
This is a repository copy of A review of population-based metaheuristics for large-scale
black-box global optimization: Part A.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/180820/

Version: Accepted Version

Article:

Omidvar, M orcid.org/0000-0003-1944-4624, Li, X and Yao, X (Accepted: 2021) A review
of population-based metaheuristics for large-scale black-box global optimization: Part A.
IEEE Transactions on Evolutionary Computation. ISSN 1089-778X (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 1

A review of population-based metaheuristics for
large-scale black-box global optimization: Part A
Mohammad Nabi Omidvar, Senior Member, IEEE, Xiaodong Li, Fellow, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Scalability of optimization algorithms is a major
challenge in coping with the ever growing size of optimization
problems in a wide range of application areas from high-
dimensional machine learning to complex large-scale engineering
problems. The field of large-scale global optimization is concerned
with improving the scalability of global optimization algorithms,
particularly population-based metaheuristics. Such metaheuris-
tics have been successfully applied to continuous, discrete, or
combinatorial problems ranging from several thousand dimen-
sions to billions of decision variables. In this two-part survey,
we review recent studies in the field of large-scale black-box
global optimization to help researchers and practitioners gain a

bird’s-eye view of the field, learn about its major trends, and
the state-of-the-art algorithms. Part A of the series covers two
major algorithmic approaches to large-scale global optimization:
problem decomposition and memetic algorithms. Part B of the
series covers a range of other algorithmic approaches to large-
scale global optimization, describes a wide range of problem
areas, and finally touches upon the pitfalls and challenges of
current research and identifies several potential areas for future
research.

Index Terms—large-scale global optimization, black-box opti-
mization, metaheuristics, evolutionary optimization

I. INTRODUCTION

The curse of dimensionality is “a malediction that has
plagued the scientists from the earliest days" [1] and taming it
has been at the heart of many research efforts in computational
sciences ranging from computational linear algebra [2] and
machine learning [3] to numerical optimization [4]. The prime
motive in all these areas is to devise new ways of building
scalable computational systems capable of “doing more with
less”.

In the context of numerical optimization, the curse of
dimensionality is caused by the exponential growth in the
size of the search space with respect to an increase in the
number of input variables. In recent years, this has been
loosely referred to as “large-scale optimization” or “large-scale
global optimization”. The term global is to emphasize the role
of heuristics and metaheuristics, especially in the context of
continuous optimization. It should be noted that the notion of

Mohammad Nabi Omidvar is with the School of Computing, University
of Leeds, and Leeds University Business School, Leeds LS2 9JT, UK (email:
m.n.omidvar@leeds.ac.uk). He is also the current chair of the IEEE Taskforce
on Large-Scale Global Optimization.

Xiaodong Li is with the School of Computing Technologies, RMIT Uni-
versity, Melbourne, Australia (email: xiaodong.li@rmit.edu.au).

Xin Yao is with the Guangdong Provincial Key Laboratory of Brain-
inspired Intelligent Computation, Department of Computer Science and Engi-
neering, Southern University of Science and Technology, Shenzhen 518055,
China. Xin Yao is also with the School of Computer Science, University
of Birmingham, Birmingham B15 2TT, UK (email: x.yao@cs.bham.ac.uk;
xiny@sustc.edu.cn).

“large-scale” changes over time and varies from problem to
problem. In this paper, a problem is considered large-scale if
it causes scalability issues on the state-of-the-art algorithms.

More specifically, a single objective optimization problem
can be defined as follows (assuming minimization):

min f(x), x = (x1, . . . , xn) ∈ A (1)

s.t. : g(x) ≤ 0 (2)

h(x) = 0, (3)

where A is the domain of the function f and x is an n-
dimensional vector in A, and g(x) = (g1(x), · · · , gp(x))
and h(x) = (h1(x), · · · , hq(x)) are vectors of inequality and
equality constraints respectively. Large-scale optimization is
concerned with the scalability of optimization algorithms as n
grows in size and its effect on the number of constraints and
their dimensionality.

Rapid technological advancements causes the emergence
of ever growing optimization problems in various areas. For
example, in construction engineering we are entering the so-
called “era of the megatall buildings" with the construction
of the first kilometer-tall building already underway [5].
This has resulted in large-scale optimization problems [6]
in construction engineering. Similarly, the data explosion
phenomenon has caused the emergence of large-scale opti-
mization problems at the heart of many data analytics and
learning problems [3, 7]. Advances in machine learning and
the rise of deep artificial neural networks has also resulted
in optimization problems with over a billion variables [8, 9].
These optimization problems not only grow in size but do so in
an exponential manner, i.e., the number of decision variables
they entail also grows exponentially [10]. This rapid growth
has stimulated scientific research in various areas to build
scalable optimization algorithms. Figure 1a clearly shows the
rapid growth in the number of scientific articles published
on large-scale optimization in the last decade. Figure 1b also
shows the contribution of different subject areas to the topic.
The dominance of Computer Science and Mathematics is an
indication of the importance of the algorithmic aspects of
designing efficient optimization methods.

Population-based metaheuristics have also gained popularity
in recent years for solving large-scale global optimization
problems [11]. Despite the common criticism of being com-
putationally expensive, the ubiquity of parallel computing
has rendered the issue of population size and generational
cost of secondary nature in light of their unique capacity
in dealing with multimodal landscapes, deceptive functions,
and their general search capability. It has recently been

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 2

1970 1980 1990 2000 2010 2020
Year

0

50

100

150

200

250

D
oc
um

en
ts

(a)

Computer Science
32.4%

Mathematics
23.3%

Engineering
20.9%

Decision Sciences6.8%

Energy
2.6%

Physics and Astronomy
2.2%

Chemical Engineering
1.9%

Others
10.0%

(b)

Fig. 1: Publication trend in large-scale global optimization
from 1971 to 2021. The results show the number of documents
containing variations of the phrases “large scale optimization”
or “large scale global optimization” in their title, abstract, or
keywords. The results also include the hyphenated version and
also apply to multi- and many-objective algorithms. Source:
Scopus.

shown that evolutionary algorithms, a type of population-based
metaheuristics, can rival classic optimization methods that
have dominated the field of deep learning [12]. Evolutionary
algorithms have also shown great capacity in solving problems
of millions or even billions of variables where their classic
counterparts proved inefficient [13–17].

In dealing with very complex problems, we are deemed to
resort to two main strategies: (a) to find an exact solution
to a simplified model of a given problem; (b) to find an ap-
proximate solution to a complex but more accurate model of a
given problem. Therefore, using a less competent optimization
(or search) algorithm either demands over simplification of a
given problem, or results in a low-quality solution to a more
accurate model of the problem. In the context of large-scale
global optimization, developing better search algorithms has
two implications: (a) we can start to tackle even larger (more
complex) problems; (b) we can find better solutions to the
problem of the same size. In recent years, a wide range of
methods have been considered for large-scale optimization.
These often fall within one of the following themes:

• Problem decomposition.
• Hybridization, memetic algorithms, and local search.
• Sampling and variation operators.
• Approximation and surrogate modeling.
• Initialization.
• Parallelization.

In this two-part survey, we give a comprehensive review
of large-scale global optimization looking into each of the
above themes, summarizing the main research findings, and
discussing their advantages and disadvantages. The scope
and the breadth of topics we cover in this series makes it
distinct from other review works in the field [11, 18]. Areas
such as large-scale constrained optimization and large-scale
multiobjective optimization have become active in the last two
years, which are almost absent from other reviews. They also
categorize the large-scale algorithms into decomposition and
non-decomposition methods. Based on the main approaches
stated above, in this paper we give a more nuanced taxonomy
of approaches to large-scale global optimization.

Another unique feature of this paper is that it looks at

Algorithmic Approaches

Exploiting Problem Structure (part A §II)

Implicit Methods (part A §II-A)

Interaction Adaptation

Probabilistic Modelling of:

Variable Interactions (EDAs)

Sample Movement (CMA-ES)

Objective Function (Bayesian Opt.)

Explicit Methods (part A §II-B)

Interaction Detection

Decomposition/Grouping

Applications

Approximation (part B §III)

Initialization (part B §IV)

Hybrid/Memetic Algorithms (part A §III)

Variation Operators (part B §II)

Differential Evolution (part B §II-A)

Mutation Strategy

Parameter Adaptation

Diversity Maintenance

Particle Swarm Opt. (part B §II-B)

Update Rules

Re-initialization/Sampling

Rotational Invariance

Space Partitioning

Other Metaheuristics (supplement §S-II)

Parallelization (part B §V)

Problem Areas

Overlapping Functions (part B §VI-A)

Imbalanced Contribution (part B §VI-B)

Multiobjective Optimization (part B §VI-C)

Constraint Handling (part B §VI-D)

Benchmarks and Applications (part B §VI-E)

Fig. 2: Outline of the topics covered in the two parts of this
survey series on large-scale global optimization.

the above themes from a variable interaction perspective. We
believe that the efficiency of algorithms is largely dependent
on their effectiveness in exploiting problem structure. Variable
interaction is an important attribute of optimization problems
with a direct effect on a problem’s degree of nonlinearity, its
overall structure, and degree of modularity. In classic genetic
algorithms (GA) research for example, tight linkage is central
to their scalability [19]. The design of an inversion operator is
also motivated by the importance of tight linkage to minimize
the disturbance of interacting genes by the crossover operator.
In memetic algorithms, variable interaction affects the effi-
ciency of dimension-wise local search [20, 21]. In cooperative
coevolution and other divide-and-conquer methods, variable
interaction governs the utility of a decomposition [22]. In
estimation of distribution algorithms and other related algo-
rithms, their rotational invariance is determined by how well
the interaction information are captured within their covariance
matrix [23]. These are just a few examples to emphasize the
extensive impact of variable interaction. Part B of this survey
also features a section on pitfalls and challenges of large-scale
optimization, open research questions, and other special topics
such as large-scale multi-objective optimization, and large-
scale dynamic optimization.

Outline: This survey series comes in two parts and a
supplementary document accompanying part A. The two parts
jointly cover the six approaches listed above as well as five ma-
jor problem areas including overlapping functions, imbalanced
contribution, multiobjective optimization, constraint handling,
and benchmarks and applications. Figure 2 depicts a high-
level structure of the main topics covered across both parts.
Part A covers problem decomposition (§II) and hybridization,

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 3

x

f(x)

(a)

x1 x2

x3

x4x5

x6

x

f(x)

(b)

Fig. 3: A black-box optimization problem can be converted to
a grey-box problem by means of variable interaction analysis
or incorporation of other sources of information such as
analyzing its constraints or domain knowledge.

memetic algorithms and local search (§III), which are two of
the most widely researched approaches in the field. Part B
covers the remaining algorithmic approaches, several major
problem areas, and a section on the pitfalls and challenges
of large-scale global optimization, and some suggestions for
future research. The background material is covered in the
supplementary document accompanying part A.

II. LINKAGE LEARNING AND EXPLOITING PROBLEM

STRUCTURE

The guiding principle of the algorithms presented in this
section is to exploit the hidden or clouded structure of a given
problem. Exploiting problem structure is common in many
branches of optimization [24–27]. Grey-box optimization is
a relatively new concept referring to the study of incorpo-
rating problem structure into the optimization process [28]
(see Figure 3). This notion of finding and exploring the
“hidden order” [29] is an old one in evolutionary computation
and has been studied extensively in the context of linkage
learning [30, 31]. Goldberg et al. [32] showed that linkage
plays a crucial role in the performance of GAs. Even separable
problems can be exponentially difficult for simple GAs if
the variable dependence information is unknown [32, 33].
It has also been shown that GAs with no linkage learning
mechanism requires an exponentially growing population size
in order to locate the global optimum Thierens and Goldberg
[34]. In the continuous domain, the rotation of the fitness
landscape, which has the effect of introducing linkage between
decision variables, changes the time complexity of GAs from
O(n logn) to O(nn) [35]. It is therefore clear that in high-
dimensional spaces, for an algorithm to be computationally
plausible, incorporation of structural information is paramount.

In grey-box optimization, it is assumed that the problem
structure is known a priori. This is particularly the case for
a wide range of discrete and combinatorial problems. For
example, it is not realistic to assume that nothing is known
about a travelling salesman problem (TSP) problem therefore
treating it as strictly black-box [36, 37]. The same goes for
other popular discrete problems such as gene sequencing [38],
or pseudo-boolean problems such as MAX-kSAT or CNF-
SAT [39]. Constraints of a problem can also reveal some in-
formation about its structure. For example, variable reduction
strategy [40, 41] allows the explicit use of constraint functions
to infer some relationships among the variables and formulate
some variables as functions of a set of core variables. In many
problems however, particularly in the continuous domain, the

structure may not be evident. Therefore, to exploit problem
structure, it first needs to be discovered. Many algorithms
have been proposed for discovering problem structure in the
form of capturing its variable interaction topology. The merits
of these algorithms are not limited to converting black-box
problems into grey boxes. There are studies showing that even
when the problem formulation is fully known (white box) and
the dimensionality is not necessarily high, variable interaction
analysis methods can help reveal nontrivial information about
the problem [42].

There are also several different forms in which the struc-
tural information can be used to enhance the optimization
performance. Some methods such as cooperative coevolu-
tion [43] decompose the problem into a number of explicit

lower-dimensional subproblems, therefore, requiring a vari-
able interaction analysis method to form a plausible problem
decomposition. Some other methods such as estimation of
distribution algorithms (EDAs) [44, 45] and Bayesian op-
timization algorithms [46] do not decompose the problem
per se. They instead implicitly capture and make use of the
interaction information in a probabilistic model of the problem
they construct during the optimization process. In the rest of
this section, we review such methods in the context of large-
scale optimization. Figure 4 gives an overview of implicit and
explicit methods of exploiting problem structure. The section
that follows covers the implicit methods and Section II-B
covers the explicit methods.

A. Implicit Methods

Implicit methods exploit problem structure by building and
evolving a model of the problem, which can then be used to
bias the search towards promising regions of the search space.
These methods differ in their choice of model representation
and the information from which the model is created.

Interaction Adaptation: These methods are extensions of
simple genetic algorithms with added mechanisms to promote
tight linkage in problem representation. The simplest of such
mechanisms is the inversion operator [47], which acts on a
string of variables and changes their order to increase the
likelihood of placing the interacting variables next or close
to one another. Although the reordering of variables (genes)
have shown to improve the performance of GAs [48], they are
extremely slow in generating tight linkages [49]. This clearly
limits their applicability to large-scale optimization.

Other methods such as the messy GA (mGA) [32],
fast messy GA (fmGA) [50], gene expression messy
GA (gemGA) [51], linkage learning genetic algorithm
(LLGA) [52], and linkage evolving genetic operator
(LEGO) [53] use more sophisticated representations than
a simple bit string to encode linkage information into the
representation and employ special operators to change the rep-
resentation over time to promote tightly linked representations.

Probabilistic Models: These methods use a probabil-
ity distribution to represent the objective function or its
various characteristics. Estimation of distribution algorithms
(EDAs) [44, 54] compact genetic algorithm (cGA) [55],
Bayesian optimization algorithms (BOAs) [46, 56], and

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 4

Exploiting
Problem
Structure

Implicit

Interaction
Adaptation

Probabilistic
Modelling of

Variable
Interaction

EDAs

BOA

Sample
Movement

CMA-ES

Objecting
Function Bayesian

Opt.

Explicit

Cooperative
Coevolution

Operator
Design

Interaction
Detection Principles

Grouping/
Decomposition

Fig. 4: Exploiting problem structure can be done implicitly (§II-A) by adapting the problem representation or probabilistic
modeling, or explicitly (§II-B) by means of variable interaction analysis (§II-B1) and problem decomposition (§II-B2).

Bayesian optimization [57] are examples of such methods. The
high-level working principle of these methods is to generate
one or more sample solutions from a probability distribution.
The generated solution(s) are then used to update the param-
eters of the probabilistic model in an iterative process. Many
different versions of such probabilistic optimization algorithms
exist in the literature, which differ in the choice of their
probabilistic models and how they are updated. Below is a
short summary of three major types.

• Building a model of variable interactions: estimation of
distribution algorithms (EDAs) [44, 54], and Bayesian
optimization algorithms (BOAs) [46] are two important
such algorithms that capture variable interactions in their
probabilistic models. BOAs are different from Bayesian
Optimization which builds a model of the objective
function and is discussed in the next bullet point. EDAs
with a multivariate normal distribution can represent the
interaction by adapting the covariance matrix of the
Gaussian distribution. Different variants of EDAs have
been used for large-scale global optimization, which will
be covered later in this section. BOA uses Bayesian
networks to represent interactions. To do so, the algorithm
needs to learn the structure of the Bayesian network and
its parameters (conditional probabilities). This method is
very flexible and efficient in representing and solving
complex interaction patterns such as overlapping [58] or
hierarchical [58] problems. However, the model selection
process which involves learning the structure of the
Bayesian network is an NP-hard problem, which makes
BOA a poor choice for large-scale global optimization.

• Building a model of the objective function: In Bayesian
optimization [57], not to be confused with BOA, the
unknown objective function is treated as a random func-
tion modeled by placing a prior distribution over it.
Whenever the actual objective function is evaluated, its
input/output pair is used as new evidence to update the
prior distribution to form the posterior distribution of
the objective function. Finally, an acquisition function
is constructed from the posterior distribution, which is
used to determine the location of the next query point.
Scalability of Bayesian optimization is the subject of
several recent studies [59–67]; however, a detailed review
of such techniques is out of the scope of this paper. For

a review of Bayesian optimization the reader is referred
to the paper by Shahriari et al. [57].

• Building a model of the population movement: covari-
ance matrix adaptation evolution strategy (CMA-ES) [68]
is a popular model building algorithm which uses a
multivariate Gaussian distribution to model the so-called
successful steps taken by the algorithm during the course
of optimization. In differential evolution (DE), its contour
matching property [69], which is similar to the notion of
modeling population movement, the step sizes and their
orientations are adapted to the landscape of the objective
function. Details of advances in DE literature on large-
scale optimization is given in part B of the survey.

Estimation of Distribution Algorithms: A major problem
of EDAs is their scalability issue in solving large-scale prob-
lems. Three major reasons contribute to this scalability issue:
(a) Accurate estimation of the distribution of high quality
solutions requires a relatively large sample size which grows
exponentially with the dimensionality of the problem [70];
(b) A small sample size will result in poor estimation of the
eigenvalues of the covariance matrix [71]; and (c) the cost
of sampling from a multi-dimensional Gaussian distribution
increases cubically with problem size [72].

The strategies to alleviate the scalability issue of EDAs can
be categorized into two major types: 1) Space partitioning and
dimensionality reduction methods where the aim is to control
the complexity of the covariance matrix; and 2) Use of heavy-
tail distributions to improve exploration and diversity.

Space partitioning and dimensionality reduction: EDAs
with univariate models [73, 74] treat an n-dimensional prob-
lem as n 1-dimensional problems and as such are the sim-
plest and have the most efficient sampling. However, several
theoretical [75, 76] and empirical [77] studies have shown
that univariate EDAs are inadequate in solving non-separable
problems. A full multivariate model on the other hand can be
computationally expensive in high-dimensional spaces.

Dong et al. [78] propose an EDA with model complexity
control which applies a threshold to the global Pearson corre-
lation matrix to find weakly correlated dimensions and models
them with univariate distributions and partitions the remaining
strongly correlated variables into a set of lower dimensional
spaces each of which is modeled using a multivariate dis-
tribution. To alleviate the deficiencies of Pearson correlation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 5

with non-Gaussian samples, Xu et al. [79] proposed to use
mutual information instead to detect variable dependence. A
major downside of using mutual information however is its
high computational cost [22]. Space partitioning by means of
random grouping and cooperative coevolution has been used
in several other studies [80–83] to manage the complexity of
EDAs.

Dimensionality reduction techniques and space projection
are other alternatives to control the model complexity of mul-
tivariate EDAs. Kabán et al. [84] borrowed the idea of random
projection to lower dimensions from the theory of random
matrices to tackle the scalability issue of EDAs [84, 85]. They
proposed an algorithm that randomly projects the original
large-scale problem into an ensemble of lower-dimensional
problems. The random matrix theory suggests that with an
appropriate choice of target dimensions, it is possible to
preserve important features of the original space (such as
Euclidean distances or dot products) in the reduced space
within a reasonable tolerance [86]. It has also been shown that
the distribution of the sample points become more Gaussian
in the reduced space [87]. These features makes it possible
to capture the variable correlation of the high-dimensional
space using a lower-dimensional subspaces; therefore, making
the parameter estimation of EDAs more viable using less
computational resources. This eliminates the need for over
simplification of the model in EDAs as is the case in univariate
EDAs. It is clear that random projection to a lower dimensional
space is not unique, and sample points can be projected down
into any subspace of the original space. For this reason, Kabán
et al. [84] use an ensemble of projected points and estimate
the covariance of the sample points in each lower-dimensional
subspace. Finally, the ensemble of projections are used to
construct a new population (sample) in the original space. It
has been shown that a proper combination of the ensemble
of projected points results in a natural smoothing effect that
ensures the exploration capability of the algorithm. In a similar
vein, Dong et al. [88] used PCA to transform the multivariate
Gaussian model of EDA into its principal lower-dimensional
latent subspace.

Heavy-tail Distributions: Sampling based on heavy-tail
distributions have been used in many population-based algo-
rithms [89–91] with the aim of improving exploration and pop-
ulation diversity. A range of such distributions including Lévy,
Cauchy, and t-distributions have been used to enhance the
performance of EDAs [73, 92, 93]. Among these, the Cauchy
distribution has been used more widely with EDAs. Although
the literature is clear on the efficacy of Cauchy sampling
on low-dimensional problem [94, 95], there is controversy in
its utility on high-dimensional problems [96]. Hansen et al.
[97] reported that Cauchy’s long jumps are almost invariably
ineffective, while other studies found it beneficial [73, 74].
Sanyang et al. [92] compared the performance of univariate
and multivariate Cauchy distributions with the Gaussian dis-
tribution within a random projection framework on a range
of large-scale problems with up to 1000 dimensions. They
reported that although a multivariate Cauchy performs better
than a univariate Cauchy, they both perform worse than a
multivariate Gaussian distribution on large-scale problems. In

another subsequent study, they provided a theoretical expla-
nation for the poor performance of Cauchy distribution on
large-scale problems, which was shown to be consistent with
empirical results [96]. The study showed that unlike Gaussian
norms, Cauchy norms lack a good concentration property
causing a disproportionate number of very large steps, which
results in an inefficient search strategy as the dimensions
increase.

Scalability of CMA-ES: Covariance Matrix Adaptation
Evolution Strategy [98] is a popular optimization algorithm
which approximates the contours of a given objective func-
tion by means of a Gaussian distribution. CMA-ES exhibits
several invariance properties including rotation invariance,
which is central for efficient optimization of nonseparable
functions. This is achieved through iterative updating of a
covariance matrix used to control its underlying sampling
Gaussian distribution. CMA-ES has two major limitations
in dealing with high-dimensional problems [99]: 1) High
number of strategy parameters which is the degrees of freedom
in the covariance matrix and scales quadratically with the
dimension. In other words, the space complexity of CMA-
ES is O(n2); and 2) High computational complexity that
comes from the operations needed to adapt the covariance
matrix, i.e., sampling from a multivariate normal distribution,
updating of the covariance matrix and its factorization and
eigen-decomposition. This results in a cubic complexity in the
number of dimensions O(n3).

There have been several attempts to improve the scalability
of CMA-ES by reducing its time and space complexities.
Igel et al. [100] replaced the eigen-decomposition update
rule of CMA-ES with the Choleskey decomposition resulting
in reducing its time complexity to O(n2). Poland and Zell
[101] proposed the adaptation of the most significant mutation
vector in Main Vector Adaptation Evolution Strategy (MVA-
ES), which reduces the time complexity of the algorithm to
linear. Knight and Lunacek [102] restrained the optimization
of an n-dimensional problem to its m main components.
This algorithm, L-CMA-ES, reduces the time complexity to
O(m2n) and the space complexity to O(mn). For the case of
m = 1 the algorithm reduces to MVA-ES, and for m = n
it reduces to CMA-ES. Sun et al. [103] proposed another
linear time evolution strategy, R1-NES, which uses a low-rank
approximation of the covariance matrix by only considering its
predominant eigen-direction. Ros and Hansen [99] proposed
sep-CMA-ES in which only the diagonal elements of the
covariance matrix is adopted. This reduces the time complexity
of the algorithm to O(n). LM-CMA [104, 105] is another
limited memory implementation of CMA-ES inspired by the
classic L-BFGS [106]. LM-CMA combines the idea of a low-
rank approximation of the covariance matrix with Choleskey
decomposition to reduce the time and space complexity of the
algorithm to O(mn). Inspired by LM-CMA, Li et al. [107]
proposed the fast CMA-ES for large-scale optimization, which
maintains a number of evolution paths and uses two to generate
new solutions.

Beyer and Sendhoff [108] proposed matrix adaptation ES
to avoid the construction of the covariance matrix by re-
placing it with an overall transformation matrix involving

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 6

only matrix-matrix and matrix-vectors operations. This has re-
duced the time complexity of the algorithm to Θ(n3/ log(n)).
Loshchilov et al. [109] further improved the time and space
complexity to Θ(n2) by replacing the multiplicative updates
with additive ones.

Li and Zhang [110] proposed to reduce the time and space
complexity of CMA-ES by restricting the covariance matrix
to a specific simple form. More specifically, they suggested
the following form: C = αS+ L, where C is the covariance
matrix, S is a sparse matrix, L is a symmetric low-rank matrix,
and α > 0. When S = I, and L is a rank-one matrix, the
algorithm becomes a rank-one ES (R1-ES). By controlling
the rank of L, the model can be generalized to rank-m ES
(Rm-ES). He et al. [111] proposed to completely replace
the Gaussian sampling by a Gaussian mixture model which
exhibits richer variable interaction modeling capability.

B. Explicit Methods

Explicit methods capture problem structure information into
explicit forms such as variable interaction matrices or trees
and use them to either decompose the problem into a set
of lower dimensional subproblems [43], or design special
variation operators, such as crossover, that respect the problem
structure [112, 113]. Unlike implicit methods, explicit methods
require extra objective function evaluations to find the variable
interaction structure.

One popular explicit method, which has gained popularity in
large-scale global optimization, is the cooperative coevolution
(CC) [43]. The CC framework requires the problem to be
decomposed into a set of lower dimensional subproblems each
of which is optimized separately. The CC framework maintains
a separate population for each subproblem (a.k.a component)
which are “coevolved” in a round-robin fashion. Since the
candidate solutions to each component do not form a complete
solution, representative solutions of other components are
required to form a complete solution for evaluation. These
representative solutions form a complete solution known as
the context vector [114] which is used to evaluate all partial
solutions. The context vector is updated iteratively and acts as
the context in which the cooperation occurs.

The first design choice in using CC is problem decomposi-
tion. It is clear that this can be performed in many different
ways. The first CC algorithm [43], cooperative coevolution
genetic algorithm (CCGA), decomposes an n-dimensional
problem into n 1-dimensional problems, where n is the prob-
lem dimension. CCGA was used to solve problems with up to
30 dimensions. Liu et al. [115] made the first attempt to solve
large-scale optimization problems using a CC framework.
They used fast evolutionary programming as the component
optimizer in a CC framework with the decomposition strategy
of CCGA to solve problems with up to 1000 dimensions [115].

van den Bergh and Engelbrecht [114] suggested that full
decomposition strategy of CCGA runs the risk of introducing
pseudominima, i.e., “minima created as a side effect of the
partitioning of the search space". This is consistent with the
observation that CCGA does not perform well on problems
with interacting decision variables such as Griewank and

Rosenbrock test functions [43]. To alleviate this problem,
van den Bergh and Engelbrecht [114] proposed the use of PSO
with a k s-dimensional decomposition instead of the extreme
n 1-dimensional decomposition used by CCGA. Another
decomposition strategy, divide-in-half, was proposed by Shi
et al. [116] where the problem is divided into two equally-sized
components which are optimized iteratively using differential
evolution [117].

It is clear that the algorithms discussed so far are oblivious
to variable interaction and may place interacting variables in
different components. This has a detrimental effect on the
optimization performance and makes the algorithm sensitive
to the updating policy of the context vector. A function can be
decomposed in many different ways without any knowledge
of the underlying variable interaction structure. It is therefore
important to form the components such that the interaction
between them are kept to a minimum. In the next section, we
review several algorithms that attempt to deal with the variable
interaction problem.

1) Dealing with Variable Interaction: This section is de-
voted to the review of various techniques to address variable
interaction. Most of the methods presented here are concerned
with an accurate identification of variable interactions, which
are subsequently used to decompose a problem into its con-
stituent parts. Decomposition of a problem often has two
components: (i) A mechanism to identify interactions between
the decision variables (covered in this section). (ii) A mech-
anism to form a set of subproblems based on the interaction
information (§II-B2). It is often the case that the interaction
detection mechanism necessitates a certain way of forming the
groups. For example, some methods provide the interaction
information for every pair of variables in the form of an
interaction matrix. This matrix contains sufficient information
about the number of components and their sizes to warrant an
automatic decomposition. Some other methods rely on various
heuristics that increase the likelihood of placing interacting
variables close to one another. Such methods do not suggest
an obvious decomposition of the problem, therefore requiring
extra information such as the number of components and their
sizes to be supplied by the user.

In this paper, we identified seven interaction detection prin-
ciples and three decomposition mechanisms. Figure 5 shows
this classification and the interplay between them. Table S-
I of the supplementary document contains a list of specific
algorithms belonging to each class and its corresponding de-
composition strategy. In what follows, each detection principle
and decomposition mechanism is studied in further details.

a) Random Grouping: Random grouping [118] is the
most basic way of dealing with variable interaction in co-
operative coevolution. The rationale behind it is to randomly
arrange the decision variables after each coevolutionary cycle
to increase the probability of placing interacting variables into
the same component. Despite being superior to an arbitrary
static decomposition [119], random grouping has two major
drawbacks. Firstly, the user has to decide about the number
and the size of each component. Secondly, the probability
of simultaneously placing several interacting variables in one
components approaches zero when there are many such vari-

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 7

Detection
Principles Finite

Difference

Delta

Statistical

Fitness
Difference

Minimization

regex

Meta-modeling

Monotonicity
Checking

k s-dimensional

Automatic

Graph
Partitioning

Semi-automatic

Clustering

Multilevel

Random

Fig. 5: Common variable interaction detection principles
(olive) and variable grouping strategies (dark teal) used by
explicit decomposition algorithms. The links indicate which
grouping principles are common among which detection prin-
ciples. The light teal color indicates variation on the grouping
strategies.

ables. More specifically, given N cycles, the probability of
assigning v interacting variables into one of the m available
components for at least k cycles is [120]:

P (X ≥ k) =

N
∑

r=k

(

N

r

)(

1

mv−1

)r (

1−
1

mv−1

)N−r

(4)

Equation (4) shows that the probability of placing v variables
in one component for at least k cycles decreases geometrically
as v increases. Fig. 6a shows the sharp decline in probability
correctly grouping interacting variables as the number of
such variables increase. The figure also shows that a 200-
fold increase in the number of random reordering can hardly
accommodate two extra variables with the same probability.
Fig. 6b shows how the probability of correctly grouping v = 3
to v = 6 interacting variables increases with the number
of trials; however, this does not significantly increase the
likelihood of a correct grouping when the number of variables
is high.

b) Delta Grouping: An alternative grouping approach
called delta grouping [121] was shown to outperform random
grouping on most functions from a set of 20 large-scale bench-
mark problems [122]. The rationale behind delta grouping
is that the improvement interval of nonseparable variables
are relatively smaller than those of separable variables [123]
(Fig. 7). Therefore, delta grouping sorts the variables based

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9 10

P
ro

ba
bi

lit
y

Number of interacting variables(v)

P(X >= 1), N=50
P(X >= 1), N=10000

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ro

ba
bi

lit
y

Number of cycles

P(X>=1),v=3
P(X>=1),v=4
P(X>=1),v=5
P(X>=1),v=6

(b)

Fig. 6: Random grouping’s likelihood of correctly grouping
interacting variables (m = 10).

Improvement Interval

Im
pr

ov
em

en
t I

nt
er

va
l

x2

x1

A

(a)

x2

x1

Im
pr

ov
em

en
t I

nt
er

va
l A

Improvement Interval

(b)

Fig. 7: Shrinkage of improvement intervals under coordinate
rotation of the same landscape.

on the average dimension-wise displacement of the sample
points between two consecutive iterations. Once the decision
variables are sorted based on the magnitude of their average
displacement called ‘delta’ (δ), they are grouped into k com-
ponents of size s both of which are determined by the user.
A major drawback of delta grouping is its low performance
on functions with more than one nonseparable component. Ge
et al. [124] improved the grouping quality of delta grouping by
measuring the success and failure rate of groups and evolving
the grouping accordingly.

Liu et al. [125] used the idea of delta grouping to solve
nonseparable functions. The algorithm that they proposed uses
line search along each dimension to estimate the improve-
ment along each dimension. The dimensions with similar
improvements are then grouped together to form a subproblem
for optimization. Unlike delta grouping which is used with
cooperative coevolution, this method uses local search and
a modified DE which applies the mutation operator to a
designated subset of decision variables belonging to the same
group.

c) Fitness Difference Minimization: The methods re-
viewed in this section are based on adaptive rearrangement
of decision variables to minimize an error function, which is
claimed to minimize the interaction between resultant com-
ponents [126]. The rationale is that for a partially separable
function, the difference between the overall objective function
and the sum of its nonseparable subfunctions should be
zero, i.e., f(x) −

∑m

i=1 fi(xi) ≡ 0, where fi(xi) is the ith
nonseparable subfunction. Motivated by this, Sayed et al. [126]

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 8

decompose a problem by finding an arrangement of decision
variables that minimizes an approximation to the following
least square equation:

min
[

f(x)−
m
∑

i=1

fi(xi)
]2

. (5)

Due to the black-box assumption, the number of component
sizes and their dimensions are unknown. Therefore, Sayed
et al. [126] assume a uniform k d-dimensional components
and search of a rearrangement of the decision variable that
minimizes the following equation:

min
[

m (f(c1) + f(c2))−
k
∑

i=1

{

f̂i(c1; c2) + f̂i(c2; c1)
}]2

.

(6)
This equation is an approximation to (5) where c1 and c2
are solutions whose elements are set to constants c1 and c2
respectively, and f̂i(x;y) is a parameterized version of f with
the variables belonging to the ith component set to x and
the rest to y. This variable grouping method, which is called
dependency identification (DI) was shown to outperform ran-
dom grouping on the CEC’2010 large-scale benchmark suite.
Aguilar-Justo and Mezura-Montes [127] replaced the random
rearrangement with two more systematic strategies to generate
variations in the grouping which showed better performance as
compared to the random case. A problem of all decomposition
methods based on fitness difference minimization is that they
require the user to specify the number or the size of each
component. To fix this problem in the context of constrained
problems, Aguilar-Justo et al. [128] proposed to evolve the
best arrangement of the decision variables as well as the
number of components using GA.

Sayed et al. [129] also proposed a variation of (6) where
sum of absolute differences is used instead of sum of squares.
Despite DI’s improved performance as compared to random
grouping, the optimization problem defined in (6) is NP-hard
due to large number of possible k d-dimensional decomposi-
tions. To alleviate this problem, Sayed et al. [126] randomly
rearrange only 10% of the decision variables with greedy
search. Dai et al. [130] conducted a study on the effect this
parameter on the performance of DI. The experimental results
showed that DI is sensitive to this parameter with a tendency
toward a better performance when the rate is larger than 60%.
The results also confirmed the superiority of DI over random
grouping on a wide range of rates; however, this was not the
case when compared to delta grouping.

d) Statistical Methods: The methods reviewed in this
section rely on statistical features of the evolving population
to infer variable interaction. Tiwari et al. [131] proposed the
idea of using regression analysis to deal with what they call
inseparable function interaction and variable dependence. In-
separable function interaction is identical to what we call vari-
able interaction or epistasis in this paper. Variable dependence
however pertains to the existence of functional dependence
between decision variables, i.e., the possibility of expressing
one variable as a function of some other set of variables.
Although the two notions appear to be linked, the authors did
not investigate their connection from a formal mathematical

point of view. Following the idea of variable dependence,
Tiwari and Roy [132] proposed the genetic algorithm for vari-
able dependence (GAVD) which uses regression analysis to
find a set of dependent and independent decision variables by
iteratively setting regression coefficients of individual decision
variables to zero and examining the goodness of fit. Once
the independent and dependent decision variables are found,
GA is used to optimize the independent set and regression
analysis is used to estimate proper values for the dependent set.
Roy and Tiwari [133] proposed the generalized regression GA
(GRGA) to deal with inseparable function interaction. They
employed regression analysis on the decision variables in the
course of optimization and study the changes in the coefficient
of the regression model over time to guide the optimization
process. A major drawback of both GAVD and GRGA is poor
scalability.

One statistical way of dealing with variable interactions is to
calculate the Pearson correlation matrix of the population and
use a threshold on the coefficients to form the components.
Here the assumption is that weak correlations indicate weak
interactions. These techniques often calculate the correlations
based on either the entire population or its top p% samples.
Correlation-based adaptive variable partitioning (AVP) Ray
and Yao [134] is one such method which groups pairs of
variables whose correlations are larger than a predefined
threshold and optimizes them against the remaining set in
a co-evolutionary manner. Singh and Ray [135] proposed an
improved version, AVP2, which can form multiple groups of
various sizes depending on the underlying variable interaction
structure. For each variable i ∈ {1, . . . , n}, AVP2 forms a
group with all other decision variables whose correlation coef-
ficient with the ith variable is above a certain threshold. This
results in a total of n potentially overlapping groups which
are subsequently merged based on their common variables to
form a set of disjoint groups. Rojas and Landa [136] proposed
another correlation-based decomposition, 4CDE, which calcu-
lates the correlation coefficient of each variable and the objec-
tive function and divides the resulting correlation coefficients
into equally-sized intervals. The variables whose correlation
coefficient fall within the same interval form a component
which is subsequently optimized in a CC framework with
differential evolution as its component optimizer. This process
is repeated and the correlation coefficients are updated using
exponential smoothing.

Some algorithms use the dimension-wise variance magni-
tudes of the population to form the groups. In variance priority
cooperative coevolution, Wang et al. [137] form the groups
based on the variance magnitude of the current candidate
solutions along various dimensions and selects the top k
variables having the largest variances to form a component.
Liu and Tang [83] proposed a cooperative coevolutionary
framework based on CMA-ES, which adaptively selects from
a pool of three decomposition strategies at each coevolutionary
cycle. The three decomposition methods are: random group-
ing, Min-Variance Decomposition (MiVD), and Max-Variance
Decomposition. The rationale behind using various decompo-
sitions is to regulate the exploration/exportation balance of the
algorithm. MiVD sorts the variables based on the magnitude

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 9

of the main diagonal elements of CMA-ES’s covariance matrix
and divides them into k s-dimensional groups. This strategy
minimizes the intra-group variances. Conversely, MaVD max-
imizes the intra-group variance and forms the groups by taking
a variable from every group formed by MiVD which is also
used in variance priority CC proposed by Wang et al. [137].
To coordinate between various decomposition methods, the
algorithm assigns a probability value to each decomposition
method at the end of each cycle, which is used to randomly
select a decomposition method for the next cycle.

All the statistical methods presented so far cannot detect
interacting variables with a reasonable precision and rely on a
user to specify the number and/or the size of components.
For example, although the use of variance magnitudes has
its own merits and can potentially improve the optimization
performance, its effectiveness in capturing variable interaction
has not been established. The Pearson correlation can only
capture linear relationships among the variables, which is also
inaccurate for measuring variable interaction. To address these
issues, Sun et al. [22] proposed the maximum entropic epista-
sis (MEE) which uses maximal information coefficient [138]
to check for functional relationship between a variable i and
the partial derivative of the objective function with respect to
another variable j, i.e. ∂f

∂xj
. Since MIC is based on mutual

information, it can capture nonlinear relationships. To deal
with the black-box nature of the problem, MEE approximates
∂f
∂xj

using finite differences: ∂f
∂xj

≈ f(xj+δxj)−f(xj)
δxj

. MEE
uses this method to check for direct interactions between
all pairs of variables by applying a threshold on the MIC
values to form a binary variable interaction matrix. Finally, the
interaction matrix is treated as the adjacency matrix of an undi-
rected graph and the groups are formed by finding independent
components using the breadth-first search algorithm. MEE
has shown a very high variable interaction detection accuracy
on an array of 24 high-dimensional functions. Two major
drawbacks of MEE is its high computational cost caused by
pair-wise analysis of the decision variables, and its sensitivity
to the choice of threshold value.

e) Meta-modelling: The methods discussed in this sec-
tion infer variable interaction information in the process of
building a surrogate or a meta-model for the objective function.
Although meta-modelling is often used for expensive function
optimization, there has been little or no attempts to use it
for finding problem structure. One such algorithm is proposed
by Mahdavi et al. [139], which uses high-dimensional model
representation (HDMR) [140] technique to find interacting
variables. HDMR has the following general form that can be
used to approximate a function:

f(X) = f0 +

n
∑

i=1

fi(xi) +
∑

1≤i≤j≤n

fij(xij) + f1...n(x1, . . . , xn),

(7)
where f0 is the zeroth order term, fi(xi) is the first-order terms
capturing the effect of each variable acting independently, fij
is the second-order term capturing the correlated contribution
of xi and xj , and finally, f1...n is the nth-order term capturing
the joint correlation of all decision variables not covered by
all other terms. HDMR has a finite number of terms and is

exact once all terms are included. A nice property of HDMR is
that if the contribution of a pth order terms are negligible, the
contribution of all higher order term will be smaller. Mahdavi
et al. [139] used a particular type of HDRM called RBF-
HDMR [141] to approximate the objective function up to
the second-order terms in order to capture variable interaction
between pairs of variables. This new technique is capable of
finding the number of components and their sizes with good
accuracy and has shown good performance on the CEC’2010
large-scale benchmark suite. In another study, Li et al. [142]
used cut-HDRM [143] to find separable and nonseparable
variables which are used in turn to approximate a given high-
dimensional function using support vector regression HDMR.

f) Monotonicity Detection: Munetomo and Goldberg
[144] were first to propose a variable interaction detection
method by checking the violation of monotonicity conditions
through systematic perturbation of the objective function. The
monotonicity conditions are defined as follows [144]:

if f(s(i)) > f(s) and f(s(j)) > f(s)

then f(s(ij)) > f(s(i)) and f(s(ij)) > f(s(j)) (8)

if f(s(i)) < f(s) and f(s(j)) < f(s)

then f(s(ij)) < f(s(i)) and f(s(ij)) < f(s(j)), (9)

where s(·) denotes a candidate solution vector perturbed at
the index specified in the bracket. It is clear that (8) checks
for monotonic increase, and (9) checks for monotonic de-
crease. Munetomo and Goldberg [144] developed an algorithm
based on (8) and (9) called linkage identification by non-
monotonicity detection (LIMD) which checks for violation of
these conditions on a randomly initialized population. Any
violation of the above two conditions for variables i and j
will declare them as interacting. LIMD was tested on low
dimensional binary problems.

In the context of large-scale optimization, Chen et al. [145]
proposed cooperative coevolution with variable interaction
learning (CCVIL) in which they used a similar principle as was
used in LIMD for variable interaction in large-scale continuous
problems. They declared two dimensions i and j interact if the
following condition holds:

∃ s, s(i), s(j), s(ij) : f(s) > f(s(i)) ∧ f(s(j)) < f(s(ij)).
(10)

Similar to the notation used before, s(·) denotes the solution s

perturbed at dimensions specified in the parenthesis. Although
(10) appears to be different from the monotonicity checks
defined by (8) and (9), the algorithmic implementation of
CCVIL ensures that the following condition is also satisfied:
f(s) > f(s(j)). CCVIL uses monotonicity checking within a
coevolutionary framework proposed by Weicker and Weicker
[146] to find disjoint interaction groups of a given objective
function. CCVIL starts by assuming full separability among all
decision variables. It then iteratively processes all dimensions
and checks their interaction with other dimensions. If an
interaction is detected the respective dimensions merge to
form an interaction group. It should be noted that CCVIL
uses a generalization of (10) in which multiple dimensions
can be perturbed simultaneously. This allows the algorithm to

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 10

check for interaction between a decision variable and an entire
interaction group. CCVIL has shown good performance on the
CEC’2010 LSGO benchmark suite [122].

It should be noted that satisfaction of the monotonicity
conditions for a given set of sample points does not guarantee
separability of the decision variables. Indeed, two variables
are separable only if the conditions hold for all possible
choices of the four sample points needed in (8) and (9).
Therefore, repeated application of the monotonicity conditions
can increase the likelihood that two variables are actually
detected as separable. Based on this idea, Sun et al. [147]
proposed statistical variable interdependence learning (SVIL)
in which the monotonicity conditions are checked for all pairs
of variables over k random sets of points. SVIL treats the
proportion of detected interactions between the ith and the
jth variables as their interaction probability which is stored
in a matrix D. To decompose a problem, SVIL applies a
threshold on D to force it into a binary matrix. Since the
grouping accuracy of SVIL is sensitive to the choice of the
threshold parameter, the algorithm adapts this parameter in
the course of optimization. Next, for each decision variable, a
group is formed with all other decision variables which interact
with it. This means that SVIL forms n overlapping groups
where n is the dimensionality of the problem. Finally, SVIL is
used in a cooperative coevolution framework to optimize each
component in a round-robin fashion. Although the empirical
results on high-dimensional CEC’2005 benchmark suite [148]
suggest that SVIL is effective in improving the optimization
performance, its variable interaction accuracy has not been
studied independently using modular benchmarks suite as the
CEC’2010 [122] and CEC’2013 [149] large-scale suites.

A major drawback of SVIL is its high computational cost
due to its pair-wise interaction detection mechanism between
the decision variables, which makes it a quadratic algorithm,
i.e., O(n2). To alleviate this issue, Ge et al. [150] proposed
a generalized version of the monotonicity check in which is
simultaneous perturbations of multiple dimensions are allowed
to check for interaction between two sets of decision variables
B1 and B2. This is equivalent of replacing dimension i with B1

and dimension j with B2 in (8) and (9). This generalization
allows us to check the interaction of a single variable with
all other variables with a single application of monotonicity
conditions, i.e., B1 = {xi} and B2 = {1, . . . , n}\{xi}. Based
on this generalization the authors propose a recursive algo-
rithm where the interaction of a single variable (xi) is checked
against a set which is initialized to all other variables. If xi

is found to be separable, the procedure returns; otherwise, the
set is recursively divided into smaller sets until its cardinality
reaches one. At this stage all function calls return and merge
the interacting variables into a group. This reduces the time
complexity of the algorithm down to O(n log n). For separable
functions, the decomposition can happen in linear time in the
number of dimensions n.

g) Finite Differences: The methods discussed in this
section use finite differences to detect interacting variables.
Although not explicitly defined as such, linkage identification
by nonlinearity check (LINC) [151] is a variable interac-
tion learning algorithm based on finite differences to find

the linkage sets of binary optimization problems. The same
mechanism has also been used to identify interacting groups
for real-valued problems (LINC-R) [152]. Both LINC and
LINC-R were used with multi-population GAs for solving low
dimensional problems [151, 153].

Omidvar et al. [154] proposed differential grouping (DG)
by deriving a set of finite difference equations for interaction
detection from the definition of partially additive functions
(see Def. S.3 of the supplementary document) and applied it
to large scale problems. Omidvar et al. [154] showed LINC-
R equations can be derived from the differential grouping
theorem. Despite their algebraic equivalence, DG is less sus-
ceptible to computational roundoff errors due to its simpler
computations.

Theorem 1 (Omidvar et al. [154]). Let f(x) be an additively

separable function. ∀a, b1 6= b2, δ ∈ R
1, δ 6= 0, variables xp

and xq interact if the following condition holds

∆δ,xp
[f](x)|xp=a,xq=b1 6= ∆δ,xp

[f](x)|xp=a,xq=b2 , (11)

where

∆δ,xp
[f](x) = f(. . . , xp + δ, . . .)− f(. . . , xp, . . .), (12)

refers to the forward difference of f with respect to variable

xp with interval δ.

Theorem 1 states that two variables xp and xq interact if
the result of (12) for a given value of xp yields different
results for different choices of xq (i.e., b1 and b2). Theorem 1
is derived by showing that under the assumption of additive
separability, the finite difference functions on the two sides of
(11) give the same results, i.e., separability =⇒ ∆(1) = ∆(2).
The contraposition of this proposition can be used to de-
tect interactions, i.e., ∆(1) 6= ∆(2) =⇒ nonseparability.
Since exact equality cannot be checked on computational
systems, the left hand side of the implication is changed to
λ = |∆(1) − ∆(2)| > ǫ. It should be noted that although
∆(1) 6= ∆(2) implies an interaction, their equality does not
necessarily imply separability. Indeed the theorem is silent for
this case. However, by invoking weak syllogism, one can argue
that observing ∆(1) = ∆(2) makes separability more plausible.
If repeated application of Theorem 1 with different random
values results in ∆(1) = ∆(2), the probability of the two vari-
ables being separable increases exponentially [152]. However,
for most practical applications, a single equality observation is
sufficiently accurate for finding separable variables. Nonethe-
less, failing to detect an interaction is more detrimental to
the optimization performance than the conservative case of
assuming separable variables to be interacting.

Although Theorem 1 can be used to individual interactions
between pairs of variables, the theorem itself does not dic-
tate a particular grouping mechanism. Canonical DG works
by choosing a candidate variable xi and scanning all other
dimensions to find all interactions with xi. If an interaction is
found the variable is removed from the set being scanned and
is grouped with xi to form a component. The process continues

1Values of a, b1, b2 and δ are chosen such that f is evaluated within its
domain.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 11

until all variables interacting with xi are extracted and added
to the component containing xi. This procedure assumes full
nonseparability within a component, i.e., all variables interact
with all other variables. This approach fails on problems
with overlapping components. For example, if the following
interaction pattern exist: xi ↔ xj ↔ xk, in the first pass of the
algorithm xj will be removed from the set and the interaction
between xj and xk will never be checked. Rosenbrock is such
a problem on which DG exhibits a poor accuracy [154].

Another grouping strategy is to form an n × n interaction
matrix and form the nonseparable groups (or components)
based on analyzing the interaction matrix. Several algorithms
are based on this idea and treat the interaction matrix as the
adjacency matrix of an undirected graph and use the con-
nected components algorithm to form the groups. Global DG
(GDG) [155], graph-based DG (gDG) [156], and DG2 [157]
are such methods. These algorithms can potentially give an
accurate picture of the problem structure at the expense of
having a quadratic time complexity. Among these, DG2 is
the most efficient and achieves the theoretical lower bound
for the required number of function evaluations to form a
complete interaction matrix based on the repeated application
of Theorem 1. This lower bound suggests that to improve
the efficiency we either need to compromise the accuracy or
change the underlying theorem. These two possibilities are
addressed next.

Indirect interactions: Sun et al. [158] proposed the notion
of indirect interactions (Def. 1) and used it in an algorithm
called extended DG (XDG) to improve the grouping efficiency.

Definition 1. Let f : Rn → R̄ be a differentiable function.

Decision variables xi and xj conditionally (indirectly) interact

if for any candidate solution x∗,
∂2f(x∗)
∂xi∂xj

= 0, and a set of

decision variables {xk1 , . . . , xkt
} ⊂ X exists, such that xi ↔

xk1 ↔ . . . ↔ xkt
↔ xj .

XDG works by forming n components, one for each vari-
able, containing all the variables it interacts with. This means
that a variable may appear in multiple components. To reduce
the number of function evaluations, XDG relies on Def. 1 and
does not check xi and xj for interaction if both interact with a
common variable xk. Finally, XDG merges the groups whose
intersection is not null. Although XDG saves some function
evaluations due to the indirect interaction assumption, it is not
as efficient as DG2 and its time complexity remains O(n2).
Fast interdependency identification (FII) [159] is another al-
gorithm that draws on the notation of indirect interaction to
improve the grouping efficiency.

The generalized theorem: Hu et al. [159] were first to
use simultaneous perturbations multiple dimensions to check
the interaction of any two sets of decision variables using
only four function evaluations. This makes it possible to
find all separable variables in O(n) by iteratively checking
each variables against all other variables. For nonseparable
variables, the algorithm starts with a candidate variable and
checks it against all other variables. If an interaction is detected
the variables are merged to form a group. Thereafter, the
variables formed into the group are perturbed simultaneously

1 2

3

45

6

(a)

1

2

3

4

5

6

(b)

Fig. 8: The interaction structures represented by (a) and (b)
cannot be distinguished by RDG, FII, and XDG [157].

to find if any of its members interacts with the next decision
variable. Since a group is always checked against a variable,
a considerable number of function evaluations can be saved.

Sun et al. [160] formalized the notion of simultaneous
perturbations and proposed the following extended version of
DG theorem:

Theorem 2 (Sun et al. [160]). Let f : Rn → R̄ be an objective

function and D = {1, . . . , n}; X1 ⊂ D and X2 ⊂ D be two

mutually exclusive subsets of decision variables: X1∩X2 = ∅.

If there exist two unit vectors u1 ∈ UX1 and u2 ∈ UX2 , two

real numbers l1, l2 > 0, and a candidate solution x∗ in the

decision space, such that

f(x∗+ l1u1+ l2u2)−f(x∗+ l2u2) 6= f(x∗+ l1u1)−f(x∗), (13)

there is at least one interaction between a variable in X1 and

another in X2.

Theorem 2 implies that with only four function evaluations,
the interaction between arbitrary sets X1 and X2 can be estab-
lished. Sun et al. [160] used Theorem 2 to propose recursive
differential grouping (RDG) to form the interaction groups.
This reduces the time complexity of interaction detection to
O(n logn) which is lower than the theoretical lower bound
based on DG2 [157]. As stated earlier, this reduction in time
complexity comes at the expense of losing on the accuracy of
a full interaction matrix. As a result, algorithms such as RDG,
FII, and XDG cannot detect overlapping components of a
function. For instance, these algorithms cannot distinguish the
interaction graphs depicted in Fig. 8. Yang et al. [161] further
reduced the computational cost of RDG by maintaining and
using historical information during the decomposition process
to avoid some unnecessary evaluations. Kim and Choi [162]
also improved upon RDG by pruning its recursive search
three in the divide-and-conquer process. They also used a
variable influence metric to pre-sort the decision variables
with the aim of increasing the chance of pruning and hence
reducing the total number of objective function evaluations. In
another study, Xue et al. [163] reduced the depth of RDG’s
recursion tree by dividing the variables into three subsets [164]
instead of two, thus reducing the number of objective function
evaluations. Xue et al. [163] proposed an alternative view
of the simultaneous perturbations and augmented it with the
topological information of the problem to further reduce the
computational cost of problem decomposition.

Interaction detection accuracy of finite difference meth-

ods: In addition to the challenge of computational efficiency,
most finite difference methods presented in this section are
sensitive to the threshold parameter (ǫ) used to distinguish

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 12

between separable and nonseparable variables. Theoretically,
a non-zero λ = |∆(1)−∆(2)| signifies an interaction. However,
computational roundoff errors can sometimes cause nonzero λ
values even for separable variables. Therefore, when observing
a nonzero value it is important to find whether it is caused
by a genuine interaction or by computational errors. This
clearly affects the choice of ǫ which has been investigated in
several studies. gDG [156] normalizes the values which make
it less sensitive and uses tighter threshold they call σ to detect
interactions. This resulted in 100% accuracy almost all of the
CEC’2010 benchmark suite. Cao et al. [165] extended gDG
to decompose large-scale multiobjective problems. GDG [155]
and EVIID [162] define ǫ to be a function of the objective
function based on the rationale that the magnitude of the
computational errors is a function of the objective function
value: ǫ = α ·min{f(x1), . . . , f(xk)}, where x1 . . .xk are k
random samples of the search space, and α is a small user-
defined parameter allegedly less sensitive to computational
errors as compared to ǫ. Although GDG found the ideal
decomposition for 18 out of 20 functions from the CEC’2010
LSGO benchmark suite, its performance deteriorates on the
imbalanced functions of the CEC’2013 LSGO benchmark
suite [166]. In FII [159] two different threshold values are
used, one for detecting separable (λ = |∆(1)−∆(2)| < ǫ1), and
another for the nonseparable variables (λ = |∆(1) −∆(2)| >
ǫ2). Despite this suggestion, FII uses ǫ1 = ǫ2 = 10−2 for the
experiments.

Omidvar et al. [157] conducted a systematic error analysis
of DG2 to place tight bounds on the roundoff errors. DG2
estimates the greatest lower bound einf and the least upper-
bound esup of the computational errors. For each pair of
variables, if the quantity λ < einf , it is treated as genuine
zero and the pair will be declared as separable; otherwise, if
λ > esup, it is treated as a genuine non-zero value and the pair
will be declared as having interaction. For λ ∈ [einf , esup],
ǫ will be set to a weighted average of the two bounds
based on the total number of genuine zero and nonzero
detections. Unlike the previous finite difference methods, DG2
is parameter-free and calculates a different threshold value for
each pair of the decision variables. On the CEC’2013 LSGO
benchmark suite, DG2 outperformed CCVIL, DG, GDG, and
XDG. Chen et al. [167] proposed global information-based
adaptive threshold (GIAT) as an improved method for setting
the threshold value based on einf and esup. GIAT calculates
these two quantities according to DG2, it then calculates the
quantity ζ = (λ−einf)fs(λ−einf)

max{|∆(1)|,|∆(2)|}
for all pairs of variables similar

to the way it is done by DG2. Finally, all ζ values are sorted
and the two adjacent values with the largest difference are
taken as the basis for calculating the threshold. GIAT uses
this approach only on partially separable functions and sets
the threshold value to the minimum of the two retrieved ζ
values.

We close this section by reviewing two recent variants of
RDG. RDG2 is the state-of-the-art decomposition algorithm
that applies the error analysis mechanism of DG2 on the
recursive mechanism of RDG to find the error bounds. This
algorithm inherits the accuracy of DG2 and efficiency of

RDG and outperforms both methods in grouping accuracy
with a time complexity of O(n logn) [168]. RDG3 [169],
the winner of CEC’2019 Competition on Large-Scale Global
Optimization2, builds upon RDG2 and includes a mechanism
to deal with problems with overlapping components3.

2) Grouping Principles: This section revisits the explicit
decomposition methods reviewed in the previous section and
analyzes them based on their grouping mechanism rather than
the interaction detection principles (Fig 5). The grouping
principles can be classified into three major groups: automatic,
semi-automatic, and k s-dimensional.

a) Automatic: The groups are either formed automati-
cally in which case the number and the size of components
are determined by the algorithm. This is usually done by pro-
cessing the interaction information identified by the detection
mechanisms outlined in §II-B1. For example, DG2 and GDG
use the connected components algorithms on the interaction
matrix of the function to form the groups. Other algorithms
such as graphDG [156] use other graph partitioning techniques
to form the groups. The automatic methods are predominantly
based on differential grouping and monotonicity detection,
which are among accurate interaction detection mechanisms
(see Table S-I of the supplementary document). The variations
in the grouping principles of these techniques mainly affect
problems with overlapping components. Peng et al. [170]
suggested a solution exchange scheme between components
based on multimodal optimization to cope with grouping
inaccuracies. Ren et al. [171] also proposed the bi-hierarchical
cooperative coevolution which occasionally merge compo-
nents to deal with decomposition inaccuracies. Overlapping
problems are covered in part B of the survey.

b) Semi-automatic: Semi-automatic methods require the
size or the number of components to be specified by the
user. Cluster based methods such as the algorithm proposed
by Fan et al. [172] use Fuzzy c-mean algorithm to form
the groups which requires the number of components as
input. Some studies [173, 174] use spectral clustering with
differential grouping to take the degree of interaction into
account. In statistical detection methods such as AVP2 [135]
and 4CDE [136], a threshold or a set of intervals should be
defined on the correlation coefficients to form the groups.

A special type of semi-automatic grouping is called mul-

tilevel [175, 176] in which the user specifies a list of poten-
tial component sizes for the algorithm to choose from. The
algorithm often uses a probability distribution to choose a
component size from the list and uniformly divide the n-
dimensional problem into smaller components. The algorithm
often adapts the parameters of the probability distribution
based on the performance of the selected item in the course
of optimization. Some multilevel algorithms however, use
deterministic methods to gradually reduce the number of
components during optimization [177].

c) k s-dimensional Components: These algorithms are
the least informed and require both the number and the size
of each component to form the groups. Detection principles

2For more information on LSGO competitions see part B of the survey .
3Problems with overlapping components are covered in part B of this survey

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 13

such as random grouping [118, 120, 178, 179], delta group-
ing [121], fitness difference partitioning [126, 127, 129, 130],
and statistical methods [83, 134] are among such methods.

C. Advantages and disadvantages of explicit and implicit

methods

Explicit and implicit methods each have their own merits. In
dealing with partially additively separable functions, explicit
methods are generally more efficient in finding the inter-
action structure using systematic perturbation methods than
the implicit methods which relying on statistical information
through random sampling. Although dimensionality is a major
challenge to both types, the efficiency of implicit methods
drop more sharply than explicit methods in higher dimensions.
Accurate model estimation in implicit methods requires an
exponentially increasing sample size with dimension [70],
whereas the state-of-the-art decomposition algorithms require
O(n logn) to infer interactions [160]. When the interaction
structure is more complicated and a “crisp” decomposition is
not possible, implicit methods are generally more flexible in
representing and exploiting such structures. For instance, when
the underlying components of the objective function has shared
decision variables (overlap), it is not clear how it should be
decomposed into a set of disjoint groups (see §VI-A). Another
advantage of implicit methods is that they build their model
during optimization whereas explicit methods work offline and
infer interactions prior to optimization. However, as was stated
before, this flexibility comes at the cost of significant computa-
tional overhead to find a suitable model in the first place. For
instance, BOAs use Bayesian networks which can represent
any arbitrary interaction structure; however, discovering the
“right” model is an NP-hard problem [46]. Another advantage
of implicit methods, such as CMA-ES, is their rotational in-
variance property making them particularly suitable for solving
nonseparable problems. Some studies attempted to combine
decomposition methods with implicit methods to help EDAs
scale better and bring the flexibility and the invariance property
of the implicit methods to decompositions [80–83]

III. HYBRIDIZATION AND MEMETIC ALGORITHMS

According to No Free Lunch theorem [180], no single
search algorithm can uniformly outperform all other algo-
rithms on all possible problems. This suggests that there are
niche problem areas in which particular algorithms perform
better than others. The aim of hybridization is to benefit from
unique search capabilities of several algorithms to find high
quality solutions to problems, which are better than the solu-
tions obtained by the individual algorithms in isolation. More
generally, the aim of hybridization in evolutionary algorithms
is to [181]: 1) improve their performance (such as convergence
speed); 2) improve the final solution quality obtained by such
algorithms; and 3) incorporate such algorithms as part of a
larger system. Some hybridization algorithms are generic in
the sense that they can hybridize any number or combination
of existing search algorithms. Ensemble strategies is a major
allied topic concerned with the study of designing stable op-
timization algorithms by combining a set of “unstable and di-

verse” ones [182]. Hybrid local search and memetic algorithms
play an important role in large-scale global optimization.

Hybrid local search algorithms

As distinct from memetic algorithms, these algorithms are
solely based on local search with no explicit global search
component. They often rely on an initial systematic initializa-
tion, such as orthogonal arrays [183], to attain a good coverage
of the search space. Multiple trajectory search (MTS) [183]
used three different local search methods employed based
on the properties of the search space in the vicinity of
existing candidate solutions. Before performing an extensive
local search, MTS tests all three local search mechanism
and picks the best mechanism that performs the best in that
neighborhood. MTS has been tested on the CEC’2008 LSGO
benchmark functions with up to 1000 dimensions. Gardeux
et al. [184] also combined two line search algorithms, i.e.
enhanced unidirectional search (EUS) and 3-2-3 line search
algorithm, for large-scale global optimization. EUS searches
along lines specified by a series of unit vectors not necessarily
aligned with the coordinate system. Although variable inter-
action can have significant effect on the choice of direction
vectors, this aspect has not been studied by the authors.

Memetic algorithms

Memetic algorithms [185] represent a special hybridization
paradigm in which local search is applied to individuals within
an explorative evolutionary framework to mimic the individual
learning procedure. This dual-phase mechanism has the poten-
tial to balance between exploration and exploitation forces,
which are inspired by Darwinian evolution and the effect
of individual learning considered in Baldwinian/Lamarckian
evolution, respectively. Memetic algorithms have gained pop-
ularity in large-scale global optimization, some of which
ranked first in IEEE CEC Competition on Large-Scale Global
Optimization4. Memetic algorithms have also been applied
to discrete optimization [186], boolean satisfiability prob-
lems [187] and a range of application areas such as large-
scale hybrid flow shop problems [188], large-scale capacitated
arc routing problems [189, 190], and big data optimization
problems [191].

Major design considerations in memetic algorithms
are [192]: 1) frequency of applying local search; 2) choice
of solutions participating in local search (individual learning);
3) search intensity, i.e., the duration of applying local search;
and 4) choice of local search algorithms. In addition to
the above, the algorithms using a repertoire of local search
procedures need to devise a policy to choose from the avail-
able local search operators. In what follows, we review the
relevant memetic and other hybrid algorithms used for large-
scale global optimization in reference to the above design
considerations.

a) Local search frequency: The most commonly used
way of controlling the frequency of applying local search is

4For more information on competition results refer to part B of the survey.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 14

to run at regular interval as controlled by a user-defined pa-
rameter [193–195]. An extreme case for this approach is to run
the local search procedure at every iteration [183, 196–198]. In
some cases if the local search process is marked as stagnant,
it will not be invoked [196]. MTS, which uses multiple local
search operators, runs all its operators at the beginning of
every cycle and picks the best performing operator for the
rest of that cycle. In some algorithms, instead of resorting to
running the local search at fixed regular intervals, the local
search operators are applied such that the ratio between the
local and global search is fixed [199–201]. In some algorithms
such as MA-SW-Chains [199, 200], search frequency and
intensity (covered later in this section) are linked through
a fixed local/global search ratio. In other words, once the
global search ratio is fixed, specifying search frequency or
intensity determines the other. Some other approaches decide
the invocation of local search probabilistically using a pre-
specified distribution whose parameters are set and/or adapted
based on its success/failure rate [202, 203].

b) Choice of solutions: The choice of solutions to partic-
ipate in the local search process can be random, performance-
based, complete (i.e., all solutions participate) [198], or any
combination of the three. For example, the algorithm pro-
posed by Zhao et al. [203] chooses 5 random solutions,
the best solution, and the top 25%. The performance-based
methods either apply local search to the best solution [194–
197, 201, 202], top n solutions [183], top p% solutions [193],
or those improved more than a predefined threshold in previous
iterations [199, 200]. Some methods also emphasize the solu-
tions not selected before [199, 200]. Zhao et al. [203] proposed
to use the niching algorithm Clearing proposed by Pétrowski
[204] to choose the solutions to undergo local search. They
start from several solutions which progressively reduces to
one, with the aim of controlling the exploration/exploitation
balance.

c) Search intensity: Search intensity is defined as the
duration in which the local search is active. The simplest
way of specifying the search intensity is a fixed-budget policy,
i.e, to run the local search operator for a fixed and predeter-
mined number of function evaluations [193, 196, 201, 202].
MTS [183] uses a greedy approach and runs the local search
algorithm until no improvement is observed. Other algorithms
using MTS-based local optimizers also use a similar strat-
egy [194, 195]. As was discussed previously in the context of
search frequency, some algorithms link search frequency and
intensity by forcing a fixed local/global search ratio [199, 200].
A more sophisticated way of specifying search intensity is
to do so adaptively during the course of optimization. Liu
and Li [197] determine the search intensity based on the suc-
cess/failure rate of the local search procedure. Bolufé-Röhler
et al. [198] simply double the search intensity every time the
local search procedure is invoked. Zhao et al. [203] run the
global and local search procedures once at the beginning of
each cycle, and the search intensity for each case is specified
proportional to their success/failure rates.

d) The local search procedure: A wide range of global
and local search algorithms have been hybridized for solving
large-scale global optimization algorithms. Table I summarizes

various hybridizations proposed in the literature. In the table
‘G’ denotes a global search mechanism, ‘L’ denotes a local
search procedure, the combination of which indicate a memetic
algorithm, whereas ‘H’ denotes a generic hybridization of a set
of local or global search procedures. The table shows that dif-
ferential evolution (DE) [220] is the most widely used global
search mechanism followed by particle swarm optimization
(PSO) [221]. A wide range of local search operators are also
used that can be categorized as random search, line search,
and coordinate descent. Algorithms from all three categories
are commonly used in various memetic or hybrid frameworks;
however, the coordinate decent procedure of MTS [183],
known as MTS-LS1, and the Solis and Wets’ [222] random
search algorithms are the most popular operators.

In most cases, a single local search procedure is used within
a global exploratory process. However, in some cases more
than two operators, local or global, are used simultaneously,
the application of which needs to be coordinated by the
hybrid framework. For instance, an algorithm proposed by
Fister et al. [201] probabilistically selects between random
walk and Nelder-Mead [223] based on an exponential distri-
bution whose parameter is adapted according to a measure
of population diversity. Another algorithm by Sabar et al.
[191] adaptively selects between Rosenbrock’s [205] and
Powell’s [206] search algorithms by testing their effectiveness
using statistical hypothesis testing methods during the course
of optimization. MTS coordinates between three local search
operators by running them on m solutions at the beginning of
each cycle and uses the best performing operator for the rest
of the cycle until it becomes stagnant. There are also some
algorithms [125, 213] which employ memetic algorithms in a
cooperative coevolution framework. These algorithms decom-
pose the problem into separable and nonseparable components
and employ different local search operators suitable for the
separable and the nonseparable components. Further details
of coevolutionary memetic algorithms are given later in this
section.

Multiple offspring (MOS) framework [224] is an abstraction
layer on top of the reproductive operators of existing evolution-
ary algorithms, which systematizes the coordination of several
search operators. MOS employs a repertoire of evolutionary
operators and applies them based on their performance over the
course of optimization in order to achieve a higher long-term
performance. In the context of large-scale optimization, sev-
eral evolutionary operators have been hybridized using MOS
framework [208–210], which are summarized in Table I. The
experimental results on a wide range of benchmark functions
with up to 1000 dimensions showed the scalability of MOS
framework to high-dimensional problems, making it the first-
ranked algorithm in CEC’2013 and CEC’2015 competition on
large-scale global optimization. The reader is referred to part
B of the survey for a discussion on LSGO competitions and
more recent results.

e) Parallel vs Sequential Hybrids: Memetic algorithms
and other hybrid methods can be implemented in a parallel
paradigm or a sequential one. In the context of large-scale
global optimization, parallel hybrids are limited [16, 214],
with most algorithms following a sequential paradigm. Wang

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 15

TABLE I: Summary of common algorithms used in hybridization frameworks. The algorithms are classified into: Global Search,
Random Search, Line Search, Coordinate Descent, and other derivative-free methods such as Nelder-Mead, CMA-ES, or Tabu
Search. The character G denotes that the algorithm is used as a global search operator, L denotes a local search operator, and
H denotes a generic hybridization of a set of local or global search operators.

Citation D
if

fe
re

nt
ia

l
E

vo
lu

tio
n

Pa
rt

ic
le

Sw
ar

m
O

pt
.

G
en

et
ic

A
lg

or
ith

m

A
nt

C
ol

on
y

O
pt

.

A
rt

ifi
ci

al
B

ee
C

ol
on

y

M
ig

ra
tin

g
B

ir
ds

O
pt

.

C
or

al
R

ee
fs

O
pt

.

M
in

Po
pu

la
tio

n
Se

ar
ch

So
lis

an
d

W
et

s

R
an

do
m

W
al

k

R
os

en
br

oc
k[

20
5]

Po
w

el
l[

20
6]

Q
ua

si
-N

ew
to

n

L
in

e
Se

ar
ch

(M
is

c)

M
T

S
L

S1

M
T

S
L

S2

M
T

S
L

S3

C
oo

rd
D

es
ce

nt
(M

is
c)

N
el

de
r-

M
ea

d

C
M

A
-E

S/
E

D
A

Ta
bu

Se
ar

ch

Global Search Random Line Search Coordinate Descent Other

Bolufé-Röhler et al. [198] | | | | | | | G | | | | | | | | | | | L |
Cao et al. [207] G | | | | | | | L | | | | | | | | | | | |
de Oca et al. [196] | G | | | | | | | | | L | | | | | | | | |
Fister et al. [201] | | | | G | | | | L | | | | | | | | L | |
Gardeux et al. [184] | | | | | | | | | | | | | L/L | | | | | | |
LaTorre et al. [208] G | | | | | | | | | | | | | L | | | | | |
LaTorre et al. [209] | | | | | | | | H | | | | | H | | | | | |
LaTorre et al. [210] | | H | | | | | H | | | | | H* | | | | | |
Li and Pan [188] | | | | G | | | | | | | | | | | | | | | L
Liu and Li [197] G | | | | | | | L | | | | | | | | | | | |
Liu et al. [125] G | | | | | | | | | | | L | | | | L | | |
Molina et al. [211] | | | | | | | | | | | | | | H H | | H | |
Molina et al. [199] | | G | | | | | L | | | | | | | | | | | |
Molina et al. [200] | | G | | | | | L | | | | | | | | | | | |
Molina and Herrera [202] G | | | | | | | | | | | L | | | | | | | |
Olguin-Carbajal et al. [194] G | | | | | | | | | | | | | L | | | | | |
Sabar et al. [191] G | | | | | | | | | L L | | | | | | | | |
Salcedo-Sanz et al. [195] | | | | | | G | | | | | | | L | | | | | |
Segredo et al. [212] H | | | | H | | | | | | | | | | | | | | |
Seren [186] | G | | | | | | | | | | | | | | | | | | |
Sun et al. [213] G | | | | | | | | | L | | | L | | | | | |
Tang et al. [214] |
Tseng and Chen [183] | | | | | | | | | | | | | | H H H | | | |
Vitorino et al. [215] | H | | H | | | | | | | | | | | | | | | |
Wang et al. [216] H | | | | | | | | | | | | | | | | | | H |
Yang and Sato [217] H H | | | | | | | | | | | | | | | | | | |
Ye et al. [218] H/H |
Zhao et al. [193] | G | | | | | | | | | | L | | | | | | | |
Zhao et al. [203] G | | | | | | | | | | | | | | | | L* | | |
Deng et al. [219] | H H H | | | | | | | | | | | | | | | | |

Total 14 6 4 1 3 1 1 1 6 1 2 2 3 2 8 2 1 2 2 2 1

et al. [216] suggest that parallel hybrids may not be ef-
fective in utilizing the benefits of various search algorithms
due to disparities in their convergence speed and diversity
maintenance. Molina et al. [225] proposed the idea of local

search chains in which also emphasizes a sequential paradigm.
The aim of these search chains is to perform an intensive
local search during the course of optimization. The term
chain alludes to the fact that a local search operator can
be applied in succession, and each invocation can resume
the search process from where it stopped in its previous
invocation. Hence, forming a chain of local searches has the
capacity to better exploit the properties of the landscape and
focus on more promising regions. The idea of local search
chains was first used with CMA-ES [68] as the local search
operator to form the MA-CMA-Chains algorithm [225]. The
computational cost of CMA-ES makes it prohibitive for large-
scale optimization. Therefore, Molina et al. [199] employed
the Solis Wets’ [222] algorithm as the local search operator
and proposed MA-SW-Chains. This algorithm, ranked first
in the CEC’2010 Competition on Large-Scale Optimization,
showed better performance relative to other algorithms on
the CEC’2010 large-scale benchmark problems [122]. Later,
a variant of MA-SW-Chains, called MA-SSW-Chains was

developed in which the local search was only applied to a
random subset of the decision variables [200].

f) Cooperative Coevolution and Memetic Algorithms:

Decomposition methods (see §II-B) and memetic algorithms
are the two most widely used approaches to large-scale global
optimization with algorithms from both categories ranked first
in large-scale global optimization competitions [169, 226,
227]. To benefit from the advantages of both approaches, some
authors suggest the use of memetic algorithms [125, 126, 191,
207, 213] or other hybrids [218] as component optimizers in
a cooperative coevolution framework. The general approach
is to decompose the problem into a set of lower dimensional
subproblems using the methods described in §II-B, and opti-
mize each component using a global search algorithm followed
by an episode of local search. Cao et al. [207] proposed to
use SaNSDE [228] followed by Solis and Wets’ [222] on
each component and adjust their search intensity/frequency
according to their performance. Sun et al. [213] also used
SaNSDE as the global search operator followed by dedicated
local search procedures for the separable and nonseparable
components. Sabar et al. [191] use two local search operators
(i.e., Rosenbrock’s [205] and Powell’s [206]) in conjunction
with DE as the global search algorithm. Liu et al. [125]

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 16

proposed to use coordinate descent and Quasi-Newton local
search algorithms on separable and nonseparable components
respectively, followed by a round of DE to further improve
the population.

The MLSHADE-SPA algorithm Hadi et al. [229], runner-
up of the IEEE CEC’2018 large-scale competition, takes a
different approach to combining memetic and coevolutionary
search. The algorithm divides the entire search process into
several rounds where each round is comprised of an initial
coevolutionary search phased followed by a local search phase.
In the coevolutionary phase, the problem is decomposed into
three equally-sized components each of which is optimized
using a different DE-based algorithm. The coevolutionary
phase is followed by local search where the best found solution
is improved using a modified MTS-LS1 algorithm [183].

IV. CONCLUDING REMARKS

In this part of the series, we covered two major approaches
to large-scale global optimization: 1) Algorithms which exploit
problem structure in the form of variable interaction, and
2) Hybrid algorithms, most notably memetic algorithms and
local search.

Exploiting problem structure and grey-box optimization has
shown to be effective ways of solving large-scale problems
(§II). These structural information can be used in the form of
explicit decomposition or implicitly through model building.
The challenge of explicit methods is the cost of offline
variable interaction learning, which requires objective function
evaluations and causes an overhead on the overall optimization
cost. Another issue is that a crisp decomposition is sometimes
impractical due to various forms of couplings caused by
the existence of multiple objectives, overlapping components
(shared variables among subfunctions), or coupling through
constraints. Implicit methods also suffer from the accuracy of
capturing problem structure, especially when the problem size
grows in size. Finding more efficient and effective ways of
exploiting structural information, such as overlap, can have a
significant impact on improving the scalability of optimization
algorithms.

Hybrid methods and memetic algorithms in particular, use
the available computational budget in a more economical way
and gain competitive advantage by means of extensive local
search. It is not clear how these algorithms may perform in
finding global optimum under more relaxed budget constraints.
Their dimension-wise local search procedures are generally
blind to variable interactions making them better suited for
separable functions. In memetic frameworks the design con-
siderations, such as the frequency of local search or the choice
of the local search procedure, are ad hoc and require extensive
experimentation. Designing generic frameworks capable of
finding the optimal search intensity and the choice of local
search procedures can significantly improve the performance
of these algorithms and also make them readily available to
practitioners in other fields.

In the next part of this survey series, we cover several other
approaches to large-scale global optimization and also look at
several important problem areas such as multi-objective opti-
mization and constraint handling. The next part also touches

upon two major issues pertaining to the future of the field:
1) Pitfalls and challenges that hinder the progress of the field,
and 2) The pressing open questions and potential areas of
future research.

ACKNOWLEDGEMENTS

This work was partially supported by an ARC (Aus-
tralian Research Council) Discovery Grant (DP180101170),
Shenzhen Science and Technology Program (Grant No.
KQTD2016112514355531), the Program for Guangdong In-
troducing Innovative and Entrepreneurial Teams (Grant No.
2017ZT07X386), and the Program for University Key Labo-
ratory of Guangdong Province (Grant No. 2017KSYS008).

REFERENCES

[1] R. E. Bellman, Adaptive control processes: a guided tour. Princeton
university press, 1961.

[2] P. Drineas and M. W. Mahoney, “RandNLA: randomized numerical
linear algebra,” Communications of the ACM, vol. 59, no. 6, pp. 80–
90, 2016.

[3] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for
large-scale machine learning,” SIAM Review, vol. 60, no. 2, pp. 223–
311, 2018.

[4] N. Gould, D. Orban, and P. Toint, “Numerical methods for large-scale
nonlinear optimization,” Acta Numerica, vol. 14, pp. 299–361, 2005.

[5] N. Hollister and A. Wood, “The tallest 20 in 2020: Entering the era of
the megatall,” Press Release. Chicago, 2011.

[6] M. Gilbert, L. He, H. Lu, A. Tyas, H. E. Fairclough, J. Gondzio,
and A. G. Weldeyesus, “Layout optimization of large-scale trusses and
frames,” in Proceedings of IASS Annual Symposia, vol. 2018, no. 19.
International Association for Shell and Spatial Structures (IASS), 2018,
pp. 1–8.

[7] Z.-H. Zhou, N. V. Chawla, Y. Jin, and G. J. Williams, “Big data oppor-
tunities and challenges: Discussions from data analytics perspectives,”
IEEE Computational Intelligence Magazine, vol. 9, no. 4, pp. 62–74,
2014.

[8] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[9] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng,
“On optimization methods for deep learning,” in Proceedings of the

28th International Conference on International Conference on Machine

Learning. Omnipress, 2011, pp. 265–272.
[10] G. N. Vanderplaats, “Very large scale optimization,” National Aero-

nautics and Space Administration (NASA), Langley Research Center,
Colorado, US, Tech. Rep. NASA/CR-2002-211768, 2002.

[11] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, “Metaheuristics in large-
scale global continues optimization: A survey,” Information Sciences,
vol. 295, pp. 407–428, Feb. 2015.

[12] G. Morse and K. O. Stanley, “Simple evolutionary optimization can
rival stochastic gradient descent in neural networks,” in Proceedings
of the 2016 on Genetic and Evolutionary Computation Conference.
ACM, 2016, pp. 477–484.

[13] K. Deb and C. Myburgh, “A population-based fast algorithm for a
billion-dimensional resource allocation problem with integer variables,”
European Journal of Operational Research, vol. 261, no. 2, pp. 460–
474, 2017.

[14] K. Sastry, D. E. Goldberg, and X. Llora, “Towards billion-bit op-
timization via a parallel estimation of distribution algorithm,” in
Proceedings of the 9th Annual Conference on Genetic and Evolutionary

Computation, ser. GECCO ’07. New York, NY, USA: Association for
Computing Machinery, Jul. 2007, pp. 577–584.

[15] A. Cano and C. García-Martínez, “100 million dimensions large-
scale global optimization using distributed gpu computing,” in IEEE

Congress on Evolutionary Computation. IEEE, 2016, pp. 3566–3573.
[16] A. Cano, C. García-Martínez, and S. Ventura, “Extremely high-

dimensional optimization with mapreduce: scaling functions and al-
gorithm,” Information Sciences, vol. 415, pp. 110–127, 2017.

[17] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learn-
ing,” arXiv preprint arXiv:1712.06567, 2018.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 17

[18] J.-R. Jian, Z.-H. Zhan, and J. Zhang, “Large-scale evolutionary opti-
mization: A survey and experimental comparative study,” International
Journal of Machine Learning and Cybernetics, vol. 11, no. 3, pp. 729–
745, Mar. 2020.

[19] D. Thierens, “Scalability problems of simple genetic algorithms,”
Evolutionary Computation, vol. 7, no. 4, pp. 331–352, 1999.

[20] D. Molina, M. Lozano, and F. Herrera, “Memetic algorithm with local
search chaining for continuous optimization problems: A scalability
test,” in 2009 Ninth International Conference on Intelligent Systems
Design and Applications. IEEE, 2009, pp. 1068–1073.

[21] F. Caraffini, F. Neri, and L. Picinali, “An analysis on separability for
memetic computing automatic design,” Information Sciences, vol. 265,
pp. 1–22, 2014.

[22] Y. Sun, M. Kirley, and S. K. Halgamuge, “Quantifying variable
interactions in continuous optimization problems,” IEEE Transactions

on Evolutionary Computation, vol. 21, no. 2, pp. 249–264, 2017.
[23] N. Hansen, “Adaptive encoding: How to render search coordinate

system invariant,” in International Conference on Parallel Problem

Solving from Nature. Springer, 2008, pp. 205–214.
[24] T. Hogg, “Exploiting problem structure as a search heuristic,” Interna-

tional Journal of Modern Physics C, vol. 9, no. 01, pp. 13–29, 1998.
[25] U. Aickelin and K. A. Dowsland, “Exploiting problem structure in a

genetic algorithm approach to a nurse rostering problem,” Journal of

scheduling, vol. 3, no. 3, pp. 139–153, 2000.
[26] C. J. Price and P. L. Toint, “Exploiting problem structure in pattern

search methods for unconstrained optimization,” Optimisation Methods

and Software, vol. 21, no. 3, pp. 479–491, 2006.
[27] N. Ho-Nguyen and F. Kılınç-Karzan, “Exploiting problem structure

in optimization under uncertainty via online convex optimization,”
Mathematical Programming, pp. 1–35, 2018.

[28] R. Santana, “Gray-box optimization and factorized distribution algo-
rithms: where two worlds collide,” arXiv preprint arXiv:1707.03093,
2017.

[29] J. Holland, Hidden Order: How Adaptation Builds Complexity.
Perseus, 1995.

[30] G. R. Harik and D. E. Goldberg, “Learning linkage.” in Foundations

of Genetic Algorithms, vol. 4, 1996, pp. 247–262.
[31] Y. Chen, T.-L. Yu, K. Sastry, and D. E. Goldberg, “A survey of linkage

learning techniques in genetic and evolutionary algorithms,” University
of Illinois at Urbana-Champaign, Tech. Rep. 2007014, 2007.

[32] D. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithms:
Motivation, analysis, and first results,” Complex Systems, vol. 3, no. 5,
pp. 493–530, 1989.

[33] D. E. Goldberg, K. Deb, and D. Thierens, “Toward a better under-
standing of mixing in genetic algorithms,” Journal of the Society of
Instrument and Control Engineers, vol. 32, no. 1, pp. 10–16, 1993.

[34] D. Thierens and D. E. Goldberg, “Mixing in genetic algorithms,”
Urbana, vol. 51, p. 61801, 1993.

[35] R. Salomon, “Re-evaluating genetic algorithm performance under co-
ordinate rotation of benchmark functions. a survey of some theoretical
and practical aspects of genetic algorithms,” BioSystems, vol. 39, no. 3,
pp. 263–278, 1996.

[36] D. R. Hains, L. D. Whitley, and A. E. Howe, “Revisiting the big valley
search space structure in the tsp,” Journal of the Operational Research

Society, vol. 62, no. 2, pp. 305–312, 2011.
[37] D. Whitley, D. Hains, and A. Howe, “Tunneling between optima: par-

tition crossover for the traveling salesman problem,” in Proceedings of

the 11th Annual conference on Genetic and evolutionary computation.
ACM, 2009, pp. 915–922.

[38] J. G. Monroe, Z. A. Allen, P. Tanger, J. L. Mullen, J. T. Lovell, B. T.
Moyers, D. Whitley, and J. K. McKay, “Tspmap, a tool making use
of traveling salesperson problem solvers in the efficient and accurate
construction of high-density genetic linkage maps,” BioData mining,
vol. 10, no. 1, p. 38, 2017.

[39] R. Tintos, D. Whitley, and F. Chicano, “Partition crossover for pseudo-
boolean optimization,” in Proceedings of the 2015 ACM Conference on
Foundations of Genetic Algorithms XIII. ACM, 2015, pp. 137–149.

[40] G. Wu, W. Pedrycz, P. N. Suganthan, and R. Mallipeddi, “A variable
reduction strategy for evolutionary algorithms handling equality con-
straints,” Applied Soft Computing, vol. 37, pp. 774–786, Dec. 2015.

[41] G. Wu, W. Pedrycz, P. N. Suganthan, and H. Li, “Using variable
reduction strategy to accelerate evolutionary optimization,” Applied Soft

Computing, vol. 61, pp. 283–293, Dec. 2017.
[42] A. H. Gandomi, K. Deb, R. C. Averill, S. Rahnamayan, and M. N.

Omidvar, “Using semi-independent variables to enhance optimization
search,” Expert Systems with Applications, vol. 120, pp. 279–297, 2019.

[43] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary ap-

proach to function optimization,” in Proc. of International Conference

on Parallel Problem Solving from Nature, vol. 2, 1994, pp. 249–257.
[44] S. Baluja, “Population-based incremental learning: A method for in-

tegrating genetic search based function optimization and competitive
learning,” School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213, Tech. Rep., 1994.

[45] M. Pelikan, D. E. Goldberg, and F. G. Lobo, “A survey of optimization
by building and using probabilistic models.” Comp. Opt. and Appl.,
vol. 21, no. 1, pp. 5–20, 2002.

[46] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The bayesian
optimization algorithm,” in Proceedings of the 1st Annual Conference

on Genetic and Evolutionary Computation-Volume 1. Morgan Kauf-
mann Publishers Inc., 1999, pp. 525–532.

[47] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann
Arbor, MI, USA: University of Michigan Press, 1975.

[48] D. E. Goldberg, R. Lingle et al., “Alleles, loci, and the traveling
salesman problem,” in Proceedings of an international conference
on genetic algorithms and their applications, vol. 154. Lawrence
Erlbaum, Hillsdale, NJ, 1985, pp. 154–159.

[49] D. E. Goldberg and C. L. Bridges, “An analysis of a reordering operator
on a ga-hard problem,” Biological Cybernetics, vol. 62, no. 5, pp. 397–
405, 1990.

[50] D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik, “Rapid, accurate
optimization of difficult problems using fast messy genetic algorithms,”
in Proc. of International Conference on Genetic Algorithms, S. Forrest,
Ed. San Francisco, CA: Morgan Kaufmann, 1993, pp. 56–64.

[51] H. Kargupta, “The gene expression messy genetic algorithm,” in
Evolutionary Computation, 1996., Proceedings of IEEE International

Conference on. IEEE, 1996, pp. 814–819.
[52] G. R. Harik, “Learning gene linkage to efficiently solve problems

of bounded difficulty using genetic algorithms,” Ph.D. dissertation,
University of Michigan, Ann Arbor, MI, 1997.

[53] J. Smith and T. C. Fogarty, “An adaptive poly-parental recombination
strategy,” in Selected Papers from AISB Workshop on Evolutionary
Computing. London, UK: Springer-Verlag, 1995, pp. 48–61.

[54] H. Mühlenbein and G. Paass, “From recombination of genes to the es-
timation of distributions i. binary parameters,” in Proc. of International

Conference on Parallel Problem Solving from Nature. London, UK:
Springer-Verlag, 1996, pp. 178–187.

[55] G. Harik, F. Lobo, and D. Goldberg, “The compact genetic algorithm,”
IEEE Transactions on Evolutionary Computation, vol. 3, no. 4, pp.
287–297, November 1999.

[56] M. Pelikan, D. E. Goldberg, and S. Tsutsui, “Combining the strengths
of bayesian optimization algorithm and adaptive evolution strategies,”
in Proc. of Genetic and Evolutionary Computation Conference. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002, pp.
512–519.

[57] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[58] T.-L. Yu, D. E. Goldberg, K. Sastry, C. F. Lima, and M. Pelikan,
“Dependency structure matrix, genetic algorithms, and effective recom-
bination,” Evolutionary computation, vol. 17, no. 4, pp. 595–626, 2009.

[59] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, N. De Freitas et al.,
“Bayesian optimization in high dimensions via random embeddings.”
in IJCAI, 2013, pp. 1778–1784.

[60] Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. de Feitas,
“Bayesian optimization in a billion dimensions via random embed-
dings,” Journal of Artificial Intelligence Research, vol. 55, pp. 361–
387, 2016.

[61] T. N. Hoang, Q. M. Hoang, R. Ouyang, and K. H. Low, “Decentralized
high-dimensional bayesian optimization with factor graphs,” in Thirty-

Second AAAI Conference on Artificial Intelligence, 2018.
[62] P. Rolland, J. Scarlett, I. Bogunovic, and V. Cevher, “High-dimensional

bayesian optimization via additive models with overlapping groups,”
arXiv preprint arXiv:1802.07028, 2018.

[63] S. Rana, C. Li, S. Gupta, V. Nguyen, and S. Venkatesh, “High dimen-
sional bayesian optimization with elastic gaussian process,” in Proceed-

ings of the 34th International Conference on Machine Learning-Volume

70. JMLR. org, 2017, pp. 2883–2891.
[64] C.-L. Li, K. Kandasamy, B. Póczos, and J. Schneider, “High dimen-

sional bayesian optimization via restricted projection pursuit models,”
in Artificial Intelligence and Statistics, 2016, pp. 884–892.

[65] C. Li, S. Gupta, S. Rana, V. Nguyen, S. Venkatesh, and A. Shilton,
“High dimensional bayesian optimization using dropout,” arXiv

preprint arXiv:1802.05400, 2018.
[66] Z. Wang, C. Li, S. Jegelka, and P. Kohli, “Batched high-dimensional

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 18

bayesian optimization via structural kernel learning,” in Proceedings

of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org, 2017, pp. 3656–3664.

[67] K. Kandasamy, J. Schneider, and B. Póczos, “High dimensional
bayesian optimisation and bandits via additive models,” in International

Conference on Machine Learning, 2015, pp. 295–304.
[68] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time

complexity of the derandomized evolution strategy with covariance
matrix adaptation (cma-es),” Evolutionary computation, vol. 11, no. 1,
pp. 1–18, 2003.

[69] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution:

a practical approach to global optimization. Springer Science &
Business Media, 2006.

[70] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical

learning. Springer series in statistics Springer, Berlin, 2001, vol. 1.
[71] R. Vershynin, “Introduction to the non-asymptotic analysis of random

matrices,” arXiv preprint arXiv:1011.3027, 2010.
[72] W. Dong and X. Yao, “Unified eigen analysis on multivariate gaussian

based estimation of distribution algorithms,” Information Sciences, vol.
178, no. 15, pp. 3000–3023, 2008.

[73] Y. Wang and B. Li, “A restart univariate estimation of distribution
algorithm: sampling under mixed gaussian and lévy probability dis-
tribution,” in IEEE Congress on Evolutionary Computation. IEEE,
2008, pp. 3917–3924.

[74] ——, “A self-adaptive mixed distribution based uni-variate estimation
of distribution algorithm for large scale global optimization,” in Nature-

Inspired Algorithms for Optimisation. Springer, 2009, pp. 171–198.
[75] H. Mühlenbein and T. Mahnig, “Convergence theory and applications

of the factorized distribution algorithm,” Journal of Computing and

Information Theory, vol. 7, no. 1, pp. 19–32, 1999.
[76] P. Larrañaga and J. Lozano, Estimation of Distribution Algorithms: A

new tool for evolutionary computation. Kluwer Academic Pub, 2002.
[77] C. Echegoyen, Q. Zhang, A. Mendiburu, R. Santana, J. Lozano et al.,

“On the limits of effectiveness in estimation of distribution algorithms,”
in Evolutionary Computation (CEC), 2011 IEEE Congress on. IEEE,
2011, pp. 1573–1580.

[78] W. Dong, T. Chen, P. Tino, and X. Yao, “Scaling up estimation of dis-
tribution algorithms for continuous optimization,” IEEE Transactions
on Evolutionary Computation, vol. 17, no. 6, pp. 797–822, 2013.

[79] Q. Xu, M. L. Sanyang, and A. Kab
’an, “Large scale continuous eda using mutual information,” in IEEE
Congress on Evolutionary Computation. IEEE, 2016, pp. 3718–3725.

[80] Y. Wang and B. Li, “Two-stage based ensemble optimization for
large-scale global optimization,” in IEEE Congress on Evolutionary

Computation. IEEE, 2010, pp. 1–8.
[81] Y. Wang, J. Huang, W. S. Dong, J. C. Yan, C. H. Tian, M. Li, and W. T.

Mo, “Two-stage based ensemble optimization framework for large-
scale global optimization,” European Journal of Operational Research,
vol. 228, no. 2, pp. 308–320, 2013.

[82] K. Zhang and B. Li, “Cooperative coevolution with global search for
large scale global optimization,” in IEEE Congress on Evolutionary

Computation. IEEE, 2012, pp. 1–7.
[83] J. Liu and K. Tang, “Scaling up covariance matrix adaptation evolution

strategy using cooperative coevolution,” in International Conference on

Intelligent Data Engineering and Automated Learning. Springer, 2013,
pp. 350–357.

[84] A. Kabán, J. Bootkrajang, and R. J. Durrant, “Toward large-scale
continuous eda: A random matrix theory perspective,” in Genetic and

Evolutionary Computation Conference. ACM, 2013, pp. 255–291.
[85] A. Kabán, J. Bootkrajang, and R. J. Durrant, “Towards large scale

continuous eda: A random matrix theory perspective,” Evolutionary

Computation, May 2015.
[86] S. Dasgupta, “Learning mixtures of gaussians,” in Foundations of

Computer Science, 1999. 40th Annual Symposium on. IEEE, 1999,
pp. 634–644.

[87] P. Diaconis and D. Freedman, “Asymptotics of graphical projection
pursuit,” The annals of statistics, pp. 793–815, 1984.

[88] W. Dong, Y. Wang, and M. Zhou, “A latent space-based estimation
of distribution algorithm for large-scale global optimization,” Soft

Computing, vol. 23, no. 13, pp. 4593–4615, Jul. 2019.
[89] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”

IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp.
82–102, 1999.

[90] C.-Y. Lee and X. Yao, “Evolutionary programming using mutations
based on the lévy probability distribution,” IEEE Transactions on

Evolutionary Computation, vol. 8, no. 1, pp. 1–13, 2004.
[91] T. Schaul, T. Glasmachers, and J. Schmidhuber, “High dimensions and

heavy tails for natural evolution strategies,” in Proc. of the 13th annual

Conference on Genetic and Evolutionary Computation. ACM, 2011,
pp. 845–852.

[92] M. L. Sanyang, H. Muehlbrandt, and A. Kaban, “Two approaches
of using heavy tails in high dimensional eda,” in IEEE International

Conference on Data Mining Workshop. IEEE, 2014, pp. 653–660.
[93] M. L. Sanyang and A. Kabán, “Heavy tails with parameter adaptation

in random projection based continuous eda,” in IEEE Congress on

Evolutionary Computation. IEEE, 2015, pp. 2074–2081.
[94] P. Pošík, “Bbob-benchmarking a simple estimation of distribution

algorithm with cauchy distribution,” in Proc. of the 11th Annual

Conference Companion on Genetic and Evolutionary Computation

Conference: Late Breaking Papers. ACM, 2009, pp. 2309–2314.
[95] M. L. Sanyang and A. Kaban, “Multivariate cauchy eda optimisation,”

in International Conference on Intelligent Data Engineering and Au-

tomated Learning. Springer, 2014, pp. 449–456.
[96] M. L. Sanyang, R. J. Durrant, and A. Kabán, “How effective is

cauchy-eda in high dimensions?” in IEEE Congress on Evolutionary

Computation. IEEE, 2016, pp. 3409–3416.
[97] N. Hansen, F. Gemperle, A. Auger, and P. Koumoutsakos, “When do

heavy-tail distributions help?” in Parallel Problem Solving from Nature.
Springer, 2006, pp. 62–71.

[98] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[99] R. Ros and N. Hansen, “A simple modification in cma-es achieving
linear time and space complexity,” in Parallel Problem Solving from
Nature. Springer, 2008, pp. 296–305.

[100] C. Igel, T. Suttorp, and N. Hansen, “A computational efficient covari-
ance matrix update and a (1+1)-cma for evolution strategies,” in Proc.

of Conference on Genetic and Evolutionary Computation. ACM, 2006,
pp. 453–460.

[101] J. Poland and A. Zell, “Main vector adaptation: A cma variant with
linear time and space complexity,” in Proc. of Genetic and Evolutionary
Computation Conference. Morgan Kaufmann Publishers Inc., 2001,
pp. 1050–1055.

[102] J. N. Knight and M. Lunacek, “Reducing the space-time complexity
of the cma-es,” in Genetic and Evolutionary Computation Conference.
ACM, 2007, pp. 658–665.

[103] Y. Sun, T. Schaul, F. Gomez, and J. Schmidhuber, “A linear time
natural evolution strategy for non-separable functions,” in Proceedings
of the 15th annual conference companion on Genetic and evolutionary

computation. ACM, 2013, pp. 61–62.
[104] I. Loshchilov, “A computationally efficient limited memory CMA-ES

for large scale optimization,” in Genetic and Evolutionary Computation
Conference. ACM, 2014, pp. 397–404.

[105] ——, “Lm-cma: An alternative to L-BFGS for large-scale black box
optimization,” Evolutionary computation, vol. 25, no. 1, pp. 143–171,
2017.

[106] D. C. Liu and J. Nocedal, “On the limited memory BFGS method
for large scale optimization,” Mathematical Programming, vol. 45, pp.
503–528, 1989.

[107] Z. Li, Q. Zhang, X. Lin, and H.-L. Zhen, “Fast Covariance Matrix
Adaptation for Large-Scale Black-Box Optimization,” IEEE Transac-

tions on Cybernetics, vol. 50, no. 5, pp. 2073–2083, May 2020.
[108] H.-G. Beyer and B. Sendhoff, “Simplify Your Covariance Matrix

Adaptation Evolution Strategy,” IEEE Transactions on Evolutionary

Computation, vol. 21, no. 5, pp. 746–759, Oct. 2017.
[109] I. Loshchilov, T. Glasmachers, and H.-G. Beyer, “Large Scale Black-

Box Optimization by Limited-Memory Matrix Adaptation,” IEEE

Transactions on Evolutionary Computation, vol. 23, no. 2, pp. 353–
358, Apr. 2019.

[110] Z. Li and Q. Zhang, “A simple yet efficient evolution strategy for large
scale black-box optimization,” IEEE Transactions on Evolutionary

Computation, 2017.
[111] X. He, Z. Zheng, and Y. Zhou, “MMES: Mixture Model-Based

Evolution Strategy for Large-Scale Optimization,” IEEE Transactions

on Evolutionary Computation, vol. 25, no. 2, pp. 320–333, Apr. 2021.
[112] D. Thierens, “The linkage tree genetic algorithm,” in Parallel Problem

Solving from Nature. Springer, 2010, pp. 264–273.
[113] M. Tsuji, M. Munetomo, and K. Akama, “Linkage identification by

fitness difference clustering,” Evolutionary Computation, vol. 14, no. 4,
pp. 383–409, 2006.

[114] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach
to particle swarm optimization,” IEEE Transactions on Evolutionary

Computation, vol. 8, no. 3, pp. 225–239, 2004.
[115] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 19

programming with cooperative coevolution,” in Proc. of IEEE Congress

on Evolutionary Computation, 2001, pp. 1101–1108.
[116] Y. Shi, H. Teng, , and Z. Li, “Cooperative co-evolutionary differential

evolution for function optimization,” in Proc. of International Confer-

ence on Natural Computation, 2005, pp. 1080–1088.
[117] R. Storn and K. Price, “Differential evolution – a simple and efficient

heuristic for global optimization over continuous spaces,” Journal of

Global Optimization 11 (4), pp. 341–359, 1995.
[118] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization

using cooperative coevolution,” Information Sciences, vol. 178, no. 15,
pp. 2985–2999, 2008.

[119] X. Li and X. Yao, “Tackling high dimensional nonseparable optimiza-
tion problems by cooperatively coevolving particle swarms,” in IEEE
Congress on Evolutionary Computation. IEEE, 2009, pp. 1546–1553.

[120] M. N. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative co-evolution
for large scale optimization through more frequent random grouping,”
in IEEE Congress on Evolutionary Computation. IEEE, 2010, pp.
1–8.

[121] M. N. Omidvar, X. Li, and X. Yao, “Cooperative co-evolution with
delta grouping for large scale non-separable function optimization,” in
IEEE Congress on Evolutionary Computation. IEEE, 2010, pp. 1–8.

[122] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Bench-
mark functions for the CEC’2010 special session and competi-
tion on large-scale global optimization,” Nature Inspired Computa-
tion and Applications Laboratory, USTC, China, Tech. Rep., 2009,
http://nical.ustc.edu.cn/cec10ss.php.

[123] R. Salomon, “Reevaluating genetic algorithm performance under coor-
dinate rotation of benchmark functions - a survey of some theoretical
and practical aspects of genetic algorithms,” BioSystems, vol. 39, pp.
263–278, 1995.

[124] H. Ge, M. Zhao, Y. Hou, Z. Kai, L. Sun, G. Tan, Q. Zhang, and C. L.
Philip Chen, “Bi-space Interactive Cooperative Coevolutionary algo-
rithm for large scale black-box optimization,” Applied Soft Computing,
vol. 97, p. 106798, Dec. 2020.

[125] H. Liu, Y. Wang, L. Liu, X.-Z. Gao, and Y.-m. Cheung, “A new group-
ing strategy-based hybrid algorithm for large scale global optimization
problems,” in Genetic and Evolutionary Computation Conference Com-

panion. ACM, 2017, pp. 171–172.
[126] E. Sayed, D. Essam, and R. Sarker, “Dependency identification tech-

nique for large scale optimization problems,” in IEEE Congress on

Evolutionary Computation. IEEE, 2012, pp. 1–8.
[127] A. E. Aguilar-Justo and E. Mezura-Montes, “Towards an improvement

of variable interaction identification for large-scale constrained prob-
lems,” in IEEE Congress on Evolutionary Computation. IEEE, 2016,
pp. 4167–4174.

[128] A. E. Aguilar-Justo, E. Mezura-Montes, S. M. Elsayed, and R. A.
Sarker, “Decomposition of large-scale constrained problems using a
genetic-based search,” in 2016 IEEE International Autumn Meeting on

Power, Electronics and Computing (ROPEC). IEEE, 2016, pp. 1–6.
[129] E. Sayed, D. Essam, R. Sarker, and S. Elsayed, “Decomposition-

based evolutionary algorithm for large scale constrained problems,”
Information Sciences, vol. 316, pp. 457–486, 2015.

[130] G. Dai, X. Chen, L. Chen, M. Wang, and L. Peng, “Cooperative
coevolution with dependency identification grouping for large scale
global optimization,” in IEEE Congress on Evolutionary Computation.
IEEE, 2016, pp. 5201–5208.

[131] A. Tiwari, R. Roy, G. Jared, and O. Munaux, “Interaction and multi-
objective optimisation,” in Genetic and Evolutionary Computation

Conference. Morgan Kaufmann Publishers Inc., 2001, pp. 671–678.
[132] A. Tiwari and R. Roy, “Variable dependence interaction and multi-

objective optimisation,” in Genetic and Evolutionary Computation

Conference. Morgan Kaufmann Publishers Inc., 2002, pp. 602–609.
[133] R. Roy and A. Tiwari, “Generalised regression GA for handling insep-

arable function interaction: Algorithm and applications,” in Parallel

Problem Solving from Nature. Springer, 2002, pp. 452–461.
[134] T. Ray and X. Yao, “A cooperative coevolutionary algorithm with

correlation based adaptive variable partitioning,” in IEEE Congress on

Evolutionary Computation. IEEE, 2009, pp. 983–989.
[135] H. K. Singh and T. Ray, “Divide and conquer in coevolution: A difficult

balancing act,” in Agent-Based Evolutionary Search. Springer, 2010,
pp. 117–138.

[136] Y. Rojas and R. Landa, “Towards the use of statistical information
and differential evolution for large scale global optimization,” in
International Conference on Electrical Engineering Computing Science
and Automatic Control. IEEE, 2011, pp. 1–6.

[137] Y. Wang, B. Li, and X. Lai, “Variance priority based cooperative co-
evolution differential evolution for large scale global optimization,” in

IEEE Congress on Evolutionary Computation. IEEE, 2009, pp. 1232–
1239.

[138] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman,
G. McVean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and
P. C. Sabeti, “Detecting novel associations in large data sets,” science,
vol. 334, no. 6062, pp. 1518–1524, 2011.

[139] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, “Cooperative co-
evolution with a new decomposition method for large-scale optimiza-
tion,” in IEEE Congress on Evolutionary Computation. IEEE, 2014,
pp. 1285–1292.

[140] I. M. Sobol, “Sensitivity estimates for nonlinear mathematical models,”
Mathematical modelling and computational experiments, vol. 1, no. 4,
pp. 407–414, 1993.

[141] S. Shan and G. G. Wang, “Metamodeling for high dimensional
simulation-based design problems,” Journal of Mechanical Design, vol.
132, no. 5, p. 051009, 2010.

[142] E. Li, H. Wang, and F. Ye, “Two-level multi-surrogate assisted opti-
mization method for high dimensional nonlinear problems,” Applied

Soft Computing, vol. 46, pp. 26–36, 2016.
[143] H. Rabitz and Ö. F. Aliş, “General foundations of high-dimensional

model representations,” Journal of Mathematical Chemistry, vol. 25,
no. 2-3, pp. 197–233, 1999.

[144] M. Munetomo and D. E. Goldberg, “Linkage identification by non-
monotonicity detection for overlapping functions,” Evolutionary Com-
putation, vol. 7, no. 4, pp. 377–398, 1999.

[145] W. Chen, T. Weise, Z. Yang, and K. Tang, “Large-scale global
optimization using cooperative coevolution with variable interaction
learning,” in Parallel Problem Solving from Nature. Springer, 2010,
pp. 300–309.

[146] K. Weicker and N. Weicker, “On the improvement of coevolutionary
optimizers by learning variable interdependencies,” in IEEE Congress
on Evolutionary Computation, vol. 3. IEEE, 1999, pp. 1627–1632.

[147] L. Sun, S. Yoshida, X. Cheng, and Y. Liang, “A cooperative particle
swarm optimizer with statistical variable interdependence learning,”
Information Sciences, vol. 186, no. 1, pp. 20–39, 2012.

[148] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for
the CEC 2005 special session on real-parameter optimization,”
Nanyang Technological University, Singapore, Tech. Rep., 2005,
http://www.ntu.edu.sg/home/EPNSugan.

[149] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, “Benchmark
functions for the CEC’2013 special session and competition on large-
scale global optimization,” RMIT University, Melbourne, Australia,
Tech. Rep., 2013, http://goanna.cs.rmit.edu.au/ xiaodong/cec13-lsgo.

[150] H. Ge, L. Sun, X. Yang, S. Yoshida, and Y. Liang, “Cooperative
differential evolution with fast variable interdependence learning and
cross-cluster mutation,” Applied Soft Computing, vol. 36, pp. 300–314,
2015.

[151] M. Munetomo and D. E. Goldberg, “Identifying linkage by nonlinearity
check,” Tech. Rep., 1998.

[152] M. Tezuka, M. Munetomo, and K. Akama, “Linkage identification by
nonlinearity check for real-coded genetic algorithms,” in Genetic and
Evolutionary Computation Conference. Springer, 2004, pp. 222–233.

[153] M. Munetomo and D. E. Goldberg, “A genetic algorithm using linkage
identification by nonlinearity check,” in IEEE Conference on Systems,

Man, and Cybernetics, vol. 1. IEEE, 1999, pp. 595–600.
[154] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution

with differential grouping for large scale optimization,” IEEE Transac-

tions on Evolutionary Computation, vol. 18, no. 3, pp. 378–393, 2014.
[155] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive divide-and-

conquer algorithm for unconstrained large-scale black-box optimiza-
tion,” ACM Transactions on Mathematical Software, vol. 42, no. 2,
p. 13, 2016.

[156] Y. Ling, H. Li, and B. Cao, “Cooperative co-evolution with graph-
based differential grouping for large scale global optimization,” in
International Conference on Natural Computation, Fuzzy Systems and
Knowledge Discovery. IEEE, 2016, pp. 95–102.

[157] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, “Dg2: A
faster and more accurate differential grouping for large-scale black-
box optimization,” IEEE Transactions on Evolutionary Computation,
vol. 21, no. 6, pp. 929–942, 2017.

[158] Y. Sun, M. Kirley, and S. K. Halgamuge, “Extended differential group-
ing for large scale global optimization with direct and indirect variable
interactions,” in Genetic and Evolutionary Computation Conference.
ACM, 2015, pp. 313–320.

[159] X.-M. Hu, F.-L. He, W.-N. Chen, and J. Zhang, “Cooperation coevolu-
tion with fast interdependency identification for large scale optimiza-

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 20

tion,” Information Sciences, vol. 381, pp. 142–160, 2017.
[160] Y. Sun, M. Kirley, and S. K. Halgamuge, “A recursive decomposition

method for large scale continuous optimization,” IEEE Transactions on

Evolutionary Computation, 2017.
[161] M. Yang, A. Zhou, C. Li, and X. Yao, “An Efficient Recursive

Differential Grouping for Large-Scale Continuous Problems,” IEEE
Transactions on Evolutionary Computation, vol. 25, no. 1, pp. 159–
171, Feb. 2021.

[162] K. S. Kim and Y. S. Choi, “An efficient variable interdependency-
identification and decomposition by minimizing redundant computa-
tions for large-scale global optimization,” Information Sciences, vol.
513, pp. 289–323, Mar. 2020.

[163] X. Xue, K. Zhang, R. Li, L. Zhang, C. Yao, J. Wang, and J. Yao, “A
topology-based single-pool decomposition framework for large-scale
global optimization,” Applied Soft Computing, vol. 92, p. 106295, Jul.
2020.

[164] H.-B. Xu, F. Li, and H. Shen, “A Three-Level Recursive Differential
Grouping Method for Large-Scale Continuous Optimization,” IEEE

Access, vol. 8, pp. 141 946–141 957, 2020.
[165] B. Cao, J. Zhao, Y. Gu, Y. Ling, and X. Ma, “Applying graph-

based differential grouping for multiobjective large-scale optimization,”
Swarm and Evolutionary Computation, vol. 53, p. 100626, Mar. 2020.

[166] M. N. Omidvar, X. Li, and K. Tang, “Designing benchmark problems
for large-scale continuous optimization,” Information Sciences, vol.
316, pp. 419–436, 2015.

[167] A. Chen, Y. Zhang, Z. Ren, Y. Yang, Y. Liang, and B. Pang, “A
global information based adaptive threshold for grouping large scale
optimization problems,” in Genetic and Evolutionary Computation

Conference. ACM, 2018, pp. 833–840.
[168] Y. Sun, M. N. Omidvar, M. Kirley, and X. Li, “Adaptive threshold

parameter estimation with recursive differential grouping for problem
decomposition,” in Proceedings of the Genetic and Evolutionary Com-

putation Conference. ACM, 2018, pp. 889–896.
[169] Y. Sun, X. Li, A. Ernst, and M. N. Omidvar, “Decomposition for large-

scale optimization problems with overlapping components,” in IEEE

congress on evolutionary computation, 2019.
[170] X. Peng, Y. Jin, and H. Wang, “Multimodal Optimization Enhanced

Cooperative Coevolution for Large-Scale Optimization,” IEEE Trans-
actions on Cybernetics, vol. 49, no. 9, pp. 3507–3520, Sep. 2019.

[171] Z. Ren, A. Chen, M. Wang, Y. Yang, Y. Liang, and K. Shang, “Bi-
Hierarchical Cooperative Coevolution for Large Scale Global Opti-
mization,” IEEE Access, vol. 8, pp. 41 913–41 928, 2020.

[172] J. Fan, J. Wang, and M. Han, “Cooperative coevolution for large-scale
optimization based on kernel fuzzy clustering and variable trust region
methods,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 4, pp.
829–839, 2014.

[173] L. Li, W. Fang, Q. Wang, and J. Sun, “Differential Grouping with
Spectral Clustering for Large Scale Global Optimization,” in 2019

IEEE Congress on Evolutionary Computation (CEC), Jun. 2019, pp.
334–341.

[174] L. Li, W. Fang, Y. Mei, and Q. Wang, “Cooperative coevolution for
large-scale global optimization based on fuzzy decomposition,” Soft
Computing, vol. 25, no. 5, pp. 3593–3608, Mar. 2021.

[175] Z. Yang, K. Tang, and X. Yao, “Multilevel cooperative coevolution
for large scale optimization,” in IEEE Congress on Evolutionary

Computation. IEEE, 2008, pp. 1663–1670.
[176] M. N. Omidvar, Y. Mei, and X. Li, “Effective decomposition of large-

scale separable continuous functions for cooperative co-evolutionary
algorithms,” in IEEE Congress on Evolutionary Computation. IEEE,
2014, pp. 1305–1312.

[177] A. Vakhnin and E. Sopov, “Investigation of Improved Cooperative Co-
evolution for Large-Scale Global Optimization Problems,” Algorithms,
vol. 14, no. 5, p. 146, May 2021.

[178] A. Song, W.-N. Chen, P.-T. Luo, Y.-J. Gong, and J. Zhang, “Over-
lapped cooperative co-evolution for large scale optimization,” in IEEE

International Conference on Systems, Man, and Cybernetics. IEEE,
2017, pp. 3689–3694.

[179] W. Fang, L. Zhang, J. Zhou, X. Wu, and J. Sun, “A novel quantum-
behaved particle swarm optimization with random selection for large
scale optimization,” in IEEE Congress on Evolutionary Computation.
IEEE, 2017, pp. 2746–2751.

[180] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE transactions on evolutionary computation, vol. 1,
no. 1, pp. 67–82, 1997.

[181] A. Sinha and D. E. Goldberg, “A survey of hybrid genetic and
evolutionary algorithms,” IlliGAL report, vol. 2003004, 2003.

[182] G. Wu, R. Mallipeddi, and P. N. Suganthan, “Ensemble strategies

for population-based optimization algorithms – A survey,” Swarm and

Evolutionary Computation, vol. 44, pp. 695–711, Feb. 2019.
[183] L.-Y. Tseng and C. Chen, “Multiple trajectory search for large scale

global optimization,” in IEEE Congress on Evolutionary Computation.
IEEE, 2008, pp. 3052–3059.

[184] V. Gardeux, R. Chelouah, P. Siarry, and F. Glover, “EM323: a line
search based algorithm for solving high-dimensional continuous non-
linear optimization problems,” Soft Computing, vol. 15, no. 11, pp.
2275–2285, 2011.

[185] P. Moscato et al., “On evolution, search, optimization, genetic al-
gorithms and martial arts: Towards memetic algorithms,” Caltech

concurrent computation program, C3P Report, vol. 826, p. 1989, 1989.
[186] C. Seren, “A hybrid jumping particle swarm optimization method for

high dimensional unconstrained discrete problems,” in IEEE Congress

on Evolutionary Computation. IEEE, 2011, pp. 1649–1656.
[187] N. Bouhmala, “A multilevel memetic algorithm for large sat-encoded

problems,” Evolutionary Computation, vol. 20, no. 4, pp. 641–664,
2012.

[188] J.-q. Li and Q.-k. Pan, “Solving the large-scale hybrid flow shop
scheduling problem with limited buffers by a hybrid artificial bee
colony algorithm,” Information Sciences, vol. 316, pp. 487–502, 2015.

[189] Y. Mei, X. Li, and X. Yao, “Cooperative coevolution with route
distance grouping for large-scale capacitated arc routing problems,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 3, pp.
435–449, 2014.

[190] R. Shang, K. Dai, L. Jiao, and R. Stolkin, “Improved memetic algo-
rithm based on route distance grouping for multiobjective large scale
capacitated arc routing problems,” IEEE Transactions on Cybernetics,
vol. 46, no. 4, pp. 1000–1013, 2016.

[191] N. R. Sabar, J. Abawajy, and J. Yearwood, “Heterogeneous cooperative
co-evolution memetic differential evolution algorithm for big data opti-
mization problems,” IEEE Transactions on Evolutionary Computation,
vol. 21, no. 2, pp. 315–327, 2017.

[192] D. Tang, Y. Cai, J. Zhao, and Y. Xue, “A quantum-behaved particle
swarm optimization with memetic algorithm and memory for contin-
uous non-linear large scale problems,” Information Sciences, vol. 289,
pp. 162–189, 2014.

[193] S.-Z. Zhao, J. J. Liang, P. N. Suganthan, and M. F. Tasgetiren,
“Dynamic multi-swarm particle swarm optimizer with local search for
large scale global optimization,” in IEEE Congress on Evolutionary

Computation. IEEE, 2008, pp. 3845–3852.
[194] M. Olguin-Carbajal, E. Alba, and J. Arellano-Verdejo, “Micro-

differential evolution with local search for high dimensional problems,”
in IEEE Congress on Evolutionary Computation. IEEE, 2013, pp. 48–
54.

[195] S. Salcedo-Sanz, C. Camacho-Gómez, D. Molina, and F. Herrera, “A
coral reefs optimization algorithm with substrate layers and local search
for large scale global optimization,” in IEEE Congress on Evolutionary

Computation. IEEE, 2016, pp. 3574–3581.
[196] M. A. M. de Oca, D. Aydın, and T. Stützle, “An incremental particle

swarm for large-scale continuous optimization problems: an example
of tuning-in-the-loop (re)design of optimization algorithms,” Soft Com-
puting, vol. 15, no. 11, pp. 2233–2255, 2011.

[197] C. Liu and B. Li, “Memetic algorithm with adaptive local search depth
for large scale global optimization,” in IEEE Congress on Evolutionary

Computation. IEEE, 2014, pp. 82–88.
[198] A. Bolufé-Röhler, S. Fiol-González, and S. Chen, “A minimum pop-

ulation search hybrid for large scale global optimization,” in IEEE

Congress on Evolutionary Computation. IEEE, 2015, pp. 1958–1965.
[199] D. Molina, M. Lozano, and F. Herrera, “MA-SW-Chains: Memetic

algorithm based on local search chains for large scale continuous global
optimization,” in IEEE Congress on Evolutionary Computation. IEEE,
2010, pp. 3153–3160.

[200] D. Molina, M. Lozano, A. M. Sánchez, and F. Herrera, “Memetic
algorithms based on local search chains for large scale continuous op-
timisation problems: Ma-ssw-chains,” Soft Computing, vol. 15, no. 11,
pp. 2201–2220, 2011.

[201] I. Fister, I. J. Fister, J. Brest, and V. Žumer, “Memetic artificial
bee colony algorithm for large-scale global optimization,” in IEEE

Congress on Evolutionary Computation. IEEE, 2012, pp. 1–8.
[202] D. Molina and F. Herrera, “Iterative hybridization of de with local

search for the CEC’2015 special session on large scale global opti-
mization,” in IEEE Congress on Evolutionary Computation. IEEE,
2015, pp. 1974–1978.

[203] S.-Z. Zhao, P. N. Suganthan, and S. Das, “Self-adaptive differential
evolution with multi-trajectory search for large-scale optimization,” Soft

Computing, vol. 15, no. 11, pp. 2175–2185, 2011.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 21

[204] A. Pétrowski, “A clearing procedure as a niching method for genetic
algorithms,” in Proceedings of IEEE international conference on evo-
lutionary computation. IEEE, 1996, pp. 798–803.

[205] H. Rosenbrock, “An automatic method for finding the greatest or least
value of a function,” The Computer Journal, vol. 3, no. 3, pp. 175–184,
1960.

[206] M. J. Powell, “An efficient method for finding the minimum of
a function of several variables without calculating derivatives,” The

computer journal, vol. 7, no. 2, pp. 155–162, 1964.
[207] Z. Cao, L. Wang, Y. Shi, X. Hei, X. Rong, Q. Jiang, and H. Li,

“An effective cooperative coevolution framework integrating global and
local search for large scale optimization problems,” in IEEE Congress

on Evolutionary Computation. IEEE, 2015, pp. 1986–1993.
[208] A. LaTorre, S. Muelas, and J.-M. Peña, “A mos-based dynamic

memetic differential evolution algorithm for continuous optimization: a
scalability test,” Soft Computing, vol. 15, no. 11, pp. 2187–2199, 2011.

[209] ——, “Multiple offspring sampling in large scale global optimization,”
in IEEE Congress on Evolutionary Computation. IEEE, 2012, pp.
1–8.

[210] ——, “Large scale global optimization: Experimental results with
MOS-based hybrid algorithms,” in IEEE Congress on Evolutionary

Computation. IEEE, 2013, pp. 2742–2749.
[211] D. Molina, M. Lozano, and F. Herrera, “Memetic algorithm with local

search chaining for large scale continuous optimization problems,” in
IEEE Congress on Evolutionary Computation. IEEE, 2009, pp. 830–
837.

[212] E. Segredo, E. Lalla-Ruiz, E. Hart, and S. Voß, “On the performance
of the hybridisation between migrating birds optimisation variants and
differential evolution for large scale continuous problems,” Expert

Systems with Applications, vol. 102, pp. 126–142, 2018.
[213] Y. Sun, M. Kirley, and S. K. Halgamuge, “A memetic cooperative

co-evolution model for large scale continuous optimization,” in Aus-

tralasian Conference on Artificial Life and Computational Intelligence.
Springer, 2017, pp. 291–300.

[214] J. Tang, M. H. Lim, and Y. S. Ong, “Diversity-adaptive parallel
memetic algorithm for solving large scale combinatorial optimization
problems,” Soft Computing, vol. 11, no. 9, pp. 873–888, 2007.

[215] L. Vitorino, S. Ribeiro, and C. J. Bastos-Filho, “A hybrid swarm
intelligence optimizer based on particles and artificial bees for high-
dimensional search spaces,” in IEEE Congress on Evolutionary Com-

putation. IEEE, 2012, pp. 1–6.
[216] Y. Wang, B. Li, and T. Weise, “Estimation of distribution and dif-

ferential evolution cooperation for large scale economic load dispatch
optimization of power systems,” Information Sciences, vol. 180, no. 12,
pp. 2405–2420, 2010.

[217] S. Yang and Y. Sato, “Modified bare bones particle swarm optimization
with differential evolution for large scale problem,” in IEEE Congress

on Evolutionary Computation. IEEE, 2016, pp. 2760–2767.
[218] S. Ye, G. Dai, L. Peng, and M. Wang, “A hybrid adaptive coevolu-

tionary differential evolution algorithm for large-scale optimization,”
in IEEE Congress on Evolutionary Computation. IEEE, 2014, pp.
1277–1284.

[219] W. Deng, R. Chen, B. He, Y. Liu, L. Yin, and J. Guo, “A novel two-
stage hybrid swarm intelligence optimization algorithm and applica-
tion,” Soft Computing, vol. 16, no. 10, pp. 1707–1722, 2012.

[220] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of

global optimization, vol. 11, no. 4, pp. 341–359, 1997.
[221] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.

of IEEE International Conference on Neural Networks, vol. 4, 1995,
pp. 1942–1948.

[222] F. J. Solis and R. J.-B. Wets, “Minimization by random search
techniques,” Mathematics of operations research, vol. 6, no. 1, pp.
19–30, 1981.

[223] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” The computer journal, vol. 7, no. 4, pp. 308–313, 1965.

[224] A. LaTorre, J. M. Peña, V. Robles, and S. Muelas, “Using multiple
offspring sampling to guide genetic algorithms to solve permutation
problems,” in Proceedings of the 10th annual conference on Genetic

and evolutionary computation. ACM, 2008, pp. 1119–1120.
[225] D. Molina, M. Lozano, C. García-Martínez, and F. Herrera, “Memetic

algorithms for continuous optimisation based on local search chains,”
Evolutionary computation, vol. 18, no. 1, pp. 27–63, 2010.

[226] D. Molina, A. LaTorre, and F. Herrera, “SHADE with Iterative Local
Search for Large-Scale Global Optimization,” in 2018 IEEE Congress

on Evolutionary Computation (CEC), Jul. 2018, pp. 1–8.
[227] A. LaTorre, S. Muelas, and J.-M. Peña, “Evaluating the multiple

offspring sampling framework on complex continuous optimization
functions,” Memetic Computing, vol. 5, no. 4, pp. 295–309, 2013.

[228] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution
with neighborhood search,” in 2008 IEEE Congress on Evolutionary

Computation (IEEE World Congress on Computational Intelligence).
IEEE, 2008, pp. 1110–1116.

[229] A. A. Hadi, A. W. Mohamed, and K. M. Jambi, “Lshade-spa memetic
framework for solving large-scale optimization problems,” Complex &

Intelligent Systems, vol. 5, no. 1, pp. 25–40, 2019.

