624 research outputs found

    Discussion of “An analysis of global warming in the Alpine region based on nonlinear nonstationary time series models” by F. Battaglia and M. K. Protopapas

    Get PDF
    The annual temperatures recorded for the last two centuries in fifteen european stations around the Alps are analyzed. They show a global warming whose growth rate is not however constant in time. An analysis based on linear Arima models does not provide accurate results. Thus, we propose threshold nonlinear nonstationary models based on several regimes both in time and in levels. Such models fit all series satisfactorily, allow a closer description of the temperature changes evolution, and help to discover the essential differences in the behavior of the different stations

    Control of a DC motor using feedback linearization and gray wolf optimization algorithm

    Get PDF
    The aim of this study is to investigate nonlinear DC motor behavior and to control velocity as output variable. The linear model is designed, but as it is experimentally verified that it does not describe the system well enough it is replaced by the nonlinear one. System's model has been obtained taking into account Coulomb and viscous friction in the firmly nonlinear environment. In the frame of the paper the dynamical analysis of the nonlinear feedback linearizing control is carried out. Furthermore, a metaheuristic optimization algorithm is set up for finding the coefficient of the proportional-integral feedback linearizing controller. For this purpose Gray wolf optimization technique is used. Moreover, after the introduction of the control law, analysis of the pole placement and stability of the system is establish. Optimized nonlinear control signal has been applied to the real object with simulated white noise and step signal as disturbances. Finally, for several desired output signals, responses with and without disruption are compared to illustrate the approach proposed in the paper. Experimental results obtained on the given system are provided and they verify nonlinear control robustness

    Cooperative co-evolution with differential grouping for large scale optimization

    Get PDF
    Cooperative co-evolution has been introduced into evolutionary algorithms with the aim of solving increasingly complex optimization problems through a divide-and-conquer paradigm. In theory, the idea of co-adapted subcomponents is desirable for solving large-scale optimization problems. However, in practice, without prior knowledge about the problem, it is not clear how the problem should be decomposed. In this paper, we propose an automatic decomposition strategy called differential grouping that can uncover the underlying interaction structure of the decision variables and form subcomponents such that the interdependence between them is kept to a minimum. We show mathematically how such a decomposition strategy can be derived from a definition of partial separability. The empirical studies show that such near-optimal decomposition can greatly improve the solution quality on large-scale global optimization problems. Finally, we show how such an automated decomposition allows for a better approximation of the contribution of various subcomponents, leading to a more efficient assignment of the computational budget to various subcomponents

    Parallel heterogeneous genetic algorithms for continuous optimization

    Full text link

    A review of population-based metaheuristics for large-scale black-box global optimization: Part A

    Get PDF
    Scalability of optimization algorithms is a major challenge in coping with the ever growing size of optimization problems in a wide range of application areas from high-dimensional machine learning to complex large-scale engineering problems. The field of large-scale global optimization is concerned with improving the scalability of global optimization algorithms, particularly population-based metaheuristics. Such metaheuristics have been successfully applied to continuous, discrete, or combinatorial problems ranging from several thousand dimensions to billions of decision variables. In this two-part survey, we review recent studies in the field of large-scale black-box global optimization to help researchers and practitioners gain a bird’s-eye view of the field, learn about its major trends, and the state-of-the-art algorithms. Part of the series covers two major algorithmic approaches to large-scale global optimization: problem decomposition and memetic algorithms. Part of the series covers a range of other algorithmic approaches to large-scale global optimization, describes a wide range of problem areas, and finally touches upon the pitfalls and challenges of current research and identifies several potential areas for future research

    Biologically inspired evolutionary temporal neural circuits

    Get PDF
    Biological neural networks have always motivated creation of new artificial neural networks, and in this case a new autonomous temporal neural network system. Among the more challenging problems of temporal neural networks are the design and incorporation of short and long-term memories as well as the choice of network topology and training mechanism. In general, delayed copies of network signals can form short-term memory (STM), providing a limited temporal history of events similar to FIR filters, whereas the synaptic connection strengths as well as delayed feedback loops (ER circuits) can constitute longer-term memories (LTM). This dissertation introduces a new general evolutionary temporal neural network framework (GETnet) through automatic design of arbitrary neural networks with STM and LTM. GETnet is a step towards realization of general intelligent systems that need minimum or no human intervention and can be applied to a broad range of problems. GETnet utilizes nonlinear moving average/autoregressive nodes and sub-circuits that are trained by enhanced gradient descent and evolutionary search in terms of architecture, synaptic delay, and synaptic weight spaces. The mixture of Lamarckian and Darwinian evolutionary mechanisms facilitates the Baldwin effect and speeds up the hybrid training. The ability to evolve arbitrary adaptive time-delay connections enables GETnet to find novel answers to many classification and system identification tasks expressed in the general form of desired multidimensional input and output signals. Simulations using Mackey-Glass chaotic time series and fingerprint perspiration-induced temporal variations are given to demonstrate the above stated capabilities of GETnet
    • …
    corecore