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Abstract The annual temperatures recorded for the last two centuries in fifteen
european stations around the Alps are analyzed. They show a global warming whose
growth rate is not however constant in time. An analysis based on linear Arima models
does not provide accurate results. Thus, we propose threshold nonlinear nonstationary
models based on several regimes both in time and in levels. Such models fit all series
satisfactorily, allow a closer description of the temperature changes evolution, and
help to discover the essential differences in the behavior of the different stations.
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1 Introduction

Climate is changing towards a global warming, whose consequences may be extremely
serious for nature and mankind. Scientists are trying to study and explain the reasons of
such change, and an authoritative Intergovernmental Panel on Climate Change (IPCC)
was created in 1988. It was set up by the World Meteorological Organization (WMO)
and the United Nations Environment Programme (UNEP) as an effort by the United
Nations to provide the governments of the world with a clear scientific view of what
is happening to the world’s climate.

The fourth IPCC assessment report (IPCC 2007) concludes that warming of the
climate system is unequivocal; in the last hundred years the global mean surface tem-
peratures have risen by about 0.8 ◦C, and most of the observed increase is very likely
due to human activity.
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Though surface temperature is the result of a complex process with many factors,
there is a general consensus that the recent temperature increase was induced mainly
by man-made CO2 and other greenhouse gas emissions (EEA 2008). Moreover, in
addition to the direct effect of gas emissions, the complex interaction between the
cycling of substances, radiation and other processes leads to feedback loops (EEA
2008). For example, a positive feedback is the melting of permafrost induced by an
initial temperature increase, since the large amount of methane trapped in this soil
will be released and contribute to further warming. Several feedback processes, both
positive and negative, have been advocated, but their precise quantitative effect on
warming is still uncertain.

On the average, in the last century the global land temperature increased by 1.0◦
(oceanic temperature increased less), but the northern hemisphere underwent a larger
increase, and Europe warmed more, about 1.2◦. Moreover, the Alps have undergone
an exceptionally high temperature increase, around 2◦, about twice the warming of
the northern hemisphere (Zebisch et al. 2009).

Climate change in the Alps has been extensively studied by the project HISTALP
(Historical instrumental climatological surface time series of the Greater Alpine
Region (GAR), see Auer et al. 2007). A rich database was produced, containing homog-
enized records of several measures (pressure, precipitation, sunshine) and temperature,
some of them dating back to 1760, for 131 sites in Alps and its wider surrounding,
a region denominated GAR. One of the findings of the Histalp project is that the fun-
damental evolution of the temperature change was essentially similar in the whole
region, regardless the altitude of the recording site, but the climate main features are
different, and require a regionalization. Four climatological subregions were proposed:
North–West (NW) and North–East (NE), north of the Alps, and South–West (SW) and
South–East (SE), south of the Alps.

We have selected the annual temperature series at 15 sites, for which the longest
data sets are available, and approximately evenly distributed among the subregions.
Figure 1 shows the GAR map, the subregions and the stations location, while sites and
dates are detailed in Table 1. The last two centuries were taken into account, with the
aim of answering, on a statistical basis, the following questions:

– when did the temperature increase start?
– was the rate of increase uniform, or significantly varying over the recording period?
– are there relevant differences in the temperature evolution among the different

stations?

A further relevant question is related to the evaluation of the effects of feedback
processes. If a feedback loop has a substantial impact on the temperature, this should
introduce nonlinearity in the time series.

For these reasons, we propose to fit to the temperature series a recently introduced
nonlinear nonstationary model (Battaglia and Protopapas 2011, 2012). This kind of
models is based on a two-fold threshold autoregressive structure, and allows for dif-
ferent regimes driven both by the time flow, and by the range of values of the series.

The plan of the paper is as follows. In the next Section we present the data and a
linear statistical analysis. In Sect. 3 we introduce the nonlinear nonstationary model
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Analysis of global warming in the Alpine region 317

Fig. 1 Map of the Greater Alpine Region. Lines delimit the four subregions, recording stations underlined

Table 1 Details of the temperature time series

Site Code Subregion Altitude First year Last year

Bern BER NW 565 1803 2007

Geneve GEN NW 380 1803 2007

Innsbruck INN NW 609 1777 2007

Karlsruhe KAR NW 112 1779 2007

Kremsmunster KRE NE 389 1768 2007

Milano MIL SW 103 1763 2007

Munchen MUN NE 525 1781 2007

Padova PAD SE 14 1774 2005

Regensburg REG NE 366 1773 2007

Strasbourg STR NW 150 1801 2007

Stuttgart STU NW 311 1772 2007

Torino TOR SW 275 1760 2007

Udine UDI SE 100 1803 2007

Verona VER SW 67 1788 2007

Wien WIE NE 209 1775 2007
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and the meta-heuristic method used for identification and estimation. Our findings are
illustrated in Sect. 4, and some conclusions are drawn in the final section.

2 Data and preliminary analysis

The annual average temperature data at the 15 stations detailed in Table 1 have been
analyzed. Each series referred, for homogeneity, to the same time span, from year 1803
to 2005 (203 observations). The time series of the HISTALP project were accurately
homogenized (details of the homogenization process are found in Auer et al. 2007),
since the original measurements depend on several non climatic factors. In effect,
“changes in location, surroundings of sites, instruments, time of observations, observ-
ers and a number of other factors produce inhomogeneities in the series” (Auer et al.
2007, p. 19). The homogenization process aimed at correcting for these anomalies,
detecting and removing outliers, and filling gaps. However, the resulting data cannot
be considered free of non climatic features. In particular, the urban effect may cause
differences in the 15 stations. Though the urban influence was found decreasing in
time (Böhm et al. 2001), and it is clear that “a possible systematic urban bias cannot
be used as an argument to doubt climatic warming” (Auer et al. 2007, p. 34), it should
be kept in mind that the 15 sites are located in cities with largely different dimensions,
therefore the urban influence may be different in each series.

The data, expressed in degrees Celsius ×10, are summarized in Fig. 2, the four
panels show the time series graphs of the stations in the four subregions. Tables and
figures will always be displayed in tenths of degree Celsius. In all cases there is a strong
temperature increase at least for the last thirty years. Moreover, it is apparent (note
that the upper and lower panels have different scale) that the overall temperature in
the southern regions was larger than in the northern ones, while the general variability
was larger in the northern stations. This is suggested also by a simple (mean, stan-
dard error) scatter diagram of the 15 stations (see Fig. 3), and essentially confirms the
Histalp regionalization. However, differences between SW and SE are not so strong.
Note that the different characteristics of our series may be also due to the specific
location of the stations, and in particular to altitude: average height above sea level is
354 m for the six NW sites, 372 m for NE, while only 148 for the SW stations and 57
for SE.

There seems not to be any appreciable delay among the series behavior, and the
largest cross-correlation for all series is at lag 0, with all positive estimates larger
than 0.75. In order to evaluate the regionalization also with respect to dynamics, a
hierarchical clustering exercise was performed, using zero-lag cross-correlation as
similarity. Regardless the metric (single, average or complete linkage), the first break-
ing is between north of the Alps and south of the Alps sites, and, on decreasing
the distance threshold, the northern cluster splits into the NW and NE subregions,
while the southern stations are clustered in two parts: Milan-Turin and Padova-Udine-
Verona, corresponding to the subregions SW and SE but with Verona associated to
SE. Similar results are obtained if the first difference series are analyzed.

A linear analysis was also performed, fitting to each series a model of the ARIMA
class, with the Schwarz order selection criterion. The results are shown in Table 2.
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Fig. 2 Time series graphs of the stations in the four subregions

Fig. 3 (Mean, Standard error) scatter diagram

The diagnostic check by Box-Pierce, Jarque-Bera, Keenan nonlinearity and LM-Arch
tests was carried out for all models, without finding any significant value at the 0.05
level. It may be immediately seen that the identified structure is the same for all series:
integrated first order moving average

Xt = Xt−1 + c + ut − θut−1.

The estimated parameter values are much similar for all of them. The constant term
estimates are never significantly different from zero (estimated values are approxi-
mately equal to their standard errors), thus implying no clear-cut conclusion about the
trend; also, the R2 values are generally rather small, and slightly different for each
region: the average estimated R2 is 0.3 for NW, 0.19 for NE, and 0.33 in the Southern
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Table 2 ARIMA models fitted to the temperature time series

Site Code Fitted model Parameters R2

Bern BER IMA(1,1) c = 0.09 , θ = −0.89** 0.36

Geneve GEN IMA(1,1) c = 0.09, θ = −0.81** 0.39

Innsbruck INN IMA(1,1) c = 0.07, θ = −0.85** 0.26

Karlsruhe KAR IMA(1,1) c = 0.09, θ = −0.89** 0.32

Kremsmunster KRE IMA(1,1) c = 0.05 , θ = −0.91** 0.16

Milano MIL IMA(1,1) c = 0.09, θ = −0.83** 0.39

Munchen MUN IMA(1,1) c = 0.08, θ = −0.88 ** 0.22

Padova PAD IMA(1,1) c = 0.10, θ = −0.81** 0.38

Regensburg REG IMA(1,1) c = 0.07, θ = −0.91** 0.21

Strasbourg STR IMA(1,1) c = 0.09, θ = −0.88** 0.28

Stuttgart STU IMA(1,1) c = 0.09, θ = −0.86** 0.28

Torino TOR IMA(1,1) c = 0.08, θ = −0.78** 0.35

Udine UDI IMA(1,1) c = 0.08, θ = −0.87** 0.27

Verona VER IMA(1,1) c = 0.08, θ = −0.81** 0.27

Wien WIE IMA(1,1) c = 0.07, θ = −0.91** 0.18
∗∗ 1% Significant

regions. The resulting picture is that the temperature variation appears for a large part
purely random, and the behavior is similar in structure for all stations.

Though the linear analysis may appear not particularly useful for the present data,
especially for forecasting purpose, it may help to detect anomalous data. The record-
ings are very accurate and have been cleverly homogenized, but unexpected events
or sudden temperature changes, both in the local climate itself and in the recording
methodology, may lead to influential data that, though formally correct, may severely
bias both the identification and the estimation stage of model building, especially if
nonlinear and/or nonstationary types are considered. Thus, the outlier check procedure
as proposed by Tsay (1988) and Chen and Liu (1993), based on ARIMA models, was
applied to each series (using the models in Table 2). Some outliers were detected, but
their importance was not so clear: the standardized estimated amplitudes were nearly
always smaller than 3.0, therefore they would not be detected if a low to medium
sensitivity procedure is chosen. The only three cases requiring attention are the 1822
recording at Turin, the 1833 recording at Geneve, and the 1940 recording at Wien.
Both the Turin and Geneve figures are extremely large, a comparable temperature was
reached only in the 1990s, and were corrected by subtracting the least squares outlier
estimate, equal respectively to 1.60 and 1.65 ◦. No clear motivation was found in the
literature for these old events. On the contrary, the average temperature recorded at
Wien station in 1940 was unusually small, extremely inhomogeneous with the values
of more than a century. The figure was corrected by adding 2.1◦ (the least squares
outlier estimate). A possible explanation is that during the World War II many stations
were relocated from city centre sites to airfields or airports (Böhm et al. 2010, p. 47),
and in effect several other stations suffer from unusually small figures in the war years,
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Fig. 4 Average temperature in each subregion and in northern hemisphere (dotted), filtered with a simple
moving average, 19 terms. Data are anomalies from the 1961–1990 mean

though not so serious as in the Wien case. The linear models fitted to the Geneve, Turin
and Wien corrected series are not much different from those appearing in Table 2.

As a conclusion of the preliminary analysis, an idea of the long-run evolution
of the temperature in the four subregions may be obtained by simply considering a
19-term simple moving average of the subregional average temperatures, shown in
Fig. 4, where it is apparent that the long-run dynamics have substantially similar fea-
tures, though with some differences, especially in the past. The northern hemisphere
annual average is also shown in Fig. 4 (dotted, dataset Hadcrut3nh of the Climatic
Research Unit, University of East Anglia, http://www.cru.uea.ac.uk). In particular, it
is interesting to note that the slight cooling phase 1950–1970, found for the northern
hemisphere, is not evident in the GAR annual data (it was observed that while the
summer temperature did undergo that cooling, the winter temperature continued to
grow uniformly, resulting in overall increase for annual average data, see e. g. Böhm
et al. 2010).

3 Methods

The analysis of the temperature data, in order to highlight possible nonlinear and
nonstationary behavior, has been conducted by fitting to each of them a multi-regime
threshold model. It assumes that the series is generated by several alternative linear
autoregressive equations (the regimes) and the generating process switches from one
to another according to the value of an indicator, that may be related to time or to
another time series (the driving variable, also a possibly delayed value of the series
itself), or both. In the first case we have a nonstationary but linear model (also called
structural change, general references are Bai and Perron 1998; Lin and Teräsvirta
1994), while in the second case the model is nonlinear but stationary under suit-
able choices of the parameter values and is usually called a threshold model; a gen-
eral reference is Tong (1990). It has also been proposed to allow regime changes
determined by a random unobservable indicator, as first suggested by Tong and Lim
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(1980) and later formalized by Hamilton (1989); and more recently, to assume that the
probability distribution of the random indicator depends on the previous observations
of the series, as in Wu and Chen (2007), Kamgaing et al. (2009), Dueker et al. (2007).
A non parametric alternative, where the autoregressive coefficients are functions of the
driving variable, was proposed by Chen and Tsay (1993), Cai et al. (2000). However
for time series with complicated dynamic structure, such models should be considered
only as approximations or partial tools for describing only a part of the features of the
series. We assume, as in Rissanen (2007) that there is no absolutely correct model, but
only models with a better or worse fit. In other words, what we are searching for is not
a formalization of the data generating process, but only a parsimonious and efficient
representation of the dynamic behavior of the observed data. For this reason we shall
not consider tests for nonlinearity or nonstationarity, but will leave the model choice to
a fit evaluation. However, tests such as those proposed in Chan and Tong (1990), Lin
and Teräsvirta (1994), Lundbergh et al. (2003) may be used for detecting a nonlinear
or nonstationary behavior.

Since the temperature series show an instability in time, a possible option is con-
sidering models which are simultaneously regime changing both according to time
and to a driving variable. This allows the choice of a model inside a set containing the
traditional ARIMA, the threshold autoregression, the nonstationary structural change
models, and the combination of both. Obviously, identification is much more compli-
cated and this is perhaps the reason why such nonlinear, nonstationary models have
been rarely addressed.

Lundbergh et al. (2003) proposed a model based on a first order autoregressive
structure with the parameter changing both according to time and to a driving vari-
able alternating between two regimes only, with smooth change (in the same way as
smooth transition autoregressive models (STARs) of Teräsvirta 1994). Battaglia and
Protopapas (2011) extended this framework to allow also change of the autoregres-
sive parameters in a piecewise linear fashion (piecewise linear threshold multi-regime
model, Baragona et al. 2004) and proposed a genetic algorithm for building such
a model, but also limited to two regimes. Finally, Battaglia and Protopapas (2012)
completed this procedure to allow for more than two regimes.

3.1 The models

Consider an autoregressive model where the coefficients change both depending on
time and on the level of a delayed observation, in the form of a State Dependent Model
of Priestley (1988):

Xt = φ0(t, Xt−d) +
p∑

j=1

φ j (t, Xt−d)Xt− j + εt . (1)

We assume that the autoregressive coefficients alternate among a finite number of
different regimes, according to the threshold principle.
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The original self-exciting autoregressive threshold model (SETAR, see e.g. Tong
1990) is:

Xt = φ
(k)
0 + φ

(k)
1 Xt−1 + · · · + φ(k)

p Xt−p + εt , Xt−d ∈ Rk (2)

where {Rk} is a partition of the real line, and d is called the delay. A generalization orig-
inally proposed by Chan and Tong (1986), and later considered by Teräsvirta (1994,
1998), avoiding discontinuities in the autoregressive parameters, is called STAR, since
the transition from one regime to the next is driven by a continuous function (generally
a logistic). If rL denotes the number of regimes and Rk = (lk−1, lk], k = 1 . . . , rL ,
the STAR equation may be written:

φ j (t, Xt−d) =
rL∑

k=1

φ
(k)
j Gk−1(Xt−d) (3)

where G0(x)= 1 and Gk(x)= [1+ exp{−γL(x − lk)}]−1. The behavior of the autore-
gressive coefficients is essentially constant in each regime, with a continuous smooth
change between regimes, whose speed is controlled by the constant γL(> 0). The
SETAR model is obtained as a special case of the STAR model, when γL tends to
infinity.

A different proposal, where the autoregressive coefficients change linearly and
continuously with the driving variable Xt−d , but with different slope in each regime,
is the piecewise linear threshold model (PLTAR, Baragona et al. 2004), described by

φ j (t, Xt−d) = φ
(0)
j + φ

(1)
j Xt−d +

rL∑

k=2

φ
(k)
j max(0, Xt−d − lk−1) (4)

Here the autoregressive coefficient behaves like a linear spline across regimes.
The PLTAR may be written in a similar fashion to the STAR letting Sk(x) = max(0,

x − lk−1), S1(x) = x, S0(x) = 1 and

φ j (t, Xt−d) =
rL+1∑

k=1

φ
(k)
j Sk−1(Xt−d) (5)

Note however that there is an additional parameter here (the linear term in Xt−d ) for
each lag. Therefore the sum over k ranges from 1 to the number of regimes plus 1.

In order to take into account additional nonstationarity, we allow each of the coef-
ficients φ

(k)
j to depend on time also, according to a STAR or PLTAR structure. Let rT

denote the number of regimes in time, and t j denote the thresholds so that the regimes
are defined by the partition R′

k = (tk−1, tk], where 1 = t0 < t1 < · · · < trT = N
(where N is the series length).
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We may allow STAR dependence on time using

φ
(k)
j =

rT∑

i=1

β j (i, k)G ′
i−1(t), j = 0, . . . , p (6)

with G ′
0(t) = 1, G ′

i (t) = [1 + exp{−γT (t − ti )}]−1, i = 0, . . . , rT − 1.
Alternatively, a time nonstationarity following a PLTAR structure may be defined

as

φ
(k)
j =

rT +1∑

i=1

β j (i, k)S′
i−1(t), j = 0, . . . , p (7)

where S′
i (t) = max(0, t − ti−1)/N , S′

1(t) = t/N , S′
0(t) = 1.

On combining the different types of dependence on levels of the driving variable,
and time, nine different kinds of models result: Stationary, STAR or PLTAR in time,
combined with linear, STAR or PLTAR in levels. Denoting r∗

L = rL for STAR models
in levels, r∗

L = rL + 1 for PLTAR, and r∗
L = 1 for linear models, and analogously

r∗
T = rT for STAR models in time, r∗

T = rT + 1 for PLTAR in time, and r∗
T = 1 for

stationary models, the total number of beta coefficients in (6) and (7) is P = r∗
Lr∗

T p.
The resulting model is in the state dependent form (1) with

φ j (t, Xt−d) =
r∗

T∑

i=1

r∗
L∑

k=1

β j (i, k)G ′
i−1(t)Gk−1(Xt−d)

or with S′ substituted to G ′ and/or S substituted to G. Since the final model equation
is linear in the P elementary parameters β j (i, k), they may be simply estimated by
means of least squares.

Summarizing, a multi-regime model is identified by: its type in levels (linear, STAR
or PLTAR); its type in time (stationary, STAR or PLTAR); the delay d of the driving
variable; the order p; the thresholds in levels lk and in time tk ; and if needed, logistic
speed coefficients γL and γT . Conditional on the values of all these structural param-
eters, the remaining elementary parameters β j (i, k) which drive the evolution of the
autoregressive weights, are estimated by least squares.

Ergodicity and consistency issues are addressed in Battaglia and Protopapas (2011)
for the case of two regimes, and conditions on parameters are given that ensure ergodic-
ity and consistent estimation of both the threshold and the autoregressive coefficients.
The multi-regime case has not been fully investigated yet.

3.2 The optimization algorithm

The identification of a multi-regime model requires the selection of the solution that
possesses the best properties, out of a large space of candidates. Such kind of problems
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have been recently addressed by means of meta-heuristic methods, since these meth-
ods allow to explore the space more efficiently than simple enumeration. Among the
several types of meta-heuristic methods proposed in statistical applications, the genetic
algorithm is most suitable because the space of solutions is discrete, while others, e.g.
differential evolution (Price et al. 2005) or particle swarm (Kennedy and Eberhart
2001) are preferred for continuous spaces. In addition to several statistical identi-
fication problems, e.g. autoregressive moving average model fitting (Gaetan 2000),
outlier detection (Crawford and Wainwright 1995), variable selection in regression
(Chatterjee et al. 1996), the genetic algorithm was suggested specifically for threshold
models by Wu and Chang (2002), Davis et al. (2006). A review of applications of
meta-heuristic methods in Statistics is in Baragona et al. (2011).

A genetic algorithm for building multi-regime models has been proposed by Battaglia
and Protopapas (2012) and is employed here for the temperature series. Given a time
series and an identification criterion, it selects the best model type (in time and in
levels), number of regimes, order and thresholds in time and levels, and provides least
squares estimates of the model coefficients.

Genetic algorithms are optimization tools which mimic the evolution of a living
population towards fitness to the natural environment. The key feature is manipulation
of a population of individuals, each of which is characterized by a specific chromo-
some. Chromosomes are coded as strings of characters of a given length, and each
chromosome represents a feasible solution of the optimization problem. The single
units of the string are called it genes. The link between the genetic algorithm and
the problem is provided by the it fitness function, which establishes a mapping from
the chromosomes to a set of real positive numbers. The fitness function is a mono-
tonic transform of the objective function, and the greater the fitness, the better is the
adaptation of that individual.

The algorithm is iterative and each iteration yields a new population starting from the
existing one, by applying three evolutionary operators: it selection, mutation, cross-
over. Selection designates which member of the old population will survive in the
new one, by means of a random choice where each individual has a probability of
being selected proportional to its fitness. Mutation provides the chance for each gene
to change its value with a given fixed probability, and allows new individuals to
arise. A similar effect is produced by the crossover operator, which allows pairs of
chromosomes to exchange mutually corresponding sub-strings, again with a random
mechanism.

We implemented a hybrid genetic algorithm where the chromosomes encode the
structural parameters (type of model, number of regimes, order, thresholds), while
the autoregressive parameters β j (i, k) are estimated by least squares inside the fitness
evaluation stage.

The genetic algorithm was introduced by Holland (1975). A complete treatment of
theory and convergence properties is Reeves and Rowe (2003). Further details of the
algorithm used here may be found in Battaglia and Protopapas (2012).

The most important step is the choice of the fitness function. In model building
applications, it is customary to evaluate models by means of an identification crite-
rion: if model M has P estimated parameters, the values
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I C(M) = N log σ̂ 2
M + cP (8)

where N is the series length and σ̂ 2
M the estimated residual variance, are evaluated and

the model with minimum value is selected. The constant c may be chosen according
to different ideas (see e.g. Bhansali and Downham 1977), and leads to different iden-
tification criteria (for example c = 2 leads to the popular AIC criterion). The fitness
function must be related to the identification criterion through a monotone decreasing
transformation, and positiveness has to be ensured. We use a simple negative expo-
nential transformation:

fitness(M) = exp{−I C(M)/N } = σ̂−2
M exp{−cP/N }.

The value used here for the constant c equals 3.0, because in this way the criterion
behavior is equivalent to a test of linearity-stationarity against two-regimes alternatives
proposed by Lundbergh et al. (2003), see Battaglia and Protopapas (2011).

The asymptotic properties of the criteria may be evaluated basing on results of Sin
and White (1996), Rivers and Vuong (2002), Marcellino and Rossi (2008) and have
been derived, for the case of two regimes, in Theorem 5 of Battaglia and Protopapas
(2011). In this case, the criterion (8) is consistent if c = o(N ) and c/

√
N → ∞ as

N → ∞.
The algorithm parameters we chose are as follows (more details may be found in

Battaglia and Protopapas 2012): population size 50, number of generations 1,500,
probability of mutation 0.025, probability of cross-over 1.0, number of regimes up to
4, order and delay up to 7. Finally, to prevent unstable estimates of the autoregressive
coefficients, only regimes in time and level containing no less than 20 observations
were evaluated.

In order to compare computational costs, observe that finding the exact optimal
solution would require a complete enumeration of all possible models that, allowing
a precision of 0.01◦ for the temperature thresholds, needs more than 108 fitness eval-
uations. The genetic algorithm implementation used in our case, though allowing for
1, 500 generations (an unusually large number, chosen for ensuring close convergence
in any case) requires only 7.5 × 103 fitness evaluations.

4 Results

For each of the 15 annual temperature series, a genetic algorithm searched for the best
nonlinear nonstationary models of the class described above, evaluating each possible
model according to the criterion:

I C(M) = N log σ̂ 2
M + 3 (number of parameters)

which accounts both for fitting error and parsimony. Therefore, the ”optimal” found
models are simply those which minimize I C(M), they are not assumed at all to
reproduce the unknown data generating process, but simply the best fitting solution
according to the selected criterion: they are not it climatic models.
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Fig. 5 Original and fitted data, stations of the North–West subregion

The first conclusion of our study is that the selected models for all stations are
exactly of the same type: linear in levels, and piecewise linear threshold in time. For
13 stations the selected order was zero, and the model may be written:

Xt =
rT∑

i=1

φi S′
i−1(t) + εt . (9)

Only for Milan and Turin the selected model was of the same type as before, but with
order 1:

Xt =
rT∑

i=1

φi S′
i−1(t) +

rT∑

i=1

βi S′
i−1(t) Xt−1 + εt . (10)

The best model type being uniform, it is suggested again that all series exhibit fun-
damentally similar features, that may be reproduced by a similar structure. The series
do not show a strong autoregressive nature, so the proposed model is of order zero.
Though this is contradicted by the Milan and Turin results, it may be observed that,
when dealing with nonlinear and nonstationary structures, model multiplicity is a
serious issue, and we found that for these two stations the differences between the
fitness of the zero-order and first-order models are small. The original and fitted data
of the single stations are shown, separately for each subregion, in Figs. 5, 6, 7 and 8.
The details of the number of regimes and thresholds may be found in Table 3. The
usual diagnostic checking tools were computed, and no reason for rejecting any of
the proposed model was found. An overall comparison with the linear IMA models
may be based on the R2 measures: our models ensure an increase in R2 of about 0.1,
uniformly for all subregions and series.

The fact that the genetic algorithm never selected a nonlinear structure indicates
that, at least at an annual rate and on the two-century time span examined, the climate
feedback processes were not able to introduce strong nonlinearities in the temperature
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Fig. 6 Original and fitted data, stations of the North–East subregion

Fig. 7 Original and fitted data, stations of the South–West subregion

Fig. 8 Original and fitted data, stations of the South–East subregion

evolution, or the nonlinear effects of positive and negative feedbacks compensate each
other.

Essentially, the models split the entire period (1803–2005) in sub-periods
(the regimes) and inside each of them the behavior is described by a simple linear
trend. The most frequent result (in 10 stations out of 15) is a model with three regimes,

123



Analysis of global warming in the Alpine region 329

Table 3 Fitted models

Site Code Subregion Order Regimes Thresholds (year) R2

Bern BER NW 0 3 1891, 1984 0.44

Geneve GEN NW 0 4 1913, 1949, 1972 0.51

Innsbruck INN NW 0 2 1973 0.34

Karlsruhe KAR NW 0 3 1889, 1984 0.41

Kremsmunster KRE NE 0 3 1888, 1980 0.26

Milano MIL SW 1 2 1975 0.49

Munchen MUN NE 0 3 1889, 1984 0.33

Padova PAD SE 0 3 1855, 1981 0.48

Regensburg REG NE 0 3 1892, 1983 0.32

Strasbourg STR NW 0 3 1889, 1985 0.37

Stuttgart STU NW 0 3 1888, 1984 0.37

Torino TOR SW 1 2 1983 0.46

Udine UDI SE 0 2 1980 0.39

Verona VER SW 0 3 1880, 1984 0.37

Wien WIE NE 0 3 1891, 1980 0.29

In all cases the type is linear in levels and PLTAR in time

the first from the beginning to about 1890, the second up to 1980, and the last one
involving the most recent years. For four stations (Innsbruck, Milano, Torino, Udine)
only the second threshold is selected, and only two regimes are proposed, with change
around 1980. Finally, the behavior of Geneve is peculiar, and the best fitted model has
four regimes in time, with thresholds in the years 1913, 1949, 1972. This might be
due to the fact that the Geneve data show the slight cooling phase 1950–1970, already
observed for the global northern hemisphere, but not evident in the other stations. All
models fit the macroscopic change of temperature evolution, which is located in time
between 1980 and 1984 (only exceptions are Geneve, Innsbruck and Milano for which
the threshold is located a few years before).

For the period 1800–1980 the obtained models suggest a very slow change of the
average temperature, in some cases uniform (Innsbruck, Milano, Torino, Udine) and in
the other cases consisting in an initial slow decrease followed by a moderate increase.
To be more precise, the slopes of the fitting model for each station and regime are
shown in Table 4 for the 3-regime models, and in Table 5 for the 2-regime models.
Since the slopes are sums of estimated phi coefficients in (9), their significance may
be evaluated approximately by means of standard least squares theory.

All the slope coefficients result significantly different from zero, at least at confi-
dence level 0.05, with the exception of those for the regime 1800–1890, for all stations
of Table 4. It indicates a substantial temperature stability in the nineteenth century, fol-
lowed by a moderate increase, that becomes a fast growth after 1980. Comparatively,
while the initial increase is not so different among the stations, the growth after 1980
shows different speed, and in particular the recording of the NW and southern regions
have an average increase of about 0.06◦ per year, while the NE stations have a slower
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Table 4 Slopes in each regime of the fitted models. Models with three regimes

Site 1st regime 2nd regime 3rd regime

Bern −1.8 (1891) 23.6 (1984) 125.1

Karlsruhe −6.3 (1889) 22.3 (1984) 141.8

Kremsmunster −7.1 (1888) 16.5 (1980) 83.2

Munchen −12.9 (1889) 20.1 (1984) 170.0

Padova −15.1 (1855) 12.4 (1981) 127.3

Regensburg −4.5 (1892) 21.5 (1983) 115.7

Strasbourg −5.2 (1889) 21.7 (1985) 140.2

Stuttgart −4.1 (1888) 22.2 (1984) 134.1

Verona −6.5 (1880) 12.1 (1984) 136.7

Wien −6.8 (1891) 19.1 (1980) 94.1

increase around 0.05◦ per year. Notable exceptions are the Innsbruck series, whose
temperature grows a bit less (being more similar to NE rather than NW evolution) and
especially Munchen, whose estimated rate of increase after 1980 is the largest one,
and more than 0.08◦ per year. The reason for this anomaly is very likely anthropic.

The choice of the constant c = 3 in the evaluation criterion (8) appears a satisfying
compromise between good fitting and parsimony, and is supported by theoretical rea-
sons as mentioned in Sect. 3.2; however, we considered also a different fitness, based
on the Schwarz criterion choosing c = log N = 5.3, therefore more parsimonious,
and repeated the entire exercise. For all series the best found models still are linear in
levels and PLTAR in time, with order zero, uniformly with two regimes and thresholds
between 1975 and 1980.

Finally, we have evaluated the forecasting performance of our models. Since their
parameters change according to different time regimes, they are more able to adapt to
a change in the evolution features, and we expect their forecast ability to improve over
ARIMA models. We computed out-of-sample forecasts for all stations with both kind
of models. In order to keep homogeneity, the out-of-sample forecasts were computed
only for the years for which data from the Histalp file are available for all stations
(2006 and 2007, but no figures for Padova). The typical behavior, obtained for all sta-
tions with moderate differences, is exemplified in Fig. 9, reporting the Stuttgart case.
Together with the fitted data (solid line for linear-PLTAR, dotted line for IMA(1,1)
model), the forecasts with origin 2005 and lead times up to ten years are shown; solid
circles are the 2006 and 2007 out-of-sample actual temperatures. The nonstationary
model has a better fit especially in the most recent years, and predicts a definitely
faster long-run increase than the integrated moving average model; the latter tends to
under-estimate the 2006 and 2007 data. The overall results are summarized in Table 6
where the global forecasting errors for all stations appear (Padova is excluded since the
out-of-sample data were not available). Looking at both absolute and square errors,
the forecasts obtained with the linear-PLTAR model are considerably more precise
than those of the moving average model. The trends for the future, deriving from our
models, seem to indicate an even more serious warming than in the recent past, and
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Fig. 9 Temperature at Stuttgart. Models fitted through data up to 2005: linear-PLTAR (solid line), IMA(1,1)
(dotted line). Forecasts with origin 2005 and lead times 1–10 years. Solid circles are 2006 and 2007 actual
temperatures

Table 5 Slopes in each regime of the fitted models. Models with two regimes

Site Slope 1st regime Slope 2nd regime

Innsbruck 8.3 (1973) 84.7

Milanoa 7.8 (1975) 117.1

Torinoa 10.0 (1983) 135.1

Udine 6.2 (1980) 120.3
a Model with order 0 was fitted for this calculation

Table 6 Out-of-sample forecast errors for 2006 and 2007, average on all stations

Year 2006 2007 2006 and 2007
Model IMA PLTAR IMA PLTAR IMA PLTAR

Mean error 2.5 −1.3 6.4 1.9 4.5 0.3

Mean absolute error 2.7 1.9 6.4 3.1 4.5 2.5

Mean square error 11.1 5.5 56.5 15.1 33.8 10.3

suggest that the EU policy target of an increase limited to 2◦ over the pre-industrial
average, will be very hard to meet without an effective action against greenhouse
gas, and seems already missed for the GAR. Indeed, the difference between the mean
temperature 2000–2005 and the average 1850–1899 (as representative of the pre-indus-
trial era) is already larger than 2◦ for many of the Histalp stations (see
Table 7).

5 Conclusions

Based on the results of our analysis we are now in a position to give some indication
about the three questions we posed initially.
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Table 7 Increase of the average 2000–2005 temperature over the pre-industrial average

North–West North–East South–West South–East

BER 20.9 KRE 16.3 MIL 21.5 PAD 22.2

GEN 21.9 MUN 25.9 TOR 19.8 UDI 17.6

INN 20.0 REG 19.8 VER 18.5

KAR 22.2 WIE 18.7

STR 23.4

STU 22.4

When did the temperature increase start? Was the rate of increase uniform, or signifi-
cantly varying? There is evidence that a very moderate temperature increase started
at the beginning of the twentieth century, nearly uniformly for all stations, at a rate
of about 0.01◦ per year. But around 1980 the temperature growth speeded up dramat-
ically, exceeding the rate of 0.05◦ per year, and there is no recent evidence of any
slowing down. It is well known that Europe warmed more than the rest of the north-
ern hemisphere, and in the GAR the temperature increase was even more serious.
This region appears already beyond the target of no more than 2◦ increase over the
pre-industrial era, stated by the United Nations Framework Convention on Climate
Change in the 2009 Copenaghen Accord.

Are there relevant differences in the temperature evolution among the different sta-
tions? The Histalp project findings (based on several climatic indicators) suggested
evidence of four different subregions, NW, NE, SW and SE. Stations in the southern
regions show a larger mean and a smaller variability in time. Concerning the warm-
ing, the fundamental behavior is similar for all stations, but some differences arise.
A slight decrease of the temperature during the nineteenth century is recognized by
our models for all cases except Innsbruck, Milano, Torino and Udine, though such a
decrease cannot be judged statistically significant. The change from the slight decrease
to the moderate increase regime is located in our models at nearly simultaneous dates,
between 1889 and 1891, with few exceptions. And the start of the fast growth is also
synchronous about 1980, but with some differences: earlier for Milano and Innsbruck
(1975 and 1973 respectively), in 1980 or 1981 for Kremsmunster, Padova and Wien,
and between 1983 and 1985 for the other stations, without a clear-cut reason relat-
ing to subregions or other climate features. The temperature growth rates in the last
regime are also slightly different, being slower in the NE stations, and larger in the
South and NW subregions. A remarkably inhomogeneous behavior is found for Mun-
chen, where the temperature estimated rate of increase in the last thirty years was
considerably larger than all other stations.

Finally, our analysis does not support the presence in the data of any relevant non-
linear component due to feedback processes.

Concluding, we have seen that the use of relatively simple threshold models, allow-
ing both for nonlinearity and nonstationarity, may help to describe more clearly data
with non uniform and changing dynamic features.
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