31 research outputs found

    Linearly many faults in 2-tree-generated networks

    Full text link
    In this article we consider a class of Cayley graphs that are generated by certain 3-cycles on the alternating group A n . These graphs are generalizations of the alternating group graph A G n . We look at the case when the 3-cycles form a “tree-like structure,” and analyze its fault resiliency. We present a number of structural theorems and prove that even with linearly many vertices deleted, the remaining graph has a large connected component containing almost all vertices. © 2009 Wiley Periodicals, Inc. NETWORKS, 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64908/1/20319_ftp.pd

    Fault-tolerant Hamiltonian laceability of Cayley graphs generated by transposition trees

    Get PDF
    AbstractA bipartite graph is Hamiltonian laceable if there exists a Hamiltonian path joining every pair of vertices that are in different parts of the graph. It is well known that Cay(Sn,B) is Hamiltonian laceable, where Sn is the symmetric group on {1,2,…,n} and B is a generating set consisting of transpositions of Sn. In this paper, we show that for any F⊆E(Cay(Sn,B)), if |F|≤n−3 and n≥4, then there exists a Hamiltonian path in Cay(Sn,B)−F joining every pair of vertices that are in different parts of the graph. The result is optimal with respect to the number of edge faults

    Matching preclusion and conditional matching preclusion for bipartite interconnection networks II: Cayley graphs generated by transposition trees and hyper‐stars

    Full text link
    The matching preclusion number of a graph with an even number of vertices is the minimum number of edges whose deletion results in a graph that has no perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. It is natural to look for obstruction sets beyond those induced by a single vertex. The conditional matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph with no isolated vertices that has no perfect matchings. In this companion paper of Cheng et al. (Networks (NET 1554)), we find these numbers for a number of popular interconnection networks including hypercubes, star graphs, Cayley graphs generated by transposition trees and hyper‐stars. © 2011 Wiley Periodicals, Inc. NETWORKS, 2011Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91319/1/20441_ftp.pd

    Fault diagnosability of regular graphs

    Get PDF
    An interconnection network\u27s diagnosability is an important measure of its self-diagnostic capability. In 2012, Peng et al. proposed a measure for fault diagnosis of the network, namely, the hh-good-neighbor conditional diagnosability, which requires that every fault-free node has at least hh fault-free neighbors. There are two well-known diagnostic models, PMC model and MM* model. The {\it hh-good-neighbor diagnosability} under the PMC (resp. MM*) model of a graph GG, denoted by thPMC(G)t_h^{PMC}(G) (resp. thMM(G)t_h^{MM^*}(G)), is the maximum value of tt such that GG is hh-good-neighbor tt-diagnosable under the PMC (resp. MM*) model. In this paper, we study the 22-good-neighbor diagnosability of some general kk-regular kk-connected graphs GG under the PMC model and the MM* model. The main result t2PMC(G)=t2MM(G)=g(k1)1t_2^{PMC}(G)=t_2^{MM^*}(G)=g(k-1)-1 with some acceptable conditions is obtained, where gg is the girth of GG. Furthermore, the following new results under the two models are obtained: t2PMC(HSn)=t2MM(HSn)=4n5t_2^{PMC}(HS_n)=t_2^{MM^*}(HS_n)=4n-5 for the hierarchical star network HSnHS_n, t2PMC(Sn2)=t2MM(Sn2)=6n13t_2^{PMC}(S_n^2)=t_2^{MM^*}(S_n^2)=6n-13 for the split-star networks Sn2S_n^2 and t2PMC(Γn(Δ))=t2MM(Γn(Δ))=6n16t_2^{PMC}(\Gamma_{n}(\Delta))=t_2^{MM^*}(\Gamma_{n}(\Delta))=6n-16 for the Cayley graph generated by the 22-tree Γn(Δ)\Gamma_{n}(\Delta)

    3-extraconnectivity of Cayley Graphs Generated by Transposition Generating Trees

    Get PDF
    给定一个图g和一个非负整数g,若图g中存在(边)点集,使得删除该集合后图g不连通并且每个连通分支的点数大于g,所有这样的(边)点集的最小基数,称为g-额外(边)连通度(记作κg(g)(λg(g)).本文将确定由对换树生成的凯莱图的3-额外(边)连通度(记作κ3(λ3).Given a graph G and a non-negative integer g, the g-extra(edge) connectivity of G (written κg(G)(λg(G))is the minimum cardinality of a set of (edges)vertices of G, if any, whose deletion disconnects G, and every remaining component has more than g vertices.In this paper, we determine 3-extra(edge) connectivity(written κ3(λ3)) of Cayley graphs generated by transposition trees.supportedbyNSFC(No.10671165
    corecore