive Shrinking Based Method on Ecoli Dataset 119

Table 7.7: Benchmark v/s Adaptive Shrinking Based Method on Protein Dataset 120

Table 7.8: CURE v/s Adaptive Shrinking Based Method on Protein Dataset 121

Table 7.9: DBSCAN v/s Adaptive Shrinking Based Method on Protein Dataset 122

Table 7.10: Benchmark Method v/s Adaptive Shrinking Based Method on a
Synthetic Dataset 123

Table 7.11: CURE v/s Adaptive Shrinking Based Method on a Synthetic Dataset 124

Table 7.12: DBSCAN v/s Adaptive Shrinking Based Method on a Synthetic
Dataset 124

xii

xiii

Table 7.13: Benchmark Method v/s Adaptive Shrinking Based Method on a
Synthetic Dataset 125

Table 7.14: CURE v/s Adaptive Shrinking Based Method on a Synthetic Dataset 126

Table 7.15: DBSCAN v/s Adaptive Shrinking Based Method on a Synthetic
Dataset 127

Table 7.16: Benchmark Method v/s Adaptive Shrinking Based Method on a
Synthetic Dataset 128

Table 7.17: CURE v/s Adaptive Shrinking Based Method on a Synthetic Dataset 129

Table 7.18: DBSCAN v/s Adaptive Shrinking Based Method on a Synthetic
Dataset 129

LIST OF FIGURES

Figure 1.1: KDD Process 3

Figure 1.2: Data Mining as Confluence of Multiple Disciplines 5

Figure 1.3: Two-Dimensional Grid 8

Figure 1.4: Key Elements of This Dissertation 9

Figure 2.1: Grid-Based Localized Learning Paradigm 14

Figure 2.2: Data Shrinking Approaches 15

Figure 2.3: Types of Data Grids 22

Figure 3.1: A Two-Dimensional Uniform Grid 27

Figure 3.2: A Two-Dimensional Non-Uniform Grid 28

Figure 3.3: A Grid Cell Representation 28

Figure 4.1: Average Pairwise Euclidean Distance v/s Dimensions 42

Figure 4.2: log2 (Total Grid Cells/Non-Empty Grid Cells) v/s Dimensions 44

Figure 4.3: log2 (Total Grid Cells /Non-Empty Grid Cells) v/s Dimensions 45

Figure 4.4: log2 (Total Grid Cells/Non-Empty Grid Cells) v/s Dimensions 46

Figure 4.5: Cumulative Wavelet Entropy v/s Dimensions 47

Figure 4.6: Cumulative Energy v/s Dimensions 48

Figure 4.7: Cumulative Information Entropy v/s Dimensions 49

Figure 4.8: Average Execution Time v/s Dimensions 50

Figure 5.1: Data Shrinking Based Feature Ranking Framework 54

Figure 5.2: Adaptive Grid Generation Algorithm 55

xiv

XV

Figure 5.3: Adaptive Data Shrinking Algorithm 57

Figure 5.4: Feature Ranking and Selection Algorithm 59

Figure 5.5: Comparison of Top Ranked Features 62

Figure 6.1: Variance-Based Partitioning Algorithm 73

Figure 6.2: Training Phase of the Grid-Based Classifier 75

Figure 6.3: Test Phase of the Grid-Based Classifier 77

Figure 6.4: Training Phase Execution Time v/s Dimensions 81

Figure 6.5: Training Phase Execution Time v/s Dataset Size 82

Figure 6.6: Average Execution Time/Sample v/s Dimensions 83

Figure 6.7: Average Execution Time/Sample v/s Dataset Size 83

Figure 6.8: Execution Time v/s Dimensions 84

Figure 6.9: Execution Time v/s Dataset Size 85

Figure 6.10: Average Execution Time/Sample v/s Dimensions 86

Figure 6.11: Average Execution Time/Sample v/s Dataset Size 86

Figure 6.12: Comparative Study on Letter Recognition Dataset 87

Figure 6.13: Comparative Study on Profile Correlation Feature Set 88

Figure 6.14: Comparative Study on Protein Structural Classification Dataset 89

Figure 7.1: Adaptive Shrinking Based Clustering Approach 94

Figure 7.2: MOSAH Partitioning of Micro-partitions 98

Figure 7.3: Data Adaptive Grid Generation Algorithm 99

Figure 7.4: A Two-Dimensional Grid with Cell ID's 101

Figure 7.5: Hierarchical Decomposition of Data Adaptive Partitions 103

Figure 7.6: Pseudo-code for Data Shrinking Algorithm 104

xvi

Figure 7.7: Grid-Based Hierarchical Clustering 105

Figure 7.8: Pseudo-code for Adaptive Grid-Based Clustering 106

Figure 7.9: Execution Time v/s Dataset Size (Analysis for Grid Generation
Method) 110

Figure 7.10: Execution Time v/s Dimensions (Analysis for Grid Generation
Method) Ill

Figure 7.11: Execution Time v/s Dataset Size (Analysis for Data Shrinking
Method) 112

Figure 7.12: Execution Time v/s Dimensions (Analysis for Data Shrinking
Method) 112

Figure 7.13: Execution Time v/s Dataset Size (Analysis for Clustering Method) 113

Figure 7.14: Execution Time v/s Dimensions (Analysis for Clustering Method) 113

ACKNOWLEDGEMENTS

My dissertation has not only tested my skills and determination, but it has also

tested the support and patience of my family, close friends and people around me. First of

all, I would like to thank Dr. Sumeet Dua for providing his guidance and financial

support throughout my PhD. I am grateful to the Louisiana Biomedical Research

Network (LBRN), the Louisiana Alliance for Simulation-Guided Materials Applications

(LA-SiGMA), National Science Foundation (NSF), and National Institutes of Health

(NIH) for providing financial support for my education and research. I am only able to

achieve my goals through the support and patience of my whole family. I am indebted to

them for their support and patience throughout my PhD, especially my grandmother's

and my mother's endless prayers for me. Finally, I would like to thank my close friends

who extended their valuable support whenever possible. I would have not finished it

without their support.

xvii

CHAPTER 1

INTRODUCTION

The common characteristics of contemporary datasets are multi dimensionality,

sparseness, and the large size of the data. These characteristics are the main motivation

behind the development of novel algorithms and frameworks for automated and

sophisticated data mining systems that search nontrivial, previously unknown, and

potentially useful knowledge from the data. Many researchers and scientists have

developed automated systems that address these problems. As a result, ample literature

on these problems and potential solutions are available. However, there is always a need

to improve the existing algorithms, frameworks, and systems to achieve better

performance and address the shortcomings of the existing data mining techniques.

Data mining techniques are commonly categorized based on the type of

knowledge mined by these techniques. The most common data mining techniques are

classification, and clustering. Classification is used to build models based on the data and

known class labels that can describe data classes or groups [1, 2]. It predicts categorical

class labels based on known examples. Therefore, it is also referred to as supervised

learning. There are ample classification techniques, such as decision tree classifier,

Bayesian classifier, rule based classifier, neural network classifier, support vector

machine, k-nearest-neighbor classifier, and others. Unlike classification, clustering and

unsupervised learning does not rely on predefined classes and class-labeled training

1

2

examples. For this reason, clustering is a form of learning by observation, rather than

learning by examples.

The algorithms presented in this dissertation are created using the grid-based

localized learning paradigm of data mining for knowledge discovery. To explain these

paradigms, the understanding of the knowledge discovery process, data mining, machine

learning, and localized learning are critical. Therefore, the process of knowledge

discovery in databases (KDD), data mining, which is the core of the KDD process,

machine learning, and localized learning and grid-based localized learning paradigms are

outlined and explained in this chapter.

1.1 Knowledge Discovery in Databases

The phrase knowledge discovery in databases commonly (KDD) refers to the

process of extracting nontrivial, implicit, previously unknown, valid, potentially useful,

and understandable patterns/knowledge from data in databases by applying data mining

algorithms [1]. Knowledge discovery in databases (KDD) is an interactive and iterative

process that involves many decisions made by the end user. Knowledge discovery in

databases process includes data selection, data preprocessing, data transformation, data

mining, and data evaluation/interpretation. All the steps involved in the KDD process are

defined and discussed below. Figure 1.1 depicts the KDD process.

3

Data

Evaluation/

Interpretation

Data

Mining

Data

T ransf ormation

Patterns Data
Preprocessing

Data
Selection

Target
Data

>,D»ta

Figure 1.1: KDD Process

1. Data Selection: Data selection is the process of creating a target dataset on

which knowledge discovery is to be performed. Extracting a target dataset refers to the

selection of a subset of data attributes, data samples, or both attributes and samples that

are relevant for the analysis task at hand [1].

2. Data Preprocessing: Data preprocessing is a data cleaning process, which

involves operations such as removing noise, filling in missing values, and eliminating

inconsistent data. It requires identification and selection of appropriate method for each

operation.

3. Data Transformation: Data transformation is the process of converting data

into the format that is most appropriate for relevant data mining tasks. Data

4

transformation includes data aggregation, data smoothing, data normalization, data

generalization, and feature construction [1].

4. Data Mining: Data mining in the KDD process is a step that involves

extracting patterns/knowledge of interest in a particular representational form by applying

an appropriate data modeling technique. These data modeling techniques include

association rule discovery, classification models, clustering models, and prediction

models [1].

5. Data Evaluation/Interpretation: Data evaluation and interpretation is the

process in which discovered patterns/knowledge is evaluated. This step also involves the

interpretation of patterns through visualization or other means of representation.

1.2 Data Mining

Data mining is the process of extracting or mining interesting and useful patterns

or knowledge from the given data [2]. In data mining, the term 'extraction of patterns or

knowledge' refers to fitting a model to data, finding implicit structure from the data, or

describing the data through a high level of abstraction [3]. There are two prevalent

perspectives regarding data mining. The first perspective treats data mining as a synonym

for knowledge discovery in databases (KDD), and the second perspective treats data

mining as an essential step in the process of knowledge discovery in databases (see

Figure 1.1). In both cases, data mining is an interdisciplinary field, and it is a confluence

of multiple disciplines. Disciplines that contribute to data mining are database systems,

statistics, machine learning, visualization, and information science [2]. It relies heavily on

machine learning, pattern recognition, mathematics, and statistical techniques to find

5

patterns/knowledge from data [2], Figure 1.2 depicts the interdisciplinary view of data

mining.

Figure 1.2: Data Mining as Confluence of Multiple Disciplines

As shown in Figure 1.2, data mining is the process of applying specific methods

to extract interesting patterns/knowledge from the data [1].

1.3 Learning Techniques

Machine learning is a domain of artificial intelligence methods that are designed

to automatically learn to recognize the evolving behavior of the system based on sample

data. The term also refers to designing algorithms that optimize the performance criteria

of the chosen mathematical model based on the input data [4]. These mathematical

models can be predictive or descriptive. Predictive models are used to predict future

outcomes, and descriptive models are used to gain knowledge about the data. Machine

learning techniques can be broadly categorized into supervised learning and unsupervised

6

learning [4J. In subsections 1.3.1 and 1.3.2, supervised learning and unsupervised

learning methods are explained.

1.3.1 Unsupervised Learning

Unsupervised learning is learning by observation, rather than learning by

example. It does not rely on predefined classes and class-labeled training examples [2]. In

unsupervised learning, the class label of each data point is not known. In some cases, the

total number of classes to be learned may not be known in advance. The aim of the

unsupervised learning is to identify patterns in the data that occur more often than others

based on the structure of the data space [4, 5]. Commonly employed unsupervised

learning techniques are clustering, subspace clustering, bi-clustering, and density

estimation. The basic principle of all these techniques is to group the data into clusters

such that data points within a cluster are very similar to each other but are very dissimilar

to the data points in other clusters.

1.3.2 Supervised Learning

Supervised learning is learning by example. It relies on the knowledge about the

class labels of each data point and the number of classes. Supervised learning is a two-

step process. In the first step, a learning model is built using the predefined number of

classes and class labels of each data point. This learning step is called the training phase.

Each data point is assumed to belong to a predefined class which is determined by a class

label attribute. The class label attribute is categorical, and each value serves as a class

identifier [2]. The data points that are part of the training phase are collectively referred

to as a training set and are selected from the given dataset. In the second step, the model

learned in the first step is used to assign class labels to the data points that do not have

any class label. This step is also called the testing phase. The data points that are part of

7

the testing phase are collectively referred to as the test set and are also selected from the

given dataset for validation.

1.4 Localized Learning

Two commonly used learning techniques are known as parametric learning and

nonparametric learning, respectively [4]. In parametric learning, a valid model is assumed

for the whole input space, whereas in nonparametric learning no model is assumed. In

nonparametric learning, there is no single global model, but local models are built based

on the local neighborhood [4]. Therefore, a nonparametric learning strategy can also be

referred to as 'localized learning.'

All the localized learning methods follow the same philosophy and can only be

differentiated based on the similarity criteria of the neighborhood. Distance based

nearest-neighbor learning is the most common form of neighborhood learning, but other

methods such as grid-based nearest-neighbor learning and rule based nearest-neighbor

learning are used in machine learning as well [2, 6, 7, 8, 9, 10]. Localized learning refers

to the method of learning in which local models are learned or built based on a local

neighborhood.

1.4.1 Nearest-Neighbor Learning

Nearest-neighbor learning is based on the intuition that an input data instance is

more likely to be similar to input data instances that are in the neighborhood. 1-NN and

k-NN are two common nearest-neighbor learning strategies. In the 1-NN nearest-

neighbor method only one nearest-neighbor is identified, whereas, in the k-NN nearest-

neighbor method the total 'k' numbers of nearest-neighbors are identified [5]. Nearest-

neighbor learning is also referred to as a prototype method [5]. Nearest-neighbor learning

8

has been used for both supervised (k-NN classifier) and unsupervised (k-NN estimator)

learning. Grid-based nearest-neighbor learning, an important aspect of the research

presented in the first part of the dissertation, is explained below.

1.4.2 Grid-Based Nearest
-Neighbor Learning

The idea of grid-based nearest-neighbor learning originates from a class of

clustering algorithms known as grid-based clustering algorithms [6,7, 8, 9,10, 11, 12]. In

grid-based clustering algorithms, initially, dimensions are divided into two or more

partitions, and a grid structure is imposed on the feature space. This grid structure then

divides the feature space into small cells called grid cells (see Figure 1.3). Next, each data

sample is mapped onto the grid structure and assigned to a corresponding grid cell.

Finally, these grid cells are used for clustering, and neighbors are identified by searching

for adjacent non-empty grid cells. Figure 1.3 depicts a two-dimensional grid structure.

Neighbors Non-Empty Cell

Grid
Structure

fS
a
•2 o <£ «n
§ o
E
5

<n
<N
o

Grid Cells

Data Point

0.0 0.25 0.50 0.75 1
Dimension 1

Figure 1.3: Two-Dimensional Grid

9

Thus, in grid-based nearest-neighbor learning, the definition of a neighborhood is based

on the concept of grid cells, rather than individual data points.

1.5 Dissertation Organization

The remainder of the dissertation is further divided into seven more chapters. The

organization and the outline of the remaining dissertation are as follows. A pictorial

representation of the key elements of this dissertation is presented in Figure 1.4.

DlsVI l< I \1 ION

Figure 1.4: Key Elements of This Dissertation

Chapter 2: In Chapter 2, research related to the problem domain of this

dissertation is presented. It includes discussion on pertinent literature review on data

shrinking preprocessing, feature ranking, classification and clustering techniques.

10

Chapter 3: In Chapter 3, preliminaries of grid-based localized learning are

presented. It includes description of notations that are used in subsequent chapters. It also

includes formal definitions of various terminologies that are essential in understanding

the concepts of grid-based localized learning paradigm.

Chapter 4: In Chapter 4, the need for data preprocessing and various methods of

data preprocessing techniques are discussed. However, special emphasis is given to data

shrinking preprocessing techniques and its need for sparseness reduction in

multidimensional data. This chapter also includes experimental studies that demonstrate

the benefits of the newly developed sparseness reduction technique presented in this

dissertation.

Chapter 5: In Chapter 5, a feature ranking method is presented that uses the grid-

based localized learning method. This chapter discusses research motivation, problem

statement, and methodology. Experimental studies are also presented in which

comparative studies of the existing and newly developed feature ranking methods are

performed.

Chapter 6: In Chapter 6, a grid-based localized learning method is presented for

classification. This chapter includes discussion on research motivation, problem

statement and explains the developed grid-based classification framework. Finally,

experimental studies are presented to compare the newly developed framework with

existing methodology.

Chapter 7: In Chapter 7, grid-based data shrinking and clustering algorithm is

presented. This chapter includes motivation and the problem statement for the research.

11

The developed methodology is also explained in detail which is further supported by

experimental study conducted.

Chapter 8: In Chapter 8, the conclusions and future directions are presented. It

also includes the outcomes of this dissertation.

CHAPTER 2

RELATED RESEARCH

Many data mining algorithms have been developed to address the challenges of

data sparseness, the curse of dimensionality, and the large size of the data [2,4, 5, 13,

14]. Many learning techniques have been developed to address these challenges. These

learning techniques are categorized into parametric and nonparametric approaches [2,4,

5, 15, 16, 17, 18]. In parametric learning approaches, a global model is built for all data

samples at once. In nonparametric learning approaches, local models are built using the

local neighborhood [4, 5]. Therefore, nonparametric approaches can also be referred to as

localized learning approaches. Nonparametric techniques of data modeling have

advantages over parametric techniques because of its simplicity [4, 5]. In the past, several

approaches have been developed for data mining using both parametric and

nonparametric learning models [2,4, 5]. However, the focus of the research in this

dissertation is on using grid-based localized learning techniques to address the challenges

of data sparseness, the curse of dimensionality, and the large size of data in data mining.

This chapter includes a discussion on the research related to clustering techniques ,

feature ranking techniques, data shrinking techniques, and classification techniques to

provide the general idea of these techniques and demonstrate a need to develop grid-

based localized learning techniques in these areas to address data mining challenges.

12

13

The remainder of the chapter is organized as follows. In Section 2.1, grid-based

localized learning is explained and discussed. In Section 2.2, research related to data

shrinking preprocessing, including existing grid-based shrinking approaches and non-

grid/point-based approaches, is explained [13,14, 20,21, 22, 23, 24]. In Section 2.3,

research related to feature selection and ranking is discussed. In 2.4, research related to

classification techniques. In Section 2.5, research related to clustering techniques is

discussed in general. However, special emphasis is given to grid-based clustering

techniques and clustering techniques that are augmented with data preprocessing

techniques to boost their performance. Finally, in Section 2.6, the conclusions of this

chapter are presented.

2.1 Grid-Based Localized Learning

Grid-based learning algorithms are nonparametric learning algorithms. In these

algorithms, a grid structure is imposed on the data space that divides it into smaller

partitions called grid cells. Data is mapped in these grid cells which are then used to build

local models using grid-based neighborhood learning [2]. In the past, grid-based localized

learning has been used extensively for designing unsupervised learning algorithms such

as clustering, subspace clustering, and data shrinking [25, 26, 27, 28, 29,13,14]. In this

dissertation, the scope of grid-based localized learning is further expanded into grid-

based data preprocessing techniques, such as data shrinking, grid-based supervised

learning techniques, grid-based clustering techniques, and grid-based data shrinking and

dimensionality reduction [30, 31]. Figure 2.1 depicts a schematic of a grid-based

localized learning paradigm.

14

Figure 2.1: Grid-Based Localized Learning Paradigm

The schematic depicts the applicability of gird-based localized learning in the area

of clustering, classification, data shrinking and dimensionality reduction techniques.

2.2 Data Shrinking

Data shrinking is a data preprocessing technique that is used to reduce the

sparseness in a multidimensional dataset. The sparseness of the data increases as the

number of dimensions increases [13, 14]. As a result, clusters of data points lack distinct

boundaries, and the detection of clusters with better accuracies is severely affected. The

data shrinking process utilizes the inherent characteristics of data distribution and outputs

a more condensed and reorganized dataset [13, 14]. In the data shrinking process, the

movement of data points is performed through the principle of data gravitation. Points are

attracted by their surrounding neighbors and move toward the center of their natural

clusters along the direction of the density gradient [20, 21, 22, 23, 24], Furthermore, data

shrinking approaches can be broadly categorized into grid-based approaches and non-

15

grid/point-based approaches. A pictorial representation of the categorization of data

shrinking approaches is presented in Figure 2.2.

1. GRAVITATIONAL MODELS [20,21,22,23]
2. CLUES [24]

i r <jr
NON-UNIFORM GRID-BASED UNIFORM GRID-BASED

GRAVITATIONAL MODEL GRAVITATIONAL
[PROPOSED] MODEL [13,14]

Figure 2.2: Data Shrinking Approaches

Grid-based data shrinking approaches employs grid-based partitioning to map the

data in a grid structure. Initially, data is mapped on a grid structure and grid cell

corresponding to each data point identified, and data points that are occupied in the same

grid cells are also identified. Data points in the same grid cell move to other locations as a

single unit. The movement of data points in each grid cell is then performed using the

principle of data gravitation [13, 14]. Non-grid-based data shrinking approaches use the

principle of data gravitation on individual data points. In these approaches, each data

point is moved by a simulated movement of data points [20, 21, 22, 23, 24], Grid-based

approaches are faster, scalable, and computationally less expensive than non-grid/point-

based approaches.

16

2.2.1 Point-Based Approach

In the past, many point-based data shrinking approaches have been used to

employ the principle of data gravitation or gravitational transform [20, 21, 22, 23, 24].

The essence of all the approaches is as follows. Initially, a model of attraction (data

gravitation) is assumed between the data points and a force of attraction is applied on a

data point by its surrounding/neighboring data points. Then, this force of attraction

enables the simulated movement of the data points. This process is applied for a specified

number of iterations or until some stopping criterion is satisfied.

2.2.2 Grid-Based Approach

In the past only one grid-based data shrinking approach has been developed [13].

The overall process for this approach can be summarized as follows. Initially, multi-scale

uniform grids are generated. Next, data points are mapped on the uniform grid structure

and corresponding grid cells. Then, data points in each dense cell are moved toward the

data centroid of the surrounding dense cells. This process is repeated until a specified

movement threshold is achieved or for a specified number of iterations.

2.3 Feature Selection and Ranking

Feature selection is a process of identifying and selecting a subset of features

from a given set of features to reduce the dimensionality of the data by optimizing an

evaluation criterion. Feature selection reduces the dimensionality by removing irrelevant,

noisy, and redundant features from the feature set [32, 33, 34, 35]. Application of feature

selection as a preprocessing step in a data mining algorithm can greatly improve the

accuracies and overall learning time of those algorithms. Feature selection techniques are

essential and better techniques are always needed. Feature selection is frequently used in

17

data mining, especially in the fields of Bioinformatics, web mining, and other high

dimensional data domains. The datasets in these domains may contain features that are

irrelevant and unimportant and may have no predictive power. In fact, for some

problems, only a small subset of features is usually relevant.

Feature selection techniques can be categorized into two categories, the filter

model or the wrapper model [36, 37, 38, 39]. The filter model relies on general

characteristics of the training data to select some features without involving any learning

algorithm [40,41,42,43,44,45]. The wrapper model requires one predetermined

learning algorithm in the feature selection and uses its performance to evaluate and

determine which features are selected. The wrapper methods tend to be more

computationally expensive than the filter model. The filter methods are usually chosen

due to its computational efficiency.

2.4 Classification

Classification is a supervised learning technique and many classification

techniques have been developed [46]. However, the design of each classifier addresses a

different issue, such as handling high dimensional and large datasets or improving the

performance of the existing classifier. The common motivation that inspires scalable

classifier design is the desire to develop a classifier capable of handling high dimensional

and large datasets without significant loss in a performance parameter, such as speed or

accuracy [47,48,49, 50, 51]. Handling high dimensional data in a data mining task, such

as classification, is challenging because of the curse of dimensionality. Several methods

have been developed to address the high dimensionality and large size of the dataset. The

18

SVM, KNN, and decision tree classifiers have been used extensively to design scalable

classifiers [2,46].

Decision tree based classification techniques, SLIQ and SPRINT are

representative examples of scalable classifiers [49, 50]. The SLIQ algorithm consists of

two phases, the tree growth phase and tree prune phase. It uses a one-time sort method

instead of repeatedly sorting to split the numeric attribute. The algorithm is able to sort

once rather than repeatedly, because it maintains separate lists for each attribute. It also

maintains the 'class list' data structure that must remain in the memory all the time. It

builds a single decision tree using the entire training dataset instead of using a sampled

dataset. The size of the 'class-list' is the same as the number of data points; therefore,

SLIQ can only handle data points that can be accommodated in the main memory. The

SPRINT algorithm is an improvement over the SLIQ algorithm. The design goal of the

researchers who developed SPRINT was to develop an accurate classifier for large

datasets. SPRINT shares most of SLIQ's features, but it uses the 'attribute-list' instead of

the 'class-list.' Unlike SLIQ, SPRINT has no memory restriction, and is fast and scalable

[50].

A grid-based approach for the classification of network traffic data is presented in

[19]. This method classifies data into normal and abnormal classes for anomaly detection.

In this method, a two phase grid-based clustering algorithm was developed to partition

the network traffic data. In the first phase, data points were divided into non overlapping

cells for pre-clustering. In the second phase, k-hypercells clustering, the clusters returned

from the algorithm were presented in the form of logical expressions to generate rules for

the classification of network traffic data.

19

2.5 Clustering

Clustering is an unsupervised machine learning technique that groups the

unlabeled data points into their natural groups within a given dataset. The driving

principle of clustering is to have the data points in a cluster such that the data points

within the clusters have high intra-cluster similarity and the data points between clusters

have low inter-cluster similarity [2]. Clustering algorithms are commonly categorized in

partitioning algorithms , hierarchical algorithms, density-based algorithms and grid-based

algorithms [2, 52,53,54, 55, 56,57]. They are also categorized in a specialized category

called data shrinking based clustering algorithms [13, 14]. A detailed discussion about

these clustering algorithms is as follows.

2.5.1 Partitioning-Based Clustering

Partitioning-based clustering algorithms employ an iterative approach to cluster

the data points. This method starts with an initial configuration of k partitions. Initial k

partitions are constructed by randomly or heuristically dividing the data points into k

partitions specified by the user. Then, the data points in these k partitions are relocated or

regrouped in other partitions by iteratively applying some relocation techniques. Well-

known representative examples of partitioning-based clustering techniques are k-means,

k-medoids, EM algorithm, fuzzy c-means, CLARA, CLARANS, and PAM [2].

2.5.2 Density-Based Clustering

Density-based clustering algorithms consider clusters as regions of high data point

density separated by regions of low data points of density. Density-based clustering

approaches start by growing a cluster until a density threshold is satisfied. A cluster that

has a density greater or equal to the specified threshold is defined as a dense cluster and

initially forms a cluster. Two dense clusters are merged if they share a common neighbor

20

[53, 54]. Well-known representative examples of density-based clustering techniques are

DBSCAN, OPTICS, and DENCLUE [53, 54,7].

2.5.3 Hierarchical Clustering

Hierarchical clustering algorithms create a tree-like decomposition of the given

data [2]. Data is clustered at multiple levels of hierarchy. This method of clustering

provides an opportunity to simultaneously analyze the clusters at different levels.

Hierarchical clustering can start the clustering in bottom-up or top-down fashion.

Hierarchical clustering techniques commonly use average-linkage, centroid-linkage,

ward-linkage, single-linkage, and complete-linkage similarity criteria for clustering [2].

Dendrograms are generally used to represent the hierarchical decomposition of clusters.

In most of the hierarchical clustering algorithms, once the merging of two clusters takes

place, it cannot be undone. Therefore, most hierarchical clustering techniques are rigid.

Well-known representative examples of hierarchical algorithms are CURE,

CHAMELEON, ROCK, and BIRCH [52,55, 56, 57]. Hierarchical clustering algorithms

can be agglomerative or divisive.

2.5.3.1 Agglomerative Hierarchical
Clustering

The agglomerative hierarchical clustering approaches perform clustering in

bottom-up fashion. These approaches first assign each data point into its own cluster.

Then, these single data points are merged with the other closest data points to form a

bigger cluster using some similarity criterion. This process is repeated until all the data

points are in one big cluster [2].

21

2.5.3.2 Divisive Hierarchical Clustering

The divisive hierarchical clustering approaches perform clustering in top-down

fashion by assigning all the data points into one cluster. In the subsequent steps, these

bigger clusters are split into smaller clusters. This process is repeated until all the data

points are in one cluster or the desired number of clusters has been achieved [2].

2.5.4 Grid-Based Clustering

Grid-based clustering algorithms are based on grid-based localized learning. In

these algorithms, a uniform or non-uniform grid structure is imposed on the data space,

that is then partitioned into uniform or non-uniform grid cells. During this process,

relevant statistical information is collected for each grid cell. Clustering is performed on

grid cells instead of on individual data points. The most critical challenge of grid-based

algorithms is the selection of the proper grid cell size. Finer grid cell sizes lead to the

high computational cost and coarser grid cell sizes lead to poor clustering accuracies.

Well-known representative examples of grid-based clustering algorithms are

GRIDCLUS, DENCLUE, and WaveCluster [6,7, 8]. Grid-based clustering algorithms

are broadly categorized into uniform grid-based clustering and non-uniform grid-based

clustering. These algorithms are discussed in the following sections. Figure 2.3 depicts

grids used in clustering.

22

Figure 2.3: Types of Data Grids

2.5.4.1 Uniform Grid-Based Clustering

Uniform grid structures partition the data space using hyperplanes that are parallel

to the axis. These grid structures are also called axis-parallel grid structure. It imposes the

same size grid cells and do not take into account the underlying data distribution. Then,

relevant statistical information is collected for each grid cell and clustering is performed.

Well-known representative examples are WaveCluster, DENCLUE, and GRIDCLUS

[8,7, 6J.

2.5.4.2 Non-Uniform Grid-Based
Clustering

Non-Uniform grid-based clustering algorithms impose a data adaptive grid

structure. Non-Uniform grid-based clustering algorithms offer significant performance

improvement over other uniform grid-based clustering algorithms. Well-known

representative examples are MAFIA, DESCRY, and MMNG [22, 11, 12J.

2.5.5 Data Shrinking Based Clustering

A gravitational transform based clustering algorithm is presented in [20). In this

method, gravitational transform is applied to multi component image classification to

23

highlight the modes, or centers of high density regions, of data. The authors propose a

simple model of attraction in which only mutual attraction of neighboring data points is

enabled. This process is applied for a specified number of iterations. Finally, various

clustering algorithms are applied to test the effectiveness of the proposed gravitational

transform. Similarly, a new gravitational clustering algorithm that considers data points

as an object in a gravitational field has been introduced [22]. In this algorithm, each data

object is moved by simulating data movement for a specified number of iterations.

Finally, a cluster detection procedure is used to extract valid clusters at multiple

levels of resolution. Following these methods, another gravitational clustering algorithm

is presented in [23]. In this method, a force of attraction is applied between points,

allowing each point to move slowly under the influence of the resultant force [23]. Data

points that are close to each other during this movement process are merged to form a

cluster. This merging process results in a hierarchical tree structure. Finally, clusters are

obtained using an evaluation criterion. Further, a nonparametric clustering algorithm

called CLUES is presented in [24]. It performs three functions: data shrinking, data

clustering, and optimal cluster selection. The data shrinking process used in this

algorithm is derived from the gravitational clustering. The movement of each data point

is determined by the median of its k-nearest-neighbors because the median is more robust

than the mean. The coordinates of each data point are updated in all iterations of the

algorithm. This process is repeated until convergence is observed. Finally, data

partitioning and optimal cluster selection is applied.

A multi-scale uniform grid-based data shrinking and clustering algorithm that

simulates data movement toward the density gradient is presented in [13, 14]. This

24

technique is a three part method. First, data is mapped into grid cells. Then, data points in

each dense cell move toward the data centroid of the surrounding cells. This process is

repeated until a specified movement threshold is achieved for a specified number of

iterations. Ultimately, clusters are detected at multiple scales, and cluster evaluation is

performed to obtain the final clusters.

2.6 Conclusion

This chapter explores all related research paradigm in machine learning that are

part of this dissertation. It starts by discussing the localized learning paradigm and then

swiftly switches the discussion to the grid-based localized learning paradigm. It then

explains and discusses the data shrinking, data shrinking techniques and related issues.

Next, the clustering in general and research related to the dissertation such as grid-based

clustering, hierarchical clustering, and data shrinking based clustering are discussed.

Furthermore, it discusses related research in supervised machine learning paradigm.

CHAPTER 3

PRELIMINARIES OF GRID-BASED

LOCALIZED LEARNING

Grid-based localized learning is a specialized form of learning in which data

space is divided into small partitions called grid cells by imposing a grid structure. Thus,

it is necessary to formally introduce frequently used terminology in this area. In this

chapter, notations, formal definitions, and other important information relating to grid-

based localized learning are provided.

The remainder of the chapter is organized as follows. In Section 3.1, basic

notations used in explaining the algorithmic pseudo-code is discussed. In Section 3.2,

formal definitions and theorems pertaining to grid-based localized learning are explained

and discussed.

3.1 Notations

Let a set X = {X;}^ be a dataset of N d-dimensional data points, where X <= 5Hd

(9? represents the set of real numbers), Xt represents an element of X. Let the element X,

(Xj £ X) be a d-dimensional vector, which is represented by the vector Xt- =

(Xj i, , X i d) . Let the set of d-dimensions be denoted by ID) = {Dj}^ ^ For V j,

1 < j < d, let Dj be normalized between [0,1], where [0,1] c 31. Let 3) = "Dx x D2 x

x Dd be the d-dimensional data space in a unit hypercube [0,l]d c 5Rd.

25

26

Then, let n y = [0,1] denote the value domain of the dimension D; , where 1 < j < d . Let

for V T>j, Pr = [I, h) denote a right-opened interval or partition and Pc = [/, h] denote a

closed interval or partition, where I denotes the lower bound and h denotes the upper

bound of the partition. Let the value domain Tzy of dimension Dj be divided into K*

m u t u a l l y e x c l u s i v e p a r t i t i o n s . L e t / y n = [l j n i h j n) b e t h e n t h p a r t i t i o n , w h e r e 1 < j < d ,

1 < n < . Let Ij = {/;1, — JjXi] = rhe total-ordered

set (Ij, <) that denotes the partitions in dimension Dj such that (lj x < lj>2 < ••• < lj ^j j

^hj x < hj 2 < < hj jfi j. Let Object; be the total number of data points in the grid

cell Cj. Let Volumej be the volume of the grid cell Cj. Let pj be the density of the grid

cell Cj . Let Lj be the length of the ith partition of the grid cell Cj.

3.2 Formal Definitions

Using the above notations, the formal definitions of relevant terminologies in

grid-based localized learning are presented here.

Definition 3.1 (Grid): A grid G on a d-dimensional unit hypercube data space D that

partitions the data space into nj=i number of partitions is given by a d-ary Cartesian

product over d totally-ordered sets I\,L2> , ID- A d-dimensional grid G is given by

Equation 3.1 or 3.2:

G = LX x L2 x x ID, Eq. 3.1

G ~ «i» ^2,n2' > IJ.rij' • • • > | IJ.rij ^ /;}• Eq. 3.2

Definition 3.2 (Uniform Grid): A uniform/fixed size grid GUNIF0RM on a d-dimensional

data space that partitions the data space X) into fljlf X-' number of partitions is a d-ary

27

Cartesian product over d totally-ordered sets I1,12, , Id such that /a = /2 = =

Id = /, K' — K for V T)j and |hjn. — (/,n;| = 1/3^, for V rij. A d-dimensional uniform

grid GUNIFORM is given by Equation 3.3 or 3.4. Figure 3.1 depicts a two-dimensional

uniform grid:

Guniform = h x h x x Id, Eq. 3.3

Guniform — {('l.nj'h,n2> — >h.nj>•••> Wi) | b.nj G 'yj- Eq. 3.4

9

CS

0.0 0.25 0.50 0.75 I

Figure 3.1: A Two-Dimensional Uniform Grid

Definition 3.3 (Non-Uniform Grid): A non-uniform grid GADAPTIVE on a d-dimensional

data space that partitions the data space D into Y\JjZi number of partitions is a d-ary

Cartesian product over d totally ordered sets llt l2, ld such that I± =£ /2 =£ =£ Id

and 11 =£ 12 =£ =£ Id- A d-dimensional data adaptive grid GADAPTIVE is given by

Equation 3.5 or 3.6. Figure 3.2 depicts a two-dimensional non-uniform grid:

Gadaptive = h x ^2 x x Eq. 3.5

GADAPTIVE - {('l.Ti!' h,ri2> - > Ij.rij' •••> Ai,nd) | Ij.nj G Ij]- Eq. 3.6

28

T) o
6

*r> <N

0.0 0.30 0.75 1

Figure 3.2: A Two-Dimensional Non-Uniform Grid

Definition 3.4 (Grid Cell): A grid cell C in a d-dimensional grid G is a d-tuple such that

each element /y ^of the d-tuple represents a partition lj:Tlj, hj in a dimension. A d-

dimensional grid cell C is given by Equation 3.7 or 3.8 and is depicted in Figure 3.3:

C = h,n2> »b.rij' "• > Eq. 3.7

C ~ ^1 .Tii)' — » \b.ri]> ty.Tij) > — •> [h,nd> hj.ntSj- Eq. 3.8

©

in (S

0.0 0.30 0.75 1

Figure 3.3: A Grid Cell Representation

29

Definition 3.5 (Uniform Grid Cell): A grid cell CUNIFORM in a d-dimensional uniform

grid G is a d-tuple such that each element ljn., of the d-tuple represents a partition

| lj,n}> hj,nj) a dimension where hj n. — ljn. | = 1/K, for V rij. A uniform grid cell

Cuniform's given by Equation 3.9 or 3.10:

CUniform ~ {jl.nj^i ^2,n2» fy,nj> Eq. 3.9

GUniform ~ ^l,ni)> ••• > > — < [{/,n<j> fy,Tid)^" Eq. 3.10

Definition 3.6 (Non-Uniform Grid Cell): A grid cell CNON_UNIFORM in a d-dimensional

non-uniform grid G is a d-tuple such that each element IJ>N , of the d-tuple represents a

partition |ljn.,hj.n-) in a dimension where |/i;n. - ljn. | =£ 1/JC, for V n;. A d-

dimensional grid cell CN0N„UNIF0RM is given by Equation 3.11 or 3.12:

CNon-uniform = (jl.n-L' ^2,n2> Ij,nj> ••• > Eq. 3.11

CNon-uniform = h-l,nx)> — > [(/,ny fy."/) \h,nd' fy.nd)^" ^

Definition 3.7 (Empty Grid Cell): A grid cell C in a d-dimensional grid G is called an

empty grid cell if, and only if, no data point X t = (X i : 1 , . . . , X i j , X i d) exists such

that l j n . < X i j < h j n . for V Xi;-. A d-dimensional empty grid cell C is given by

Equation 3.13:

C = = Eq. 3.13

Definition 3.8 (Non-Empty Grid Cell): A grid cell C in a d-dimensional grid G is called

a non-empty g r id ce l l i f , and on ly i f , a t l eas t one da ta po in t X t = (X i l t . . . , X i ; . . . , X i d)

30

exists such that l j n j < X t j < h j n . for V X t j . A d-dimensional non-empty grid cell C is

given by Equation 3.14:

C = ••• > [(/,nd» fy>,nd)^ ^ Eq. 3.14

Definition 3.9 (Neighboring/Connected Grid Cell): Let Cp and Cq be two grid cells in a

d-dimensional grid G. Let Cp and Cq represent d-tuple Cp = ..., lj iPj,. •, Aj,Pd) an^

Cq =: (ji.qi' •••»b.Qj' -' Id.qd)' respectively. Grid cells Cp and Cq are called

neighboring/connected grid cells if, and only if, \lj,Pj ~ Ij,qj\ ^1 for V (1 < j < d).

Definition 3.10 (Non-Empty Neighboring Grid Cell): Let two d-dimensional grid cells,

Cp and Cq, be given by Cp = , IjiP), , /d>Pd) and

Cq = ,/d ,qd)' respectively. Grid cells Cp and Cq are called non

empty neighboring grid cells if, and only if, Cp =£ 0, Cq =£ 0 and

(1 < 7 < d).

Definition 3.11 (Grid Cell Volume): Let grid cell C t be a d-tuple in a d-dimensional

grid G such that each element I j n . of the d-tuple represents a partition in a

dimension. Let L; be the length of the i th partition in the d-tuple. The volume Volumei

of a grid cell Q is given by Equation 3.15:

Volumei = -. Eq. 3.15 1 (tiX Ld) M

Definition 3.12 (Grid Cell Density): Let Ct be a grid cell in a d-dimensional grid G , let

Objecti be the total number of data points in the grid cell Q, let Volumei be the total

volume of the grid cell Q and let p,- be the density of the grid cell C(. The density p; of a

b.Pj-b.qjl —1 f°r V

31

grid cell Q is given by the ratio of Object and Volumei. ̂ is expressed by

Equation 3.16:

p =£^£££l, Eq. 3.16
Volumei

Definition 3.13 (Dense Grid Cell): Let Cj be a grid cell in a d-dimensional grid G, let

be its density, and let Thp be a density threshold. Grid cell C; is called a dense grid cell if,

and only if, the density p£ is greater than or equal to Thp. It is expressed by

Equation 3.17:

Sparse, if pi <Thp

Dense, if pi>Thp Eq. 3.17 Ci =

Definition 3.14 (r th Rank Neighbor): Let grid cell C and Cp be represented by d-tuples

Id.ua) and respectively. Grid cell Cp is called the r

rank neighbor of the grid cell C if, and only if the following condition is satisfied. This

condition is expressed in Equation 3.18:

fh.nj + 1 or /,-n. - 1, V j, (1 < ;' < r)

th

l w
V;', (r + 1 < ;' < d)' Eq.3.18

Definition 3.15 (Data Centroid): Let Cj be a grid cell that contains a set Xj of k data

points Xj = {Xji, X ik], where Xj c X. The data centroid q of the grid cell Cj is

given by Equation 3.19:

Eq. 3.19

Definition 3.16 (Overlapping-Cell): Let Q be a grid cell that contains a set Xj of k data

points Xj = (Xjlr... where Xj c X. The grid cell Cj is called an overlapping-

cell if it contains training samples from multiple classes.

32

Definition 3.17 (Non-Overlapping Cell): Let be a grid cell that contains a set X* of k

data points Xj = {Xil(where Xj c X. The grid cell Q is called a non-

overlapping cell if it only contains the training samples of a single class.

Definition 3.18 (Micro-Partition): Let mr be a micro-partition that contains k data

points (mr l,mr u, ,mrk). A micro-partition mr is a smallest non-overlapping

unit of data points in which data points are in close proximity (| mru — mr(U+1)| « f,

where £ is a small number) with each other.

Definition 3.19 (Average Linkage): Let mr, and mr+1 be two contiguous micro-

partitions that are given by sets mr = (mr l,,.., mr k) and nv+j = (mr+11,..., nVn.fc).

respectively. The average linkage between two contiguous micro-partitions is defined by

Equation 3.20:

AVERAGE{mr,mr+1) = - mr+1J|. Eq. 3.20

Definition 3.20 (Centroid Linkage): Let mr, and mr+1 be two contiguous micro-

partitions in the transformed space that are given by sets mr = (mr l,..., mr k) and

mr+1 = (mr+11,....,mr+l k,), respectively. The centroid linkage between two

contiguous micro-partitions is given by Equation 3.21:

CENTROID(mr,mr+1) = |m^— mr+1\, Eq. 3.21

where mr,i, and m(r+i)j-

Definition 3.21 (Ward Linkage): Let mr, and mr+1 be two contiguous micro-partitions

in the transformed space that are given by sets = (mr l,..., mr k) and mr+1 =

mr+i,k)> respectively. The ward linkage between two contiguous micro-

partitions is given by Equation 3.22:

33

WARDimr.mr^) = (k * Eq. 3.22

where rn~ = ±£f=1 and m~̂ = ^2f= 1 m(r+i)j-

Definition 3.22 (Z-Score Normalization): Assume j4 is a numeric attribute, its mean

is nA, its variance is aa, and a specific attribute value is ValueA. Attribute value ValueA

is mapped to a new attribute value Value'A by computing the following equation:

ValueA = Eq. 3.23
OA

Definition 3.23 (Min-Max Normalization): Min-max normalization performs a linear

transformation on the attribute values. Assume A is a numeric attribute, its maximum

value is MaxA, its minimum value is MinA, and a specific attribute value is ValueA.

Attribute value ValueA is mapped to a new attribute value ValueA in the range

of [NewMinA , NewMaxA] by computing the following equation:

Valued = NewMi ^ A (MaxA- M i n A) A M

Theorem 1: Grid-Based Neighborhood

Let G be a grid on a d-dimensional data space D that partitions the data space

into mutually exclusive intervals or partitions. Let Cu be a d-dimensional grid cell that is

a d-tuple Cu = h,n2> - //inj, •••»^d,nd) such that each element of the tuple

represents a partition in the corresponding dimension. Then, a d-dimensional grid cell Cu

can have distinct neighboring grid cells that are given by Equation 3.25, where

Sj is the number of changes in the partition index value lj>Tlj in dimension 2that satisfies

the neighborhood criteria:

^Neighbor = Flysi^y' — !• Eq. 3.25

34

Proof: Let a d-tuple (jx iPl, —, lj,Pj, • •, ̂ d,pd) represent a grid cell Cp. The grid cell Cp is

the neighboring grid cell of cell Cu = (/lni, l jn j,..., /dj„d) if, and only if, l jp. =

| I j n . — 1 or I j n. + 1 or I j n., V j, (1 < j < d). Therefore, each element I j > p . of a

neighboring grid cell Cp can have a maximum of three values that satisfy the

neighborhood criterion. If Sj represents all possible changes for dimension 2); , then the

number of neighboring grid cells is given by Equation 3.26:

cNeighbor = (^1 * - * Sj * ... * Sd) - 1, Eq. 3.26

(•Neighbor = (^1 * - * Sj * ... * Sd) - 1 = Y\j=i Sj - 1. Eq. 3.27

It should be noted that -1 in Equation 3.26 indicates I j p . = I j n . V j, (1 < j < d)

when Cp = Cu. Equation 3.26 can also be represented in the form of Equation 3.27.

CHAPTER 4

GRID-BASED LOCALIZED LEARNING FOR

DATA PREPROCESSING

Most real world data is low quality, and the data used for the data mining tasks

may be incomplete, noisy, inconsistent, and sparse. Consequently, it is necessary to

improve the quality of the data by addressing these data deficiencies prior to data analysis

through a series of steps collectively called data preprocessing. There are several

challenges in preparing this data for data mining tasks such as clustering and

classification among others. These challenges are categorized into challenges related to

the characteristics of the raw data such as noisy, missing, and inconsistent data values and

into challenges related to the characteristics of the data such as sparseness and the curse

of dimensionality in multidimensional data space.

Both these sets of challenges severely affect the data analysis and may lead to low

quality and misleading conclusions. Therefore, data preprocessing is necessary before

performing any type of data mining tasks. Many techniques have been developed to

handle the noise, incomplete and inconsistent data. Similarly, many techniques have been

developed to mitigate the effect of the curse of dimensionality and the sparseness of the

data. The sparseness of the data, which is caused by the curse of the dimensionality,

severely undermines the performance of data mining algorithms. Because of this potential

deterioration of the performance, one emphasis of the research presented in this

35

36

dissertation is to develop better sparseness reduction algorithms and frameworks and

integrate them with the clustering algorithms.

The remainder of this chapter is organized as follows. In Section 4.1, a brief

explanation of various data preprocessing techniques is provided. In Section 4.2, a

discussion about data sparseness, its detrimental effects and sparseness reduction

techniques are provided. In Section 4.3, research motivation for the non-uniform grid-

based sparseness reduction technique is discussed. In Section 4.4, an experimental study

is presented to demonstrate the advantages of the non-uniform grid-based sparseness

reduction technique. In Section 4.5, the conclusions of this chapter are presented.

4.1 Data Preprocessing

Data preprocessing refers to the process of improving the quality of data for the

ease of the data mining or knowledge discovery process. Data preprocessing is a

collection of a wide variety of operations. The process includes data cleaning operations,

which usually compose the first set of operations performed on the data. The second set

of operations is called data transformation operations, which converts the data into a

specified format. The third set of operations is referred to as data reduction operations,

which includes operations to reduce data such as aggregation and dimensionality

reduction. The fourth set of operations is referred as data shrinking operations. It includes

operations regarding sparseness reduction. Data processing can improve the overall

quality of data and the data mining tasks for knowledge discovery [2]. A brief discussion

about all four sets of operations is given below.

1. Data Cleaning: Data cleaning refers to the set of operations performed to clean the

data by removing noise from the data, filling in missing data values, and resolving

37

inconsistent data values. Common noise removal operations are binning, regression,

and clustering. Common operations for filling in missing values involve the use of a

global constant, the use of an attribute mean, and the use of a most probable value.

Common operations for resolving inconsistent values are the use of domain

knowledge and the use of rules discovery to find inconsistent relationships [2].

2. Data Transformation: Data transformation refers to the set of operations that

transform the data into representations which are appropriate for the data mining task

at hand [2]. The set of data transformation operations consists of data smoothing,

aggregation, generalization, normalization, and attribute construction. Data

smoothing involves binning, regression, and clustering. Data aggregation involves

data summarization. Data generalization involves replacing raw data by higher level

concepts. Data normalization involves scaling data values into the specified range.

Attribute construction involves extracting new attributes from the given set of

attributes.

3. Data Reduction: Data reduction refers to the set of operations that are applied to

obtain a reduced representation of the data without seriously compromising the

integrity of the original data [2], Data reduction operations consist of data

aggregation, attribute subset selection, dimensionality reduction, and sample

reduction. Data aggregation involves data summarization. Attribute subset selection

involves removing irrelevant, weak, or redundant attributes. Dimensionality reduction

involves reducing dimensions by applying wavelet transform, principal component

analysis, and Fourier transform, among other methods. Sample reduction involves the

use of histograms, clustering, parametric models, and sampling techniques [2].

38

4. Data Shrinking: Data shrinking refers to the process of sparseness reduction through

the simulated movement of data points using the principle of data gravitation. In the

simulated movement of data points, data points are attracted by their surrounding

neighborhood because of data gravitation, and they move along the direction of the

density gradient [13, 14, 20, 21, 22, 23, 24]. Data shrinking techniques include grid-

based approaches and point-based approaches.

4.2 Data Sparseness

Sparseness of the data refers to thinly scattered data points in the feature space.

Sparseness is a common characteristic of multidimensional data. In sparse data, natural

groups, or clusters of data points, are not well separated or well demarcated and have

blurry cluster boundaries. The sparseness of the data increases as the dimensions increase

because the number of data points required for filling the data space also increases

exponentially. Therefore, data points are thinly scattered and lack distinct cluster

boundaries, and the capability of clustering algorithms to detect clusters accurately is

adversely affected in these datasets [13, 14]. Thus, it is necessary to develop sparseness

reduction techniques that can override the sparseness of multidimensional data

effectively.

Furthermore, the sparseness of multidimensional data is usually handled by a

specialized data preprocessing strategy called data movement or data shrinking [13, 14,

20, 21, 22, 23, 24]. These data movement algorithms reduce the sparseness of

multidimensional data while maintaining the original dimensional space. Data movement

approaches diminish the sparseness of multidimensional data by moving data points

along the direction of the density gradient, thus, providing more condensed and

39

demarcated clusters in the original dimensional space while retaining the dimensions [13,

14]. These data movement algorithms are iterative and require a specified number of

iterations or stopping criteria. Existing sparseness reduction techniques is either point-

based approaches or grid-based approaches [20, 21, 22, 23, 24,13, 14].

4.3 Research Motivation

The existing grid-based data shrinking algorithms use uniform grid structure [13,

14]. However, the uniform grid structure is insensitive to underlying data distribution and

does not project the underlying distribution of the data. Consequently, the uniform grid

structure does not shrink all data points effectively. This problem is further aggravated as

the number of dimensions increases. Existing sparseness reduction approaches are either

inherently unstable or time consuming. Non-Uniform/adaptive grid structure is data

driven and captures the underlying data distribution in every dimension. Grid-based

approaches are fast, scalable and require less iteration than point-based approaches [20,

21, 22, 23, 24]. Therefore, an experimental study is conducted on synthetic and real

multidimensional datasets to evaluate and demonstrate the effectiveness of the adaptive

grid-based data shrinking approach.

4.3.1 Limitations of Existing Techniques

The limitations of existing data shrinking techniques are the instability of the

shrinking and imposition of the uniform grid structure. These limitations are discussed

below.

1. Sensitivity towards the order of Input Data Points: In the existing algorithms,

there is no order specified in processing the data points [13, 14, 20, 21, 22, 23, 24].

The order in which data points are moved to other positions depends on the order in

40

which data points are stored. Thus, if the order in which the data points are given as

input to the algorithm changes, the order in which the data points are moved will also

change. This change in order then changes the final output of the data shrinking,

giving the existing data shrinking algorithms inherent sensitivity towards the order of

the input data points.

2. Imposition of Uniform Grid Structure: In the existing grid-based data shrinking

algorithm, a sequence of uniform grid sizes is imposed on all dimensions [13,14].

The algorithm imposes a global grid cell size on all dimensions and ignores the

unique underlying data distribution in individual dimensions.

4.3.2 Advantages of Non-Uniform Grid

In grid-based clustering approaches both uniform and non-uniform grids are used.

non-uniform/adaptive grids offer various advantages over uniform/fixed size grids. These

advantages are explained below.

1. Splitting Dimensions in Low Density Regions: In a grid-based algorithm,

dimensions are partitioned through split points; each point then becomes a cutting

plane for multidimensional data. A cutting plane must partition a dimension in a low

density region and discriminate clusters as much as possible [26]. Adaptive partitions

are based on the data distribution in a dimension and split dimensions at low density

regions [26],

2. Computational Efficiency: There are fewer nonempty grid cells for a specified

number of partitions in every dimension than nonempty grid cells in a uniform grid.

The fewer nonempty cells reduce the overall computational time for a non-uniform

grid-based algorithm [26].

41

4.4 Experimental Study

In this section, an experimental study is presented. These experiments are

conducted to demonstrate the effect of sparseness with increasing dimensions and the

advantages of a non-uniform adaptive grid over uniform grid.

4.4.1 Datasets

Both real and synthetic datasets are used for experiments and to compare the

uniform partitioning and non-uniform partitioning. A detailed description of each of these

datasets is as follows:

1. Wine Recognition Dataset: The real dataset that is used in these experiments is the

Wine Recognition dataset. The Wine Recognition dataset is used for the comparative

study of uniform and non-uniform grid-based shrinking. This dataset has 13

dimensions and 178 data points. The dataset contains three clusters, and each cluster

contains 59, 71, and 48, respectively. The dataset is available at the UCI machine

learning archive [58].

2. Synthetic Dataset: For these experiments, a set of synthetic datasets is generated

with dimensions ranging from 5 to 60 with increments of five dimensions, and every

dataset has 10,000 data points. The size of dataset is kept constant because this

synthetic dataset is used to demonstrate the effect of sparseness with increasing

dimensions while keeping the dataset size constant. Each dataset contains two

clusters, each of which has an equal number of data points in respective datasets.

Both the clusters are generated from a normal distribution with means 10,-10 and a

standard deviation of 3.

42

4.4.2 Effect of Sparseness

Multidimensional datasets are sparse and the sparseness of multidimensional data

increases as dimensions increase. An experimental study is conducted on synthetic

datasets to demonstrate this effect and it is presented in Figure 4.1.

25

5 10 15 20 25 30 35 40 45 50 55 80

Dimantton*

Figure 4.1: Average Pairwise Euclidean Distance v/s Dimensions

The sparseness of the datasets is computed by calculating the average pairwise

Euclidean distance between data points. Figure 4.1 shows the average pairwise Euclidean

distance, which is plotted as a function of increasing dimensions. The average pairwise

Euclidean distance is given below in Equation 4.1:

. . £JJ=1 ZjLl N
Average Pairwise Distance = . Eq. 4.1

It is demonstrated from the plot that data sparseness increases with increasing

dimensions for a constant number of data points. Similarly, the increase in the number of

data points would result in the same exponential characteristic but the rate of increase in

the distance between the data points would be less as compared to the dataset with less

number of data points.

43

4.4.3 Comparative Study

In this comparative study, two sets of experiments are conducted. The first set of

experiments is conducted to compare the uniform and non-uniform grid-based

partitioning. The second set of experiments is conducted to compare the uniform and

non-uniform grid-based shrinking. These studies are discussed below.

4.4.3.1 Comparison of Partitioning
Methods

A comparative study is performed on a synthetic dataset to demonstrate the

advantage of non-uniform grid-based partitioning over the uniform grid-based

partitioning. In this study, a comparison of the total number of nonempty grid cells that

occupy data points is performed between uniform and non-uniform grids for the given

synthetic datasets. Uniform grid partitions are generated using the algorithm presented in

and non-uniform grid partitions are generated using the non-uniform grid generation

presented in Chapter 6. Plots of the comparative study are presented below. Three cases

are considered to compare the two partitioning methods.

Case 1: In this experiment, uniform and non-uniform grid generation algorithms

are applied, and two uniform partitions and two non-uniform partitions are generated for

each dimension. Figure 4.2 presents a comparison of the log of the ratio of the total grid

cells and the total non-empty grid cells occupied by all the data points in both

approaches. It can be inferred from the plot that, in adaptive grid-based partitioning, data

points are occupied in fewer grid cells in almost all cases, as compared to the uniform

grid-based partitioning.

44

100
'5'
=3 90
U •a
C 80
O
£ 70
fit

E
W 60
e 0
Z 50
23
3 40
•o
$ 30

1 20
H
^ 10

_o

0
10 20 30 40 50

Dimensions

Figure 4.2: log2 (Total Grid Cells/Non-Empty Grid Cells) v/s Dimensions

Case 2: In this example, a uniform grid generation algorithm is applied, and three

uniform and non-uniform partitions are generated for each dimension. Figure 4.3 depicts

a comparison of the log of the ratio of total grid cells and total non-empty grid cells

occupied by all the data points in both approaches. It can be inferred from the plot that in

an adaptive grid-based partitioning data points occupy fewer grid cells than the uniform

grid-based partitioning.

• Uniform Grid-Based Partitioning

Q Adaptive Grid-Based Partitioning

45

V
U •o
•n
o

a,
E
w I e
o
Z

<u
U
•o
•c
o

80

70

60

50

40

30

B Uniform Grid-Based Partitioning

D Adaptive Grid-Based Partitioning

r 20
3
©
H
oc o

10

isl
10 20 30

Dimensions

40 50

Figure 4.3: log2 (Total Grid Cells /Non-Empty Grid Cells) v/s Dimensions

Case 3: In this example, both uniform and non-uniform grid generation algorithms

are applied, and four uniform partitions and four non-uniform partitions are generated for

each dimension. Figure 4.4 depicts a comparison of the log of the ratio of the total grid

cells and the total non-empty grid cells occupied by all the data points in both

approaches. It can be inferred from the figure that in an adaptive grid-based partitioning

data points are occupied in fewer grid cells or an equal number of grid cells than the

uniform grid-based partitioning. It also implies that non-uniform grid-based shrinking

and clustering algorithms can be computationally less expensive or may incur the same

computational cost.

46

50
M
g 45

g 40

q, 35

u
I 2 5

&>
O 20
;o
0 15

1 10
H
N M 5 o 3

CD Uniform Grid-Based Partitioning

0 Adaptive Grid-Based Partitioning

10 30

Dimensions
40 50

Figure 4.4: log2 (Total Grid Cells/Non-Empty Grid Cells) v/s Dimensions

4.4.3.2 Comparison of Shrinking Methods

To compare the uniform and non-uniform grid-based shrinking algorithms, these

algorithms are applied on the Wine Recognition dataset. Uniform grid-based shrinking is

performed using a existing data shrinking algorithm presented in [13, 14],Similarly, non

uniform grid-based shrinking is performed using the non-uniform grid-based shrinking

algorithm presented in Chapter 6. Both uniform and non-uniform grid-based shrinking

algorithms are applied to the grid structure with three partitions for each dimension.

These methods are compared based on the energy, wavelet entropy, and information

entropy of the data in principal component space. Principal components are obtained on

the Wine Recognition dataset in three conditions. These conditions are, after uniform

grid-based shrinking, after non-uniform grid-based shrinking, and without shrinking.

Plots of the comparative study are presented below. In this experimental study wavelet

47

entropy, energy, and information entropy are computed for each dimension in principal

component space. Case 1, Case 2, and Case 3 below presents these experiments.

Case 1: In this experimental study, wavelet entropy is computed corresponding to

each dimension in principal component space, and the percentage of the wavelet entropy

contributed by each dimension is obtained. Finally, a plot is obtained that depicts the

cumulative percentage of the wavelet entropy for each set of dimension in principal

component space. Figure 4.5 depicts a comparison of the cumulative wavelet entropy. It

can be observed from the plot that after non-uniform grid-based shrinking principal

components retain the lowest cumulative wavelet entropy, which indicates that after

performing non-uniform grid-based shrinking each dimension has less disorder.

1.4

^ 1.2 a

0.8

£ 0.6

0.4

0.2

BData Without Shrinking

BData After Uniform Shrinking

BData After Adaptive Shrinking

3n

EfFH

1 1-2 1-3 1--4 1-5 1--6 1-7 1--8 1--9 1--10 1--11 1--12 1--13

Dimensions

Figure 4.5: Cumulative Wavelet Entropy v/s Dimensions

Case 2: In this case, the energy of each dimension is computed in principal

component space, and the percentage of the energy contributed by each dimension is

48

obtained. Finally, a plot is obtained that depicts the cumulative percentage of the energy

for each set of dimension in principal component space. Figure 4.6 depicts a comparison

of the cumulative energy. It can be observed from the plot that after non-uniform grid-

based shrinking, dimensions retain the highest cumulative energy, which indicates that

after performing non-uniform grid-based shrinking, each set of dimensions has more

cumulative energy than the cumulative energy of each set of dimensions after performing

uniform grid-based shrinking.

1.4

1.2

s
W
v 0.8

0.6

0.4

0.2

0

• Data Without Shrinking

• Data After Uniform Shrinking

OData After Adaptive Shrinking

J
i:!:

! ! :

m
3
3 1 2
2
2
2
2
2
2
2
2

.itdj
1 1-2 1-3 1-4 1-5 1--6 1-7 1-8 1-9 1-10 1-11 1-12 1-13

Dimensions

Figure 4.6: Cumulative Energy v/s Dimensions

Case 3: In this case, the information entropy of each dimension in principal

component space is computed, and the percentage of the information entropy contributed

by each dimension is obtained. Information entropy is a measure of disorder in the data

49

and its lower values are desired. Figure 4.7 depicts a comparison of the cumulative

information entropy.

1.2 -

a © i . u 1 •
W

| 0.8 •

J
>5 0.6 -

1 0.4 -

I
U

0.2 -

0 •

A comparative study is also conducted to demonstrate the computational benefits

of non-uniform grid-based shrinking over the uniform grid-based shrinking. A plot of the

comparative study is presented in Figure 4.8. In this comparative study, the average

execution time of the uniform and the non-uniform grid-based shrinking is compared on a

set of synthetic datasets. The uniform grid-based shrinking is performed using the

algorithm presented in [13,14]. Similarly, the non-uniform grid-based shrinking is

performed using the algorithm presented in Chapter 6. To maintain constant experimental

conditions, five iterations are performed on all the datasets for both shrinking algorithms.

BData Without Shrinking

• Data After Uniform Shrinking

BData After Adaptive Shrinking

P4P

E :

I li

I! t: :

1 1--2 1--3 1--4 1--5 1--6 1--7 1--8 1--9 1--10 1—11 1-12

Dimensions

1-13

Figure 4.7: Cumulative Information Entropy v/s Dimensions

50

20
— U n i f o r m G r i d - B a s e d S h r i n k i n g

-•—Adaptive Grid-Based Shrinking

• <•

o
4

2

0
10 20 30 40 50

Dimensions

Figure 4.8: Average Execution Time v/s Dimensions

It can be inferred from the plot that non-uniform grid-based shrinking algorithm is

computationally more efficient than uniform grid-based shrinking algorithm.

This chapter has highlighted the challenges of data preprocessing and emphasizes

the need to develop better sparseness reduction algorithms to mitigate the detrimental

effect of sparseness in multidimensional datasets. The limitations of existing sparseness

reduction are also highlighted, and a need to develop a non-uniform grid-based shrinking

approach is discussed. Furthermore, an experimental study is conducted to compare the

uniform and the non-uniform grid-based partitioning and shrinking algorithms. The

experimentations presented in Section 4.4 demonstrate that non-uniform grid-based

partitioning and shrinking has a potential to be more effective than the existing uniform

grid-based partitioning and shrinking algorithm.

4.5 Conclusion

CHAPTER 5

GRID-BASED LOCALIZED LEARNING FOR

FEATURE RANKING

Many data preprocessing strategies have been proposed to sufficiently handle the

high dimensionality of the data and avoid the infamous curse of dimensionality [2].

Dimensionality reduction methods, including feature selection, feature ranking, feature

extraction, among other reduction strategies, have proven to be powerful in reducing this

impediment [32, 33, 34, 35, 36, 37, 38, 39], The underlying assumption of dimensionality

reduction approaches is that not all dimensions are important, i.e. some dimensions may

be irrelevant and detrimental to the efficacy of further data analysis, and hence can be

eliminated. In feature selection and feature ranking, irrelevant features are eliminated

from further consideration, thereby leaving only important features to be considered for

further analysis. Furthermore, the feature ranging approaches use a scoring function to

rank features according to their individual predictive power. Some common scoring

functions are distance measures, information measures, dependency measures, and

consistency measures [40,41,42,43,44,45]. Most of the feature ranking methods rank

each feature based on the feature's predictive power independently and ignore its

dependency on other features. Thus, feature ranking methods are needed such that the

feature ranking of an individual feature is also influenced by other features as well.

51

52

The remainder of the chapter is organized as follows. In Section 5.1 Research

motivation is discussed. In Section 5.2, the problem statement and the hypothesis is

discussed. In Section 5.3, developed feature ranking methodology is discussed. In Section

5.4, experimental study is discussed. Finally, in Section 5.5, the conclusions of this

chapter are presented.

5.1 Research Motivation

Feature ranking approaches use a scoring function to rank features based on

intrinsic data characteristics. Feature ranking approaches are preferable because of their

low computational complexity and statistical scalability. Feature ranking methods use

independent criteria or scoring functions to evaluate and rank individual features based

on the predictive power of the feature and ignore any dependencies in the data. Thus,

there is a lack of feature ranking or feature scoring functions that are influenced by the

presence of other features in the data. In data shrinking, the movement of the data points

changes the overall distribution of the data in multidimensional space as well as in

individual dimensions. The difference in data distribution projected on every dimension

through data shrinking can be captured by a shrinking profile of the dimension, and it can

be used as a scoring function that is influenced by the presence of other dimensions in the

data. Thus, the motivation for this research is to develop a new data shrinking based

feature ranking algorithm to address the deficiencies of existing feature ranking

techniques.

53

5.2 Problem Statement

Data shrinking is a data preprocessing technique that performs simulated

movement of data points in multidimensional space, and data points move toward the

center of their natural cluster [13, 14]. The movement of the data points changes the

overall distribution of the data in the multidimensional space. The change in data

distribution in a particular dimension is affected by the data distribution in every other

dimension. Every dimension shrinks in a unique way, and some dimensions shrink more

than others. Therefore, it is hypothesized that a scoring function based on the data

shrinking can be used as a scoring function to measure the dimension's predictive power

and can be utilized for feature ranking. Based on this hypothesis, the aim is to develop a

framework that uses an adaptive grid-based data shrinking method for feature ranking.

5.3 Methodology

In this section, data shrinking based feature ranking framework is discussed. The

developed feature ranking framework has four components. The first component is data

preprocessing phase. The second component is data adaptive grid generation phase. The

third component is the data adaptive grid-based shrinking phase and the fourth and final

phase is the feature ranking and selection phase. All the components of data shrinking

based feature ranking framework are explained below. The methodology is discussed as

follows. In Section 5.3.1, data preprocessing operations applied on data are discussed. In

Section 5.3.2, adaptive grid generation algorithm is discussed. In Section 5.3.3, the data

shrinking algorithm is discussed. Finally, in Section 5.3.4 developed feature ranking

framework is discussed. Figure 5.1 depicts the data shrinking based feature ranking

framework that has been applied to a protein dataset.

54

a Protein

a + /3 hotein

Shrinked

SMALL Protein

Shrinked

Figure 5.1: Data Shrinking Based Feature Ranking Framework

5.3.1 Data Preprocessing

Data preprocessing is an essential step in this methodology. The dataset is first

standardized by applying Z-score normalization. Each dimension is transformed based on

the mean and standard deviation of the dimension. The data is further normalized into a

unit hypercube [0, l]d to scale all the dimensions between the range of zero and one by

applying min-max normalization on each dimension. In addition to this, those dimensions

are eliminated from the datasets that do not provide significant variability within the

dimension. It refers to the situation in which significant numbers of data values in a

dimension are either zero or constant.

5.3.2 Adaptive Grid Generation

Grid structure is critical in grid-based data shrinking. With that in mind, a grid

structure generation algorithm has been developed to utilize inherent data distribution

55

characteristics and generate adaptive grid boundaries for each dimension. The grid

boundaries are determined by a wavelet transform based coefficient aggregation approach

for the data adaptive grid structure. Initially, data is normalized in the unit

hypercube [0, l]d, assuming there are d dimensions in the data. Figure 5.2 shows the

algorithm that is applied for grid generation. The following procedure is followed for the

generation of grid boundaries for single dimension and is then applied for all the other

dimensions independently.

Algorithm: d i t W, Ow, Coeff

1. Sort given dimension dj in increasing order.

2. From sorted values, extract windows of size W and overlap Ow.

3. Perform wavelet transform on each extracted window.

4. Once the wavelet transform has been performed on every window,

Choose specified number of wavelet coefficients Coeff from every
window.

5. Cluster transformed windows using hierarchical average linkage
clustering.

6. Once transformed windows are clustered, corresponding to each
cluster, accumulate all the original windows of the same cluster.

7. Finally, obtain grid boundaries from corresponding cluster
boundaries.

Figure 5.2: Adaptive Grid Generation Algorithm

5.3.3 Data Shrinking

The data adaptive grid-based shrinking algorithm begins once data adaptive

partitions are obtained for all the dimensions. All the steps of the data shrinking

algorithm are discussed below.

56

5.3.3.1 Data Movement Model

A grid-based model of attraction is employed for data movement. Let Cu be a

grid cell that contains a set Xu of k data points Xu = (Xul, Xuk), where Xu c X

for which data movement is to be performed. Let CNBR = (Cnl, Cn2, Cni) be a set of

neighboring grid cells that have (nlf n2, number of data points. Let the data

centroid of all the data points in the set CNBR of grid cells be given by the Equation 5.1.

Similarly, the data centroid of all the points in the grid cell Cu is given by Equation 5.2:

?nb«= ^ l . Eq.5.1
ZjLini

=£©=,*„,). Eq-5.2

Therefore, the movement or the displacement of a data point Xui in the grid cell Cu is

given by Equation 5.3 below:

^ui = %ui + (CNBR ~ 4)- Eq. 5.3

The movement or displacement of all the other data points in the grid cell Cu is

performed. The movement of the data points is performed if it satisfies the movement

threshold criteria given by Equation 5.4:

Distance{cNBR,cu) > MTh. Eq.5.4

The movement of data points is explained below. All the data points in a

particular grid cell are moved as a single unit. First, identify all of grid cells Cu's

nonempty neighboring grid cells. Second, compute the data centroid of the selected

neighboring grid cells of the grid cell Cu and the data centroid of the grid cell Cu. Third,

move all the data points in the grid cell Cu using the data displacement formula presented

57

in Equation 5.1. This process is repeated for all the grid cells that have data points in

them.

5.3.3.2 Data Shrinking Process

The algorithm first maps all data points on the adaptive grid. The pseudo-code

of the algorithm is presented in Figure 5.3.

Algorithm: Data Shrinking Algorithm

Input: Grid G t, Dataset X , Iterations ITh, Threshold MTh

Output: Data after Shrinking X,
01 N = Number of Datapoints in X
02 d = Number of Dimensions in X
03 for i=l to N

04 C(i) = FindSellJd(X i,Gi)
05 Add C(i) to Z
06 Add Xi to Zdata(Count). data
07 end
08 / = 0

09 while / < /77,
10 for m=l to length(Z)
11 V(m) = Compute _Volume(Z(m))

12 Rho(m) = Compute__Cell_Density(Z(m),V(m))
13 DenseZ = Find_Dense_Cells(Rho(m))
14 end
15 n = 1

16 while n < length(DenseZ)
17 Find Neighboring Cells of Cell DenseZ(n)
18 Compute Centroid cNBK of Neighboring Cells
19 Compute Centroid cn of Cell DenseZ(n)
20 if (Distance(cNBRl cu) > MTh) then
21 Compute Displacement of Datapoints in Zdata(n)
22 end
23 end

24 if(JVo Movement between I and / + 1) then
25 Exit
26 end
27 Z = DenseZ
28 end

Figure 5.3: Adaptive Data Shrinking Algorithm

58

During this process, it identifies all the non-empty grid cells and corresponding

data points. It then accumulates all data points that are mapped to the non-empty grid

cells. Next, volume and density of the nonempty grid cells which are populated with data

points are computed. The density of a cell is defined as a fraction of the total number of

data points in the cell over the cell volume. The volume of a grid cell is defined as a

product of the side length of the grid cell over all the dimensions. Density threshold is

used to identify dense cells and to discard others. Next, a dense cell is taken from the list

of dense grid cells and its surrounding cells (that share an edge or a vertex with this cell)

are captured in an adhoc cluster. The centroid of this cluster is computed. Then, all the

data points in the grid cell are moved in the surrounding grid cells based on the model of

data movement. This process is repeated for all the dense cells. The algorithm terminates

after a specified number of iterations, or if termination criterion is satisfied.

5.3.4 Feature Ranking Method

The developed feature ranking algorithm is a two-step process. In the first step,

feature weights are assigned based on their shrinking profile. In the second step, the

features are ranked and selected based on their weights. Both the steps are as follows.

The pseudo-code of the algorithm is presented in Figure 5.4.

The first step begins by computing a shrinking profile corresponding to each

feature. The shrinking profile is computed by calculating the percentage change in mean

square distance between all pairs of data points before shrinking and after shrinking.

Next, weights are assigned to each feature using their shrinking profile and this process is

repeated for each class separately. For this purpose, shrinking profiles of all the features

are normalized and it is repeated for all the configurations of the algorithmic parameters.

59

Finally, a cumulative weight is obtained for each feature by summing all the weights

across different configurations of algorithmic parameters.

Algorithm: Feature Ranking and Selection

1. Calculate percentage of shrinking for every dimension:

A. Calculate mean square distance between all pairs of data points for data

'Before Shrinking' and 'After Shrinking'.

B. Calculate percentage change between mean square distance for data

'Before Shrinking' and 'After Shrinking'.

2. Assign weight to dimensions for each class:

A. Find dimensions with maximum and minimum percentage of shrinking.

B. Perform min-max (1-10) normalization of percentage of shrinking.

C. Repeat the process for all configurations of window size and

coefficients.

D. Sum all the weights across all window sizes and coefficients to obtain

cumulative weight of dimension for each protein class.

3. Perform ranking and selection of features:

A. Sort features in increasing order of their weights.

B. Select top ranked features containing 5% of overall energy of the weight

signal for every class.

C. Perform 'min-max' (1-10) normalization of the selected weights for

every class.

D. Sum all the weights of features present across all classes to obtain

overall cumulative weight of selected features.

E. Sort features in increasing order of their weights.

F. Select top ranked features containing 5% of overall energy of the final

weight signal.

Figure 5.4: Feature Ranking and Selection Algorithm

The second step begins by sorting normalized feature weights in increasing order

of their weights. Next, top ranked features are selected that contain only 5% of the total

weight. Next, selected feature weights are normalized. This process is repeated for all the

60

features in their respective classes. Finally, a cumulative weight is obtained for all

selected feature. These weights are sorted and final top ranked features are selected that

contain only 5% of the total weight.

5.4 Results and Discussions

A set of experiments is performed to validate the developed data shrinking based

feature ranking framework. Data shrinking is first performed on individual protein

classes, and then feature ranking and selection is performed. A set of comparative study

is conducted using different classifiers and different feature ranking methods to evaluate

the feature ranking method. The remainder of the section is organized as follows. In

Section 5.4.1, a brief description of all the datasets used for the experiments is given. In

Section 5.4.2, validation technique and validation measures are discussed. Finally, in

Section 5.4.3, experiments related to the comparative analysis are presented.

5.4.1 Datasets

Experiments are conducted on a high dimensional proteomics dataset. Proteomics

is high throughput data discipline, and multidimensionality is an inherent characteristic of

the proteomic data. For example, hundreds of feature descriptors may be generated from

the physiochemical properties of the proteins [59,60]. Proteomics dataset is

characteristically high dimensional and exhibits sparseness. Therefore, a protein dataset is

chosen for experiments that have been used in the past. The protein dataset contains both

a training dataset and a test dataset and consists of five protein structural classes and 125

feature descriptors. The training data has 408 training samples, and the test dataset has

174 test samples from five protein structural classes. The features of the dataset are

61

extracted from the protein sequence information using the method discussed in [59, 60].

This data is available at this URL (http://ranger.uta.edu/~chqding).

5.4.2 Validation

Validation of the developed feature ranking method is done by comparing it with

other existing feature ranking methods. For the purpose of validation, the RELIEF

algorithm, the Chi-Square filter, the information gain based method, and SVM based

feature ranking method are used [43, 61, 62,63, 64, 65]. The developed feature ranking

algorithm is compared with other well-known feature ranking algorithms based on the

their performance on classification methods. The classification performance of these

methods is assessed through external validation measures precision, recall, F-measure,

and classification accuracy. These measures are represented by Equations 5.5, 5.6, 5.7,

and 5.8:

TP
Precision = - Eq. 5.5

(TP+FP) ^

Recall = , TP Eq. 5.6
(7P+FN) M

„ „ (precision*recall\ „ _
F — measure = 2 x 1 —) , E q . 5 . 7

Kprecision+recalU

Classification Accuracy = -—(rp + Tfr>—_ Eq. 5.8
J s (TP+FP+TN+FN) M

In the above equations, TP, TN, FP, FN refer to true positive, true negative, false

positive, and false negative, respectively.

5.4.3 Experiments

Experiments are conducted on the datasets to demonstrate that the proposed

method is capable of effective feature ranking and selection. To demonstrate that the

feature ranking method works effectively, it is compared with classical feature ranking

http://ranger.uta.edu/~chqding

62

methods. Figure 5.5 also displays a comparative analysis of the common Top-10, Top-20,

Top-30, and Top-41 features with other existing feature ranking methods.

30 ' m Common Features in Top-10

27 - BB Common Features in Top-20

n Common Features in Top-30

« 24 • H Common Features in Top-41 =

1 21 •

RELIEF SVM Chi-Square Information-Gain

Classiflers

Figure 5.5: Comparison of Top Ranked Features

Table 5.1 displays the common top ranked features. Table 5.1 displays the top

ranked 41 features for the comparative methods and for the data shrinking based feature

ranking method. Table 5.1 shows approximately 45%-60% of feature commonality

between the top 41 ranked features (those indicated in bold) and the top ranked features

in comparative methods.

63

Table 5.1: Common Top Ranked Features

Feature
Selection

Top ranked 41 features

Information
Gain

84,85,88,95,89,100,86,92,94,2,96,93,90,98,97,91,99,105,110,18,
27,121,79,111,32,69,116,1,106,53,6,37,48,58,74,19,52,87,36,10,
109

Chi Square 84,2,86,100,88,85,89,95,96,92,94,93,90,18,97,98,110,91,79,121,
105,106,99,27,6,116,120,118,37,111,1,36,32,69,109,48,53,117,1
0,19,119

SVM 84,94,121,2,95,118,109,99,85,90,43,86,27,1,89,105,6,106,18,17,
125,79,110,9,64,16,78,8,96,13,36,70,33,62,37,93,32,42,15,19,40

RELIEF 84,94,99,93,88,98,89,92,85,2,86,97,95,91,96,90,1,18,106,100,10
5,110,32,27,87,9,58,37,5,109,6,48,28,11,121,79,64,8,59,10,13

Shrinking
Method

104,62,58,31,94,37,27,48,99,74,91,90,32,85,17,102,
10,83,125,69,103,111,78,73,89,115,49,87,98,18,120,80,122,2,93,
95,116,57,79,121,79

The performance of data shrinking based feature ranking framework is compared

with other existing feature ranking methods. The strength of all the feature ranking

method is evaluated against a set of classifiers. Classification results of data shrinking

based feature ranking framework is compared with information gain based feature

ranking, and x2 feature ranking method [43, 64]. The classifiers that are used for

comparison include, PART rule based classifier, Logistic regression and Neural Network

[66, 67, 2]. This comparative analysis is conducted on protein data that has separate

training and test set.

1. Comparative Study of F-measure:

The F-measure of shrinking based feature ranking algorithm are compared with

the x2 method and information gain based feature ranking on the neural network

classifier. In Table 5.2, the values of F-measure are compared over all the protein classes.

64

Table 5.2: Comparison of F-measure for Neural Network

Classifier Feature Selection
Method

Chi-Square
Method

Info. Gain
Method

Shrinking
Method

Classes F-measure
(%)

F-measure
(%)

F-measure
(%)

Class a 78.90 82.90 84.80

Neural Class (3 58.20 69.60 74.10

Network
Class a/P 74.80 76.10 76.10

Class a 4- (3 35.30 30.80 44.40

Class Small 100.00 100.00 100.00

After comparing the values of the F-measure for each protein class, it can be said

that shrinking based feature ranking either outperforms or gives comparable results. If the

average F-measure value over all the class is compared, then the average F-measure

values for x2 method and information gain method and shrinking based method are

69.44%, 71.88%, and 75.88%, respectively. This comparison indicates that shrinking

based feature ranking performs better than the other two methods.

Similarly, the F-measure values of shrinking based feature ranking, x2 method

and information gain based feature ranking are compared for a rule based classifier

PART. In Table 5.3, the values of F-measure are compared over all the classes and it can

be said that the shrinking based feature ranking gives comparable results. If the average

F-measure value over all the class is compared, then the average F-measure values for x2

method and information gain method and shrinking based method are 68.64% 73.64%,

and 75.94%, respectively. This comparison indicates that shrinking based feature ranking

performs better than the other two methods for rule based classifier PART [66].

65

Table 5.3: Comparison of F-measure for PART

Classifier Feature Selection
Method

Chi-Square
Method

Info. Gain
Method

Shrinking
Method

Classes F-measure
(%)

F-measure
(%)

F-measure
(%)

Class a 75.30 79.40 84.40

PART
Class /? 72.70 72.00 67.80

PART

Class a//? 74.10 73.30 73.00

Class a 4- /? 21.10 43.50 54.50

Class Small 100.00 100.00 100.00

The F-measure values of shrinking based feature ranking, x2 method and information

gain based feature ranking are also compared for logistic regression based classifier. In

Table 5.4, the values of F-measure are compared over all the classes. It is observed from

the table that shrinking based feature ranking outperforms or gives comparable results.

The average F-measure value over all the class is also compared. The average F-measure

values for x2 method and information gain method and shrinking based method are

57.50%, 53.06%, and 64.66%, respectively. This comparison indicates that shrinking

based feature ranking performs better than the other two methods for logistic regression

classifier [67].

66

Table 5.4: Comparison of F-measure for Logistic Regression

Classifier Feature Selection
Method

Chi-Square
Method

Info. Gain
Method

Shrinking
Method

Classes F-measure
(%)

F-measure
(%)

F-measure
(%)

Class a 62.90 52.70 70.00

Logistic
Regression

Class (3 56.80 44.40 66.10 Logistic
Regression

Class a/fl 71.80 66.10 69.80

Class a + [3 0.00 6.10 21.40

Class Small 96.00 96.00 96.00

2. Comparative Study of Average Precision, Recall, and Accuracy:

A comparison of average precision, recall and accuracy are also conducted to

compare shrinking based feature ranking algorithm, x2 method and information gain

based ranking method on the rule based classifier PART. In Table 5.5, a comparison of

the average values of precision, recall and classification accuracy is presented.

Table 5.5: Comparison of Avg. Precision, Recall, Accuracy for PART

Classifier PART

Feature Selection
Method

Average
Recall (%)

Average
Precision (%)

Overall
Accuracy (%)

All Features 71.60 70.54 72.41

Chi-Square Method 69.80 70.86 72.99

Info. Gain Method 73.00 75.58 74.14

Shrinking Method 74.20 80.04 74.14

67

In Table 5.5, after comparing the average values of precision, recall and accuracy, it can

be said that shrinking based feature ranking either outperforms or gives comparable

results for all the measures.

Similarly, a comparison of average precision, recall and accuracy is also

performed to compare shrinking based feature ranking algorithm, x2 method and

information gain based ranking method on the logistic regression classifier [67]. It is

presented in Table 5.6. In Table 5.6, after comparing the average values of precision,

recall and accuracy, it can be concluded that shrinking based feature ranking method

gives superior and comparable results when compared with other methods.

Table 5.6: Comparison of Avg. Precision, Recall, Accuracy for Logistic Regression

Classifier Logistic Regression

Feature Selection
Method

Average
Recall (%)

Average
Precision (%)

Overall
Accuracy (%)

All Features 63.60 74.38 67.24

Chi-Square Method 60.20 57.70 64.37

Info. Gain Method 53.80 55.16 53.45

Shrinking Method 65.40 65.50 66.67

Additionally, a comparison of average precision, recall and accuracy is also

performed to compare shrinking based feature ranking algorithm, x2 method and

information gain based ranking method on the neural network classifier. It is presented in

Table 5.7. In Table 5.7, after comparing the average values of precision, recall and

accuracy, it can be concluded that shrinking based feature ranking outperforms other

68

methods on average accuracy and recall. However, when compared with other methods

on average precision, it does not give good comparable results.

Table 5.7: Comparison of Avg. Precision, Recall, Accuracy for Neural Network

Classifier Neural Network

Feature Selection
Method

Average
Recall (%)

Average
Precision (%)

Overall
Accuracy (%)

All Features 72.40 80.60 72.98

Chi-Square Method 68.80 84.80 71.84

Info. Gain Method 72.20 72.40 74.14

Shrinking Method 76.00 76.40 76.44

5.5 Conclusion

In this work a data shrinking based novel approach of feature ranking and

selection have been presented. Every dimension participates in the shrinking process, but

every dimension shrinks differently. Some shrink a great deal; others shrink only a little.

Thus, the way the dimension shrinks decides its characteristics. These characteristics are

used to find the most discriminating features. The experimental study suggests that

features that shrink less exhibit good discriminating behavior. The results confirm this

hypothesis.

CHAPTER 6

GRID-BASED LOCALIZED LEARNING FOR

CLASSIFICATION

The increase in the demand for data mining algorithms that are fast, scalable and

accurate has resulted in the development of scalable classification models [48,49, 50,

51]. Scalability, a central component in the design of a scalable classifier, refers to an

algorithm's ability to handle the increase in the size and dimensionality of the dataset. A

scalable classifier should scale well; i.e. its performance should not deteriorate drastically

with the increased dataset size and dimensionality of the dataset. However, the existing

classification algorithms that perform well for the small and medium dimension datasets

fail to perform well when the dimensionality and size of the datasets increase. Therefore,

there is a need to develop new classification methods that are fast, scalable and accurate.

The remainder of the chapter is organized as follows. In Section 6.1, research

motivation is discussed. In Section 6.2, the problem statement is discussed. In Section

6.3, the methodology of the grid-based classification models is discussed. In Section 6.4,

experimental results are discussed. Finally, in Section 6.5 conclusions and future

directions are discussed.

69

70

6.1 Research Motivation

The potential of grid-based localized leaning is well recognized in unsupervised

learning algorithms [2]. However, the potential of grid-based localized learning has not

been exploited adequately in designing supervised learning algorithms. The grid-based

localized learning algorithms can scale well with an increase in the dimensionality and

size of datasets. The grid-based localized learning algorithms are inherently scalable

because they reduce the search space by partitioning the feature space into uniform or

non-uniform partitions [6, 7, 8, 9, 10, 11, 12]. Thus, the motivation is to develop grid-

based classification models to harness the scalable nature of the grid-based localized

learning paradigm.

6.2 Problem Statement

Grid-based localized learning paradigm has been used in designing fast and

scalable unsupervised learning algorithms that scale well with respect to the increase in

size of the dataset and dimensionality of the dataset. Therefore, it is hypothesized that

grid-based classification models can be developed using the grid-based nearest-neighbor

learning approach to develop fast and scalable classification models. Based on this

hypothesis, the aim is to develop the grid-based classification models that inherit the

advantages of grid-based localized learning paradigm.

6.3 Methodology

In this section, fixed grid-based and adaptive grid-based classification models are

discussed. The developed grid-based classification models consist of four phases. The

first phase is the data preprocessing phase. The second phase is the grid generation phase.

71

The third phase is the training phase of the classifier design and the fourth phase is the

test phase of the classifier design. All the phases of fixed grid-based classifier and

adaptive grid-based classifier are identical except the grid generation phase. All the

phases of the methodology are as follows.

6.3.1 Data Preprocessing

Data preprocessing is an essential step in this methodology. The dataset is first

normalized by applying Z-score normalization. Each dimension is transformed based on

the mean and standard deviation of the dimension. The data is further normalized into a

unit hypercube [0, l]d to scale all the dimensions between the range of zero and one by

applying min-max normalization on each dimension.

6.3.2 Grid Generation

Grid generation is essential for the grid-based classification model. Two methods

of grid generation are discussed here. The first method generates uniform grid structure

and the second method generates adaptive grid structure.

6.3.2.1 Uniform Grid Generation

Uniform grid structures are generated by creating uniform partitions of the desired

size in each dimension. The uniform grid generation is a simple process. First, it is

assumed that data is normalized between [0, 1]. Next, each dimension is partitioned into

equal width of the desired number of partitions. The partition width is given by

Equation 6.1:

Mvsize=-rrr • Eq.6.1
™PNumber

Here, MpNumber represents user defined number of partitions and Mpsize represents the

size of each partition.

72

6.3.2.2 Adaptive Grid Generation

The adaptive grid structures are essential for the adaptive grid-based classification

model. Therefore, an algorithm is developed that generates adaptive grids by creating

data adaptive partitions in each dimension. The adaptive grid generation is a two-step

process. First, each dimension is sorted and micro-partitions (see Definition 3.18) are

created. Next, micro-partitions are clustered using the minimum variance based selective

agglomerative hierarchical partitioning. The following steps are performed on each

dimension to generate adaptive grid.

Creating Micro-Partitions: Initially, the dimension is sorted in ascending order.

The sorted one-dimensional data points are in close proximity with their neighbors. Non-

overlapping units of data points called micro-partitions are created by grouping k

contiguous data points (k < N, where N is the total number of data points). A small

value of k is chosen because micro-partitions should be as small as possible but not small

enough to undermine the benefits of the overall grid generation process. The choice for

the size of micro-partitions is inspired by [68, 69]. The size of a micro-partition is

obtained by applying Equation 6.2 and the number of micro-partitions is obtained by

applying Equation 6.3:

Choosing a value smaller than N /10 will reduce the size of micro-partitions and

will create too small micro-partitions and undermine the benefits of micro-partitioning

and will have higher computational cost.

Eq. 6.2

M PNumber - [MpsJ" Eq. 6.3

73

Variance-Based Partitioning: The variance-based hierarchical partitioning groups

contiguous micro-partitions in bottom-up fashion. See Figure 6.1 for the pseudo-code of

the algorithm.

Algorithm: Variance Based Partitioning
Input: Dataset X
Output: Data Adaptive Grid G
01 N - Number of Datapoints in X
02 d = Number of Dimensions in X
03 for j=l to d
04 Sd = Sort(_Dj)

05 Mps.e = [TivTIo |

06 ^Number "

07 71 = MPflumber
08 for r=l to (n - 1)

10 end
11 while n * 2
12 Mergelndex = Find_minimum(VAR)

13 Mn = Merge_micro_partitions(Mergelndex)
14 n = n — 1
15 end

16 for n=2 to MpNumber

17 M„(m) = Find_partitions(M n)
18 end
19 end

Figure 6.1: Variance-Based Partitioning Algorithm

The algorithm begins by creating micro-partitions of desired size, which is

obtained using Equation 6.2. Next, the computation of the proximity between all the pairs

of adjacent micro-partition is performed using the combined variance of adjacent micro-

partitions. Two contiguous micro-partitions are grouped together based on the minimum

combined variance. This process of grouping adjacent micro-partitions continue in

bottom-up fashion until all the micro-partitions are grouped together in one big partition.

74

Once the algorithm is terminated, corresponding micro-partitions are grouped and a

hierarchical decomposition of partitions is obtained for the dimension. This process is

repeated for all the dimensions in the similar fashion.

6.3.3 Training Phase

The training phase of the classifier is a two-step process. In the first step, the

training data is mapped on the fixed grid structure or the adaptive grid structure

depending on the classification model. Every training sample is mapped on the grid

structure by assigning every training sample to its corresponding grid cell. This step is

called class mapping. In the second step, the grid-based neighborhood model is built by

identifying the neighborhood of every nonempty grid cell. This step is called

neighborhood identification. Both the steps are intertwined in the training phase and are

discussed here.

Class Mapping: Class mapping is the process of assigning the training sample of a

particular class to its corresponding grid cell. In this process, a given n-dimensional

training sample is assigned to a corresponding cell by assigning each data value in a

dimension to an appropriate partition of the dimension, thus identifying its cell ID. This

cell ID is stored along with the training sample and its class label. For the next training

sample the same process is applied and its grid cell is identified. The cell ID of the

training sample is matched against previously added cell ID's. If a match is found, then

this training sample and its class label is appended to the existing list. If no match is

found, then this cell ID is added to the existing list of grid cells along with the training

sample, its class label and the neighborhood information. This process is repeated for all

the training samples. The pseudo-code of the training phase is presented in Figure 6.2.

75

Algorithm: Training Phase

Input: Training Dataset X, Grid G l

Output: Grid-Based Classification Model (Z, Zdata, Zneighbor)
01 N = Number of Datapoints in X
02 Count = 0
03 for i=l to AT

04 C(i) = Find_CellJd(X i,G l)
05 NbrCount = 0
06 NeighborList = 0
07 for m=l to Count
08 if (Z(m) == C(i)) then
09 Z(m). count = Z(m). count + 1

10 Add Xi to Zdata(m)
11 break
12 else
13 if (Neighbor (Z(m),C(i))) then
14 NbrCount = NbrCount + 1

15 Add m to NeighborList
16 end
17 end
18 end
19 if (C (i) € Z) then
20 Count = Count + 1
21 Add C(i) to Z
22 Add X t to Zdata(Count)
23 Add NeighborList to Zneighbor (Count)
24 for n=l to NbrCount

25 Add Count to Zneighbor (Neighbor List (n))
26 end
27 end
28 end

Figure 6.2: Training Phase of the Grid-Based Classifier

Neighborhood Identification: Neighborhood identification refers to the process of

identifying the neighboring grid cells (see Definition 3.9) of a grid cell. The

neighborhood of a grid cell is identified by matching the cell ID of the training sample

against previously added cell ID's in the list of grid cells. If the match satisfies the

neighborhood criterion, then the index of the previously added cell ID is added to the list

of the neighboring grid cell otherwise it is not added to the list. This process is repeated

for the entire list of grid cells. The neighborhood list of all the existing grid ceils is also

76

updated after adding the newly identified grid cell to the list of grid cells. This process is

repeated for every new grid cell that is added to the list of grid cells.

6.3.4 Test Phase

In the test phase, each ^-dimensional test sample is assigned to its corresponding

grid cell by assigning each data value in a dimension to an appropriate partition of the

dimension, thus identifying its cell ID. This procedure is repeated for all the test samples.

Initially, the grid cell ID of the test sample is matched against the list of grid cell ID's of

training data. If a match is found, then the training samples and the neighboring grid cells

corresponding to the matched grid cell are obtained. Next, the distance between the test

sample and the medoid of the training samples present in each neighboring cell is

computed and k-nearest-neighbors are identified. The test sample is assigned to the class

that has the majority votes in the k-nearest-neighbors list. Furthermore, if no match is

found, then the distance between the test sample and the medoid of the training samples

present in a grid cell which is the element of the list of grid cell ID's of training data is

computed. This process is repeated for each grid cell present in the list of grid cells ID's

of training data. Finally, k-nearest-neighbors are identified and the test sample is assigned

to the class that has the majority votes in the k-nearest-neighbors list. The pseudo-code of

the test phase is presented in Figure 6.3.

Algorithm: Test Phase

Input: Test Dataset X, Grid G(, Z, Zdata, Zneighbor

Output: Predicted Class Labels PLabel
01 N = Number of Datapoints in X
02 Count = Number of Classes

03 for i = 1 to N

04 C (i) = F i n d _ C e l l J d { X i , G t)
05 NbrCount = 0

06 NbrList = 0

07 NbrData = 0

08 for m =1 to length(Z)

09 if (Z(m) == C (i)) then
10 Cellindex = m

11 NbrList = Zneighbor(m)
12 NbrData = Zdata(m)
13 break
14 else
15 if (Neighbor(Z(m),C(0)) then
16 NbrCount = NbrCount + 1

17 Add m to NbrList
18 end
19 end
20 end
21 for n = 1 to length(NbrList)
22 KNNList = Find_KNearest Neighbor
23 end
24 PLabel(i) = Assign_Class_Label
25 end

Figure 6.3: Test Phase of the Grid-Based Classifier

6.4 Results and Discussions

The performance of the developed classifier is measured based on the time

complexity of the classifier, scalability of the classifier and the correctness of the

classifier. The time complexity of the classifier computes the time required by the

classifier to build and test the model. The scalability of the classifier measures its time

requirement with respect to the increasing dimensions and dataset size and the

correctness of the classifier measures its ability to correctly classify the data. The

remainder of the section is organized as follows. In Section 6.4.1, a brief description of

78

all the datasets used for the experiments is given. In Section 6.4.2, validation technique

and validation measures are discussed. In Section 6.4.3, experiments pertaining to the

scalability analysis and comparative analysis are presented. Finally, in Section 6.4.4 time

complexity analysis of the classifier is presented.

6.4.1 Datasets

Both real and synthetic datasets with a wide range of dimensions and sample size

are used for experiments and assess the capabilities of the classifier. A detailed

description of each of these datasets is as follows:

1. Letter Recognition Dataset: The letter recognition dataset consists of 16 primitive

numerical features extracted from character images of 26 capital letters in the English

alphabet. These numerical features are statistical moments and edge counts. The

dataset has 20,000 sample images and 16 dimensions. The dataset has 26 classes and

each class represents the 26 capital letters in the English alphabet. Each class has

approximately 700 to 800 data samples. The dataset is available at the UCI data

archive website (http://archive.ics.uci.edu/ml/datasets.html) [58].

2. Handwritten Numeral Recognition Dataset: The handwritten numerals recognition

dataset consists of features extracted from the binary images of the ten numerals (0-9)

that were obtained from a collection of Dutch utility maps. There are 200 samples per

numeral and a total of 2000 samples overall. The dataset has 10 classes and each class

represents 10 numerals. A feature set extracted from the binary images is used for

experiments. The feature set consists of profile correlations of binary images and it

has 216 dimensions. The dataset is available at the UCI data archive website

(http://archive.ics.uci.edu/ml/datasets.html) [58].

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html

3. Protein Structural Classification Dataset: The protein dataset consists of feature

vectors that are based on amino acid sequence of corresponding proteins. The feature

construction is based on the amino acid composition, physical, and stereo chemical

properties of amino acids. Each feature vector consists of 125 feature descriptor. The

dataset has 582 samples and is divided into five protein structural classes, namely

a, (3 , a + and Small proteins. The feature vector construction method is

discussed in [60]. This data is available at (http://ranger.uta.edu/~chqding/protein/).

4. Synthetic Dataset: Synthetic datasets are generated for the experiments pertaining to

the scalability study. A set of 20 synthetic datasets is generated that consist of all the

combinations of 25, 50,75,100, and 125 dimensions, and 10000,20000, 30000, and

40000 data points. Each dataset contains four clusters, each of which has an equal

number of data points in respective datasets. A R package is used for generating the

synthetic datasets with the desired degree of separation [70]. The value of separation

index ranges between -1 to 1. A value of separation index closer to one indicates that

all the clusters are well separated.

6.4.2 Validation

The ability of the classifier to correctly identify the test samples is performed

either by holdout method or a variant of k-fold cross-validation. Stratified k-fold cross-

validation which is a variant of standard k-fold cross-validation is used to estimate the

classification performance of the classifier on all the datasets. Each class is divided into k

disjoint subsets and approximately equal in size. In k-fold cross-validation, k-1 folds are

used for training the classifier and the remaining one fold is used for evaluating the

classifier. This process is repeated k times, leaving one different fold for evaluation each

http://ranger.uta.edu/~chqding/protein/

80

time. Classification accuracy and F-measure is used to compare the classification results.

F-measure is the combination of precision and recall measure. These measures are

represented by Equations 6.4, 6.5,6.6, and 6.7:

TP
Precision = . Eq. 6.4

CTP+FP) n

Recall = , TP s, Eq. 6.5
(TP+FN) M

„ „ (precision*recall \ _ , ,
F - measure = 2 x (— , Eq. 6.6

xprecision+recallJ

Classification Accuracy = -—(~rP + TN^— E q . 6 . 7
1 J (TP+FP+TN+FN) ^

In the above equations, TP, TN, FP, and FN refer to true positive, true negative,

false positive, and false negative, respectively.

6.4.3 Experiments

This section initially discusses the validation technique and validation measures

used to evaluate the classifier. Then experiments are presented to demonstrate the

scalability of the classifier with increasing dimensions and dataset size. Finally,

experiments are presented to compare the ability of the developed grid-based classifier

with other existing classifier to correctly identify the test samples.

6.4.3.1 Scalability Analysis

Experiments are conducted to establish the scalability characteristics of the

developed classifiers. The scalability study of the training phase and the test phase of the

fixed grid-based and adaptive grid-based classifier are presented below. The time

requirements of the training phase and the test phase of both the classifiers do not

deteriorate drastically and an appearance of linearity is observed as the number of

dimensions and the size of the datasets increase.

81

Fixed Grid-Based Classifier: The scalability study pertaining to the training phase

and the test phase of the classifier is as follows:

Training Phase: Figure 6.4 plots the execution time of the training phase of the

classifier on a set of twenty synthetic datasets. This figure demonstrates the scalability of

the training phase of the classifier with respect to the increasing dimensions of the dataset

while keeping the data size constant. It is demonstrated from Figure 6.4 that the training

time required by the classifier appears to increase linearly with the increase in

dimensions. Similarly, Figure 6.5 depicts the scalability of the training phase of the

classifier with respect to the increasing size of the dataset while keeping the dimensions

constant. Figure 6.5 plots the execution time of the training phase of the classifier with

respect to the size of the dataset. It is demonstrated from the figure that the time required

by the classifier appears to increase linearly with the increase in the size of the dataset.

10000

9000

8000
•o
| 7000

a 6000

I 5000
H
a 4000
.2
| 3000

x
W 2000

1000

0

* Dataset size = 10000

• Dataset size = 20000

* Dataset size = 30000

* Dataset size = 40000

•-

* —A A— —A

I I I I
25 50 75 100 125

Dimensions

Figure 6.4: Training Phase Execution Time v/s Dimensions

82

10000

9000

•3 s o
8 Cfl
a

8000

7000

6000

| 5000

H
b 4000 ©

1 3000

u
2000

1000

0

-Dimensions = 25

•Dimensions = 50

-Dimensions = 75

•Dimensions = 100

-Dimensions = 125

10000 20000 30000

Dataset Size

40000

Figure 6.5: Training Phase Execution Time v/s Dataset Size

Test Phase: Figure 6.6 demonstrates the scalability of the test phase of the

classifier with respect to the increasing dimensions of the dataset while keeping the data

size constant. Figure 6.6 depicts the average execution time taken by each test sample

with respect to the increasing dimensions of the dataset. It can be interpreted from the

figure that the average time taken by each test sample decreases slowly with the increase

in dimensions. Similarly, Figure 6.7 depicts the scalability of the test phase of the

classifier with respect to the increasing size of the dataset while keeping the dimensions

constant. It is demonstrated from the figure that the average time taken by each test

sample appears to increase linearly with the increase in the size of the dataset.

•Dataset size = 10000

•Dataset size = 20000

• Dataset size = 30000

• Dataset size = 40000

25 50 75

Dimensions

100 125

Figure 6.6: Average Execution Time/Sample v/s Dimensions

Dimensions = 25
Dimensions = 50
Dimensions = 75
Dimensions = 100
Dimensions = 125

10000 20000 30000

Dataset Size

40000

Figure 6.7: Average Execution Time/Sample v/s Dataset Size

84

Adaptive Grid-Based Classifier: The scalability study related to the training phase

and the test phase of the classifier is as follows:

Training Phase: Figure 6.8 depicts the scalability of the training phase of the

classifier with respect to the increasing dimensions of the dataset while keeping the data

size constant. Figure 6.8 depicts the execution time taken by the training phase of the

classifier with respect to the increasing dimensions for a given size of a dataset. It can be

interpreted from the figure that the training time required by the classifier seems to

increase linearly with the increase in dimensions. Similarly, Figure 6.9 depicts the

scalability of the training phase of the classifier with respect to the increasing size of the

dataset while keeping the dimensions constant. Figure 6.9 depicts the execution time

taken by the training phase of the classifier with respect to the increasing size of the

dataset for a given number of dimensions. It is demonstrated from the figure that the time

required by the classifier appears to increase linearly with the increase in the size of the

dataset.

10000

_ 9000

| 8000

I 7000
i/3
.E 6000

§ 5000
 ̂ 4000

•| 3000

g 2000
w

1000

0

-Dataset Size = 10000
-Dataset Size = 20000
-Dataset Size = 30000
-Dataset Size = 40000

»-

•-

25 50 75
Dimensions

100 125

Figure 6.8: Execution Time v/s Dimensions

85

10000 1 —•—Dimensions = 25

9000 —•—Dimensions = 50
Dimensions = 75

 ̂ 8000 — D i m e n s i o n s = 1 0 0
w

o 7000

c 6000

w Dimensions = 125
w

o 7000

c 6000 Sa

| 5000 -

e 4000
.2

| 5000 -

e 4000
.2
f 3000

W 2000 -

1000

0
10000 20000 30000 40000

Dataset Size

Figure 6.9: Execution Time v/s Dataset Size

Test Phase: Figure 6.10 presents the scalability of the test phase of the classifier

with respect to the increasing dimensions of the dataset while keeping the data size

constant, and it depicts the average execution time taken by each test sample with respect

to the increasing dimensions of the dataset. It can be inferred from the figure that the

average time taken by each test sample increases slowly with the increase in dimensions.

Figure 6.11 depicts the scalability of the test phase of the classifier with respect to the

increasing size of the dataset while keeping the dimensions constant. Figure 6.11 depicts

the average execution time taken by each test sample with respect to the increasing size

of the dataset. It is demonstrated from the figure that the average time taken by each test

sample seems to increase linearly with the increase in the size of the dataset.

86

Dataset size = 10000
Dataset size = 20000
Dataset size = 30000
Dataset size = 40000

50 75
Dimensions

Figure 6.10: Average Execution Time/Sample v/s Dimensions

2.5
B.
E es

65 2
.§ 9

1 8 , . •c « 1.5 3 t/5 u -« .E X w
w
u M n L. a >
<

I

0.5

•Dimensions = 25
•Dimensions = 50
•Dimensions = 75
• Dimensions = 100
•Dimensions = 125

10000 20000 30000

Dataset Size

40000

Figure 6.11: Average Execution Time/Sample v/s Dataset Size

The experimental results presented in this section demonstrate that fixed grid-

based classifier and adaptive grid-based classifier are scalable and their training time and

test time appear to increase linearly with the increase in data size and dimensions.

87

6.4.3.2 Comparative Analysis

A comparative analysis is conducted on three different datasets to demonstrate the

ability of the grid-based classifiers in correctly classifying the test data. Classification

results of the grid-based classifiers are compared with classification results of other well-

known classifiers. The classifiers that are used for comparison include C4.5, Naive

Bayes, Classification Tree, PART rule based classifier, KNN and Logistic regression [66,

67,71, 72]. This comparative analysis is conducted using five fold cross-validation on all

the datasets. Figure 6.12 shows the classification results of the letter recognition dataset.

The classification results of the fixed grid-based and adaptive grid-based classifiers are

compared with C4.5, Naive Bayes, PART, and Classification Tree. It is demonstrated in

the plot that the average F-measure and classification accuracy of the grid-based

classifiers are the highest and are better at correctly identifying the test samples.

0 Naive Bayes Classifier

• Classification Tree
SC4.5 Classifier

I PART Classifier
« IB Fixed Grid-Based Classifier
S3

•jj H Adaptive Grid-Based Classifier
>
a oc
3
e
g
4> CU

• "prr • •

- - - W . .

Avg. F-Measure Classification Accuracy

Classification Performance Measures

Figure 6.12: Comparative Study on Letter Recognition Dataset

88

Furthermore, in Figure 6.13, the classification results of the handwritten numeral

recognition dataset related to the profile correlation feature set are presented. It is

demonstrated from the plot that average F-measure and classification accuracy of the

grid-based classifiers are superior in comparison to C4.5, Naive Bayes, PART, and

Classification Tree in correctly identifying the test data. Classification results are also

compared on a protein structural classification dataset. A comparative study is presented

in Figure 6.14. The study shows that the average F-measure and classification accuracy

of the grid-based classifiers are better than Logistic and KNN classifiers. It is easy to

interpret that grid-based classifiers demonstrate superiority over other selected classifiers.

120

110

100

B Classification Tree
• C4.5 Classifier
DPART Classifier

I Naive Bayes Classifier
a Adaptive Grid-Based Classifier
H Fixed Grid-Based Classifier

-2 5 5 M
LL ? Q[CM
JF 2 J? OT
IF QFQ

•
I PI 111 I • 111 PI

111 JJI
111 CI 111 JJI
111

- -
-

! ; ! 5

Avg. F-Measure Classification Accuracy

Classification Performance Measures

Figure 6.13: Comparative Study on Profile Correlation Feature Set

89

SSSS!!""" Wlna

>>>$• !•••
Willi
Sf^lllll
>>>>!•••

VVV&IBBB ;VV>>|BBB •VVV^IBBB

>V>;V|BBB
^•^IBiS

120

110

100

90

I 80

> 70

§> 60
3
g 50

g 40
fc 30

20

10

0
Avg. F-Measure Classification Accuracy

Classification Performance Measure

Figure 6.14: Comparative Study on Protein Structural Classification Dataset

6.4.4 Time Complexity Analysis

The time complexity analysis related to the adaptive grid generation algorithm,

training phase of the classifier, and test phase of the classifier is as follows:

1. Grid Generation Algorithm: In this algorithm, the total number of micro-

partitions MpNumber is first calculated. Next, the minimum variance based selective

agglomerative hierarchical partitioning is performed, which takes 0(MpNumber *

(Mpsize)2 + MpNumber) time. This process is repeated for all the dimensions. Thus,

the time complexity of the algorithm for all dimensions is 0(d* {MpNumber *

(Mpsize) + MPNumber))•

2. Classifier Training Phase: In the training phase, first assign every training sample to

a cell. Each assignment takes 0(d) time. Second, to add a new grid cell to the list of

grid cells and identify the neighborhood of the new grid cell, the new grid cell is

compared with all previously identified grid cells in the list, which requires NTota[

comparisons and takes 0(d * NTotai) time. Here, NTotat represents the total number

B Logistic Classifier
0KNN Classifier
H Classification Tree
• Fixed Grid-Based Classifier

Q Adaptive Grid-Based Classifier

90

of grid cells after mapping all the training samples. Third, to update the list of the

neighbors of all the existing grid cells that are also neighbor to the newly added grid

cell requires 0(d * NNbr) time. Here, NNbr is the number of neighboring grid cells.

Thus, the overall maximum time required for the training phase can be given

by 0(N*(d + dNTotal+ dNNbr)).

3. Classifier Test Phase: In the test phase, first identify the grid cell of the test sample,

which takes 0(d) time. Second, compare the grid cell ID of the test sample with the

list of grid cell ID's of the training data. It takes 0(d * NTotai). Here, NTotai

represents the total number of grid cells after mapping all the training samples. Third,

compute the distance between the test sample and the medoid of the training samples

present in each neighboring grid cell. This step takes 0(d * C * NNbr). Here, NNbr is

the number of neighboring grid cells. Fourth, compute the distance between the test

sample and the medoid of training samples present in NTotai grid cells. It takes 0(d *

C * NTotal). Thus, the overall time complexity of the test phase for a test sample

is 0(d + d* NTotal +d*C* NNbr + d*C* NTotal).

6.5 Conclusion

This chapter has outlined the potential of grid-based localized learning in

designing fast and scalable classifier to process large datasets. Furthermore, two grid-

based classification models have been developed to harness the advantage of data space

partitioning. The first grid-based classification model uses uniform grid structure and the

second classification model uses adaptive grid structure. The developed grid-based

classification models consist of four phases: Data preprocessing phase, Grid generation

phase, Training phase, and Test phase. All the phases of fixed grid-based classifier and

91

adaptive grid-based classifier are identical except the grid generation phase. Experiments

are conducted on synthetic datasets that demonstrate that developed grid-based classifiers

are scalable and demonstrate a slow and linear increase in the execution time of their

training phase and test phase with an increase in the number of dimensions and size of the

datasets. The comparative study conducted on real datasets has demonstrated that

developed grid-based classifiers performance better than other well-known classifiers.

There are still some open questions such as what would be the effect of the integration of

feature ranking with the classification model for high dimensional datasets and what

would be the effect of supervised data partitioning method for grid generation. These

open questions regarding the grid-based classification models can be explored as future

directions.

CHAPTER 7

GRID-BASED LOCALIZED LEARNING FOR

CLUSTERING

Multidimensional datasets exhibit sparseness, which increases as dimensions

increase [13,14]. The sparseness of multidimensional datasets is a serious impediment to

clustering algorithms and severely affects the performance of these algorithms. This

problem has been addressed in the past by augmenting clustering algorithms with

specialized data preprocessing techniques that reduce the overall sparseness of the data

[13, 14, 20, 21, 22, 23, 24], These data preprocessing techniques are categorized as

sparseness reduction techniques and are commonly called data shrinking or data

movement techniques. In such clustering techniques, first, a data shrinking algorithm is

applied to diminish the sparseness of the data by moving the data points along the

direction of the density gradient, which provides more condensed and demarcated

clusters in the original dimensional space while retaining the dimensions [13, 14].

Clustering algorithms augmented with a data shrinking technique perform better than

traditional clustering algorithms [13, 14]. However, existing data shrinking based

clustering algorithms have deficiencies which need to be addressed. Therefore, there is a

need to develop new algorithms that are efficient and better than existing algorithms.

92

93

The remainder of the chapter is organized as follows. In Section 7.1, research

motivation is discussed. In Section 7.2, a problem statement is discussed. In Section 7.3,

the methodology of the non-uniform grid-based shrinking and clustering algorithm is

discussed. In Section 7.4, experimental study is presented and discussed. Finally, in

Section 7.5, conclusions are presented.

7.1 Research Motivation

The deficiencies of the existing data shrinking algorithms and the deficiencies of

the existing grid-based clustering algorithms have motivated us to develop a new data

shrinking based clustering algorithm. The existing data shrinking algorithms suffer from

the inherent instability in the shrinking process and large computational time of these

algorithms [13, 14, 20, 21, 22, 23, 24]. Similarly, the existing grid-based shrinking and

clustering algorithms impose uniform grid structure on all the dimensions. However, non

uniform grids are more effective than uniform grids because they capture the underlying

data distribution in every dimension and are computationally more efficient than uniform

grids [26]. Thus, the motivation is to develop new grid-based data shrinking and

clustering algorithm to address the deficiencies of existing techniques.

7.2 Problem Statement

Uniform grid-based data partitioning imposes a uniform grid structure on the data,

partitions the multidimensional space into equal size partitions, and ignores the

underlying data distribution. Thus, a uniform grid fails to effectively capture the

underlying data distribution in each dimension. Consequently, uniform grid-based data

shrinking algorithms do not perform better than traditional algorithms. On the other hand,

non-uniform grid-based data partitioning is data driven and effectively captures the

94

underlying data distribution in each dimension. It is highly likely that non-uniform grid-

based shrinking will perform better, and it is hypothesized that non-uniform grid-based

partitioning will provide effective movement of data points for data shrinking. Based on

this hypothesis, the aim is to develop non-uniform grid-based data shrinking and

clustering algorithm that uses non-uniform grid-based localized learning paradigm.

7.3 Methodology

The overall methodology of the developed adaptive grid-based data shrinking and

clustering algorithm consists of four steps. The overall methodology is presented in

Figure 7.1.

Data

Grid Generation

Identify
micro-partition

Data
transformation
I

Hierarchical
partitioning

Data Shrinking

Rank neighboring
grid cells

Data
movement

Data shrinking
process

Clustering

Agglomerative
hierarchical
clustering

Cluster
evaluation

and selection

Figure 7.1: Adaptive Shrinking Based Clustering Approach

95

The overall methodology is divided into four sections. In Section 7.3.1, data

preprocessing step is discussed. In Section 7.3.2, the non-uniform/adaptive grid

generation step is discussed. In Section 7.3.3, the data shrinking step is discussed.

Finally, in Section 7.3.4, the grid-based hierarchical clustering algorithm is discussed.

7.3.1 Data Preprocessing

Data preprocessing is an essential process in this methodology. In data

preprocessing, the dataset is first normalized by applying Z-score normalization. Then,

each dimension is transformed based on the mean and standard deviation of the

dimension. The dataset is further normalized into a unit hypercube [0, l]d to scale all the

dimensions between the range of zero and one by applying min-max normalization on

each dimension [2]. In addition to this step, those dimensions are eliminated from the

datasets that do not provide significant variability within the dimension. The removal of

the dimensions occurs when significant numbers of data values in a dimension are either

zero or constant.

7.3.2 Adaptive Grid Generation

The data adaptive grid generation algorithm is a data driven technique used to

create data adaptive grid structure for shrinking and clustering. This algorithm generates

a data adaptive grid by creating data adaptive partitions in each dimension. The data

adaptive grid is generated in three steps. Initially, micro-partitions (see Definition 3.18)

are created. Next, data space transformation is performed on each micro-partition using

discrete wavelet transform. Feature extraction is then performed on each transformed

micro-partition by extracting a compact spectral representation and, finally, these

transformed micro-partitions are clustered using a multi-objective selective

96

agglomerative hierarchical partitioning (MOSAH partitioning) algorithm. The following

three steps are performed on each dimension.

7.3.2.1 Finding Micro-Partitions

Initially, the dimension is sorted in ascending order. The sorted one-dimensional

data points are in close proximity with their neighbors. To group these points together,

micro-partitions are introduced. The use of the micro-partitions is motivated by the idea

that this method will reduce the computation time of the overall grid generation process.

Non-overlapping units of data points called micro-partitions are created by grouping k

contiguous data points (k < N, where N is the total number of data points). A small

value of k is chosen because micro-partitions should be as small as possible but not small

enough to undermine the benefits for the overall grid generation process. The choice for

the size of micro-partitions is inspired by [68, 69]. In [68] and [69], [VaFJ intervals are

used to divide the attribute, and each interval contains approximately [VNJ intervals. The

size of micro-partitions is obtained by applying Equation 7.1 and the number of micro-

partitions is obtained by applying Equation 7.2:

Mpsize = 2Eq. 7.1

MpNumber = Ecl- 12

In Equation 7.1, log2 jN/10 is used to obtain the size of micro-partitions which

ensures that the micro-partitions obtained are small enough. Choosing a value smaller

than N/10 will reduce the size of micro-partitions and will create too small micro-

partitions and undermine the benefits of micro-partitioning.

97

7.3.2.2 Data Transformation

Data space transformation is usually applied to transform data space and obtain a

new representation of the data. This process is applied to each micro-partition for

extracting a compact spectral signature and data reduction. An efficient wavelet

transform method called discrete wavelet transform is selected [73]. In discrete wavelet

transform, wavelet coefficients are calculated only for dyadic scales and positions. Thus,

the method provides more concise and efficient transformation [73]. The discrete wavelet

transform of a data vector x is given by Equation 7.3, where xp represents an impulse

response called a mother wavelet. The discrete wavelet transform of a data vector x is

calculated by passing it through a series of filters. The data vector x is decomposed

simultaneously using both a high-pass and a low-pass filter. The output is outlined in the

detail coefficients and in the approximation coefficients, respectively. The output of the

transformation (detail and approximate coefficients) is given by Equations 7.4 and 7.5.

The approximate coefficients are the high-scale, low-frequency components of the

data, and the detail coefficients are the low-scale, high-frequency components of the data.

Approximate coefficients are more important than detail coefficients because they

contain more than 98% of the energy of the data [73,74,75]. For these experiments, the

Haar wavelet is selected as a mother wavelet because it is the simplest wavelet

imaginable. Only approximate coefficients are retained after transformation in order to

extract a compact spectral signature of each micro-partition:

W (j, k) = Y,k x(k) 2 i/21/>(2 jn - k), Eq. 7.3

yrnghM = Znx[n]g[2k — n], Eq. 7.4

yLowik] = %nx[n]h[2k-n]. Eq. 7.5

98

7.3.2.3 MOSAH Partitioning

In multi-objective selective agglomerative hierarchical partitioning (MOSAH), all

the transformed micro-partitions are clustered by applying a multi-objective criterion that

groups contiguous micro-partitions in a bottom-up fashion until all the micro-partitions

are in one cluster (see Figure 7.2).

Micro
Partition

Figure 7.2: MOSAH Partitioning of Micro-partitions

In this multi-objective framework, three objective functions are used to obtain the

consensus for grouping micro-partitions. These three objective functions are average-

linkage, centroid-linkage, and ward-linkage. Since micro-partitions are created from a

sorted dimension, all the micro-partitions are arranged in a contiguous or sequential

order. The sequential order of micro-partitions also gives the MOSAH partitioning its

unique characteristics. Since the micro-partitions are in sequential order, only contiguous

micro-partitions are merged to form macro-partitions.

7.3.2.4 Algorithmic Description

Initially, all the transformed one-dimensional micro-partitions are given as an

input to the algorithm. The pseudo-code of the algorithm is presented in Figure 7.3.

Algorithm: Data Adaptive Grid Generation
Input: Dataset X
Output: Data Adaptive Grid G
01 N = Number of Datapoints in X
02 d = Number of Dimensions in X
03 for j=l to d
04 Sd = Sort(Vj)

05 Mps|„ =

N I
06 Mp„ . =

'Number

07 for r=l to Mp.. . r Number
08 m(r) = Find_micro_partition{ D j)

09 DWm(r) = Find_discrete_wavelet_transform(m(r))
10 DWa(r) = Find_approx_wavelet_coeff(DWm(r))
11 end
12 n = Mpsumber H Start of MOSAH partitioning
13 for r=l to (n - 1)

14 AVERAGER) = ' XLi \DWa(r,j) - DWa(r + 1,))| (NV*N*-AII 11 J X

15 CENTROID(r) = |DWa(r) - DWa(r + 1)|

16

17 end
18 while n =£ 2
19 Minlndex(1) = Find_minimum(AVERAGE)
20 Minlndex(2) = Find_minimum(CENTROID)

21 Minlndexl 3) = FindjninimumlwARD)
22 Merge lndex = Majority_voting(MinIndex)

23 Mn = Merge_micro_partitions(Merge jndex)

24 n = n - 1
25 end
26 for n=2 to Mp,, ,

r Number

21 Mn(m) = Find_partitions_in_original_space(Mn)
28 end //End of MOSAH partitioning
29 end

Figure 7.3: Data Adaptive Grid Generation Algorithm

100

The algorithm begins with the computation of the proximity between all pairs of

adjacent micro-partitions using the multi-objective framework to group micro-partitions.

Next, two contiguous micro-partitions are grouped together to form macro-partitions

based on the majority voting scheme. In this voting scheme, a pair of adjacent micro-

partition is grouped together if they obtain at least two out of three votes of being the

closest of all pairs of adjacent micro-partitions. The process of grouping adjacent micro-

partitions continue in bottom-up fashion until all the micro-partitions are grouped

together in one big partition. Once the algorithm is terminated, corresponding micro-

partitions are grouped in the original data space, and a hierarchical tree of partitions is

obtained in the original space.

7.3.3 Adaptive Grid-Based Shrinking

The data adaptive grid-based shrinking algorithm begins once hierarchical

decomposition of data adaptive partitions is obtained for all the dimensions. For this

algorithm, the user must first select a level from the hierarchical decomposition of

adaptive partitions. The steps to perform data shrinking at a specified level of hierarchical

decomposition are given throughout this section.

7.3.3.1 Ranking Neighboring Grid Cells

In a grid-based data movement process, the neighborhood is defined based on the

grid cell [13, 14]. In general, a d-dimensional grid cell C can have CNeighbor distinct

neighboring grid cells. There are a total of riy=i Sj ~ 1 distinct neighbors. These

Cneighbor distinct neighbors can be further categorized into d categories. The

categorization of neighboring grid cells in d-dimensional data space is based on the

number of facets shared between a grid cell C and its neighboring grid cells [6]. The grid

101

cells that share a maximum number of facets (d — 1) are the closest to the grid cell C. An

example of ranking neighboring grid cells is shown in Figure 7.4.

e o
s
s

u

hftidUi

Dimension 1

Figure 7.4: A Two-Dimensional Grid with Cell ID's

In Figure 7.4, a two-dimensional grid is used to demonstrate the various

neighboring grid cells that can be identified in a two-dimensional grid. In the grid

structure, the horizontal axis represents dimension-1, and the vertical axis represents

dimension-2. Each dimension is divided into four partitions. The grid cell numbering is

based on the convention, C = (/i,Pl,/2>P2), where /l pi represents the partition number in

dimension-1 and IZ p2 represents the partition number in dimension-2. A grid cell with ID

(2.3) is depicted in green, and its neighboring cells are depicted in purple and orange.

The orange grid cells that have the cell IDs (1,3), (3,3), (2,4), and (2,2) share one facet

with the green grid cell in the center. Similarly, the purple grid cells that have the cell IDs

(1.4), (3,4), (1,2), and (3,2) share no facet with the green cell in the center. Therefore,

the grid cell with cell ID (2,3) has two categories of neighbors. Similarly, for higher

dimensions d (d > 2), d types of neighbors can be identified based on the number of

facets shared between the neighboring cells.

102

7.3.3.2 Data Movement Model

A grid-based model of attraction is employed to move all the data points in a

particular grid cell as a single unit. First, identify all of grid cell Cu's non-empty

neighboring grid cells. Second, rank all neighboring grid cells using the ranking method.

Third, choose all top ranked neighboring grid cells. Fourth, compute the data centroid of

the selected top ranked neighboring grid cells of the grid cell Cu and the data centroid of

the grid cell Cu. Fifth, move all the data points in the grid cell Cu using the data

displacement formula.

To formally describe the data movement for a grid cell, let Cu be a grid cell that

contains a set Xu of k data points Xu = (Xul, %uk}> where Xu c X for which data

movement is to be performed. Let CNBR = (Cnl, Cn2, Cni) be a set of selected top

ranked neighboring grid cells that have (n l t n2 , , nf) number of data points. Let the

data centroid of all the data points in the set CNBR of grid cells be given by Equation 7.6.

Similarly, the data centroid of all the points in the grid cell Cu is given by Equation 7.7:

Therefore, the movement or the displacement of a data point XUi in the grid cell

Cu is given by Equation 7.8:

The movement or displacement of all the other data points is performed in the

grid cell Cu. The movement of data points is performed if it satisfies the movement

threshold criteria given by Equation 7.9:

Eq. 7.6

Eq. 7.7

Eq. 7.8

103

Distance(cNBR, cu) > MTh. Eq. 7.9

7.3.3.3 Data Shrinking Process

The data shrinking algorithm is multilevel data adaptive grid-based shrinking

algorithm in which data shrinking is performed at each selected level. The decomposition

starts at level-0 which is the root level. At this level, all the data points are in a single

partition. The next level is level-1 at which the data points partition into two data

adaptive partitions, and so on and so forth (see Figure 7.5). The number of levels of

hierarchical decomposition is chosen such that there are fewer non-empty grid cells than

data points. Once the number of levels of hierarchical decomposition is selected then data

shrinking is performed at each selected level. The pseudo-code of the algorithm is

presented in Figure 7.6.

[0,1] Level 0

Level 1 [0,0.35) [0.35,1]

Level 2 [0,0.35) [0.35,0.80) [0.80,1]

Level 3
[0,0.35) [0.35,0.60) [0.60,0.80) [0.80,1]

Figure 7.5: Hierarchical Decomposition of Data Adaptive Partitions

104

Algorithm: Data Shrinking Algorithm

Input: Grid G t , Dataset X, Iterations lTh , Threshold M rh

Output: Data after Shrinking X,

01 N = Number of Datapoints in X
02 d = Number of Dimensions in X
03 Count= 0

04 for i=l to N

05 C(i) = Find_Cell_ld(X i , G t)
06 if (C (i) g Z) then
07 Add C(i) to Z
08 Count = Count + 1
09 Add X, to Zdata(Count). data
10 end
11 for m=l to Count
12 if (Z(m) == C(i)) then
13 Z(m). count = Z(m). count + 1
14 Add X, to Zdata(m).data
15 end
16 end
17 end
18 I = 0

19 while / < lTh

20 [Zs.Zsdata] = Sort(Z,Zdata)
21 n = 1

22 while n < Count
23 Find Neighboring Cells of Cell Zs(n)
24 Compute Centroid cNBR of Neighboring Cells
25 Compute Centroid cn of Cell Zs(n)
26 if (Distance(cNBR ,cu) > MTh) then
27 Compute Displacement of Datapoints in Zsdata(n)
28 end
29 end

30 if(No Movement between I and I + 1) then
31 Exit
32 end
33 end

Figure 7.6: Pseudo-code for Data Shrinking Algorithm

The algorithm first maps all the data points on the adaptive grid. During this

process, it identifies all non-empty grid cells and corresponding data points, and

accumulates all the data points that are mapped to the non-empty grid cells. The

algorithm then sorts all non-empty grid cells in increasing order based on the number of

data points in them. Grid cells are sorted in increasing order of the number of data points

105

to insure that the data points in sparse regions are processed first and then moved toward

denser regions. In this step, all the grid cells are arranged in an order. As a result, the

proposed shrinking algorithm is insensitive towards the order of the input data points and

it does not suffer from this deficiency like other existing algorithms. Then, the first grid

cell is taken from the sorted list of cells, and its neighboring grid cells are identified to

select the top ranked neighboring cells. Once the neighboring grid cells are identified, the

data points in the grid cell are moved according to the model of data movement and are

reassigned to new grid cells. This process is repeated for all the grid cells in the sorted

list. After the movement of the data points, all empty grid cells are removed from the list

and all non-empty grid cells are kept. This process is repeated for the specified number of

iterations or until the data points no longer move in any two contiguous iterations.

7.3.4 Adaptive Grid-Based Clustering

The developed clustering algorithm is a grid-based hierarchical clustering

algorithm in which each grid cell is considered a single unit. See Figure 7.7 for a

graphical representation of the algorithm.

o 2

Figure 7.7: Grid-Based Hierarchical Clustering

106

Therefore, a multi-objective voting scheme is used in the hierarchical clustering

of nonempty grid cells. The voting scheme uses average linkage, centroid linkage, and

ward linkage measures for the clustering. Once data shrinking is performed for the

selected level of hierarchical decomposition, data is passed to the clustering algorithm. A

pseudo-code of the algorithm is presented in Figure 7.8.

Algorithm: Clustering Algorithm
Input: Nonempty cells Cells, Nonempty cells data CellsData
Output: Hierarchical Clusters
01 Nc = Nonempty Cells
02 Clusters = Nc
03 Step = 1
04 for j=l to Clusters

05 AVERAGE(Cluster r , Cluster/) = (n ~ *i,*l

06 CENTROID(Cluster r , Cluster)) = |cr - c, |

07 WARD(Cluster r , Cluster;) = (n r * nf) („r~n])

08 end
09 while Clusters =£ 1
10 RMSSTD(Step, 1) = Compute_RMSSTD{CellsData s t ev)

11 Minlndex(Y) = Find_minimum(AVERAGE)
12 Minlndexl 2) = Find_minimum(CENTROID)
13 Minlndex(3) = Find_minimum(WARD)

14 lndex r j = Majority _voting(Min!ndex)

15 Merge_Clusters(Index rj)

16 Clusters = Clusters — 1
17 Step = Step + 1
18 end

Figure 7.8: Pseudo-code for Adaptive Grid-Based Clustering

The algorithm begins with the computation of the proximity between all pairs of

data centroids of nonempty grid cells based on the proposed multi-objective framework

that uses average linkage, centroid linkage, and ward linkage criterion to cluster

nonempty grid cells. Two nonempty grid cells are clustered based on the majority voting

scheme. In the proposed voting scheme, a pair of nonempty grid cells is grouped if they

107

obtain at least two of three votes from three linkage criterion for being the closest pair of

nonempty grid cells. This process of clustering nonempty grid cells continues until all

nonempty grid cells are grouped into one cluster and form a hierarchical tree.

7.4 Results and Discussion

This section presents all the experimental studies and discussions related to the

developed algorithm. In this section, discussion about the time complexity analysis,

clustering evaluation and validation, scalability study, and a comparative study is

presented.

7.4.1 Datasets

Both real and synthetic datasets with a wide range of dimensions and sample size

are used for experiments and to assess the capabilities of the developed clustering

algorithm. A detailed description of each of these datasets is as follows.

1. Wine Recognition Dataset: The first dataset is the Wine Recognition dataset. This

dataset has 13 dimensions and 178 data points. The dataset contains three clusters and

each cluster contains 59,71, and 48 data points, respectively. The dataset is available

at the UCI machine learning repository [58].

2. Ecoli Dataset: The second dataset is the Ecoli dataset, which pertains to protein

localization site data. This dataset has 7 dimensions and 336 data points. The dataset

contains 8 clusters and each cluster has 143, 77, 52, 35, 20, 5, 2, and 2 data points,

respectively. The dataset is available at the UCI machine learning repository [58].

3. Protein Structural Classification Dataset: The protein dataset consists of feature

vectors that are based on amino acid sequence of corresponding proteins. The feature

construction is based amino acid composition, physical and stereo chemical

108

properties of amino acids. Each feature vector consists of 125 feature descriptor. The

dataset has 582 samples and is divided into 5 protein structural classes namely

a, (3 ,a + (3, jj, and Small proteins. The feature vector construction method is

discussed in [60]. This data is available at (http://ranger.uta.edu/~chqding/protein/).

4. Synthetic Dataset: A set of synthetic datasets is used for the comparative analysis of

the algorithms. Three synthetic datasets are generated with 50, 60, and 120

dimensions and four clusters each. Datasets are generated randomly using the

separation index of 0.1 which indicates that these generated clusters are close to each

other [70]. The dataset with 50 dimensions contains 2049 data points in four clusters

(c 1=414, c2=566, c3=652, c4=417). The dataset with 60 dimensions contains 2017

data points in four clusters (c 1=515, c2=496, c3=549, c4=457) and the dataset with

120 dimensions contains 2062 data points in four clusters (c 1=543, c2=580, c3=522,

c4=417). Another set of synthetic datasets is also generated for the scalability analysis

of the algorithms. A set of datasets with 10, 20, 30, 40, and 50 dimensions, and 2,000,

4000, 6000, 8000, and 10,000 data points is generated. Each dataset contains two

clusters, each of which has an equal number of data points in respective datasets. Two

clusters are generated from a normal distribution with means of 10, -10 and a

standard of deviation 3.

7.4.2 Validation

In this clustering method, clusters are obtained as hierarchical decomposition of

the data points. The root-mean-square standard deviation (RMSSTD) measure is used to

obtain the optimal number of clusters from the hierarchical decomposition, which is

represented by Equation 7.10. The root-mean-square standard deviation (RMSSTD)

http://ranger.uta.edu/~chqding/protein/

109

measures the compactness or homogeneity of clusters formed at a given level of

hierarchical decomposition [76, 77, 78,79]. A small value of RMSSTD indicates the

clusters formed at a given level are formed by merging two homogeneous clusters and a

large value of RMSSTD indicates that the clusters formed at a given level are formed by

merging two heterogeneous clusters. The optimal number of clusters is obtained by

employing the 'Elbow/ method' [79].

RMSSTD = Eq. 7.10

The developed clustering algorithm is compared with other clustering algorithms using

external clustering validation measures precision, recall and F-measure, which are

represented by Equations 7.11,7.12, and 7.13. In Equations 7.11 and 7.12, the original

clusters are represented by cf, detected clusters are represented by cf, and i represents the

ith cluster:

Precision = \ Eq. 7.11
\ci\

lc?nc?l
Recall = J¥SLi. Eq. 7.12

l c i l

r. <-) . /" precision*recall \ „ _ t 0 F —measure = 2x ; . Eq. 7.13
Kprecision+recalU

In the above equations, TP, TN, FP, and FN refer to true positive, true negative,

false positive, and false negative, respectively.

7.4.3 Experiments

In this section, an experimental study is presented. These experiments are

conducted to demonstrate the effect of sparseness with increasing dimensions and the

advantages of using non-uniform grid over uniform grid.

110

7.4.3.1 Scalability Analysis

The scalability of grid generation, data shrinking, and clustering algorithm is

demonstrated by experimenting with synthetic datasets. For experiments, five iterations

are maintained for all the datasets. The scalability study of the grid generation algorithm

is presented in Figures 7.9 and 7.10.

60

•8 SO
a
© o «

40
B
w
U
.§ 30
H
e
©
•§ 20
8 X H

10

• Dimensions= 10
•Dimensions= 20
•Dimensions= 30
• Dimensions= 40
•Dimensions= 50

2000 4000 6000

Dataset Size

8000 10000

Figure 7.9: Execution Time v/s Dataset Size (Analysis for Grid Generation Method)

Figure 7.9 presents the scalability plot, showing the execution time with the

increasing dataset size, and Figure 7.10 plots the execution time with the increasing

number of dimensions. A grid generation algorithm is applied on each dataset to obtain a

hierarchical decomposition of data adaptive partitions. It is observed from Figures 7.9

and 7.10 that the execution time of the grid generation algorithm appears to increase

linearly with the increase in dataset size and dimensions.

I l l

60

g 50
c 0
V
to 40
c
w
4*
1 30 H
e _o
1 20 u 01 X
U

10

0

Figure 7.10: Execution Time v/s Dimensions (Analysis for Grid Generation Method)

Similarly, the scalability study related to the data shrinking algorithm is presented

in which the execution time of the algorithm is studied with respect to the increasing

dataset size and the increasing number of dimensions. The data shrinking algorithm is

applied on each synthetic dataset, using hierarchical decomposition level — 2 for the

experiments. Minimum movement threshold value MTh ranging from 0.10 to 0.4 with the

increments of 0.1 is used. For every dataset, the average execution time over all MTh

values is plotted. It is observed in Figures 7.11 and 7.12 that the execution time of the

data shrinking algorithm appears to increase non linearly with respect to the dataset size

and linearly with repsect to the dimensions.

Dataset size= 2000
Dataset size= 4000
Dataset size= 6000
Dataset size= 8000
Dataset size= 10000

10 20 30 40 50
Dimensions

112

•o
c
3 1000

-Dimensions= 10
-Dimensions= 20
-Dimensions= 30
-Dimensions= 40
•Dimensions^ 50

£ 200

2000 4000 6000

Dataset Size

8000 10000

Figure 7.11: Execution Time v/s Dataset Size (Analysis for Data Shrinking Method)

1400
Dataset size= 2000
Dataset size= 4000
Dataset size= 6000
Dataset size= 8000
Dataset size= 10000 g 1000

= 400 3
8
W 200

30

Dimensions

Figure 7.12: Execution Time v/s Dimensions (Analysis for Data Shrinking Method)

Finally, the scalability study of the adaptive grid-based clustering algorithm is

presented in Figures 7.13 and 7.14. Figure 7.13 presents the scalability plot, showing the

execution time of the algorithm with an increasing dataset size, and Figure 7.14 shows

the execution time of the algorithm with an increasing number of dimensions.

113

3500 -

3000 -
e
| 2500 -

CA
c
® 2000 -
S
^ 1500 -
©

I 1000 •
* w

500 -

0 -

Figure 7.13: Execution Time v/s Dataset Size (Analysis for Clustering Method)

3500

|j 3000
c o
| 2500

.B

2000

P
J 1500
9
8 1000
W

500

0

Figure 7.14: Execution Time v/s Dimensions (Analysis for Clustering Method)

—•— Dimensions= 10
—•— Dimensions= 20
— D i m e n s i o n s = 3 0
—i—Dimensions= 40
—*— Dimensions= 50

^ I • I I I
2000 4000 6000 8000 10000

Dataset Size

Dataset size= 2000
Dataset size= 4000
Dataset size= 6000

Dataset size= 8000

Dataset size= 10000

30 40 50 10 20

Dimensions

The hierarchical clustering algorithm is applied on each synthetic dataset after the

data shrinking algorithm and the average execution time of the clustering algorithm over

all the MThvalue is computed. It can be observed in Figures 7.13 and 7.14 that the

114

average execution time of the clustering algorithm appears to increase non linearly with

the increase in dataset size and dimensions.

7.4.3.2 Comparative Analysis

A set of experiments is conducted to evaluate the clustering algorithm.

Experiments are also conducted to compare the developed algorithm with the uniform

grid algorithm method and other clustering algorithms such as CURE and DBSCAN [13,

52, 53]. A brief description of control parameters for these algorithms is as follows:

CURE requires three input parameter options: -k for the number of clusters, -a for the

shrinking factor of CURE, and -r for the number of representative points of the cluster.

DBSCAN requires two input parameter options: Eps- a neighborhood distance and

MinPts- the minimum number of data points in an Eps neighborhood.

1. Experiments on Wine Recognition Dataset: Experiments on this dataset

demonstrate that the proposed algorithm performs better than the benchmark method and

other clustering algorithms. A data adaptive grid-based clustering algorithm is applied on

the dataset. The minimum movement threshold MTh value is set at a range of 0.10 to 0.35

with increments of 0.025. Experiments are run to obtain clusters for a combination of

([MTh, level). Then RMSSTD is used to identify the number of clusters using the 'Elbow

method'. The results of the adaptive shrinking based clustering and the benchmark

algorithm are compared in Table 7.1. The F-measure is used to compare the overall

performance of the two algorithms. The average F-measure between the two methods

(benchmark approach=89.69% and adaptive shrinking based approach=93.75%) indicates

that the adaptive shrinking based method achieves an overall better performance than the

benchmark method.

115

Table 7.1: Benchmark v/s Adaptive Shrinking Based Method on Wine Dataset

Cluster
no.

Algorithm I c f n c f l Precision
(%)

Recall
(%)

F-measure
(%)

i=l Benchmark 59 53 53 100.00 89.83 94.64 i=l

Proposed 59 64 57 89.06 96.61 92.68

i=2 Benchmark 71 52 52 98.08 71.83 82.93 i=2

Proposed 71 65 63 96.92 88.73 92.64

i=3 Benchmark 48 46 43 93.48 89.58 91.49 i=3

Proposed 48 50 47 94.00 97.92 95.92

A comparative study is also conducted between the CURE clustering algorithm

and the adaptive shrinking based clustering algorithm. These results are presented in

Table 7.2. Clustering results of CURE were obtained from [13]. The comparison

indicates that the adaptive shrinking based clustering algorithm performs a better cluster

detection than the CURE clustering algorithm. Next, the DBSCAN algorithm is applied

on the Wine Recognition dataset. Experiments are performed by setting Eps-parameter to

values ranging from 0.10 to 0.90 with increments of 0.1, and setting the MinPts

parameter to values ranging from one to ten with increments of one. A comparison of the

DBSCAN algorithm and the adaptive shrinking based clustering are presented the Table

7.3. The comparison of the results obtained from both the algorithms indicates that the

adaptive shrinking based clustering performs better cluster detection than the DBSCAN

algorithm.

116

Table 7.2: CURE v/s Adaptive Shrinking Based Method on Wine Dataset

Cluster
no.

Algorithm c? k f n c f l Precision
(%)

Recall
(%)

F-measure
(%)

i=l CURE 59 72 54 75.00 91.52 82.44 i=l

Proposed 59 64 57 89.06 96.61 92.68

i=2 CURE 71 50 41 82.00 57.77 67.78 i=2

Proposed 71 65 63 96.92 88.73 92.64

i=3 CURE 48 46 26 56.52 54.16 55.32 i=3

Proposed 48 50 47 94.00 97.92 95.92

Table 7.3: DBSCAN v/s Adaptive Shrinking Based Method on Wine Dataset

Cluster
no.

Algorithm c? c* I c f n c f l Precision
(%)

Recall
(%)

F-measure
(%)

i=l DBSCAN 59 103 58 56.31 98.31 71.61 i=l

Proposed 59 64 57 89.06 96.61 92.68

i=2 DBSCAN 71 2 2 100.00 2.82 5.49 i=2

Proposed 71 65 63 96.92 88.73 92.64

i=3 DBSCAN 48 51 46 90.20 95.83 92.93 i=3

Proposed 48 50 47 94.00 97.92 95.92

2. Experiments on the Ecoli Dataset: The data adaptive grid-based clustering

algorithm is applied on the Ecoli dataset. The minimum movement threshold MTh value

is set at a range of 0.10 to 0.35 with the increments of 0.025. Once clusters are obtained

for all the combinations of (MTh, level), RMSSTD is computed to identify the number of

clusters using the 'Elbow method'. The results of the adaptive shrinking based clustering

are compared with the results of the benchmark method in Table 7.4, which compares the

F-measure for the overall performance of the two algorithms. The Ecoli dataset contains

eight clusters, but three clusters are insignificant and contain only 5, 2, and 2 data points.

117

Thus, only five clusters are included in the discussion. After comparing the average F-

measure between the two methods (benchmark approach =70.07% and adaptive shrinking

based approach=77.82%), the adaptive shrinking based algorithm achieves an overall 8%

better performance than the benchmark algorithm.

Table 7.4: Benchmark v/s Adaptive Shrinking Based Method on Ecoli Dataset

Cluster
no.

Algorithm cs
•-i k f n c f l Precision

(%)
Recall

(%)
F-measure

(%)

i=l Benchmark 143 135 130 96.30 90.91 93.53 i=l

Proposed 143 158 143 90.51 100.00 95.02

i=2 Benchmark 77 22 22 100.00 28.57 44.44 i=2

Proposed 77 38 36 92.11 45.45 60.87

i=3 Benchmark 52 68 43 63.24 82.69 71.67 i=3

Proposed 52 52 44 84.62 84.62 84.62

i=4 Benchmark 35 49 32 65.31 91.43 76.19 i=4

Proposed 35 67 31 46.27 88.57 60.79

i=5 Benchmark 20 11 10 90.91 50.00 64.52 i=5

Proposed 20 21 18 85.71 90.00 87.80

A comparative study was also conducted between the CURE clustering algorithm

and the adaptive grid-based clustering algorithm on the Ecoli dataset which is presented

in Table 7.5. The clustering results of CURE were obtained from [13]. The comparative

study of the F-measure indicates that the adaptive shrinking based clustering algorithm

performs better than the CURE clustering algorithm.

118

Table 7.5: CURE v/s Adaptive Shrinking Based Method on Ecoli Dataset

Cluster
no.

Algorithm c? cf k f n c H Precision
(%)

Recall
(%)

F-measure
(%)

i= l CURE 143 120 115 95.83 80.41 87.45 i= l

Proposed 143 158 143 90.51 100.00 95.02

i=2 CURE 77 67 41 61.19 53.24 56.94 i=2

Proposed 77 38 36 92.11 45.45 60.87

i=3 CURE 52 32 30 93.75 57.69 71.43 i=3

Proposed 52 52 44 84.62 84.62 84.62

i=4 CURE 35 NA NA NA NA NA i=4

Proposed 35 67 31 46.27 88.57 60.79

i=5 CURE 20 NA NA NA NA NA i=5

Proposed 20 21 18 85.71 90.00 87.80

Next, the DBSCAN algorithm is applied to the Ecoli dataset and its results are

presented in Table 7.6. The experiments on the DBSCAN algorithm are conducted for

different parameter configurations. The Eps parameter is set to values ranging from 0.10

to 0.30 with increments of .001 and the MinPts parameter to values ranging from one to

30 with increments of one. In Table 7.6, The best clustering results obtained from the

DBSCAN algorithm are compared with the results of adaptive shrinking based clustering

algorithm. The comparison of precission, recall, and F-measure values corresponding to

each cluster obtained from both the algorithms indicates that the adaptive shrinking based

clustering algorithm performs a better cluster detection than the DBSCAN clustering

algorithm on this dataset.

119

Table 7.6: DBSCAN v/s Adaptive Shrinking Based Method on Ecoli Dataset

Cluster
no.

Algorithm I c f n c f l Precision
(%)

Recall
(%)

F-measure
(%)

i=l DBSCAN 143 124 119 95.97 83.22 89.14 i=l

Proposed 143 158 143 90.51 100.00 95.02

i=2 DBSCAN 77 59 39 66.10 50.65 57.35 i=2

Proposed 77 38 36 92.11 45.45 60.87

i=3 DBSCAN 52 24 22 91.67 42.31 57.90 i=3

Proposed 52 52 44 84.62 84.62 84.62

i=4 DBSCAN 35 10 8 80.00 22.86 35.56 i=4

Proposed 35 67 31 46.27 88.57 60.79

i=5 DBSCAN 20 NA NA NA NA NA i=5

Proposed 20 21 18 85.71 90.00 87.80

3. Experiments on Protein Datasets: Initially, experiments with adaptive

shrinking based clustering algorithm are performed. The minimum movement threshold

MTh values are set ranging from 0.10 to 2.0 with the increments of 0.025 and hierarchy

level of one, two and three. Once hierarchical clusters are obtained for all the

combinations of {MTh, level), then the final clusters are selected. Similarly, experiments

are conducted with the benchmark method. Experiments are conducted by setting the

minimum movement threshold MThvalues ranging from 0.5 to 3.0 with the increments of

0.05 and different grid scales for cluster detection [1]. A comparison of the results

obtained from both the algorithms is shown in Table 7.7, which compares the precision,

recall, and F-measure for the overall performance of the two algorithms. The average F-

measure between the two methods (benchmark approach=37.82% and adaptive shrinking

based approach=60.13%) indicates that the adaptive shrinking based method achieves

overall better cluster detection than the benchmark method.

120

Table 7.7: Benchmark v/s Adaptive Shrinking Based Method on Protein Dataset

Cluster
no.

Algorithm *•1 I c f n c f l Precision
(%)

Recall
(%)

F-measure
(%)

i=l Benchmark 112 NA NA NA NA NA i=l

Proposed 112 64 62 96.88 55.36 70.46

i=2 Benchmark 177 3 3 100.00 1.69 3.32 i=2

Proposed 177 55 48 87.27 27.12 41.38

i=3 Benchmark 203 232 178 76.72 87.68 81.83 i=3

Proposed 203 279 180 64.52 88.67 74.69

i=4 Benchmark 46 17 17 100.00 36.96 53.97 i=4

Proposed 46 137 30 21.90 65.22 32.79

i=5 Benchmark 44 24 17 70.83 38.64 50.00 i=5

Proposed 44 47 37 78.72 84.10 81.32

A comparative study is also conducted between the CURE clustering algorithm

and the adaptive shrinking based clustering algorithm on this synthetic dataset, which is

presented in Table 7.8. The clustering results of CURE were obtained by experimenting

with different parameter settings [52]. Experiments are conducted by setting the a-

parameter to values ranging from .10 to .30 with increments of .05 and the MinPts

parameter to values ranging from 10 to 60 with increments of five. The comparison of the

average F-measure between the two methods (CURE clustering=32.19% and Adaptive

shrinking based approach=60.13%) indicates that adaptive shrinking based clustering

algorithm achieves better cluster detection than the CURE clustering algorithm.

121

Table 7.8: CURE v/s Adaptive Shrinking Based Method on Protein Dataset

Cluster
no.

Algorithm c? i I c f n c f l Precision
(%)

Recall
(%)

F-measure
(%)

i=l CURE 112 42 38 90.48 33.93 49.35 i=l

Proposed 112 64 62 96.88 55.36 70.46

i=2 CURE 177 206 65 31.55 36.72 33.94 i=2

Proposed 177 55 48 87.27 27.12 41.38

i=3 CURE 203 308 188 61.04 92.61 73.58 i=3

Proposed 203 279 180 64.52 88.67 74.69

i=4 CURE 46 3 1 33.33 2.17 4.08 i=4

Proposed 46 137 30 21.90 65.22 32.79

i=5 CURE 44 NA NA NA NA NA i=5

Proposed 44 47 37 78.72 84.10 81.32

Next, the DBSCAN algorithm is applied on this synthetic dataset and its resuls are

presented in Table 7.9. The Eps parameter is set to values ranging from .10 to 1.0 with

increments of. 1 and the MinPts parameter is set to values ranging from one to ten with

increments of one to find the best clustering result for the DBSCAN algorithm. The

comparison of the average F-measure between the two methods (DBSCAN

clustering=25.13% and Adaptive shrinking based approach=60.13%) indicates that

adaptive shrinking based clustering algorithm outperforms the DBSCAN clustering

algorithm.

122

Table 7.9: DBSCAN v/s Adaptive Shrinking Based Method on Protein Dataset

Cluster
no.

Algorithm c? i I c f n c f l Precision
(%)

Recall
(%)

F-measure
(%)

i=l DBSCAN 112 25 25 100.00 22.32 36.49

Proposed 112 64 62 96.88 55.36 70.46

i=2 DBSCAN 177 6 6 100.00 3.39 6.56

Proposed 177 55 48 87.27 27.12 41.38

i=3 DBSCAN 203 305 189 61.97 93.10 74.41

Proposed 203 279 180 64.52 88.67 74.69

i=4 DBSCAN 46 3 2 66.67 4.35 8.17

Proposed 46 137 30 21.90 65.22 32.79

i=5 DBSCAN 44 NA NA NA NA NA

Proposed 44 47 37 78.72 84.10 81.32

4. Experiments on Synthetic Datasets: A comparative analysis is also conducted

on a set of synthetic dataset. The set of synthetic dataset contains data set with 50, 60 and

120 dimensions. The experiments pertaining to these three datasets are as follows:

1. Synthetic dataset with 50 dimensions: Initially, experiments are conducted with

adaptive shrinking based clustering algorithm. Experiments are conducted by setting the

minimum movement threshold MTh values ranging from 0.10 to 1.0 with the increments

of 0.1 and hierarchy level of one, two and three. Once hierarchical clusters are obtained

for all the combinations of (MTh, level), then best clusters are selected. Similarly,

experiments are conducted with the benchmark method, the minimum movement

threshold MTh-parameter is set to values ranging from 0.5 to 3.5 with the increments of

0.1 and different scales for cluster detection [1]. A comparison of results obtained from

both the algorithms is shown in Table 7.10, which indicates that adaptive shrinking based

clustering has a better cluster detection than the benchmark method.

123

Table 7.10: Benchmark Method v/s Adaptive Shrinking Based Method on a Synthetic
Dataset

Cluster
no.

Algorithm 1 c? n cf | Precision
(%)

Recall
(%)

F-measure
(%)

i=l Benchmark 414 NA NA NA NA NA i=l

Proposed 414 364 354 97.25 85.51 91.03

i=2 Benchmark 566 993 566 57.00 100 72.61 i=2

Proposed 566 541 522 96.49 92.23 94.31

i=3 Benchmark 652 19 19 100 2.91 5.66 i=3

Proposed 652 624 585 93.75 89.72 91.69

i=4 Benchmark 417 10 9 90 2.16 4.22 i=4

Proposed 417 520 410 78.85 98.32 87.51

A comparative study is also conducted between the CURE clustering algorithm

and the adaptive shrinking based clustering algorithm on this synthetic dataset, which is

presented in Table 7.11. The clustering results of CURE were obtained by experimenting

with different parameter settings [52]. Experiments are conducted by setting the a-

parameter to values ranging from .10 to .30 with increments of .05 and the MinPts

parameter to values ranging from 10 to 60 with increments of five. The comparison

presented in Table 7.11 indicates that our clustering algorithm achieves a much better

cluster detection than the CURE clustering algorithm. Next, the DBSCAN clustering

algorithm is applied on the dataset. Experiments are conducted by setting the Eps

parameter to values ranging from .10 to 1.0 with increments of .1 and the MinPts

parameter to values ranging from one to ten with increments of one and finding the best

clustering result for the DBSCAN algorithm, which are presented in Table 7.12. It can be

observed that adaptive shrinking based clustering outperforms the DBSCAN algorithm.

124

Table 7.11: CURE v/s Adaptive Shrinking Based Method on a Synthetic Dataset

Cluster
no.

Algorithm tI | c f n c f | Precision
(%)

Recall
(%)

F-measure
(%)

i=l CURE 414 NA NA NA NA NA i=l

Proposed 414 364 354 97.25 85.51 91.03

i=2 CURE 566 NA NA NA NA NA i=2

Proposed 566 541 522 96.49 92.23 94.31

i=3 CURE 652 1365 550 40.30 84.36 54.37 i=3

Proposed 652 624 585 93.75 89.72 91.69

i=4 CURE 417 684 415 60.67 99.52 75.39 i=4

Proposed 417 520 410 78.85 98.32 87.51

Table 7.12: DBSCAN v/s Adaptive Shrinking Based Method on a Synthetic Dataset

Cluster
no.

Algorithm c? c? i k f n c f l Precision
(%)

Recall
(%)

F-measure
(%)

i=l DBSCAN 414 60 59 98.33 14.25 24.89 i=l

Proposed 414 364 354 97.25 85.51 91.03

i=2 DBSCAN 566 359 210 58.50 37.10 45.41 i=2

Proposed 566 541 522 96.49 92.23 94.31

i=3 DBSCAN 652 5 5 100 0.77 1.53 i=3

Proposed 652 624 585 93.75 89.72 91.69

i=4 DBSCAN 417 NA NA NA NA NA i=4

Proposed 417 520 410 78.85 98.32 87.51

2. Synthetic dataset with 60 dimensions: Initially, adaptive shrinking based

clustering algorithm is applied on the dataset and the minimum movement threshold

MTh parameter is set to values ranging from 0.10 to 1.0 with the increments of 0.1 and

hierarchy level of one, two and three. Once clusters are obtained for all the combinations

of (MTh, level), then best clusters are selected. Similarly, experiments are conducted with

125

the benchmark method. For this method, the minimum movement threshold MT h-

parameter is set to values ranging from 0.5 to 3.5 with the increments of 0.1 and different

grid scales are used for cluster detection [1]. The results of adaptive shrinking based

clustering are compared with the results of the benchmark method in Table 7.13. After

comparing the results between the two methods, the results indicate that adaptive

shrinking based clustering shows a much better performance than the benchmark method.

Table 7.13: Benchmark Method v/s Adaptive Shrinking Based Method on a Synthetic
Dataset

Cluster
no.

Algorithm c? ci *•1 I c f n c f l Precision
(%)

Recall
(%)

F-measure
(%)

i=l Benchmark 515 9 9 100 1.75 3.44 i=l

Proposed 515 630 498 79.05 96.70 86.99

i=2 Benchmark 496 1401 496 35.40 100 52.29 i=2

Proposed 496 439 404 92.03 81.45 86.42

i=3 Benchmark 549 15 15 100 2.73 5.32 i=3

Proposed 549 538 524 97.40 95.45 96.41

i=4 Benchmark 457 9 9 100 1.97 3.87 i=4

Proposed 457 410 395 96.34 86.43 91.11

A comparative study is also conducted between the CURE clustering algorithm

and the adaptive shrinking based clustering algorithm, which is presented in Table 7.14.

The experiments are conducted for different parameter settings of the CURE clustering

algorithm[52]. The a- parameter is set to values ranging from 0.10 to 0.30 with

increments of .05 and the MinPts parameter is set to values ranging from 10 to 60 with

increments of 5. The comparison indicates that the adaptive shrinking base clustering

achieves better cluster detection than the CURE clustering algorithm.

126

Table 7.14: CURE v/s Adaptive Shrinking Based Method on a Synthetic Dataset

Cluster
no.

Algorithm c- |c? n cfl Precision
(%)

Recall
(%)

F-measure
(%)

i = l CURE 515 1344 471 35.04 91.46 50.67 i = l

Proposed 515 630 498 79.05 96.70 86.99

i=2 CURE 496 NA NA NA NA NA i=2

Proposed 496 439 404 92.03 81.45 86.42

i=3 CURE 549 673 526 78.16 95.81 86.09 i=3

Proposed 549 538 524 97.40 95.45 96.41

i=4 CURE 457 NA NA NA NA NA i=4

Proposed 457 410 395 96.34 86.43 91.11

Next, the DBSCAN algorithm is applied on this synthetic dataset and its results

are presented in Table 7.15. The Eps parameter takes the values ranging from .10 to 1.0

with increments of 0.1 and the MinPts parameter takes the values ranging from one to ten

with increments of one to find the best clustering result for the DBSCAN algorithm. The

comparison of the results from the DBSCAN clustering algorithm and the adaptive

shrinking based clustering algorithm are presented in Table 7.15. These result

demonstrate that on this dataset adaptive shrinking based clustering performs better

cluster detection than the DBSCAN clustering algorithm.

127

Table 7.15: DBSCAN v/s Adaptive Shrinking Based Method on a Synthetic Dataset

Cluster
no.

Algorithm *"i c-*•1 I c f n c f l Precision
(%)

Recall
(%)

F-measure
(%)

i=l DBSCAN 515 1230 447 36.34 86.80 51.23 i=l

Proposed 515 630 498 79.05 96.70 86.99

i=2 DBSCAN 496 2 2 100 0.40 0.80 i=2

Proposed 496 439 404 92.03 81.45 86.42

i=3 DBSCAN 549 NA NA NA NA NA i=3

Proposed 549 538 524 97.40 95.45 96.41

i=4 DBSCAN 457 2 2 100 0.44 0.88 i=4

Proposed 457 410 395 96.34 86.43 91.11

3. Synthetic dataset with 120 dimensions: The aaptive shrinking based clustering

algorithm is applied by setting the minimum movement threshold MTh values ranging

from 0.10 to 2.0 with the increments of 0.1 and hierarchy level of one, two and three.

After obtaining the clusters for all the combinations of (MTh, level), best clusters are

selected. Similarly, experiments are conducted with the benchmark method. The

minimum movement threshold MTh-parameter is set to values ranging from 0.5 to 4.0

with the increments of 0.1 and different grid scales are used for cluster detection [1]. The

Table 7.16 shows the comparison of both the clustering method, which compares the

precision, recall, and F-measure for the two algorithms. After comparing the two

methods, it is evident that adaptive shrinking based clustering performs better than the

benchmark method.

128

Table 7.16: Benchmark Method v/s Adaptive Shrinking Based Method on a Synthetic
Dataset

Cluster
no.

Algorithm €f c? i c f n c f i Precision
(%)

Recall
(%)

F-measure
(%)

i=l Benchmark 543 30 30 100 5.52 10.46 i=l

Proposed 543 624 505 80.93 93.00 86.55

i=2 Benchmark 580 973 580 59.61 100 74.67 i=2

Proposed 580 511 469 91.78 80.86 85.97

i=3 Benchmark 522 34 34 100 6.51 12.22 i=3

Proposed 522 525 465 88.57 89.08 88.82

i=4 Benchmark 417 34 34 100 8.15 15.07 i=4

Proposed 417 402 344 85.57 82.49 84.00

Next, a comparative study is conducted between the CURE clustering algorithm

and adaptive shrinking based clustering algorithm for this dataset, which is presented in

Table 7.17. Experiments on the CURE clustering algorithm are conducted for different

parameter configuration [52]. The a- parameter is set to values ranging from .10 to .30

with increments of .05 and the MinPts parameter is set to values ranging from 10 to 60

with increments of five. The comparison presented in Table 7.17 demonstrates that the

adaptive shrinking based clustering has a better cluster detection than the CURE

clustering algorithm. Finally, the DBSCAN algorithm is used for the experiments. To

find the best clustering result, the Eps parameter is set to values ranging from 0.50 to 1.5

with increments of .1 and the MinPts parameter is set to values ranging from one to 10

with increments of one. The results presented in Table 7.18 conclude that the adaptive

shrinking based clustering algorithm has better performance than the DBSCAN

algorithm.

129

Table 7.17: CURE v/s Adaptive Shrinking Based Method on a Synthetic Dataset

Cluster
no.

Algorithm c° (?• i I c f n c f l Precision
(%)

Recall
(%)

F-measure
(%)

i=l CURE 543 686 524 76.38 96.50 85.27 i=l

Proposed 543 624 505 80.93 93.00 86.55

i=2 CURE 580 1376 507 36.85 87.41 51.84 i=2

Proposed 580 511 469 91.78 80.86 85.97

i=3 CURE 522 NA NA NA NA NA i=3

Proposed 522 525 465 88.57 89.08 88.82

i=4 CURE 417 NA NA NA NA NA i=4

Proposed 417 402 344 85.57 82.49 84.00

Table 7.18: DBSCAN v/s Adaptive Shrinking Based Method on a Synthetic Dataset

Cluster
no.

Algorithm c°- (f I c f n c f l Precision
(%)

Recall
(%)

F-measure
(%)

i=l DBSCAN 543 2 2 100 0.37 0.7 i=l

Proposed 543 510 479 93.92 88.21 86.55

i=2 DBSCAN 580 1454 531 36.52 91.55 52.21 i=2

Proposed 580 233 212 90.99 36.55 85.97

i=3 DBSCAN 522 NA NA NA NA NA i=3

Proposed 522 1150 501 43.57 95.98 88.82

i=4 DBSCAN 417 NA NA NA NA NA i=4

Proposed 417 169 157 92.90 37.65 84.00

7.4.4 Time Complexity Analysis

The time complexity analysis related to the grid generation algorithm, data

shrinking algorithm, and clustering algorithm are explained in the following list.

1. Grid Generation Algorithm: In this algorithm, the total number of micro-

partitions MpNumber is first calculated. Next, discrete wavelet transform is computed

130

for every micro-partition. This step takes 0{Mp s i z e) time. Thus, the time complexity

of the overall process is 0(MpNumber * Mpsize). Next, multi-objective selective

agglomerative hierarchical partit ioning is performed. This step takes 0(MpN u m b e r *

(Mpsize)2) time. Thus, the time complexity of the algorithm for all dimensions

is 0{d * MpN u m b e r * (MpsiZ e)2).

2. Data Shrinking Algorithm: In this algorithm, first, map N data points on a grid

structure and then find all nonempty cells NC e U s . This step takes 0(d * N * NC e n s)

time. Next, perform shrinking which takes 0(NCeus
2) time for a single iteration.

Therefore, the overall t ime complexity of the algorithm for / iterations is 0(1 *

Ncells)•

3. Clustering Algorithm: The clustering algorithm is a grid-based hierarchical

clustering algorithm in which nonempty grid cell are clustered in agglomerative

fashion. If NCeus represent the number of nonempty grid cells, then the time

complexity of the algorithm is 0(NC eus
2) .

7.5 Conclusion

In this chapter, a new shrinking based clustering algorithm is presented. The

developed algorithm is an adaptive grid-based data shrinking and clustering algorithm

that addresses the limitations of existing data shrinking based clustering algorithms.

Three unique algorithms have been explained in this chapter: a multi-objective selective

agglomerative hierarchical partitioning algorithm to generate multilevel adaptive grids,

an adaptive grid-based data shrinking algorithm to reduce the sparseness of the

multidimensional datasets, and a grid-based hierarchical clustering algorithm to detect

clusters. Experimental results have demonstrated that the developed algorithm can

131

produce superior and competitive results when compared with other shrinking based

clustering algorithms and traditional clustering algorithms.

CHAPTER 8

CONCLUSIONS

The research presented in this dissertation is aimed to develop novel learning

techniques for data mining and addressing the important issues such as data sparseness,

high dimensionality, and large size of the datasets. Application of the grid-based

localized learning paradigm was envisaged to achieve this goal. As a result, supervised

and unsupervised learning methods are developed that utilize grid-based localized

learning paradigm [80, 81]. The details of the contribution of this dissertation are

discussed in the following sections.

8.1 Contribution to Grid-Based Supervised Learning

In this dissertation, two methods are presented related to the supervised learning.

The first method is a feature ranking method. It is based on the unique data shrinking

profile of each feature, which is computed after performing the data shrinking operation.

It is based on the hypothesis that every dimension that participates in the shrinking

process shrinks in a unique way and can be used to find the most discriminating features.

The experimental results also confirm the hypothesis. The second method is a

classification algorithm. It utilizes the grid-based learning paradigm for the classification

model. The classification models consist of the data preprocessing phase, the grid

generation phase, the training phase and the test phase. The experimental study also

indicates that grid-based classifiers are scalable and demonstrate a linear increase in the

132

133

execution time with an increase in the number of dimensions and size of the datasets.

These two methods provide a unique contribution in the area of supervised learning and

dimensionality reduction [80, 81].

8.2 Contribution to Grid-Based Unsupervised Learning

In this dissertation, a clustering algorithm is presented which is related to the

unsupervised learning paradigm. A novel approach of shrinking based clustering is

presented that aims to address the limitations of the existing data shrinking approaches by

utilizing the adaptive grid structures for data shrinking and clustering. It is based on the

hypothesis that adaptive grid structures are more effective than uniform grid structures.

The experimental study also confirms the hypothesis. This method provides a unique

contribution in the area of unsupervised learning and sparseness reduction methods.

The experimental studies have established the potential of adaptive grid-based

localized learning for both supervised and unsupervised computational frameworks. The

contribution of the above mentioned novel algorithms not only lays the foundation for

research in this direction, but it also opens new venues for research in this direction. In

this realm of data mining, there are still lots of open questions and opportunities that can

be explored. As a future direction, these algorithms can be further enhanced by focusing

on improving their computational time and memory space requirements. Similarly, these

algorithms can be utilized for handling massive datasets by parallelizing these algorithms.

REFERENCES

[1] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, "From Data Mining to Knowledge
Discovery: An Overview," Al Magazine, vol. 17, no. 3, pp. 37-54, 1996.

[2] J. Han and M. Kamber, "Data Mining: Concepts and Techniques," Second Edition,
San Francisco: Morgan Kaufmann Publishers, 2006.

[3] U. Fayyad, G. Piatetsky-shapiro and P. Smyth, "Knowledge Discovery and Data
Mining: Towards a Unifying Framework," in Proceedings of the 2nd International
Conference on Knowledge Discovery and Data Mining, Portland, 1996.

[4] E. Alpaydin, "Introduction to Machine Learning," Second Edition, Cambridge: The
MIT Press, 2010.

[5] T. Hastie, R. Tibshirani and J. Friedman, "The Elements of Statistical Learning:
Data Mining, Inference, and Prediction," Second Edition, New York: Springer,
2009.

[6] E. Schikuta, "Grid Clustering: An Efficient Hierarchical Clustering Method for Very
Large Data Sets," in Proceedings of the 13th International Conference on Pattern
Recognition, Vienna, 1996.

[7] A. Hinneburg and D. A. Keim, "An Efficient Approach to Clustering in Large
Multimedia Databases with Noise," in Proceedings of the 4th International
Conference on Knowledge Discovery and Data Mining, New York, 1998.

[8] G. Sheikholeslami, S. Chatterjee and A. Zhang, "WaveCluster: A Wavelet Based
Clustering Approach for Spatial Data in Very Large Databases," The VLDB Journal,
vol. 8, no. 3-4, pp. 289-304,2000.

[9] Y. Sun and Y. Lu, "A Scalable Grid-Based Clustering Algorithm for Very Large
Spatial Databases," in Proceedings of the 2006 International Conference on
Computational Intelligence and Security, Guangzhou, 2006.

[10] C. Xiaoyun, M. Yufang, Z. Yan and W. Ping, "GMDBSCAN: Multi-Density
DBSCAN Cluster Based on Grid," in Proceedings of the 2008 IEEE International
Conference on E-Business Engineering, Xi'an, 2008.

134

135

[11] F. Angiulli, C. Pizzuti and M. Ruffolo, "DESCRY: A Density-Based Clustering

Algorithm for Very Large Data sets," in Proceedings of the 5th International

Conference on Intelligent Data Engineering and Automated Learning, Exeter, 2004.

[12] J. T. Rickard, R. R. Yager and W. Miller, "Mountain Clustering on Non-uniform

Grids," in Proceedings of the 33rd Applied Imagery Pattern Recognition Workshop,

Washington, DC, 2004.

[13] Y. Shi and A. Zhang, "A Shrinking Based Dimension Reduction Approach for

Multi-Dimensional Data Analysis," in Proceedings of the 16th International

Conference on Scientific and Statistical Database Management, Santorini Island,

2004.

[14] Y. Shi, Y. Song and A. Zhang, "A Shrinking Based Approach for Multidimensional

Data Analysis," in Proceedings of the 29th International Conference on Very Large
Data Bases, Berlin, 2003.

[15] P. Kontkanen and P. Myllymaki, "MDL Histogram Density Estimation," in

Proceedings of the 11th International Conference on Artificial Intelligence and

Statistics, San Juan, 2007.

[16] A. Hanselmann, O. C. Schrempf and U. D. Hanebeck, "Optimal Parametric Density

Estimation by Minimizing an Analytic Distance Measure," in Proceedings of the

10th International Conference on Information Fusion, Quebec, 2007.

[17] A. Elgammal, R. Duraiswami and L. S. Davis, "Efficient Kernel Density Estimation

Using the Fast Gauss Transform with Applications to Color Modeling and

Tracking," IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 25,
no. 11, pp. 1499-1504, 2003.

[18] S. R. Sain, "Multivariate Locally Adaptive Density Estimation," Computational
Statistics & Data Analysis, vol. 39, no. 2, pp. 165-186, 2002.

[19] X. Wei, H. Huang and S. Tian, "A Grid-Based Clustering Algorithm for Network

Anomaly Detection," in Proceedings of the 1st International Symposium on Data,
Privacy and E-Commerce, Chengdu, 2007.

[20] S. Kundu, "Gravitational Clustering: A New Approach Based on the Spatial

Distribution of the Points," Pattern Recognition, vol. 32, no. 7, pp. 1149-1160, 1999.

136

[21] T. V. Ravi and K. C. Gowda, "Clustering of Symbolic Objects Using Gravitational

Approach," IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, vol. 29, no. 6, pp. 888-894, 1999.

[22] J. Gomez, D. Dasgupta and O. Nasraoui, "A New Gravitational Clustering

Algorithm," in Proceedings of the 3rd SIAM International Conference on Data

Mining, San Francisco, 2003.

[23] C. Cariou, K. Chehdi and A. Nagle, "Gravitational Transform for Data Clustering -

Application to Multicomponent Image Classification," in Proceedings of the 2005

IEEE International Conference on Acoustics, Speech, and Signal Processing,

Philadelphia, 2005.

[24] X. Wang, Q. Weiliang and R. H. Zamar, "CLUES: A Nonparametric Clustering
Method Based on Local Shrinking," Computational Statistics & Data Analysis, vol.

52, no. 1, pp. 286-298, 2007.

[25] A. Hinneburg and D. A. Keim, "Optimal Grid Clustering: Towards Breaking the

Curse of Dimensionality in High Dimensional Clustering," in Proceedings of the
25th International Conference on Very Large Data Bases, Edinburgh, 1999.

[26] H. Nagesh, S. Goil and A. Choudhary, "Adaptive Grids for Clustering Massive Data

Sets," in Proceedings of the 1st SIAM International Conference on Data Mining,
Chicago, 2001.

[27] B. L. Milenova and M. M. Campos, "O-Cluster: Scalable Clustering of Large High

Dimensional Data Sets," in Proceedings of the 3rd IEEE International Conference
on Data Mining, Maebashi City, 2002.

[28] J.-p. Zhang, Y. Yang, J. Yang, Z.-b. Zhang and Z. Liu, "Spatial Clustering

Algorithm Based on Optimized-Division," in Proceedings of the 4th International

Conference on Fuzzy Systems and Knowledge Discovery, Haikou, 2007.

[29] M. Glomba and U. Markowska-Kaczmar, "IBUSCA: A Grid-Based Bottom-up
Subspace Clustering Algorithm," in Proceedings of the 6th International Conference
on Intelligent Systems Design and Applications , Jinan, 2006.

[30] Y. Shi, "A Dimension Reduction Approach Using Shrinking for Multi-Dimensional
Data Analysis," International Journal of Intelligent Information Processing, vol. 1,
no. 2, pp. 86-98, 2010.

137

[31] A. K. Cherukuri, "Analysis of Unsupervised Dimensionality Reduction Techniques,"

Computer Science and Information Systems, vol. 6, no. 2, pp. 217-227, 2009.

[32] M. Dash, H. Liu and J. Yao, "Dimensionality Reduction of Unsupervised Data," in

Proceedings of the 9th IEEE International Conference on Tools with Artificial

Intelligence, Newport Beach, 1997.

[33] C. Bartenhagen, H.-U. Klein, C. Ruckert, X. Jiang and M. Dugas, "Comparative

Study of Unsupervised Dimension Reduction Techniques for the Visualization of

Microarray Gene Expression Data," BMC Bioinformatics, vol. 11, no. 11, pp. 320-

330, 2010.

[34] J. Choo, H. Kim, H. Park and H. Zha, "A Comparison of Unsupervised Dimension

Reduction Algorithms for Classification," in Proceedings of the 2007 IEEE

International Conference on Bioinformatics and Biomedicine, Silicon Valley, 2007.

[35] I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," The

Journal of Machine Learning Research, vol. 3, no. 1, pp. 1157-1182, 2003.

[36] P. Mitra, C. A. Murthy and S. K. Pal, "Unsupervised Feature Selection Using
Feature Similarity," IEEE Transaction on Pattern Analysis and Machine
Intelligence, vol. 24, no. 3, pp. 301-312, 2002.

[37] J. G. Dy and C. E. Brodley, "Feature Selection for Unsupervised Learning," The

Journal of Machine Learning Research, vol. 5, no. 1, pp. 845-889, 2004.

[38] H. Liu and L. Yu, "Toward Integrating Feature Selection Algorithms for

Classification and Clustering," IEEE Transaction on Knowledge and Data
Engineering, vol. 17, no. 4, pp. 491-502, 2005.

[39] Y. Li, B.-L. Lu and Z.-F. Wu, "A Hybrid Method of Unsupervised Feature Selection

Based on Ranking," in Proceedings of the 18th International Conference on Pattern
Recognition, Hong Kong, 2006.

[40] H.-L. Wei and S. A. Billings, "Feature Subset Selection and Ranking for Data

Dimensionality Reduction," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 29, no. 1, pp. 162-166, 2007.

[41] J. Novakovic, P. Strbac and D. Bulatovic, "Toward Optimal Feature Selection Using
Ranking Methods and Classification Algorithms," Yugoslav Journal of Operations
Research, vol. 21, no. 1, pp. 119-135, 2011.

138

[42] W. Duch, T. Wieczorek, J. Biesiada and M. Blachnik, "Comparison of Feature

Ranking Methods Based on Information Entropy," in Proceedings of the 2004 IEEE

International Joint Conference on Neural Networks, Budapest, 2Q04.

[43] L. Yu and H. Liu, "Feature Selection for High dimensional Data: A Fast Correlation

Based Filter Solution," in Proceedings of the 20th International Conference on

Machine Learning, Washington, DC , 2003.

[44] K. Jong, J. Mary, A. Cornuejols, E. Marchiori and M. Sebag, "Ensemble Feature

Ranking," in Proceedings of the 8th European Conference on Principles and

Practice of Knowledge Discovery in Databases, Pisa, 2004.

[45] S. B. Kotsiantis, "Supervised Machine Learning: A Review of Classification
Techniques," lnformatica (Slovenia), vol. 31, no. 3, pp. 249-268, 2007.

[46] A. Alzghoul and M. Lofstrand, "Increasing Availability of Industrial Systems

Through Data Stream Mining," Computers & Industrial Engineering, vol. 60, no. 2,

pp. 195-205,2011.

[47] T. Yeh, J. J. Lee and T. Darrell, "Scalable Classifiers for Internet Vision Tasks," in
Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition Workshops, Anchorage, 2008.

[48] M. Mehta, R. Agrawal and J. Rissanen, "SLIQ: A Fast Scalable Classifier for Data

Mining," in Proceedings of the 5th International Conference on Extending Database

Technology, Avignon, 1996.

[49] J. C. Shafer, R. Agrawal and M. Mehta, "SPRINT: A Scalable Parallel Classifier for

Data Mining," in Proceedings of the 22nd International Conference on Very Large
Data Bases, Mumbai, 1996.

[50] M. Joshi, G. Karypis and V. Kumar, "ScalParC: A New Scalable and Efficient
Parallel Classifier Algorithm for Mining Large Datasets," in Proceedings of the 12th
IEEE International Parallel Processing Symposium, Orlando, 1998.

[51] S. Guha, R. Rastogi and K. Shim, "CURE: An Efficient Clustering Algorithm for
Large Databases," in Proceedings of the 1998 ACM SIGMOD International

Conference on Management of Data, Seattle, 1998.

139

[52] M. Ester, H.-P. Kriegel, J. Sander and X. Xu, "A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise," in Proceedings of the
2nd International Conference on Knowledge Discovery and Data Mining , Portland,

1996.

[53] M. Ankerst, M. M. Breunig and H.-P. Kriegel, "OPTICS: Ordering Points To

Identify the Clustering Structure," in Proceedings of the 1999 ACM SIGMOD

International Conference on Management of Data, Philadelphia, 1999.

[54] G. Karypis, E.-H. Han and V. Kumar, "Chameleon: Hierarchical Clustering Using

Dynamic Modeling," Computer, vol. 32, no. 8, pp. 68-75, 1999.

[55] S. Guha, R. Rastogi and K. Shim, "ROCK: A Robust Clustering Algorithm for

Categorical Attributes," in Proceedings of the 15th International Conference on
Data Engineering, Sydney, 1999.

[56] T. Zhang, R. Ramakrishnan and M. Livny, "BIRCH: An Efficient Data Clustering

Method for Very Large Databases," in Proceedings of the 1996 ACM SIGMOD

International Conference on Management of Data, Montreal, 1996.

[57] A. Frank and A. Asuncion, "UCI Machine Learning Repository," University of
California, Irvine, School of Information and Computer Science, 2010. [Online].
Available: http://archive.ics.uci.edu/ml.

[58] S. A. Ong, H. H. Lin, Y. Z. Chen and Z. Cao, "Efficacy of Different Protein
Descriptors in Predicting Protein Functional Families," BMC Bioinformatics, vol. 8,

no. 8, pp. 267-280,2007.

[59] C. H. Q. Ding and I. Dubchak, "Multi-Class Protein Fold Recognition Using Support

Vector Machines and Neural Networks," Bioinformatics, vol. 17, no. 4, pp. 349-358,
2001.

[60] K. Kira and L. A. Rendell, "A Practical Approach to Feature Selection," in

Proceedings of the 9th International Workshop on Machine Learning, Aberdeen,

1992.

[61] I. Kononenko, "Estimating Attributes: Analysis and Extensions of RELIEF," in

Proceedings of the 1994 European Conference on Machine Learning, Catania, 1994.

http://archive.ics.uci.edu/ml

140

[62] M. Robnik-Sikonja and I. Kononenko, "An Adaptation of Relief for Attribute

Estimation in Regression," in Proceedings of the 14th International Conference on

Machine Learning, Nashville, 1997.

[63] H. Liu and R. Setiono, "Chi2: Feature Selection and Discretization of Numeric

Attributes," in Proceedings of 7th International Conference on Tools with Artificial
Intelligence, Herndon, 1995.

[64] I. W. J. Guyon, S. Barnhill and V. Vapnik, "Gene Selection for Cancer Classification

Using Support Vector Machines," Machine Learning, vol. 46, no. 1, pp. 389-422,

2002.

[65] E. Frank and I. H. Witten, "Generating Accurate Rule Sets Without Global

Optimization," in Proceedings of the 15th International Conference on Machine

Learning, Madison, 1998.

[66] S. 1. Cessie and J. C. V. Houwelingen, "Ridge Estimators in Logistic Regression,"

Applied Statistics, vol. 41, no. 1, pp. 191-201,1992.

[67] C. Ratanamahatana, "CloNI: Clustering of Square Root of N-Interval

Discretization," in Proceedings of the 4th International Conference on Data Mining
Including Building Application for CRM & Competitive Intelligence, Rio De Janeiro,
2003.

[68] Y. Yang and G. I. Webb, "Proportional k-Interval Discretization for Naive-Bayes

Classifiers," in Proceedings of the 12th European Conference on Machine Learning,
Freiburg, 2001.

[69] W. Qiu and H. Joe, "ClusterGeneration: Random Cluster Generation (with Specified

Degree of Separation)," R Foundation for Statistical Computing, vol. R Package
Version 1.2.9, 2012.

[70] J. R. Quinlan, "C4.5: Programs for Machine Learning," San Francisco: Morgan
Kaufmann Publishers, 1993.

[71] G. H. John and P. Langley, "Estimating Continuous Distributions in Bayesian

Classifiers," in Proceedings of the 11th Annual Conference on Uncertainty in
Artificial Intelligence, Montreal, 1995.

[72] C. Torrence and G. P. Compo, "A Practical Guide to Wavelet Analysis," Bulletin of

the American Meteorological Society, vol. 79, no. 1, pp. 61-78, 1998.

141

[73] R. Bracewell, "Rayleigh's Theorem: The Fourier Transform and Its Applications,"

Third Edition, New York: McGraw-Hill, 1999.

[74] C. Legany, S. Juhasz and A. Babos, "Cluster Validity Measurement Techniques," in

Proceedings of the 5th WSEAS International Conference on Artificial Intelligence,

Knowledge Engineering and Data Bases, Madrid, 2006.

[75] X. L. Xie and G. Beni, "A Validity Measure for Fuzzy Clustering," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 8, pp. 841-

847, 1991.

[76] M. Halkidi and M. Vazirgiannis, "Clustering Validity Assessment: Finding the
Optimal Partitioning of a Data set," in Proceedings of the 2001 IEEE International
Conference on Data Mining, San Jose, 2001.

[77] M. Halkidi, Y. Batistakis and M. Vazirgiannis, "On Clustering Validation

Techniques," Journal of Intelligent Information Systems, vol. 17, no. 2-3, pp. 107-
145,2001.

[78] Y. Shi, Y. Song and A. Zhang, "A Shrinking Based Clustering Approach for

Multidimensional Data," IEEE Transaction on Knowledge and Data Engineering,
vol. 17, no. 10, pp. 1389-1403,2005.

[79] I. Solomonovich Gradshteyn, I. Moiseevich Ryzhik, A. Jeffrey and D. Zwillinger,

"Tables of Integrals, Series, and Products," Sixth Edition, San Diego: Academic

Press, 2000.

[80] S. Dua and S. Saini, "Data Shrinking Based Feature Ranking for Protein

Classification," in Information Systems, Technology and Management, series

Communications in Computer and Information Science, Heidelberg, Springer Berlin
Heidelberg, pp. 54-63, 2009.

[81] S. Saini and S. Dua, "A Grid-Based Scalable Classifier for High Dimensional

Datasets," in Information Systems, Technology and Management, series
Communications in Computer and Information Science, Heidelberg, Springer Berlin
Heidelberg, pp. 404-415, 2010.

i

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Fall 2012

	Adaptive grid based localized learning for multidimensional data
	Sheetal Saini

	00001.tif

