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Control of a DC motor using feedback
linearization and gray wolf
optimization algorithm

Mitra Vesović1 , Radiša Jovanović1 and Nataša Trišović2

Abstract
The aim of this study is to investigate nonlinear DC motor behavior and to control velocity as output variable. The linear
model is designed, but as it is experimentally verified that it does not describe the system well enough it is replaced by
the nonlinear one. System’s model has been obtained taking into account Coulomb and viscous friction in the firmly non-
linear environment. In the frame of the paper the dynamical analysis of the nonlinear feedback linearizing control is car-
ried out. Furthermore, a metaheuristic optimization algorithm is set up for finding the coefficient of the proportional-
integral feedback linearizing controller. For this purpose Gray wolf optimization technique is used. Moreover, after the
introduction of the control law, analysis of the pole placement and stability of the system is establish. Optimized non-
linear control signal has been applied to the real object with simulated white noise and step signal as disturbances.
Finally, for several desired output signals, responses with and without disruption are compared to illustrate the approach
proposed in the paper. Experimental results obtained on the given system are provided and they verify nonlinear control
robustness.
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Introduction

Direct current (DC) motors are mostly used in indus-
tries where velocity is required to keep accurate adapta-
tion, or where low-velocity torque is needed, for
example electric vehicles, steel rolling mills, electric
cranes, and robotic manipulators due to precise, wide,
simple, and continuous control characteristics.1 Also, it
is extremely important to describe the response feature
and fatigue life of certain structures.2 As manufacturing
sector represents the first momentum of Energy-Based
Maintenance evolution, and technology transfer activi-
ties are necessary,3 it is of great importance to research
well and know all the possibilities, elements, and
machines that drive production. There are several pos-
sibilities within brushed motors. One with the

permanent magnet, shunt, series, and combination of
the last two-compound. They are all suitable for usage
in different applications in industry. This paper investi-
gates series wound DC motor which can supply varying
voltage.
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Many different techniques can be applied to control
the velocity of the output series DC motor shaft.
Frequently used are, surely, conventional methods such
as traditional feedback control: proportional-integral-
derivative (PID) like controllers. They have low prices
(compared to more complicated control systems), they
are simple and different variants of this control systems
(proportional-integral PI or proportional-derivative
PD) manage to keep the output of the system well
matched with the set value within the error limits. On
the other hand, they suffer due to lack of robustness.4

Other than conventional, there are many nonlinear
controllers. Some of them use adaptive control tech-
nique, because the estimated velocity is heavily con-
taminated by noises from the switching signals. This
direct method nullifies the merit of the sliding mode
observer.5 In order to overcome the boundaries of
model reference adaptive control several are built from
Artificial Neural Network (ANN), like it was proposed
in the papers.6,7 ANNs enable estimating and control-
ling velocity for a separately excited DC machine and it
is one of the most important modern techniques. The
rotor speed of the machine can be made to follow an
arbitrarily selected trajectory, especially when the
motor and load parameters are unknown. In
Alhanjouri8 these two neural networks are trained by
Levenberg-Marquardt back-propagation algorithm.
Simulation results indicates to the advantages, effec-
tiveness, good performance of the artificial neural net-
work controller, which is illustrated through the
comparison obtain by the system. In nonlinear system,
self-tuning ANNs technique is related to linearization
of model at operating time interval. This may produce
error because of linearization of nonlinear model and
cannot control the speed accurately.1

In general, the control of system is difficult due to
high nonlinearity properties. To overcome this diffi-
culty, another technique, which include Fuzzy Logic
Controller (FLC) can be developed.9 FLC is just one of
the intelligent controllers and represents a widespread
control technique as it has satisfactory performance for
nonlinear and complex systems. Basic character and
the aim of this control strategy is to take advantages of
knowledge and the control experience of the operator
for intuitive synthesis of the control system. Analysis
and comparison with classical PID control, sliding con-
trol, adaptive control, etc., that is, by conventional con-
trol techniques, have led to the results which were also
used for the analysis of stability and quality of dynamic
behavior.10 The fuzzy design can be considered as an
optimization problem, where the structure, antecedent,
and consequent parameters are required to be
identified.

Global optimization problems are difficult to be
solved efficiently because of their high nonlinearity and
multiple local optima. Nonetheless, with nonlinear

equations it is senseless examining system’s stability,
but one can check the stability of the separate equili-
briums. System which has two equilibrium points can
initially be in equilibrium number one, which is
unstable. When the disturbance is applied, it can hap-
pen that the second equilibrium attracts trajectory and
the state can converge in the second equilibrium.11

Therefore it is necessary to check whether the global
minimum time of motion is actually realized by the
obtained solution.12 Finding the optimal solutions rep-
resent the basic and challenging task, that is widely
studied for decades. Nature has been a major source of
inspiration for researchers in the field of optimization.13

The implementation of metaheuristic algorithms can
be solved with nonconvex, nonlinear, and multimodal
problems subjected to linear or nonlinear constraints
by continuous or discrete decision variables, in the
form of global optimization algorithms. For example,
differential evolution and genetic algorithms have been
used to perform an optimal design of a phase controller
to track the trajectory of moving robots.14–16 Some of
these algorithma include the genetic algorithm (GA),17

particle swarm optimization (PSO),18 whale optimiza-
tion algorithm (WOA),19 gray wolf optimization
(GWO),20 etc. Based on20 GWO technique illustrates
its supremacy with an improved version of GWO tech-
nique named as IGWO. This controller was proposed
and demonstrated for step load disturbances, stochastic
load disturbances, and varied conditions. In combina-
tion with other nonlinear control systems, these Park
et al.21 as well as the other techniques such as ant col-
ony (AC)22 and a novel method called the cuckoo
search (CS)23 can be applied.

Although modeling a nonlinearity is often a very
complicated challenge, one of the first steps in the
synthesis of a control system is to create a mathemati-
cal model. This will save time and bring the cost-effec-
tiveness.24 On the other hand, an exact mathematical
models can not be easily obtained. One way to battle
this kind of problem is given in the paper which used
real coded genetic algorithm with a goal to estimate the
unknown system parameters. In order to integrate the
resulted system model and the feedback linearizing con-
troller (FBL), the nonlinear robotic system can be
transferred to a linear model with a nonlinear bounded
time-varying uncertainty.25

Feedback linearization is the nonlinear control tech-
nique which has attracted increasing attention in past
decades.26 By a synergy of a nonlinear transformation
and linearization with feedback loop, the nonlinear
control design allows the creation of linear control
law.27 The central idea of the approach is to algebrai-
cally transform a nonlinear system dynamics into a
(fully or partly) linear one, so that linear control tech-
niques can be applied. This differs entirely from con-
ventional linearization in that feedback linearization is
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achieved by exact state transformations and feedback,
rather than by linear approximations of the dynamics.28

This technique has been successfully implemented in
many applications of control, such as industrial robots,
high performance aircraft, helicopters, and biomedical
dispositifs; more tasks which used this methodology are
being now well advanced in industry.29 In Cambera and
Feliu-Batlle30 the problem of tracking the trajectory of
the flexible end effector was solved using FBL method,
where the force of gravity and the force of joint friction
are taken into account. As relatively simple and easy
understandable technique FBL is suitable to be used in
nonlinear systems: Aerial Package Delivery Robot,31

manipulators,32 and even for a high-DOF robots.33

An optimal control strategy for a bearingless perma-
nent magnet synchronous machine drive is proposed in
Sun et al.34 The state feedback control (SFC) based on
the GWO algorithm is applied. The discretized state
model with the augmented integrals of the displacement
error and angular speed error is obtained. Then, the
weighting matrices are obtained by employing the
GWO algorithm. The results show the superiority of
the proposed method reflecting in faster response and
no overshoot compared with the PI controllers. On the
other hand, paper35 presents an optimal control strat-
egy for a permanent-magnet synchronous hub motor
(PMSHM) drive using the state feedback control
method plus the gray wolf optimization (GWO) algo-
rithm. To acquire satisfactory dynamics of speed
response, the discretized state space model of the
PMSHM is augmented with the integral of rotor speed
error and integral of current error. Then, the GWO
algorithm is employed to acquire the weighting matrices
Q and R in liner quadratic regulator optimization pro-
cess. Finally, comparisons among the GWO-based state
feedback controller, the conventional state feedback
controller, and the genetic algorithm enhanced PI con-
trollers are conducted in both simulations and experi-
ments. The comparison results show the superiority of
the proposed state feedback controller with the penalty
term in fast response. Finally,36 proposes an improved
deadbeat predictive controller for PMSM drive systems.
It can eliminate the influence of parameter mismatch of
inductance, resistance, and flux linkage. A composite
sliding mode disturbance observer (SMDO) based on
stator current and lumped disturbance is proposed,
which can simultaneously estimate the future current
value and lumped disturbance caused by the parameter
mismatch of inductance, resistance, and flux linkage.
Both simulation and experimental performances of the
proposed method have been validated and compared
with the conventional control methods under different
conditions. The comparison results show the superiority
of the proposed predictive current control method
based on the composite SMDO.

In this paper, the FBL method was used to control
the velocity of the DC motor. The feedback lineariza-
tion is a powerful nonlinear method based on the princi-
ple of canceling the nonlinearities of the system model.
In most papers dealing with the similar topics of FBL
technique application for DC motor control (see Mehta
and Chiasson,27 Moradi et al.,37 Shirvani Boroujeni
et al.38) the nonlinear model is made on the basis of flux
and motor current nonlinearities. For the purposes of
this research, feedback linearization was performed
using a mathematical model that takes into account the
nonlinearity resulting from friction. Therefore, a non-
linear mathematical model of a DC motor with previ-
ously determined friction, in the form of a Tustin
model, was adopted. Moreover, a new model was
applied in which the discontinuous nonlinearity was
approximated by a differentiable nonlinearity of the
hyperbolic tangent, which ensured the conditions for
the application of FBL. After the feedback linearization
method has been successfully utilized to change the non-
linear states of the system to their linear forms, classical
PI controller has been implemented for DC motor velo-
city control. Determining controller gains has been con-
sidered as an optimization problem and solved using
GWO optimization algorithm, as one of recent meta-
heuristics swarm intelligence methods. GWO has been
widely tailored for a wide variety of optimization prob-
lems due to its impressive characteristics over other
swarm intelligence methods: it has very few parameters,
and no derivation information is required in the initial
search. Also it is simple, easy to use, flexible, scalable,
and has a special capability to strike the right balance
between the exploration and exploitation during the
search which leads to favorable convergence.39 The last
contribution of the paper is the demonstration of
robustness and good control performances of nonlinear
system control against external disturbance and in the
presence of noise, through experimental results.

Description of the system

In this Section from the electrical, mechanical, and
combined equations we obtain and investigate linear
model of the DC motor . Mathematical model and dis-
cussion of the model benefit is conducted. Here the
experimental verification of the obtained mathematical
representation is provided.

The first prominent pace in control design is obtain-
ing the most precise model possible, because it reduces
time for task performing. Furthermore, it brings the
labor saving, cost-effectiveness, and makes work easier
and faster. That is why establishing the valid model is a
crucial stage in the practical control problems.

The main aim of modeling DC motor is to find the
applied voltage, torque, current, or speed related
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differential equations.40 Object is taken to be the DC
motor, SRV02 Rotary Servo Base Unit, which has been
considered as a single-input-single-output (SISO) sys-
tem. This object is equipped with the optical encoder
and tachometer, for motor position and speed measur-
ing, respectively.41

A schematic diagram of this series wounded DC
motor is given in the Figure 1, where Vm, eb, km, and
vm are motor voltage, back electromotive voltage, back
electromotive voltage constant, and speed of the motor
shaft, respectively.

As given in the specifications, it is assumed that in
the electronic circuit inductance Lm is much smaller
than the resistance Rm, and therefore it does not figure
in the equations.41

Linear model of DC motor

The well known linear equation of a DC motor is
obtained by combining electrical and mechanical equa-
tions and assuming that motor torque is proportional
to the voltage.

Choosing the velocity of the load shaft vl =v as
output variable y=v and u=Vm as input variable, lin-
ear model of the system is obtained as follows:

Jeq

d

dt
y(t)+Beq, vy(t)=Amu(t): ð1Þ

where: Jeq is total moment of inertia calculated as:

Jeq =hgK2
g Jm + Jl (hg and Kg are, respectively, the

gearbox efficiency and the total gear ratio, Jm is
moment of inertia of the motor shaft and Jl of the
load), the equivalent damping term is given by

Beq, v =
hgK2

g hmktkm +(hgK2
g Bm +Bl)Rm

Rm
(hm is the motor effi-

ciency, kt is the current-torque constant, Bm and Bl are
viscous frictions acting on the motor shaft and on the
load shaft), and finally the actuator gain which equals

Am =
hgKghmkt

Rm
, Table 1.

A DC series motor can serve as a vehicle for the eva-
luation of the performance of the various controllers.42

Experimental confirmation of the acquired
mathematical representation

Responses of the system are given in the following:
Figures 2 and 3. Comparisons were made with the
responses obtained by simulations of the linear model,
for step and sinusoidal inputs. The responses of the real
object and the linear model to the step and sinusoidal
excitations do not match well. The model does not fol-
low the actual behavior of the system. Decreasing the
amplitude changes only the sign of the deviation. This

Figure 1. Schematic diagram of the DC motor.41

Figure 2. Comparison between real and model output for two
step inputs: lower with amplitude 0.3 and higher with amplitude 5.

Figure 3. Comparison between real and model data for
sinusoidal input, amplitude 1 and frequency 0.5 rad/s.

Table 1. The numerical values of the DC object.

Parameters Values and units

Jeq 0.0021 kgm2

Rm 2.6O
kt 0.0077 Nm

A
hm 0.69
hg 0.9
Kg 70

4 Advances in Mechanical Engineering



is because the system is not linear and homogeneity
principle could not be applied.

The nonlinearity in the form of the dead zone can
also be seen in the sine wave. This nonlinearity repre-
sents the effect of the friction. It is special expressed in
low-frequency sinusoidal functions (and with change of
the rotation direction), because then the effect of the
friction is most noticeable. It is easy to see that the lin-
ear model fails to replicate the response of the system.

Friction phenomenon is the cause of many failures
in mechanical parts of mobile systems, and compensa-
tion can be encouraged by various constructive solu-
tions, but they do not eliminate nonlinearities at low
speeds. In order to obtain the most accurate model of a
DC motor and to enable a good synthesis of the control
system later, it is necessary to consider and take into
account the nonlinearity of friction.

Feedback theory derivation and relative
degree of the system

In the following two sections, we will look at the theoreti-
cal derivations related to the subject: FBL and GWO algo-
rithms. We will going to need those derivations in order to
better understand behavior of the control synthesis, which
will be capable of rejection the disturbances in machines.

System described by linear differential equations in
the state space is always possible to solve analytically.
On the other hand, when an engineer comes across
nonlinear equations it is almost regularly impossible to
reach an analytical solution. Then, the solution can
only be sought numerically.

However, very often, especially when designing, it is
convenient to have an analytical solution or at least some
analytical guarantees about what the solution looks like.
This is important primarily when choosing parameters,
because then one can judge in advance, without some
complex computational operations, how changing a para-
meter affects the behavior of the whole system.

Linearization is usually done around the desired
equilibrium point and uses approximation with Taylor
expansion. The concept of feedback linearization is fun-
damentally different. It does not use approximation.

Feedback linearization requires exactness in mea-
surements in order to eliminate the nonlinearities from
the system.43,44

In this section, the theoretical basis for the implemen-
tation of the suggested algorithm will be introduced.
Theory derivation rely on Khalil.11 Of particular rele-
vance will be designing the control signal with the feed-
back linearization law which will cancel the nonlinearity.

Consider the class nonlinear system11:

_x= f(x)+ g(x)u

y= h(x)
ð2Þ

where f(x), g(x), and h(x) are sufficiently smooth in a
domain D � Rn, and _x= ½x1, x2, x3, :::xn�T is a state vec-
tor. It is necessary to find a state feedback control u,
that transforms the nonlinear system into an analogous
linear form. Undoubtedly, generalization of this idea is
not always realizable – there must be a special systemic
belongings, which will allow cancelation.

There are four constraints that must be fulfilled in
order to achieve this kind of control.

� State equation of the system requires the non-
linear state equation in the following form:

_x=Ax+Bg(x)½u� a(x)� ð3Þ

where A is n 3 n and B is n 3 p matrix. The functions
a : Rn ! Rp and g : Rn ! Rp 3 p are defined on domain
D � Rn and represent potential nonlinearities in the sys-
tem. It is not difficult to note that to cancel a nonlinear
part by subtraction: a(x), the control signal u, and the
nonlinearity a(x) must appear together as the sum:
u+a(x). On the other hand, to undo the nonlinear
member g(x) by division, control u and nonlinearity
g(x) must appear as product g(x)u. If the system has
different shape than one in the equation (3), in some
occasions it could be modified, because the model of
the system in space is not unique, but depends on the
choice of state variables.

� g(x) has to be non-singular for any x in the
domain of interest x 2 D or if it is a scalar value
then it has to be non-zero value (the reason for
this is clear from the previous constraint);

� Pair (A,B) must be controllable, that is there has
to be a controllability matrix U whose rank is
equal to the order of the system: n= rank(U);

� All functions has to be differentiable.

With these conditions satisfied control law could be
obtained in the following form: u=a(x)+g(x)v which
will provide a new control signal v.

Input-output feedback linearization

Sometimes, it is very cost-effective to perform lineariza-
tion only from input to output, even if it means that
one part of the state equation will remain nonlinear.
The only pitfall with this type of linearization is that it
does not always take into account the whole dynamics
of the system.

It is necessary to determine the relative degree of the
system in order to find out will the linearization all of
the states be possible, or will the existence of internal
dynamics occur. When relative degree of the system is
equal to the order of the system Input-Output
Feedback Linearization is feasible and full state
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linearization can be performed. Otherwise, internal
dynamics requires further analysis.

The relative degree of a linear system is defined as
the difference between the poles and zeros.24 To
broaden this idea to nonlinear systems the following
statement is given in Khalil11 and repeated here for the
wholeness:

Relative degree r of the system equation (2), at a
point x0, is defined if:

� LgL
k
f h(x)= 0, for all x in an eighbourhood of x0

and all k\r � 1

� LgLf
r�1h(x) 6¼ 0,

where Lie derivatives of the function h(x) are noted
with Lg and Lf

k k-times respectively. Relative degree
will be useful in creating control signal later; simply
put, r requires the number of output signal derivatives
to obtain its explicit control u dependence.

In order to obtain control law the equation (2) is
reconsidered in the single-input-single-output SISO
case, when u and y are scalar values. First derivative of
the output in general case is:

_y=
∂h

∂x
( f (x)+ g(x)u)
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{_x

=
def

Lf h(x)+ Lgh(x)u ð4Þ

where

Lf h(x)=
∂h(x)

∂x
f ,

and analogously for Lgh(x).
If Lgh(x)= 0) _y= Lf h(x), first derivative of the

output signal will not depend on the control u, so the
search for derivatives will continue all the way until
input shows up thta is until some y(r) which will contain
a non-zero coefficient before control signal:

y(r) = Lr
f h(x)+ LgLr�1

f h(x) u ð5Þ

By introducing the following equation, the system is lin-
earized by feedback from input to output:

u=
1

LgLr�1
f h(x)

½�Lr
f h(x)+ v� ð6Þ

Gray wolf optimization GWO

The gray wolf optimization algorithm (GWO) imitates
the hunting procedure, together with the highly orga-
nized pecking order and social scale of the gray wolves
in environment. In nature, they are mutually loyal and
respect the established hierarchy. This hierarchy is
important for their survival because the ability to work
together increases the chance of success during hunt.

There are four different ranks of the wolf in a pack: a,
b, d, and v wolf. The leader of the pack is the a wolf
and the rest of the pack members follow it.
Furthermore, all of the wolves are involved in the main
activity, the hunting of the prey, which is given in the
main steps: searching for the pray and attack.

So as to achieve a mathematical model of encircling of
the prey, the following equations of the distance vector D
and a vector for position updating X(t + 1) are ensued45:

D= C � Xp(t)� X(t)
�� ��, X(t + 1)=Xp(t)� A �D,

ð7Þ

where A,C are the coefficient vectors and can be calcu-
lated as: A= 2ar1 � a and C= 2r2. r1 and r2 are ran-
dom vectors in the range ½0, 1�. Component a
decreasing from 2 to 0 over the course of iterations, so
it is clear that the above equations are used to update
the wolf position according to the position of pray. The
coefficient vectors are the main reason why the GWO
is considered to be a stochastic algorithm. Finally, t is
the current iteration, Xp is the position of the prey and
X is the position vector of the gray wolf/agent.

To mathematically simulate the hunting behavior of the
gray wolves, hunting process is guided by a and it is
assumed that the a, b, and d have a finer knowledge about
the potential location of the prey (i.e. the optimal solution).
Other wolves in the pack will update their position accord-
ing to the position of a, b, and d. All of the above can be
expressed in accordance with the given equations:

Da = C1 � Xa � X(t)j j, Db = C2 � Xb � X(t)
�� ��,

Dd = C3 � Xd � X(t)j j,X1 = Xa � A1 �Daj j,
X2 = Xb � A2 �Db

�� ��,X3 = Xd � A3 �Ddj j,
ð8Þ

Xa, Xb, and Xd are the position vectors of the a, b, and
d wolf. A1,A2,A3,C1,C2,C3, are the elements of the
coefficient vectors, which are written in column.

X(t + 1)=
X1 +X2 +X3

3
: ð9Þ

Last step is killing the prey: a wolf will finish the
hunt by attacking the prey. Then according to the wolf
rank in the pack they will eat. So basically, this will be
modeled as: 1. when the prey stopped moving wolves
attack it to finish the hunting process. 2. This is mod-
eled by decreasing the value of a from 2 to 0 during the
iterations. 3. As the value of a decreases A also
decreases. 4. When the value of A is less than 1, the
wolf is forced to attack toward the prey and if the value
of A is greater, it leaves and finds a better pray. C vec-
tor is random value in interval [0, 2]. It helps with put-
ting some extra weight on the pray. If C.1 algorithm
will emphasize and if C\1 it will be turned on the de-
emphasize (reducing importance).

6 Advances in Mechanical Engineering



Simply put, the agents diverge from each other to
search for the prey, while they converge to attack the
prey. In closing, this is exactly what emphasizes explo-
ration and allows the GWO algorithm to search glob-
ally, per say have a broad search.45 The GWO is able
to solve various multimodal problems, obtain reason-
able solutions in suitable time and was proven to be
efficient for a wide range of problems. All of this assists
the GWO to exhibit a more random behavior through-
out the optimization process, endorsing exploration,
and the local optima avoidance, which can be seen on
Figure 4.

Nonlinear DC motor model

In this Section nonlinear model will be analyzed. After
the model has been established and verified, optimized
feedback linearizing controller will be synthesized. In
order to prove the stability of the whole closed loop a
stability check will be performed. Also, in this section
experimental results are analyzed. Although the speed-
torque curve of DC motors could be modeled as in the
first Section, it is shown that linear model for DC
motor is not suitable enough. The difference between

the model and the actual object is too large and notice-
able. The main cause of machines nonlinear behavior is
the friction and that is why the new model will be con-
sidering the velocity-friction dependency.

In this work Tustins friction nonlinear model was
adopted as follows:

Tfrict = Tstribeck + Tviscous

Tfrict = Tcsgn(v)+ (Ts � Tc)e
v
vs sgn(v)+Bv

ð10Þ

where B is the viscous friction coefficient and vs is
Stribeck velocity. Friction is divided into the two parts:
viscous friction part Tviscous and Stribeck function
Tstribeck, with upper bound equal to the static friction
torque Ts, at zero velocity, and lower bound equal to
the Coulomb friction torque Tc. This model is taken
from the paper.46 Many models of friction describe the
friction torque as a static and/or dynamic function of
angular velocity. In this approach, the constant portion
of the Coulomb model is replaced by Stribeck function.
The viscous component of friction torque is a linear
function, and friction curve of Stribeck model is non-
linear function, and they will be considered
separately.46

The nonlinear mathematical model is adopted46 as:

Jeq _vl + Tst(v)+Beq, nvl =AmVm ð11Þ

where Tst is the nonlinear segment of the friction torque
(Stribeck), Beq, n is the equivalent damping term in
which the linear viscous friction is already compre-
hended. Product AmVm is the control torque and Vm is
the voltage (now input, later control signal).

Obviously, it is necessary to determine the nonlinear
part of the friction moment that originates from
Stribeck effect Tst, as well as the coefficient Beq, n which
refers to the equivalent damping coefficient of the non-
linear model.

In order to identify friction for the given DC motor,
two distinct experiments were performed.46

Stribeck effect is most visible for low velocities, so
the part of the obtained friction curve Tst(v) for the
velocities between 20.04 to 0.04 rad/s is depicted. It is
assumed that friction characteristics are symmetrical,
for negative and positive values of angular velocity:

Tst = 0:0174sgn(v)+ 0:0087e�
v

0:064sgn(v),

Beq, n = 0:0721:
ð12Þ

In Gruyitch et al.46 authors use a line of finite slope,
up to a very small threshold e, in order to overcome the
jump discontinuity of the proposed friction model, at
v= 0. In this paper that was not possible because of
the feedback linearization constraints.

Since one of the conditions that is constraint for
using FBL control is that all function are differentiable,

Figure 4. GWO flowchart diagram.
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the approximation is performed in a different way-
using the tangent hyperbolic function. In this way only
Coulomb and viscous friction is modeled, the exponen-
tial part of the Stribek curve (static friction) is
neglected,24 which is shown on the Figure 5.
Satisfactory parameters were found. The general for-
mula of the approximation function is:

tanh(x)= l1(
2

1+ e�l2x
� 1), where : ð13Þ

l1 = 0:0173607 ð14Þ

l2 = 2500 ð15Þ

State variable is chosen as measured, output vari-
able: x= y=v and voltage is control signal u=Vm.
Tst is nonlinearity, Tst = f (x), so nonlinear model of the
system was obtained as follows:

_x =� Beq, n

Jeq
x� f (x)+ Am

Jeq
u

y = x
ð16Þ

With this choice of variables the system still remained
of the first order and the state variable is a scalar
quantity.

Having the experience with the inaccuracy of the lin-
ear model and to check the correctness of the nonlinear
model an experiment was again conducted. In the
experiment the actual operation of the object was again
compared with the nonlinear model.

Conclusion from the Figure 6:
With the nonlinear mathematical model response of

the system to the step functions of high amplitude is
now good modeled. Increased amplitude does not
increases the deviation of the model.

Conclusion from the Figure 7:
The response of the real object and the linear model

to the sinusoidal excitation was not match well, because
linear model was not following the existing

nonlinearity. With the nonlinear system that is not the
case. Dead zone curve is well modeled.

Conclusion from the Figure 8:
It follows that the nonlinear model quite comparable

representation of the original system, for various kind
of input signals.

Design of the control law

Checking the fulfillment of the conditions

Taking into account equations (3)–(16) it could be
obtained:

A=� Beq, n

Jeq

, B=
Am

Jeq

,

g(x)= 1, a(x)=
Jeq

Am

f (x):

ð17Þ

Figure 5. Approximation of the friction characteristic. Figure 6. Comparison between real and nonlinear model data
for step input, amplitude 5.

Figure 7. Comparison between real and nonlinear model data
for sinusoidal input, amplitude 1 and frequency 0.5 rad/s.
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� Coordinate transformation is not necessary, sys-
tem is already in the suitable form for the feed-
back linearization;

� g(x) is scalar value which is different from zero;
� Pair (A,B) is controllable when rank of the con-

trollability matrix is equal to the system order;

Controllability matrix is defined as:

U = ½B AB A2B ::: An�1B� ð18Þ

According to the velocity, system order is equal to
n= 1, so controllability matrix has the form:

U =B=
Am

Jeq

; ð19Þ

The number of the non-controllable states is equal to
the zero.

� All functions are smooth because earlier the
approximation with the differentiable tangent
hyperbolic was made;

It is obvious that the condition rank U = n is fulfilled,
so it is possible to introduce a nonlinear control that
will nullify the existing nonlinearity of the system itself
and perform linearization.

Control signal synthesis for the application of the
feedback control method

According to the equations (4)–(17) first derivative of
the output is:

y= x! _y= _x=� Beq, n

Jeq

x� f (x)+
Am

Jeq

u ð20Þ

As the first derivative of the output depends on the
control signal the system has no internal dynamics and
the relative degree of the system is equal to the order
r = n= 1. The control that needs to be introduced to
eliminate nonlinearity can be realized in different ways.
In this paper it is adopted in the form:

u=
Jeq

Am

½f (x)+ v� ð21Þ

The signal v, that becomes the new control signal is
selected as the proportional-integral PI controller:

v=Kpe+Ki

ðt

0

edt, ð22Þ

where error e=w� y represents the difference between
the desired output variable w and the real output angu-
lar velocity y.

State equation linearized by feedback is:

_x=� Beq, n

Jeq

x+Kpe+Ki

ðt

0

edt ð23Þ

Optimization of FBC using the GWO algorithm

In this paper, for proper operation it is necessary to set
the PI controller parameters and optimize them to get
satisfactory dynamic behavior. Further, for the design
of the optimal PI controller the metaheuristic GWO
optimization algorithm was used. Moreover, the men-
tioned parameters are all coded into one wolf, that is
one agent, that is presented with a vector which con-
tains, in our case, two parameters. For the objective
function performance criterion the integral of absolute
errors (IAE) is utilized, as: IAE=

Ð
jejdt.

In the suggested GWO algorithm the number of the
search agents is set to 30, while the maximum number
of iterations is set to 500. Additionally, one agent rep-
resents one potential optimal PI controller. All of the
parameter values that were used in the application of
the GWO were taken from the original paper.45 After
the optimization the obtained parameters for the scal-
ing factors are:

Kp = 3:8906 Ki = 130:0000 ð24Þ

Stability check and experimental results

From the new state equation (23) and PI gains equa-
tion (24) characteristic polynomial poles of the system
are easily obtained as: p1 =� 2:2261+ 11:1823i and
p2 =� 2:2261� 11:1823i. As the poles are in the left
half of the s-plane the system is stable. Besides analyti-
cally, this statement is also experimentally confirmed.
In the following, the comparison between the real and
the desired velocity is shown.

Figure 8. Comparison between real and nonlinear model data
for sinusoidal input, amplitude 5 and frequency 0.5 rad/s.
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The output and desired trajectory signals nearly
match, with lightweight differences.

As it has been said, conventional control is inap-
propriate to struggle many problems such as steady-
state error, speed changes, and load disturbances. The
motion control can be tackled by mechanical or control
algorithm to compensate the effect of backlash, fric-
tion, and mechanical defects. Several advance intelli-
gent control methods for these purposes are proposed
in Mao and Hung.47

Very important references for verifying the perfor-
mances of a nonlinear control system are sinusoidal sig-
nals in which the direction of rotation of the output
shaft changes during operation. From the Figures 9 and
10 it can be seen that system has really fast response.
Both, rising and settling time are less than 0:02s.

Figure 11 shows sinusoidal references for low fre-
quency 0.1 rad/s and Figure 12 shows frequency of
1 rad/s, both with amplitude 1. Moreover, the errors of
velocity tracking, are also depicted. The error for the

velocity tracking is between 6 0.04 rad/s, Figures 13
and 14.

Another very useful signal for checking friction com-
pensation in engine operation is the chip signal, because
the frequency changes over time. In this paper authors
used up� chirp as a reference, with initial frequency od
0:1Hz and target time 100s. The frequency increases lin-
early over time. The error is same as in sine case,
Figures 15 and 16.

Furthermore, in order to test the robustness of the
designed optimized FBL controller the two types of dis-
turbances d were added directly to the object, as shown
in the Figure 17. Response of the system to an arbitrary
excitation has been widely studied.48–50

The first disturbance acts continuously as band-
limited white noise signal added directly to the object.
Therefore, the GWO optimized coefficient of the FBL
controller, have remained unchanged, and comparisons

Figure 9. Velocity tracking of step signal.

Figure 10. Error signal for velocity tracking of step signal.

Figure 11. Velocity tracking of sinusoidal signal with small
frequency of 0.1 rad/s.

Figure 12. Velocity tracking of sinusoidal signal with frequency
of 1 rad/s.
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of real and desired trajectories are and given in the
Figures 18 to 24. In these set of figures it could be
understandably observed that errors signals are more
significant in case of the applied white noise distur-
bance, but also that the proposed control algorithm
operates effectively, although the PI coefficients are
optimized for the disturbance-free case.

The errors of velocity tracking, where disturbances
are added in order to test the robustness, are given in
following figures respectively: Figures 19, 21 and 23.
The step signal is very important in practice especially
in industry when it is necessary to maintain a constant
input speed of the motor.51,52

Here error is less than 0.06 rad/s for both sinusoidal
and chirp outputs.

The second disorder acts continuously, with initial
time in the 5th second of operation and is modeled as a
normal step signal with final value 1. This disturbance
is also simulated and applied directly to the object and
it can be considered as extremely large for sinusoidal

Figure 14. Error signal for velocity tracking of sinusoidal signal
with frequency of 1 rad/s.

Figure 15. Velocity tracking of chirp signal.

Figure 13. Error signal for velocity tracking of sinusoidal signal
with small frequency of 0.1 rad/s.

Figure 16. Error signal for velocity tracking of chirp signal.

Figure 17. Feedback linearization control and GWO algorithm.

Vesović et al. 11



Figure 19. Error signal for velocity tracking of step signal
when white noise is applied as disturbance to the system.

Figure 20. Velocity tracking of sinusoidal signal with small
frequency of 0.1 rad/s when white noise is applied as disturbance
to the system.

Figure 21. Error signal for velocity tracking of sinusoidal signal
with small frequency of 0.1 rad/s when white noise is applied as
disturbance to the system.

Figure 22. Velocity tracking of chirp signal when white noise is
applied as disturbance to the system.

Figure 18. Velocity tracking of step signal when white noise is
applied as disturbance to the system.

Figure 23. Error signal for velocity tracking of chirp signal
when white noise is applied as disturbance to the system.
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and chirp signal, because their amplitude is equal to the
intensity of the disturbance.

During the operation of the system, when the given
desired output signal has amplitude larger than 1, dis-
turbance which has much less intensity does not create
a huge error, Figures 25 and 26.

On the other hand, as other references are of much
lower amplitudes (sine and chirp), a disturbance of the
same amplitude creates a much larger error.

However, the control system manages to quickly
deal with this disturbance and the system is not derived
from stability but continues to drive: Figures 27 to 30.

There are many ways to check the robustness of the
control system. One of them is comparison of current
response under varying load condition.53 In Medjghou
et al.54 authors investigate presence of uncertainties
and disturbances in object in combination with the
feedback linearization control and they have concluded

Figure 24. Velocity tracking of selected function when white
noise is applied as disturbance to the system.

Figure 25. Velocity tracking of step signal with step
disturbance starting in the fifthth second.

Figure 26. Error signal for velocity tracking of step signal with
step disturbance starting in the fifth second.

Figure 27. Velocity tracking of sinusoidal signal with step
disturbance starting in the fifth second.

Figure 28. Error signal for velocity tracking of sinusoidal signal
with step disturbance starting in the fifth second.

Vesović et al. 13



that FBL is unable to ensure good performances54 for
the closed-loop system. There are many ways to over-
come this problem, for example improve this control
by adding a robust control term (discontinuous con-
trol). Their choice was motivated by its high robustness
against uncertainties and disturbances.

Therefore, the whole control law was constituted of
two terms, that is, feedback linearization control term
and a discontinuous control term. This was not the case
in this paper. The GWO algorithm was enough and suc-
cessful even on the function of changing the desired ref-
erence very fast Figure 31.

Conclusion

In this paper, a feedback nonlinear control system is
applied to high nonlinear machine. The variable that
represented the given desired response of the system is

velocity of the load shaft. First, the modeling of an
object is shown. After it has been experimentally con-
firmed that linear equations do not describe this object
well enough, they have been changed. Coulomb friction
was introduced, which resulted in obtaining the non-
linear mathematical model. An approximation of the
part of the Stribek friction curve was made with the
tangent hyperbolic function. Then, a summary of feed-
back linearization theory and gray wolf optimization
algorithm are given. The fulfillment of the conditions
for the synthesis of the control law with this approach
on a given plant has been examined and proven. Some
more complex systems, which use this type of engine,
could also be operated on this way. Finally, using
Matlab and Simulink environment, the GWO optimi-
zation algorithm was used to optimize the PI coefficient
of the proposed FBL controller. Specifically, optimal
PI gains for the controller were generated according to
IAE performance criterion.

From the attached experimental results, with special
reference to the last Section, it is easy to see that non-
linear model gives justification for the usage of the feed-
back linearization control technique, especially since
the robustness of the control system has been tested in
the case of the two types of disturbances (both of them
continuously acting on the object: white noise and step
signal). White noise is introduced as the way to model
the random excitation.55 The results have shown that
the proposed controller was capable of dealing with the
nonlinearities of the DC motor. As the main goal of this
study was to make the DC motor to track desired velo-
city, it is important to notice that this algorithm is con-
venient not only for an environments with disturbances,
but also for numerous outputs. One possible area of the
future work can be optimization with another meta-
heuristic algorithms and compare them with each other.

Figure 30. Error signal for velocity tracking of chirp signal with
step disturbance starting in the fifth second.

Figure 29. Velocity tracking of chirp signal with step
disturbance starting in the fifth second.

Figure 31. Velocity tracking of selected function with
disturbance starting in the fifth second.
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rally variable control of Lurie systems. Int J Control

2020; 93: 2960–2972.
47. Mao WL and Hung CW. Adaptive neural network-based

synchronized control of dual-axis linear actuators. Adv
Mech Eng 2016; 8: 1687814016654603.

48. Spanos PD and Evangelatos GI. Response of a non-
linear system with restoring forces governed by fractional
derivatives—time domain simulation and statistical line-
arization solution. Soil Dyn Earthq Eng 2010; 30:
811–821.

49. Pan W, Ling L, Qu H, et al. Nonlinear response analysis
of aero-engine rotor bearing rub-impact system caused by
horizontal yawing maneuver load. Int J Non Linear Mech

2021; 137: 103800.
50. Spanos PD, Sofi A and Di Paola M. Nonstationary

response envelope probability densities of nonlinear oscil-
lators. J Appl Mech 2007; 74: 315–324.
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between internal delays and coherent oscillations in
delayed coupled noisy excitable systems. Int J Non Linear

Mech 2015; 73: 121–127.

16 Advances in Mechanical Engineering


