17 research outputs found

    The genome of the medieval Black Death agent (extended abstract)

    Full text link
    The genome of a 650 year old Yersinia pestis bacteria, responsible for the medieval Black Death, was recently sequenced and assembled into 2,105 contigs from the main chromosome. According to the point mutation record, the medieval bacteria could be an ancestor of most Yersinia pestis extant species, which opens the way to reconstructing the organization of these contigs using a comparative approach. We show that recent computational paleogenomics methods, aiming at reconstructing the organization of ancestral genomes from the comparison of extant genomes, can be used to correct, order and complete the contig set of the Black Death agent genome, providing a full chromosome sequence, at the nucleotide scale, of this ancient bacteria. This sequence suggests that a burst of mobile elements insertions predated the Black Death, leading to an exceptional genome plasticity and increase in rearrangement rate.Comment: Extended abstract of a talk presented at the conference JOBIM 2013, https://colloque.inra.fr/jobim2013_eng/. Full paper submitte

    The ABCs of MGR with DCJ

    Get PDF
    We study the small phylogeny problem in the space of multichromosomal genomes under the double cut and join metric. This is similar to the existing MGR (multiple genome rearrangements) approach but it allows, in addition to inversion and reciprocal translocation, operations of transposition and block interchange. Empirically, with chloroplast and mammalian data sets, it finds solutions as good as or better than MGR when the latter operations are prohibited. Permitting these operations allows quantitatively better solutions where part of the reconstructed ancestral genomes may be included in circular chromosomes. We discuss the biological likelihood of transpositions and block interchanges in the mammalian data

    Assessing the robustness of parsimonious predictions for gene neighborhoods from reconciled phylogenies

    Get PDF
    The availability of a large number of assembled genomes opens the way to study the evolution of syntenic character within a phylogenetic context. The DeCo algorithm, recently introduced by B{\'e}rard et al. allows the computation of parsimonious evolutionary scenarios for gene adjacencies, from pairs of reconciled gene trees. Following the approach pioneered by Sturmfels and Pachter, we describe how to modify the DeCo dynamic programming algorithm to identify classes of cost schemes that generates similar parsimonious evolutionary scenarios for gene adjacencies, as well as the robustness to changes to the cost scheme of evolutionary events of the presence or absence of specific ancestral gene adjacencies. We apply our method to six thousands mammalian gene families, and show that computing the robustness to changes to cost schemes provides new and interesting insights on the evolution of gene adjacencies and the DeCo model.Comment: Accepted, to appear in ISBRA - 11th International Symposium on Bioinformatics Research and Applications - 2015, Jun 2015, Norfolk, Virginia, United State

    Sobre modelos de rearranjo de genomas

    Get PDF
    Orientador: João MeidanisTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Rearranjo de genomas é o nome dado a eventos onde grandes blocos de DNA trocam de posição durante o processo evolutivo. Com a crescente disponibilidade de sequências completas de DNA, a análise desse tipo de eventos pode ser uma importante ferramenta para o entendimento da genômica evolutiva. Vários modelos matemáticos de rearranjo de genomas foram propostos ao longo dos últimos vinte anos. Nesta tese, desenvolvemos dois novos modelos. O primeiro foi proposto como uma definição alternativa ao conceito de distância de breakpoint. Essa distância é uma das mais simples medidas de rearranjo, mas ainda não há um consenso quanto à sua definição para o caso de genomas multi-cromossomais. Pevzner e Tesler deram uma definição em 2003 e Tannier et al. a definiram de forma diferente em 2008. Nesta tese, nós desenvolvemos uma outra alternativa, chamada de single-cut-or-join (SCJ). Nós mostramos que, no modelo SCJ, além da distância, vários problemas clássicos de rearranjo, como a mediana de rearranjo, genome halving e pequena parcimônia são fáceis, e apresentamos algoritmos polinomiais para eles. O segundo modelo que apresentamos é o formalismo algébrico por adjacências, uma extensão do formalismo algébrico proposto por Meidanis e Dias, que permite a modelagem de cromossomos lineares. Esta era a principal limitação do formalismo original, que só tratava de cromossomos circulares. Apresentamos algoritmos polinomiais para o cálculo da distância algébrica e também para encontrar cenários de rearranjo entre dois genomas. Também mostramos como calcular a distância algébrica através do grafo de adjacências, para facilitar a comparação com outras distâncias de rearranjo. Por fim, mostramos como modelar todas as operações clássicas de rearranjo de genomas utilizando o formalismo algébricoAbstract: Genome rearrangements are events where large blocks of DNA exchange places during evolution. With the growing availability of whole genome data, the analysis of these events can be a very important and promising tool for understanding evolutionary genomics. Several mathematical models of genome rearrangement have been proposed in the last 20 years. In this thesis, we propose two new rearrangement models. The first was introduced as an alternative definition of the breakpoint distance. The breakpoint distance is one of the most straightforward genome comparison measures, but when it comes to defining it precisely for multichromosomal genomes, there is more than one way to go about it. Pevzner and Tesler gave a definition in a 2003 paper, and Tannier et al. defined it differently in 2008. In this thesis we provide yet another alternative, calling it single-cut-or-join (SCJ). We show that several genome rearrangement problems, such as genome median, genome halving and small parsimony, become easy for SCJ, and provide polynomial time algorithms for them. The second model we introduce is the Adjacency Algebraic Theory, an extension of the Algebraic Formalism proposed by Meidanis and Dias that allows the modeling of linear chromosomes, the main limitation of the original formalism, which could deal with circular chromosomes only. We believe that the algebraic formalism is an interesting alternative for solving rearrangement problems, with a different perspective that could complement the more commonly used combinatorial graph-theoretic approach. We present polynomial time algorithms to compute the algebraic distance and find rearrangement scenarios between two genomes. We show how to compute the rearrangement distance from the adjacency graph, for an easier comparison with other rearrangement distances. Finally, we show how all classic rearrangement operations can be modeled using the algebraic theoryDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã

    Ancestral Gene Synteny Reconstruction Improves Extant Species Scaffolding

    Get PDF
    We exploit the methodological similarity between ancestral genome reconstruction and extant genome scaffolding. We present a method, called ARt-DeCo that constructs neighborhood relationships between genes or contigs, in both ancestral and extant genomes, in a phylogenetic context. It is able to handle dozens of complete genomes, including genes with complex histories, by using gene phylogenies reconciled with a species tree, that is, annotated with speciation, duplication and loss events. Reconstructed ancestral or extant synteny comes with a support computed from an exhaustive exploration of the solution space. We compare our method with a previously published one that follows the same goal on a small number of genomes with universal unicopy genes. Then we test it on the whole Ensembl database, by proposing partial ancestral genome structures, as well as a more complete scaffolding for many partially assembled genomes on 69 eukaryote species. We carefully analyze a couple of extant adjacencies proposed by our method, and show that they are indeed real links in the extant genomes, that were missing in the current assembly. On a reduced data set of 39 eutherian mammals, we estimate the precision and sensitivity of ARt-DeCo by simulating a fragmentation in some well assembled genomes, and measure how many adjacencies are recovered. We find a very high precision, while the sensitivity depends on the quality of the data and on the proximity of closely related genomes

    Reconstruction of an ancestral Yersinia pestis genome and comparison with an ancient sequence

    Get PDF
    International audienceBackground: We propose the computational reconstruction of a whole bacterial ancestral genome at the nucleotide scale, and its validation by a sequence of ancient DNA. This rare possibility is offered by an ancient sequence of the late middle ages plague agent. It has been hypothesized to be ancestral to extant Yersinia pestis strains based on the pattern of nucleotide substitutions. But the dynamics of indels, duplications, insertion sequences and rearrangements has impacted all genomes much more than the substitution process, which makes the ancestral reconstruction task challenging. Results: We use a set of gene families from 13 Yersinia species, construct reconciled phylogenies for all of them, and determine gene orders in ancestral species. Gene trees integrate information from the sequence, the species tree and gene order. We reconstruct ancestral sequences for ancestral genic and intergenic regions, providing nearly a complete genome sequence for the ancestor, containing a chromosome and three plasmids. Conclusion: The comparison of the ancestral and ancient sequences provides a unique opportunity to assess the quality of ancestral genome reconstruction methods. But the quality of the sequencing and assembly of the ancient sequence can also be questioned by this comparison

    Models and Algorithms for Whole-Genome Evolution and their Use in Phylogenetic Inference

    Get PDF
    The rapid accumulation of sequenced genomes offers the chance to resolve longstanding questions about the evolutionary histories, or phylogenies, of groups of organisms. The relatively rare occurrence of large-scale evolutionary events in a whole genome, events such as genome rearrangements, duplications and losses, enables us to extract a strong and robust phylogenetic signal from whole-genome data. The work presented in this dissertation focuses on models and algorithms for whole-genome evolution and their use in phylogenetic inference. We designed algorithms to estimate pairwise genomic distances from large-scale genomic changes. We refined the evolutionary models on whole-genome evolution. We also made use of these results to provide fast and accurate methods for phylogenetic inference, that scales up, in both speed and accuracy, to modern high-resolution whole-genome data. We designed algorithms to estimate the true evolutionary distance between two genomes under genome rearrangements, and also under rearrangements, plus gains and losses. We refined the evolutionary model to be the first mathematical model to preserve the structural dichotomy in genomic organization between most prokaryotes and most eukaryotes. Those models and associated distance estimators provide a basis for studying facets of possible mechanisms of evolution through simulation and application to real genomes. Phylogenetic analyses from whole-genome data have been limited to small collections of genomes and low-resolution data; they have also lacked an effective assessment of robustness. We developed an approach that combines our distance estimator, any standard distance-based reconstruction algorithm, and a novel bootstrapping method based on resampling genomic adjacencies. The resulting tool overcomes a serious and long-standing impediment to the use of whole-genome data in phylogenetic inference and provides results comparable in accuracy and robustness to distance-based methods for sequence data. Maximum-likelihood approaches have been successfully applied to phylogenetic inferences for aligned sequences, but such applications remain primitive for whole-genome data. We developed a maximum-likelihood approach to phylogenetic analysis from whole-genome data. In combination with our bootstrap scheme, this new approach yields the first reliable phylogenetic tool for the analysis of whole-genome data at the level of syntenic blocks
    corecore