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Abstract

The rapid accumulation of sequenced genomes offers theehamesolve longstanding
guestions about the evolutionary histories, or phylogeroé groups of organisms. The
relatively rare occurrence of large-scale evolutionargnés in a whole genome, events
such as genome rearrangements, duplications and lossdége®ms to extract a strong
and robust phylogenetic signal from whole-genome data. Wird presented in this
dissertation focuses on models and algorithms for whorexge evolution and their
use in phylogenetic inference. We designed algorithms timate pairwise genomic
distances from large-scale genomic changes. We refinedvtiietienary models on
whole-genome evolution. We also made use of these resuftotade fast and accu-
rate methods for phylogenetic inference, that scales upoih speed and accuracy, to
modern high-resolution whole-genome data.

We designed algorithms to estimate the true evolutionastadce between two genomes
under genome rearrangements, and also under rearrangerpkrst gains and losses.
We refined the evolutionary model to be the first mathemativadiel to preserve the
structural dichotomy in genomic organization between npogkaryotes and most eu-
karyotes. Those models and associated distance estinpatmide a basis for studying
facets of possible mechanisms of evolution through sirariaand application to real
genomes.

Phylogenetic analyses from whole-genome data have beéedino small collections
of genomes and low-resolution data; they have also lackeeffantive assessment of
robustness. We developed an approach that combines canaiséstimator, any stan-
dard distance-based reconstruction algorithm, and a tmahbtrapping method based
on resampling genomic adjacencies. The resulting toolcovees a serious and long-
standing impediment to the use of whole-genome data in geyletic inference and
provides results comparable in accuracy and robustnesstande-based methods for
sequence data.

Maximum-likelihood approaches have been successfullfiepfo phylogenetic infer-

ences for aligned sequences, but such applications remiaiitiye for whole-genome

data. We developed a maximume-likelihood approach to pleretic analysis from

whole-genome data. In combination with our bootstrap s&hetnis new approach
yields the first reliable phylogenetic tool for the analysfsvhole-genome data at the
level of syntenic blocks.

keywords: genome rearrangement, distance estimation, dsnce-based reconstruc-
tion, bootstrap, maximum-likelihood






Résune

L'accumulation rapide de génomes séquencés offre appité de résoudre des ques-
tions de longue date sur I'évolution, en particulier s pdaylogénies. Cette étude est
possible grace au faible nombre d’événements génamsiqularge échelle, évhements
tels que les réarrangements génomiques, ou encore |disalioms et pertes de seg-
ments. Le travail présenté ici examine les modeéles etriignes pour I'évolution de
génomes entiers et leur utilisation dans l'inferencel@ddnétique. Nous avons congu
des algorithmes pour estimer la distance génomique pegspaipartir de changements
génomiques a large échelle et affiné les modeles éimhssociés. Nous avons aussi
utilisé ces résultats pour fournir une méthode d’iaefere phylogénétique précise et
rapide et avons concu des approches pour le calcul dessstereootstrap des arbres
résultants.

Nous avons également concu des algorithmes pour estiraéritable distance évolutive
entre deux génomes soumis a des réarrangements géremeitj dans un deuxieme cas,
incluant des gains et pertes de segments. Ces estimattngedt le comportement
asymptotique de la structure d’'un génome et peuvent &iisés pour la prédiction.
Notre modele affiné est le premier modele mathématigqueserver la dichotomie struc-
turale dans I'organisation génomique entre la plupartpilesaryotes et les eucaryotes.
Ces modeles et leurs estimateurs de distance associessgmnt une base pour I'étude
des differentes facettes des mécanismes d’évolutissipies.

Les analyses phylogénétiques pour les génomes entieg@limitées a des petites col-
lections de génomes contenants des données de badséaasde plus, une appréciation
efficace de leur robustesse a manqué. Avec I'utilisationatee estimateur de distance
décrit ci-dessus, nous avons développé une approchel’pdarence phylogénétique
suffisament rapide et précise pour utiliser a plein lesatheis données de haute résolution
pour les génomes entiers. Cette approche combine notrea¢stir de distance avec
n'importe quelle méthode pour la reconstruction phyldg&ue basée sur la distance et
une nouvelle méthode de bootstrapping basée sur uch@néllonnage de contiguités
génomiques. L'outil résultant surmonte un sérieux eiemdéfaut inhérent a 'usage de
données de génomes entier pour I'inference phylaigune et fournit des résultats com-
parables en précision et robustesse aux méthodes sasé8aslistance pour les données
de séquences.

Les approches basées sur le maximum de vraisemblancéap@iquées avec succes
pour l'inference phylogénétique a base de séqueniigiséas mais restent primitives
pour les données de génomes entiers. Nous avons dégealogpméthode de maximum
de vraisemblance pour les données de génomes entierisantinotre estimateur pour
calculer les probabilités de transition et en encodanfdimation des contiguités et
du contenu génomique sur des séquences binaires. Enrmaisti avec notre nou-
veau schéma de bootstrap, cette approche produit le prentiephylogénétique pour
I'analyse de génomes entiers au niveau de blocs syn&siqu

mots clefs: réarrangements @nomiques, estimation de distance, reconstruction
baste sur la distance, bootstrap, maximum de vraisemblance
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Chapter 1

Introduction

One of the most exciting aspects of our planet is the diwedditife. In spite of 250 years of taxo-
nomic classification and over 1.2 million species alreadglogued in a central database, millions
of species on Earth still await description [72].

All life arises by evolution. One central goal in the studyewblution is to infer the evolutionary
history, or phylogeny, that unites all life on Earth. Phydagtics is central to biological studies. For
example, phylogenies provide new ways to represent andureeise diversity of life, and retain
the information that can help us preserve the pattern ofivgosity as well as the processes that
have generated the pattefn [68,112]. Comparative studae raxtensive use of phylogenies in
making predictions about species and their biogeographécalogical, physiological, behavioral,
developmental or genomic significance. This predictive grolaas in turn proven useful in practical
areas such as prospecting for novel chemicals and medidaesloping control measure for pests,
guiding biotechnology, and evaluating potential curesdigeases. Phylogenies are invaluable to
the study of modern epidemiology, e.g., in identifying arnassifying emerging viruses such as
SARS [25], and in understanding the genetic evolution of 89] and influenza[33].

Evolution takes place over long periods of time, and thusiotibe observed directly. In recon-
structing phylogenies, the main challenge is that we laekriformation on evolutionary events that
occurred in the past. Although fossil records contain molqdical characters of ancient species,
they are often difficult to interpret and incorporate intylolgenies. Thus we rely on contemporary
data and a model of evolution to understand the past, andrdestonstruction methods to infer
the phylogeny. While many types of data are available, theidant choice today is molecular data.
Molecular data has the significant advantage of being esgmtoducible and easy to obtain. Further,
each nucleotide in a DNA or RNA sequence is, by itself, a weflreed discrete character. While
genomic sequences remains the main source of moleculampdataising new types of genomic data
are appearing, most notably whole-genome [76].

In the following sections of this chapter we will provide adftbackground on the data, models
and methods used in phylogenetic reconstruction and pedwie context for the specific problems
we have addressed in this dissertation.

1.1 Data and models of molecular evolution

1.1.1 Sequence data

In sequence data, characters, individual positions in ¢éggience, can be assumed to be in one of
a few states, e.g., 4 states for nucleotides or 20 statesrfomoaacids. Such data evolve through
evolutionary events such as point mutations, insertioalsdatetions. Pioneering work on models of
evolution on sequence data began during the 1960s. For éxafiyekerkandl and Pauling proposed
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the molecular clock theory: they suggested that the ratevalitonary change of any specified
protein was approximately constant over time and over miffelineages [123]. Jukes and Cantor
proposed a stochastic model for DNA substitution, assuraguggl transition rates as well as equal
equilibrium frequencies for all basés [54]. Kimura intreed a model that distinguishes two types of
substitutions, transitions and transversions, whiléasuming equal base frequencies [55]. F84 (in
the PHYLIP package) and HKY models [41] are two widely usediei® that allow arbitrary base
frequencies([29]. More recently, many sophisticated nodalre developed and refined to account
for the inherent complexity of sequence evolution| [36].

Sequence data suffers from some limitations in phylogemetionstruction. The relatively fast
pace of mutation in many regions of the genome resultsoimoplasy(multiple substitutions at the
same position), leaving no trace in modern organisms ofdheabseries of events. Different regions
of the genome (e.g. different genes), may not follow the samwdutionary path as the organism:
this is known as the “gene tree species tree” problem. Thiglgmoof multiple sequence alignment
between distant sequences is still poorly solved by contiput approaches, and deep evolutionary
histories are hard to reconstruct from sequence data.

1.1.2 Whole-genome data (at the level of syntenic blocks)

In whole-genome data, each chromosome of the genome isespieel by an ordered list of identi-
fiers, each identifier referring to a syntenic block or, mammonly, to a member of a gene family.
(In the following, we shall use the word “gene” in a broadensseto denote elements of such or-
derings and refer to such orderings as “gene orders”.) ¥anis in the placement of homologous
genes, as well as variations in gene content and multipgliaihong organisms can then be analyzed.
Such data is of great interest to evolutionary biologistg,dso to comparative genomicists and to
any researcher interested in understanding evolutiorteagges in pathogens, crop plants, and, more
generally, to anyone working in biomedical research. Bvmhary events that affect the gene order
of genomes include various rearrangements, which affdgttba order, and gene duplications and
losses, which affect both the content and, indirectly, ttteeo Rearrangements themselves include
inversion, transposition, block exchange, circular@athnd linearization, all of which act on a single
chromosome, and translocation, fusion, and fission, whitlormtwo chromosomes.

The use of whole-genome data is attractive in phylogenetionstruction. Genome rearrange-
ments, gene duplications and losses are ‘rare genomics2aart enable us to trace deep evolution-
ary history. The entire genome is studied at once as a sihgleacter, and the very large set of states
for the genome is unlikely to give rise to homoplasy. The whgénome data reflects organismal
evolution, not the evolution of single genes, thereby angidhe gene tree v.s. species tree problem.

1.2 Methods for phylogenetic reconstruction

Methods of phylogenetic reconstruction attempt to revargizen model of evolution, given the data
in modern organisms. There are three main types of metliigtance-basedgarsimony-basedand
likelihood-based

1.2.1 Distance-based methods

These methods first estimate evolutionary distances batwaeh pair of taxa, then use only the
matrix of pairwise distances to reconstruct the phylog@img distances can be estimated as counts of
the number of evolutionary events between two given taxasThe estimation of pairwise distances
must be done with respect to a chosen model of evolution.eShetrue distance, that is, the actual
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number of changes that took place during the course of éwolus not something we can compute,
researchers have used a two-stage process, in which aefigled measure is first computed (such
as an edit distance, that is, the smallest number of evolatjochanges — from a defined set — needed
to transform one into the other), then a statistical modehwiution is used to infer an estimate of
the true distance by deriving the effect of a given numberhainges in the model on the computed
measure and (algebraically or numerically) inverting thevation to produce a maximum-likelihood
estimate of the true distance under the model. This secepdsbften called a distance correction
and has long been used for sequence (DNA) [107] as well@e recently, for whole-genome
data [76]. Once all pairwise distances have been computethaus such as Neighbor-Joinirig [90]
or FastME [17] can be used to reconstruct phylogeny.

1.2.2 Parsimony-based methods

These methods seek the tree and internal data that minitrezetial number of evolutionary events
needed to produce the leaves from a common ancestor. Thatotder of evolutionary events of
a tree is the sum of its edge lengths where each edge lengtiedeihe (edit) distance between the
nodes at the two ends of the edge. In the case of sequencdhdatgneral problem of finding the
most parsimonious (MP) tree is provably NP-hard [15]. Cuirapproaches are heuristics based on
iterative improvement techniques, e.g., in MEGAI[56], PAUEO6], Phylip [31], and TNT [37].
With whole-genome data, the parsimony problem requiresntieeence of “ancestral” genomes at
internal nodes of the candidate trees, which is NP-hard forgihe median problem, a tree of three
given genomes [12, 83]. Sankoff proposed to use the medialplgm in an iterative manner to
refine ancestral genomeés [92]; this approach was later wegrim tools like GRAPPA[77,110] and
MGR [8].

1.2.3 Likelihood-based methods

Maximum likelihood (ML) methods assume a model of evolutiand aim to find the tree and as-
sociated model parameters, that maximize the probabilipraducing the given data. ML methods
thus depend explicitly on the assumed model of evolution. itMlsually much more computation-
ally expensive than MP, since ML has to estimate model patermand search the best tree through
tree space simultaneously [102]. Efficient heuristicstexissequence data, e.g., PhyML [38] and
RAXML [10Q]; a first attempt at using ML for whole-genome dafapeared last yedr [44]. Bayesian
methods assume a prior probability distribution of the fiestrees, use a biased random walk
through the tree space and estimate the posterior pratyadffiirees given the data. The standard im-
plementation is to use Markov Chain Monte Carlo (MCMC) ajgig notably in tools MrBayes [45]
for sequence data and a preliminary framework for wholeagendatal[5/7].

In addition, meta-methods are used to scale up any of theisodsein a divide-and-conquer
way. They usually decompose the input dataset into ovargpmubsets, reconstruct a tree for each
subset, and combine those small trees to produce a comgetéot the original dataset. The most
successful one is tHeisk-covering metho(DCM) [46], which improves both the speed and accuracy
of existing approaches by carefully decomposing the dafd8¢88].

1.3 Handling whole-genome data
In spite of many compelling reasons for using whole-genoi@ th phylogenetic reconstruction,
practice to date has continued to use selected sequenceslefaie length using nucleotide-, amino

acid-, or codon-level models. Previous tools for recorsitng whole-genome phylogenies suffered
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from serious problems, usually combinations of oversifigaimodels, poor accuracy, poor scaling,
lack of robustness against errors in the data, and lack titital assessment procedures.

Genomic rearrangements have been studied since the beggrofi modern genetics (starting in
the 1920s with the classic work [103,104]) and models fohsearrangements have been the subject
of many papers over the last 20 years| [34], notably, the @sabt-and-join model (DCJ) [6,119],
which has formed the basis for much of the algorithmic resean whole-genome data over the last
few years. However, none of the existing models predictetiodution of genomic organization into
circular unichromosomal genomes (as in most prokaryoted)linear multichromosomal genomes
(as in most eukaryotes). In addition, most of these modelaadasupport gene duplications and
losses alongside rearrangements; yet duplications asddaray be more common in evolutionary
history than rearrangements, and moreover, they thenssefwese apparent rearrangements.

The assessment of phylogenies built from whole-genomehdetaot been properly addressed to
date. The standard method used in sequence-based phytiogefezence is the bootstrap [23,130],
but it relies on a large number of homologous characterscdrabe resampled [30]; yet in the case of
rearrangements, the entire genome is a single characternatives such as the jackknife suffer from
the same problem, while likelihood tests[[3] 38] cannot haiagd in the absence of well established
probabilistic models.

Maximume-likelihood approaches have been successfullyiepfo phylogenetic inferences for
aligned sequences, but such applications remain primfibivevhole-genome data. It was not until
last year that the first successful attempt to use ML recoctsbn based on whole-genome data was
published [[44]; results from this study on bacterial gensmvere promising, but somewhat difficult
to explain, while the method is too time-consuming to haradlkaryotic genomes. A preliminary
implementation of Bayesian methods has yielded some piogniesults, but was tested on just a
few datasets [57].

1.4 Contributions in this dissertation

All the work presented in this dissertation has been accisimgd by close collaboration with Bernard
Moret. We have included only a part of our published resedtah part where we played the lead
role, spanning from models and distance estimation on whel®me evolution to phylogenetic
reconstruction with bootstrapping from whole-genome déke collaborations are mentioned in the
following subsections)

1.4.1 Models and distance estimation on whole-genome evban
(This is joint work with Vaibhav Rajan and Krister Swenson)

We present a method to estimate the true evolutionary distéetween two genomes under the
‘double-cut-and-join’ (DCJ) model [6, 119] of genome reagements, a model under which a sin-
gle multichromosomal operation accounts for all genom@rengement events: inversion, transpo-
sition, translocation, block interchange and chromosdomgibn and fission. Our method relies on
a simple structural characterization of a genome pair atmbtis analytically and computationally
tractable. We provide experimental results on a wide wanégenome structures to exemplify the
very high accuracy (and low variance) of our estimator. T$tereator also describes the asymptotic
behavior of genome structure under the DCJ model, whichvatet us to refine the DCJ model to
account for biological constraints. The new evolutionamydel introduces a single modification to
the classic DCJ model, and integrates gene duplicationdomsds. Through these changes, it be-
comes the first mathematical model to preserve the strdctiatzotomy in genomic organization (1-
2 circular chromosomes vs. several larger linear chromesdimetween most prokaryotes and most
eukaryotes. These models and associated distance estroatavhole-genome evolution provide a
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basis for studying facets of possible mechanisms of ewwniutirough simulation and application to
real genomes.

1.4.2 Distance-based reconstruction with bootstrapping®m whole-genome data
(This is joint work with Vaibhav Rajan)

We propose a new approach to the assessment of distanabgigdegenetic inference from whole-
genome data; our approach combines features of the jaeklnil the bootstrap and remains non-
parametric. For each feature of our method, we give an elgmivéeature in the sequence-based
framework; we also present the results of extensive exriah testing, in both sequence-based and
whole-genome-based frameworks. Through the featureatsfe comparison and the experimental
results, we show that our bootstrapping approach is on pérthe classic phylogenetic bootstrap
used in sequence-based reconstruction, and we estatdisketir superiority of the classic bootstrap
and of our corresponding new approach over proposed varidlfe test our approach on a small
dataset of mammalian genomes, verifying that the suppduesamatch current thinking about the
respective branches. Our method is the first to provide alatdrof assessment to match that of the
classic phylogenetic bootstrap for aligned sequencestharsdimakes it possible to conduct phylo-
genetic analyses on whole genomes with the same degree fidaree as for analyses on aligned
sequences.

1.4.3 Maximum-likelihood reconstruction from whole-genane data
(This is joint work with Fei Hu and Jijun Tang)

We propose a maximume-likelihood approach to phylogenetaysis from whole-genome data, in
combination with our novel bootstrap scheme. Our approads @ model that includes both re-
arrangements and duplications and losses; it is robushstggdmmon assembly errors; it supports
bootstrapping and other standard statistical tests;utmethighly accurate trees in all our tests under
a very wide variety of conditions; and it scales as well ag@gaghes based on sequence data. The
results of extensive testing on simulated data show thaapproach returns very accurate results
very quickly. In particular, we analyze of a 68-taxon cdiiea of eukaryotic genome5s [65], ranging
from parasitic unicellular organisms with simple genonesammals and from around 3000 genes
to over 40000 genes; the analysis, including bootstrappaiges just 3 hours on a desktop system
and returns a tree in agreement with all well supported thagcwhile also suggesting resolutions
for some disputed placements.

Overall, we demonstrate that whole-genome data carriesyastt®ng and robust phylogenetic sig-
nal and thus can form the basis for highly accurate phyldiere@alysis. While tools designed
earlier were promising, with our new techniques descrilbetiis work, one can reconstruct accurate
phylogenies from whole-genome data to an extent that wagosstible before.
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Chapter 2

Models and distance estimation on
whole-genome evolution

The ordering and strandedness of genes on each chromosonaaypbrganisms have become avail-
able, with many more added every year. Using this infornmatane can represent a genome as a
collection of chromosomes, each of which is a linear or ¢inceequence of gene identifiers. Varia-
tions in the placement of the same genes, as well as vaigdtiaqrene content and multiplicity, among
organisms can then be analyzed. This data is of great ihteeresolutionary biologists, but also to
comparative genomicists and to any researcher interestedderstanding evolutionary changes in
pathogens. In the past ten years, there has been a largasaedrework done on analyzing such
data [74].

Perhaps the most basic requirement in the analysis of suehiglthe ability to estimate the
amount of evolutionary change between two genomes—thai gmpute a pairwisevolutionary
distance Since thdrue distancethat is, the actual number of changes in the gene order arndrnto
that took place during the course of evolution, is not soingtlve can compute, researchers have
used a two-stage process, in which a well defined measurstisdimputed (such as adit distance
that is, the smallest number of evolutionary changes—fratefmed set—needed to transform one
genome into the other), then a statistical model of evatuisoused to infer an estimate of the true
distance by deriving the effect of a given number of changeké model on the computed measure
and (algebraically or numerically) inverting the derieatito produce a maximume-likelihood estimate
of the true distance under the model. This second step ia ofited a distance “correction” and
has long been used for sequence (DNA) datal[108] as well ass recently, for gene-order data
[73[75[115,1177].

The measures commonly used in the first step (edit distarsyegeny measures, etc.) are
bounded and typically reflect only the endstate of an evahatiy process, whereas the true evo-
lutionary distance can be arbitrarily large. Thus thesé $itsp measures typically underestimate the
true distance, by an amount that grows quickly as the truamte grows large. This is an aspect
of the problem ofsaturation in which the evolutionary process may take a convoluteth patts
endstate, possibly even undoing earlier changes alongaieRor very small distances, the problem
does not arise, while, for extremely large ones, the prolikessentially insurmountable, as the
variance of any estimate will be huge. For most distanceeglhowever, one can view the goal
of distance correction as postponing the onset of saturatiat is, making it possible to deliver an
accurate estimate of the true distance up to as large a valpessible.

Evolutionary events that affect the gene order of genomaade a number of rearrangements,
which affect only the order, as well as gene duplication asd,|which affect both the gene content
and, indirectly, the order. Handling both together has @doshallenging [70, 105]. Rearrangements
themselves include inversion, transposition, and blockharge, which act on a single chromosome,
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and translocation, fusion, and fission, which act on two klosomes. Inversion, translocation,
fusion, and fission were characterized by Hannenhalli andriee [39 40], while edit distances for
these operations can be computed in linear time [4]. Sokingganspositions has been proved to be
NP-complete[[9]. Efforts at unifying some of these operaiin a statistical framework have had
some succes$ [18]. However, all these rearrangement aperatre recently defined and studied a
unifying operation in one or two steps: the so-called “deutlit-and-join”, or DCJ, operation [1119].
Bergeronet al. subsequently generalized the DCJ operation and showed diaanipute an edit
distance for it (assuming that every operation has unif) ¢éodinear time with a simple formula [6].

In Sectior 211, we address the problem of estimating a trakigonary distance under the DCJ
model of evolution, assuming no change in gene content amifarm distribution of all possi-
ble DCJ events—the same simplifying assumptions used idadll rearrangement analyses. In
Section 2.2, we refine the DCJ model and propose a new evadutionodel which respects the di-
chotomy between prokaryotic and eukaryotic genomes andhithkes gene duplications and losses
into account. Using this new evolutionary model, we develgpatistically based method to estimate
the true evolutionary distance in terms of the actual nunatbeearrangements, gene duplications,
and gene losses.

2.1 Estimating true evolutionary distances under the DCJ mdel

Our estimate is in the style of the IEBP estimate for the tnwerision distance for a single chro-
mosome([115,117], in that it does not require computing andistance, but only a simple count
of shared gene adjacencies (or, equivalently, breakpaisten the work of Sankofét al. [92,93])
and chromosome endpoints. We characterize the asymptgtavior of genome structure under the
uniform DCJ model and present experimental results showiagour estimates are very precise,
and exhibit very little variance, under both realistic antteme parameter settings.

2.1.1 Preliminaries on whole-genome data and the DCJ model

A gene is a stranded sequence of DNA that starts with a tailesd with a head. The tail of a
genea is denoted bya! and its head by". We write+a (a8 — a") if genea is transcribed from '3
to 5 and write—a (a" — a') otherwise. We are interested, not in the strand of one sigghe, but
in the connection of two consecutive genes in one chromos@ue to different strandedness, two
consecutive gendsandc can be connected by oreljacencyof the following four types{b*,c'},
{b", '}, {bt,c"} and {b",c"}. If gened lies at one end of a linear chromosome, the we have a
singleton set{d'} or {d"}, calledtelomere

In the simplest case, we assume equal gene content and ricatiegene. Agenomeis then
represented as a set of adjacencies and telomeres sudhetieit or the head of any gene appears in
exactly one adjacency or telomere. For example, the ger@itiestrated in Figuré 2]1, composed
of two linear chromosomesg;+a, —c,—f) and (+e), and one circular chromosonie-b, +d), can
be represented by the following set of adjacencies and tlesn{{a'}, {a",c"}, {c', f"}, {f'},
{b"d'}, {d",b'}, {€}, {e"}}.

The number of adjacencies and telomeres in one genome gatlyrea the number of linear chro-
mosomesk adjacencies from circular chromosomes could come fromgestircular chromosome

+a -¢ f +dQ+b

Figure 2.1: A very small genon®
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of sizek or fromk circular chromosomes of one gene each, or any other condminah particular,
every genome on genes made entirely of circular chromosomes has the samieamnafadjacencies
and telomeres.

The double-cut-and-join operation, in the formulation@f, [can model all classical rearrange-
ments: inversion, translocation, fusion, fission, tras#mmn and block interchange. In that formu-
lation, a DCJ operation makes a pair of cuts in the chromosamne reglues the cut ends on two
adjacencies or telomeres (which can be in the same chrongosoin different chromosomes), giv-
ing rise to four cases:

1. A pair of adjacencie$i’, jV} and{p*,¢’} can be replaced by the pdit, p*} and{j",¢¥} or

by the pair{i¥,¢’} and{]j", p*}.

2. Anadjacencyi', j¥} and a telomer¢ p*} can be replaced by the adjacer{cy, p*} and telom-

ere{ '} or by the adjacencyj¥, p*} and telomerdi!}.

3. A pair of telomeregi'} and{j¥} can be replaced by the adjaceray, j¥}.
4. An adjacency{i", jV} can be replaced by the pair of telomef&$} and{j"}.

Theorem 2.1.1.Let G be a genome with n geneg, adjacencies, andntelomeres. If m is the
number of the different possible DCJ operations on G, we adte w

17)
n = nl‘i‘E
1 1
m = M+4+2mnp+—-n——-n

2 2

n> < m<2n’—n

Proof. Ghasn genes and thusiZails and heads of genes; as the tail or the head of any geeapp
in exactly one adjacency or telomere, we have

2n =2 +ny (2.1)

Now consider the four cases of DCJ operations:
1. There are(”zl) ways to select two adjacencies and 2 possible DCJ operdtoreach such
choice, for a total of }') x 2 operations.

2. There ar@; x n, ways to select one adjacency and one telomere and 2 possilezrations
for each combination, for a total of x ny x 2 operations.

3. There are{”zz) ways to select two telomeres and 1 possible DCJ operatiagafdr such choice,
for a total of (*?) operations.

4. There aren different ways to select one adjacency and 1 possible DGatipe for each such
choice, for a total of; operations.
Thus the total number of possible DCJ operations is

1 1
m=n3+2mn, + En%— SN

Combining this result with formuld(2.1), we get

1, 1 2
m= —=n nN—=)np+n
! 5+ ( 2) 2+
Now we also have & n, < 2n, and so we can write

n<m<2n°—n
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2.1.2 True distance estimation under the DCJ model
An overview of our technigque for estimating the true evolutbnary distance

The problem of estimating the true evolutionary distancgen®CJ model is defined as follows:
Input: The original genom& and the final genom&F, two genomes on the samayenes repre-
sented as adjacencies and telomeres.

Output: An estimate of the actual number of DCJ operations that flake in the evolutionary
history to transfornG into GF.

Based on the original genont& for any genomé&s* (of same gene content &), we can divide
the adjacencies and telomeres@f into four setsSAG*), ST(G*), DA(G*) andDT(G*), where
SAG*) is the set of adjacencies & that also appear i, ST(G*) is the set of telomeres @&*
that also appear i, DA(G") is the set of adjacencies & that do not appear i, andDT (G*)
is the set of telomeres d@&* that do not appear iG. Then we can calculate a vectdg(G*) =
(SA,ST*,DA*,DT*) to represent the genon@ based orG, whereSA, ST*, DA* andDT* are the
cardinalities of the setSAG*), ST(G*), DA(G*) andDT (G*), respectively. (¢ may be viewed as
producing a fingerprint o&*.) Obviously, we have

2n=2SA + ST +2DA*+DT*

Let GX be the genome obtained froB= G° by applyingk randomly selected DCJ operations—
under our model, théi 4+ 1)st DCJ operation is selected from a uniform distribution lbpassible
DCJ operations on the current geno@le We can compute the vectdg (GX) = (SA, STK, DA DT)
to represent the genon@ with respect tdG. -

Now we will show that, givei, we can also produce the estimat@/s (G*)) = (SA, STk, DA, DTX)

for the expected vectd (Vg(GX)) for any integerk > 0. We useSA to approximate the expected
number of adjacencies present in b&andGX. We computeSA from G andGF. Our approach for
estimating the true evolutionary distance is then to retiienintegerk that minimizes the difference

ISAE — SA|.

Estimation of the expected vector after some number of randm DCJ operations

We show how to estimate the expected ve&ovs(G¥)) under our DCJ model for any integler> 0.
Let G andGK be as defined above; the vector 8% = G is clearly justVg(G®) = (ny,ny,0,0).
We first show how to computé (Vg (G?)).

Theorem 2.1.2.Let m be the number of possible DCJ operations applicable W/&have BVg(Gh)) =
(SAL, ST, DAL DT?), where

SN n1_2n§+2n1nz—n1

m
sl n2_2n1n2+n§—n2

m
DAL _ 2n2 — 2n +2mnp + 3% — 3,

m
DTL — 2nno +2m

m

Proof. Write Vg (G°) = (SA,ST?,0,0) and consider the four cases for DCJ operations.
1. When we select two adjacencies outS%GP) , the number of possible DCJ operations is

S;Q) x 2. Neither of the resulting adjacencies will be @ so that every such operation
reducesSA by 2 and increasBA° by 2.
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2. When we select one adjacency ouS#{G°) and one telomere out &T(GP), the number of
possible DCJ operations 8 x ST? x 2. Neither of the resulting adjacency nor telomere will
be inG, so that every such operation reduces ®# andST° by 1 and increases bofbA°

andDTO by 1.

3. When we select two telomeres out3(G), the number of possible DCJ operationﬁ;).
The resulting adjacency will not be @, so that every such operation will redus#® by 2 and

increaseDAC by 1.

4. When we select one adjacency ouS#{G°), the number of possible DCJ operation$Si.
Neither of the resulting telomeres will be @, so that every such operation redu& by 1
and increaseBTC by 2.

Adding up the 4 cases and normalizing by the tatalve get

SA

ST

DA!

DT?!

°
SA?+—2(E ) (-2

25/ 4 2SASTO — SA
m

SK.ST0.2
_{_7.
m

+$.(_1)+£.(_1)

m

SK

()
(-y+-2l(-2)
gpo_ 2SASTO4 ST ST°

m
sK ST
04 2)2, 082, (5)

m m m

2SA? — 250 4 2SMSTO 4 15T0% _ 1T

m
A
TRagy.

sT?

O+SAP-ST0-2_

2SASTO 4 250
m

1

O

Let GK be a genome obtained fro@ by applyingk randomly selected DCJ operations and let
GK+1 be the genome obtained from the genoBfeby applying one more randomly selected DCJ
operation. We show how to calculate the expected valig 68“*1) given GK andG.

Theorem 2.1.3.Let \i5(GX) = (SA, STK DAX, DTX) and let n be the number of possible DCJ op-
erations on &. For conciseness, write A= SA + DAX (the number of adjacencies inKfzand
TX = ST+ DT (the number of telomeres inG Then we can write

me = (A2 2(AN(TH + (T4 2(TH)

E(VG(Gk-'rl)) — (SA(JFJ.’ S'I'#—‘rl’ DAk+l, DTk+1)

where we have
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SAHL — SA %[nl — 2SA(AR 4T
ST — ST+ % [np(TK+ 1) — 2ST¥(A* + TK)]
1 TK
DAL — DAK4 E[25Al<(A'<+T‘<) + ( 2> — (A% —ny]

DTk — pTk4 % [2STH(AK +TH) —np(TK+ 1) — 2<T2k> +2(A]

Proof. From Theoremh 2,111, we have

M= (A2 + 2(A(TH) + 3 (T2 — (T4

There aren; — SA adjacencies irG that do not appear i and they must fall into one the
following 3 cases:

1.
2.
3.

Naa pairs with members in two different adjacencie@'A(Gk).
nrT pairs with members in two telomeres DT (GX).
nat pairs with one member iIBA(GX) and the other ifDT (GX).

There also are, — STX telomeres irG that do not appear i and so must be membersDA(GK).
Now we complete the proof by running through the possiblesakrom the proof for Theorem
[2.1.2, we have already covered 4 cases where adjacencigslamgres were selected only from
SA(GK) andST(GK). The remaining 8 cases cover selections fiRA(G) andDT (G) as well. In
the last 5 of these 8 cases, the outcome of a particular epeiatterms of adjacency and telomere
counts is not fixed, but the total count over all possible apens can still be computed; we use the
expression “recover” (an adjacency or a telomere) to indieacase in which the count increases.

1.

When we select one adjacency ouS#{G*) and another out dDA(G¥), the number of pos-
sible DCJ operations iSA x DAK x 2. Neither resulting adjacency will be @, so that every
such operation reduc& by 1 and increaseBAX by 1.

. When we select one adjacency ouS#{G¥) and one telomere out &T (G¥), the number of

possible DCJ operations 84 x DTX x 2. Neither the resulting adjacency nor telomere will
be inG, so that every such operation redu& by 1 and increaseBAX by 1.

. When we select one telomere out3¥(G*) and one telomere out @T(GX), the number of

possible DCJ operations &T¥ x DTX. Neither the resulting adjacency nor telomere will be in
G, so that every such operation redu&& andDTK by 1 and increaseBAK by 1.

. When we select one telomere outS¥(G¥) and one adjacency out BA(G¥), the number of

possible DCJ operations &T* x DAX x 2. The resulting adjacency will not be @ while the
resulting telomere can be @or not. There ar&TK x (n, — STK) ways to recover one telomere
out of n, — ST telomeres irG that do not appear iGX.

. When we select two adjacencies outDo&(G¥), the number of possible DCJ operations is

(ng) x 2. The two resulting adjacencies can bé&ior not. There ar@aa ways to recover one

adjacency out ofi; — SA adjacencies i that do not appear iGX.

. When we select one one adjacency oubA{G¥) and one telomere out @¥, the number of

possible DCJ operations BAX x DTK x 2. The resulting adjacency and telomere can b8 in
or not. There ar®TK x (n, — ST¥) ways to recover one telomere outrgf— ST telomeres in
G that do not appear iG* andnat ways to recover one adjacency outnf— SA adjacencies
in G that do not appear i6X.
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7. When we select one adjacency ouD#(GX), the number of possible DCJ operation &
The two resulting telomeres can be@or not and there ara, — ST ways to recover one
telomere out of, — ST telomeres irG that do not appear iGX.

8. When we select two telomeres out®f (G*), the number of possible DCJ operationé'?%k).
The resulting adjacency can be@or not and there arert ways to recover one adjacency
out of n; — SA adjacencies i that do not appear i6¥.

Adding up the 12 cases and normalizing by the totglwe get
SAFL — SA<+%[n1—ZSA<(A"+Tk)]
ST — STk+%[n2(Tk+l)—ZSTk(Ak+Tk)]
ki1 k, L K, ky, (T K
DAl — DA +E[ZSA<(A +T9+( 5 ) —(A)—ni]
ki1 Kk, 1 Kk, Tk k T* K
DT = DT —i—E[ZSTk(A +T) =T+ 1) = 2( ) +2(AY)]

O

GivenG, we estimaté (Vg (G¥)) for k > 0 by iteratingk imes the matching formula in Theorem
213, and every time we identifg (Vs (G*1)) with the actual vectovg(G<1).

Corollary 2.1.4. Let G be one genome on n genes, the estimated VE(#I(G')) = (éﬂ, ST , ﬁ, ﬁ)
for all integers i(0 <i < k) can be computed in @) time.

2.1.3 Experimental results

We now present experimental results on the accuracy of dunason of the expected vector after a
given number of random DCJ operations and on the quality oéstimator for the true evolutionary
distance (in terms of the actual number of DCJ operationsj.e®periments all start with an original
genome,G, with some chosen number of linear and circular chromosoohesrious sizes; this
genome is subjected to a prescribed numbef DCJ operations chosen uniformly at random to
obtain a final genome&X. We varyk from one to six times the number of genes—very large values in
evolutionary terms. For each choice of parameters, we gan&f000 runs to obtain a tight estimate
of variance. We compute the vector representations fontdriediate genomes and then use our
method to estimate the evolutionary distance. We run tasta targe variety of initial genomes
and present here results on three initial genomes, all nieaiesemble real organismal genomes:
(a) 25000 genes and 25 linear chromosomes; (hPQ0 genes and 5 linear chromosomes; and (c)
1,000 genes and 1 circular chromosome—the first two exampléshmaetazoan genomes, the last
matches a small bacterial genome.

Accuracy of the expected vector aftek random DCJ operations

We study the behavior of our estimati&Vs(G*)) by comparing its prediction to the sample mean
for E(Vg(GX)), as computed from our 1000 trials. We compute the mean absolute difference for
SA ST, DA, andDT between our estimatioR (Vg (G¥)) and each experimental vectdg(GX) in
every single run for genomes (a), (b), and (c) and show thétsds Figure 2.P.

The sum of absolute difference of entries in the vector ordiger genomes never exceeds%d
(as a percentage of the sum of entries in the vector) and iisatipwell below 025%; even on the
smaller genome, the difference does not exceed 2% and atiypbelow 1%.
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Figure 2.2: The mean absolute difference$dy ST, DA andDT between our estimatioB (Vg (GX))
and each experimental vectdt(G¥) as a function of the actual number of DCJ operations.

Accuracy of the estimation of the actual number of DCJ operabns

We want to study the threshold of saturation of our estimataddition to its accuracy; in order
to do that, we create simulations with controlled numberB@f operations and set up a threshold
for correction in the estimation procedure. Specificallg ehoose a number between 1 and some
upper bound as the actga/l number of DCJ operatioBds chosen to be the smallest integgehat
makes the expected val@ smaller than 2, a point at which there are almost no sharetegies
left. For genomes (@), (b) and (c), the corresponding uppends are 12521, 44047, and 3253,
respectively. We use the smallest integéhat causes the expected va&ao become smaller than

% as an upper limit on the maximum number of DCJ operationsaretiolutionary history. Finally,

if we haves, = 0, we sek (the value normally chosen to minimizZ8A — é\A/H) to this upper limitr.
For genomes (a), (b) and (¢)has values 21842, 81329, and 6398, respectively.

Figure[2.8 shows the mean and standard deviation for thalautmber of DCJ operations esti-
mated by the edit DCJ distance and by our approach. Thesediqudicate that, as expected, the edit
DCJ distance underestimates, often severely, the actoabeuof events. In contrast, our approach
provides highly accurate estimates, with very small vaméan

We also study the mean absolute difference between thel axtoder of DCJ operations and
our estimator for genomes (a), (b) and (c). The results arenstin Tabld 2.1L.

The estimates are highly accurate (even for small genonpeg) surprisingly large numbers of
events. Rearrangement events fall under the categoryref g§enomic events[8§7], yet our estimator
works well even for what would be considered common events.

22



Gene Number = 25000, Linear Chromosome Number = 25 Gene Number = 10000, Linear Chromosome Number = 5

125000 45000
H ﬁ % 40000f m { {
100000 {ﬁﬁ 35000+ %HH
ﬁf ﬁﬁ
it 30000 Iﬁ
75000 g H
It 25000+ 4
5f it
It Es
5t 20000( Lt
50000 K ot
.
% 15000 i *
xxlx L 3 xxx
25000+ 3 10000 o
ac‘ of
5000(
0 ® L L L L 0 2 L L L L L L L L
0 25000 50000 75000 100000 125000 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Gene Number = 1000, Linear Chromosome Number = 0
3500

30001
2500+ ﬁ|e

2000 H&
% ﬁ%ﬁ% x  for our estimation

i

il

%HHH o for edit DCJ distance

1500+

b | standard deviation
1000 b Lk

5001

o
0 . . . . . .
0 500 1000 1500 2000 2500 3000 3500

Figure 2.3: Mean and standard deviation plots for the actuaiber of DCJ operationy éxis) vs.
the edit DCJ distance and our estimatoakis). The datasets are divided into 60 bins according to
their x-coordinate values.

Table 2.1:The mean absolute difference between actual number of D&&tgns and our estimation.
actual number of DCJ operations

# genes # genesl # genesx2 # genesx3
25,000 131.0(0.5%) 447.5(0.9%) 1280.2 (1.7%)
10,000 83.9(0.8%) 282.0(1.4%) 819.4 (2.7%)

1,000 27.2(2.7%) 93.6 (4.7%) 441.8 (14.7%)
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2.1.4 Discussion

From Figure 2.3, our approach postpones the threshold ofag@in (viewed as a number of DCJ
operations) from well under the number of genes to at leasettimes the number of genes for all
three example genomes. This large gain in accuracy shaudlate into much better phylogenetic
reconstructions as well as more accurate genomic aligrement

There are two main assumptions made in this work: no gendadtiph or loss; and uniform
distribution of DCJ operations. Both are clearly unreajsso our ability to gauge their effect on
model predictions is crucial to future model refinements.

For instance, the DCJ model requires that a chromosomadriitisat creates a new small circular
chromosome be immediately followed by a chromosomal fustiar re-absorbs this small circular
chromosome, thereby causing a block exchange within thggnati chromosome and treating the
extra circular chromosome as a transient artifact [119hc&icircular chromosomes do not arise
in organisms with a number of linear chromosomes, a simdastraint would strongly reduce the
incidence of fission. A similar type of constraint could beedigor prokaryotic genomes, which
normally consist of a single circular chromosome. Evideheg¢paracentric rearrangements are more
common than pericentric ones, at least in @osophilaspecies[[121], and that short inversions are
more common than long ones, in some prokaryotes and in theraémtionedrosophila[58,121],
can also be reflected into additional constraints on the D&ikm Any additional constraint naturally
creates complications, but we expect that at least a fewalatanstraints can be handled within the
framework described here.

Since the DCJ operation regroups all rearrangements dttaligate, and since our results point
to one way in which the behavior of this model can be studieddaous constraints (such as where
the cuts can be made), our results may shed light on the véssng of what constitutes a significant
syntenic block in comparative genomics—an issue that hexrs adot of discussion over the last few

years [13, 96].

2.2 Models and distance estimations under rearrangementsluplica-
tions, and losses

In the previous section, we present a statistically basetthadeto estimate the true evolutionary
distance between two genomes under the DCJ model. The DCdlnmmvever, is unrealistic in
two major respects. First, if the two cuts are in the samerobsmme, one of the two nontrivial
rejoinings causes a fission, creating a new circular chromes However, circular chromosomes
do not normally arise in organisms with linear chromosonaes] prokaryotic genomes normally
consist of a single circular chromosome. Nor can this forme@dining be forbidden as, without it,
DCJ simply reduces to inversion. Secondly, DCJ is a modet@frangements: it does not take into
account evolutionary events that alter the gene conteaih, as duplications and losses.

Of these two problems, the first has not been seriously asielleshe model we present here is, to
the best of our knowledge, the first model that naturally gmess the dichotomy between prokaryotic
and eukaryotic genomes. While gene (or segment) duplitaaod losses have long been studied by
geneticists and molecular biologists, little work has béene to date on integrating them with rear-
rangements in a unified model. EI-Mabrouk][24] gave an exagctrrithm to compute edit distances
for inversions and losses and also a heuristic to approrimait distances for inversions, losses, and
nonduplicating insertions (all of her results assume tieatg cannot be duplicated). More recently,
Yancopoulos and Friedberg [120] gave an algorithm to compdit distances under deletions, in-
sertions, duplications, and DCJ operations, under theti@nisthat each deletion can only remove
a single gene. These and other approaches targeted thestaiitcé, not the true evolutionary dis-
tance. Swensoat al. [105] gave an algorithm to approximate the true evolutigrdistance under
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Figure 2.4: A very small genom®

deletions, insertions, duplications, and inversions foickiromosomal genomes and showed good
results under simulations and for small-scale phylogenmetionstruction. Rearrangements, duplica-
tions and losses have also been addressed in the framewaricestral reconstruction [67,82]. All
of these approaches have focussed on parsimony criteribaaedused pre-assigned weights for the
various operations.

We propose a new evolutionary model which respects the ol between prokaryotic and
eukaryotic genomes and which takes gene duplications asdddnto account, and develop a statis-
tically based method to estimate the true evolutionarnadist under our new model.

2.2.1 Preliminaries on gene-order data and the new evolutiary model

We denote the tail of a gereeby ¢! and its head byg". We write+g to indicate an orientation from
tail to head ¢ — g"), —g otherwise ¢" — df). Two consecutive genesandb can be connected by
oneadjacencyof one of the following four types{a',b'}, {a",b'}, {a',b"}, and{a",b"}. If genec
lies at one end of a linear chromosome, then we also havelasinget{c'} or {c"}, called aelom-
ere. A genomecan then be represented as a multiset of genes together mitiitiaet of adjacencies
and telomeres. For example, the toy genome in Fifgude 2.4posed of one linear chromosome,
(+a,+b,—c,+a,+b,—d,+a), and one circular ond+e,—f), can be represented by the multiset of
genes{a,aab,b,c,def} and the multiset of adjacencies and telomeféa'}, {a",b'}, {b",c"},
{d,a"}, {a",b'}, {b",d"}, {di,a"}, {a"}, {€", f"}, {&, f'}}. Because of the duplicated genes, there
iS o one-to-one correspondence between genomes andetautifsgenes, adjacencies, and telom-
eres. For example, the genome composed of one linear chooneos+a, +b, —d, +a, +b, —c,+a)
and one circular oné+e, — f) would have the same multisets of genes, adjacencies amderds as
that in Figurd Z2.4.

In the new evolutionary model, a genomic change is one of a geplication, a gene loss, or
a genome rearrangement, so that there are two parametergratbability of occurrence of a gene
duplication, pg, and the probability of occurrence of a gene Iggs;-the probability of occurrence
of a rearrangement is then just=1— pg — pi. The next event is chosen from the three categories
according to these parameters.

For rearrangements, we select two elements uniforwiti replacemenfrom the multiset of
all adjacencies and telomeres and then decide which remmaent event we apply to these two
elements. Compared to the DCJ model, the new model assigesific probability to each operation
and forbid the one operation that creates circular intefatesl Thus we have eight cases in all (refer
to Figure[2.b). For each case, we apply the intuitive in&tgiion in terms of replacing sets of
adjacencies and telomeres suggested by Bergerah[5,[6].

Select two different adjacencies, or one adjacency and elwenere, in the same chromosome
(Figure[Zba). For example, select two different adjaceng ;,a'} and {a*j‘,atjﬂ} on one
linear chromosomé = (a;...8_18...a;aj+1...a,). Reversing all genes betweananda,
yields(ay...a_1-aj...-&aji1...8). Two adjacenciesia ;,a'} and{a*j‘,atjﬂ}, are replaced
by two others{al' ,,al} and{a},a ,}. This operation causes an inversion. (Itis in this case
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that we forbid the creation of a new circular chromosometugkhofission, which would use the
same choices of adjacencies, but rejoin the pieces ditfgren

Select two adjacencies, or one adjacency and one telomertyad linear chromosome-ig-
ure[ZBb). For example, select two adjacenci@$, . ;} from one linear chromosomgé =
(a1...4@1...an) and{b'j‘,btjﬂ} from another linear chromosonte= (by...bjbj 1...bm).
Now exchange the two segments between these two chromosbametD. There are two pos-
sible outcomes(a; ...abj;1...bym) and(by...bjai 1...a,) or (a1...a-bj...-by) and(-by. ..
-bji18i41...an). Two adjacencies{al’,a,,} and{b,b\ ,}, are replaced byaf",b,} and
{a,,,b}} or {al,b]} and{a}, b} ,}. This operation causes a translocation.

Select two different adjacencies, or one adjacency and eoenere, in one circular chromosome
and one linear chromosom@igure[2.5c). For example, select two adjacenc{ﬁ,, a}+1}
from one linear chromosome= (a;...8&1...an) and{c?,ctHl} one circular chromosome
C = (C1...CjCj41...Cm). Now merge the circular chromosor@einto the linear chromosome
A. There are two possible outcomes, linear chromosdiaes. &Cj1...CmC1...Cjdi11...8n)
or
(a...@-Cj...-C1-Cm...-Cj;18i11...@1). Two adjacencies{a]',al ,} and{c!,c},,}, are re-
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placed by{al',c,,} and{al,,,c}} or{a},cl} and{al, ,,c} ,}. This operation causes a fusion

of a circular chromosome with a linear chromosome.

Select two adjacencies in two circular chromosor(fégure[2.5d). For example, select two adja-
cencies{c",c,} from one circular chromoson@= (C; ...CiCi;1.. .Cm) and{d?,dﬁﬂ} from
another circular chromosoniie= (d; ...d;dj;1...dn). Now merge these two circular chromo-
some<C andD into one new circular chromosome. There are two possiblecouts, circular
chromosomes
(€1...cdj41...Amd1...djCit1...Cm) OF (C1...G-dj...-01-On...-dj;1GCit1...Cm). Two adja-
cencies,{c,c{ ,} and{d,d},,}, are replaced bycf,d" ,} and{c,,,d} or {c,d"} and
{d dtHl}. This operation causes a fusion of two circular chromosomes

Select the same adjacency twice in one linear chromog&igere[2.5e). For example, select the
adjacency{a{‘,a}ﬂ} twice from linear chromosom& = (a; ...&&1...an). Then splitC into
two new linear chromosome&; ...&) and(g1...a,). The adjacenc;{alh,a}ﬂ} is replaced
by two telomeregal'} and{a ,}. This operation causes a fission of a linear chromosome.

410

Select the same adjacency twice in one circular chromog&igerre[2.5f). For example, select the
adjacency{cih,c}H} twice from circular chromosom@ = (c; ...CiCi;1...Cm). Then linearize
C into a linear chromosoméei. 1 ...CmC1...Gi). The adjacencyc,c, ,} is replaced by two
telomeres(c'} and{c;}. This operation causes a linearization of a circular chrsmnze.

Select two telomeres in two linear chromosorfégure[2.5g). For example, select telomefed}
and {b}} from two different linear chromosomes= (a;...8a1...an) andB = (b1...b;
bj+1...bm). Then concatenate these two linear chromosomes into aesiegl chromosome
(1...8 @41...anb1...bjbj41...bm). Two telomeres,{anh} and {b}}, are replaced by one
adjacency{al, b} }. This operation causes a fusion of two linear chromosomes.

Select two telomeres in one linear chromosc(ﬁfigurelﬂhﬂ For example, select telomeréa’ }
and{a}} from linear chromosom& = (a;...aa;;1...a,) (See Figur€2l5h). Then circularize
the linear chromosome by connecting its two ends. Two teteméal; } and{all}, are replaced
by by one adjacencya, all}. This operation causes a circularization of a linear chrsomze.

As mentioned earlier, we do not include a fission that cremtcular intermediate. This choice
is based on desired outcomes, not on any notion of mechamidnirethat sense, follows the spirit of
the DCJ model itself, since that model’'s strength is not #ésimilitude of its mechanism, but the
simplicity of its formulation and the universality of itstsaf operations. As we shall see, running our
model produces simulated genomes that more closely reseanhlal genomes than those produced
under a pure DCJ or HP model.

For gene duplication, we uniformly select a position totadaiplicating a short segment of chro-
mosomal material and place the new copy to a new positioniwitie genome. We séin . as
the maximum number of genes in the duplicated segment amndnasthat the number of genes in
that segment is a uniform random number between 1llapgd For example, select one segment
&.1...8. to duplicate and insert the copy between one adjacébﬁt;btjﬂ}. Such an operation
duplicatesL genes and. — 1 adjacencies, removes one adjacency, and adds two neveades;
thus genes; 1, ..., 1 anda . are added to the multiset of genes, the adjace{lhi;ythl} is
removed, and. + 1 new adjacenciedp]. &, }, {a'.;,al ,}, ..., {&, b}, }, are added.

For gene loss, we uniformly select one gene from the set afaaitlidate genes and delete it,
restricting gene loss to the deletion of a single gene copy tiine, following Lynch [[66]. For
example, if we delete gera in the chromosomé...a_1aa,1...), one copy ofy is removed from

1Selecting one telomere twice is assimilated to selectirily tmomeres of the linear chromosome.

27



the multiset of genes, while two adjacenciﬁLl, a} and{a{‘, a}+1}, are replaced by one adjacency,
{a 18,4}

2.2.2 True distance estimation under the new evolutionary imdel

The problem of estimating the true evolutionary distanatefined as follows:
Input: The original genom& and the final genome.
Output: An estimate of the actual number of evolutionary eventsttiak place in the evolutionary
history to transfornG into G*.

Based on the multisets of genes and of adjacencies and telsr&G, for any genomes* of
N* genes and* linear chromosomes, we can build the vedtor= (NG;,... NG, SA, ..., SA;, DAY,
ST*,DT*), whereC is the upper bound for the number of copies of one gli@,(i = 1,...,C) is the
number of genes witexactly icopies in the genomé*, SA (i =1,...,C) is the number of adjacen-
cies withexactly icopies inG* that also appear i, DA* is the number of adjacencies @1 that do
not appear irG, ST* is the number of telomeres & that also appear iG, andDT* is the number
of telomeres irG* that do not appear i@. We can write

C
3 NG

C
ZSA{—FDA"—{—ST‘—FDT*—I*.
i=

N*

N*

Let GX be the genome obtained from= G° by applying k randomly selected evolutionary
operations—under our model, thiie+ 1)st evolutionary operation is selected from all possible re-
arrangements, gene duplications, and gene losses on ges@ueording to the parametepg and
p. We can compute the vectdt(G¥) = (NG,..., NG, SA;,...,.SA DA ST DTX) to represent the
genomeG* with respect taG.

Now we show that, gives, we can also produce thestimateE (Vg (GK)) = NG'{, .. NGC SAl‘j

Y % DA, ST, DAT/k) for the expected vectd# (Vs (GY)), for any integeik > 0. Our approach for
estimating the true evolutionary distance is then to rethenintegerk that minimizes the 1-norm
distance betweeB(Vg(GK)) andVs(GF).

Estimation of the expected vector after some number of randm evolutionary events

Given the original genome, the complete vector for genon@¥ is defined a¥/(G*) = (NG{,NG,

., SA SA;,..., DAK,STDTK), whereNG is the number of genes with exactlgopies in the genome
G, SA (shared adjacencies) is the number of adjacencies withlgxampies inG* that also appear
in G, DAK (distinct adjacencies) is the number of adjacencieithat do not appear i@, ST (shared
telomeres) is the number of telomeresdhthat also appear i6, andDTX (distinct telomeres) is the
number of telomeres iGX that do not appear iG.

Assume the original genonm@&hasN genes, where each gene has at m@ostO(1) copies, and
linear chromosomes, with= O(1). We thus ignore itemR G andSA for (i > C). The initial vector
Vi(G?) is then(NG) NG),... NG, SA SA,....SA DA% ST, DT?), whereNG is the number of genes
with exactlyi copies,SA is the number of adjacencies with exadtlyopies,DA® =0, ST° = 2I, and
DT = 0. We now show how to update this vector under rearrangemgei® duplications and gene
losses, respectively.

Rearrangement

For rearrangements, we select two adjacencies or telomaifsmly, with replacement, from the
multiset of all adjacencies or telomeres.
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Lemma 2.2.1. Assume all genomes ha@1) linear chromosomes, each gene has at ntst
O(1) copies, and/g(G¥) = (NGK,..., NG, SA,..., SA, DA STK DT¥) represents the current genorgé
based on the original genon@ For conciseness, writh = 3¢ ; NG, (the total number of genes)
andlk = (ST + DTK)/2 (the number of linear chromosomes). Then we can write theateg vector
for G** after one rearrangement operatiof(Vg(G<1)) = (NG, NGE,SATL, | SACT DAL,
STk DTK+1) where we have

NG“! = NG, i=12....C
~ 2i(SA - spr 1
1 _ +l H—
2c spjg
SAE+1 = SAE |k O(Nk)
DA|(+1 — DAk+ ZI 1?;4( +O( )
231* 1
+1 =~ -~
STl = gT* N Ole)
2STK 1
k1l _ k L
DT = DT +—Nk+lk+o(Nk)

Proof. In our evolutionary model, each rearrangement operatiplaces old adjacencies or telom-
eres with new ones. Obviously, any rearrangement operatibmot change the gene content, so
NG“1(i=1,2,...,C) will be the same.

We first ignore the adjacencies or telomeres in the origiealbgneG created after a rearrange-
ment event. Remember two adjacencies or telomeres araexbleith replacement uniformly from
the multiset of all adjacencies and telomeres, and the nuwiball adjacencies or telomeres for
genomeGK is (NK+1¥). For SA adjacencies with exactl copies inG* which also appear i,

the probability that one adjacency is selected on&ﬁ%}w, the probability that two differ-
ent adjacencies are selected%%f;%, the probability that same adjacencies at two differemssit
are selected |§§kﬁi)ﬁ2 and the probability that same adjacency at the same sitddsted twice is

Ignoring the newly created adjacencies or telomeres imthygnal genomes, with prob-
2SA (NK 1K —SAK) isA

SA
W2

ability

, the number of adjacencies with exadtlgopies decreases lbyand, with

(NK1K)2
probability SAkai?t >, the number of adjacencies with exadtopies decreases by. 2Vith probabil-
ity 254 Nfgk':lks)’* *S’* , the number of adjacencies with exadfiy- 1) copies increases ky— 1), with

probability SAk Ak , the number of adjacencies with exactly— 1) copies decreases byi2- 1),

and, with probablllty waﬁ, the number of adjacencies with exactiy— 2) copies increases by

(i—2). Considering = 1,2,...,C andC = O(1), we have
SATt = SA&_&(SA&S%) i=12...

+1 -
S% - S% Nk+|k ’

DAk+l _ DAk+ Z(ZICZISA()

Now, we show that the correction for our ignoring adjacemae telomeres after a rearrangement
event isO(ng) for each item. Consider any adjacen@yb) in G: we might recover it if we select
two adjacencies or telomeres containing two gemasdb. Since each gene has at mastopies in
the genome, there are at m@stpairs of adjacencies or telomeres that may lead to recovetyeo
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adjacency(a,b). So, with probability at mosgﬁm@, one specific adjacency i@ might be created
by the rearrangement. Summing up all the- 1 adjacencies irG, we see that the correction for

ignoring the newly created adjacencies or teIomereBi'mO(%).

Similarly, we can gesTt1 = ST — 257« 28T +0O(%) andDTkHt = DTk BT ZSTk % + O(%)- O

Gene duplication

For gene duplications, we select uniformly at random argettdetween 1 antyax (the maximum
number of genes in the duplication segment), then seleframly at random a position where to
start the duplication, then insert the copy at another jposgielected uniformly at random.

Lemma 2.2.2. Assume all genomes ha@¢1) linear chromosomes, each gene has at noostO(1)
copies, no two same genes or adjacencies are within the segmée duplicated, andlg(GX) =
(NGK,...,NGE,SA,...,SA DAY, ST DTK) represents the current genor@ébased on the original genome
G. For conciseness, writh* = 5¢ NG, (the total number of gened), = (ST¢ -+ DT)/2 (the num-
ber of linear chromosomes) and= (Lmax+ 1)/2 (the average number of genes in a duplication
segment). Then we approximate the expected vectas fdrafter one duplication operation with
E(Vo(GK)) = (NG NGEL SATL,. . SASL DAL ST DTK+1) where we have

K
NG — Nei—L(l,\\lfl)a
iL(NGK ; — NGF
NGt = NG+ ( ';\Ilk '),|:2,...,c71
CL(NGE_, )+L(NGE)
NG?l = NGE+ NK

SAT — SAii(L—l)SAf SA — SA§

k_k Nk+|k (Nk)

SA{(” _ SAF i(L—1)(SA ;- SA( i(SA - S'Ahl

Nk — 1k NK 11K (Nk)i—Z,...,C—l
s - sy DAL ISt O30 o
oni+t = o+ (IR BGARS vorg)
ST = STka—IkI"JrO(ﬁ)
DTH — DT + Nf]:k*O(%)'

Proof. In our model, we uniformly select a position to start dugiiog L genes and transpose it to
one new uniformly chosen position within the genome. Theeetgd number of genes or adjacen-
cies with exactlyi copies within the duplication segmentUi&NGK)/N¥ or (L — 1)SA/(NK—1¥). The
probability that the placement of the duplicated segmeeaks one adjacency 81 is SA/(NK4-1%).

We again first ignore the adjacencies or telomeres in thenatigenomeG created after a du-
plication event. Since we assume that no two genes or adj@seare same within the duplication
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segment, we have

L(NGY)
k+1 K 1
NGI™ = NG{- =,
iL(NG ;| — NG¥
NG = NGM%, i=2,..C-1
CL(NG¥ L(NGE
NGk = Nk GC*;?J N
1 (L-1SA SK-SA
SA§+ = SAE_ NK—[k — Nkf|k
L 13Ar —SA) i(SA-SA.) .
1 1 +1
SATL = SA+ N Nk =201
) L718AE71+ L—1)SA C(SK)
ST = sy NK_ IR TNk Ik
kil _ «, (L—1)DAC 5C, SA+DA
DA™Y = DA i+ T

Now, we show that the correction for our ignoring adjacemaetelomeres after a duplication
event isO(x) to each itens8A*. Consider any adjacendg, b) in G: we might recover it if we move
genea next to gend after the duplication. Since each gene has at @asipies in the genome, there
are at mos®LC? possibly duplication operations to recover that adjace(rax;b) There are alto-
getherO(L(Nk +1%)?) different duplication operations. So, with probabil®f L+ Nka) 5), one specific
adjacency inG might be created by the duplication event. Summing up all\thel adjacencies in
G, we see that the correction for ignoring the newly creatgdcaaicies or telomeres @@ is O(ﬁ).

Similarly, we can gesT«! = STk — +0(5) andDT* 1 = DT + Nﬂklk +0O(5)- O

N‘<+Ik

Gene loss
For gene losses, we uniformly select one gene with at leasttwies and delete it.

Lemma 2.2.3. Assume each gene has at most O(1) copies and/g(G¥) = (NG, NG,...,NGE, SA,
SK,...,SA, DA, ST¢, DTK) represents the current genorg¥ based on the original genon@ For
conciseness, writtl* = 3¢ | NG¢ (the total number of genes) anti= (ST<+ DT¥)/2 (the number
of linear chromosomes). Then we can write the expected visst@ ! after one rearrangement
operation asE(Vg(G¥1)) = (NG, NG SATL,. . SAH DAL ST DTKHL) where we have

N Kk
NG = NG|£+I\N<7CI;\IZG"’
i(NGK—NG¢
NG = quf—( G NGI'(“),i:z,...,CA
- 1
C(NGE)
k K
NGE™ = NG~ G a
1

Proof. In our model of gene loss, one gene with at least two copiesiiemly selected. The num-
ber of all possible genes to be deletedlfs- NGS. ForNG* (i > 1) genes with exactly copies inGK,

the probability that one of them is selected and delete@ﬂ%— So with probabilityNk Nd(, the
number of genes with exactlycopies decreases byand the number of genes with exac(ly— 1)
copies increases by —1). O

We ignore the adjacencies or telomeres in the original gen@ro be created after one gene
loss. ForsA (i > 2) adjacencies with exactiycopies inG* which also appears i6, it is difficult to
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compute the numbef; (delj) of such adjacencies that each single deletieh (j = 1,...,NX — NG)
would affect. But we know that each adjacency with exaictly> 2) copies must relate to two genes

k Kk
with more than 2 copies, so we haggN:INGl fi(del) = 2SA. Considering =2,...,C andC = O(1),
we have

SA@,{L _ SA{_ SA( 84:»1 =2 ,C—l

Nk NGk , 1=2,...

SA — sAk 2C(SK)

-
Nk — NGk

For SA adjacencies with exactly 1 copy @ that also appears i, it is also difficult to compute
the numberfl(delj) of such adjacencies that each single deletleh (j = Nk - NG) would affect.

AssumeDS - onet fi(delj)) is the count of genes with at least two copies but relateddseth
ZJ 1 ]

adjacencies W|th exactly 1 copy @f that also appear i6. We consider the effect of rearrangements,
gene duplications and losses, and we approximate as follows

NK [k
2SA —2DSA +2SA  (L—1)DSK
*Pal AT TURNR )
2SA§ DSA( 1+NGZ/ —NG))
~ NGk ’
DSA{; 2SA§
SAT SA-p—2—2 NG

For telomeres, we simply assurg@+! = ST< andDTk+1 = DTk,

Finally, we also approximate the number of adjacen&igg"* that we could thus ignore un-
der rearrangements, gene duplications, and gene lossksljsaribute it to the correction @A as
follows:

RSA™ = (pr+5 pd)(N_I)(Nk/N)Z/(Nk+|k)2
SAHL = SAFJrRSAf”SAF/(NkfkaDAk),i:1,...,C71.

Now, givenG®, we estimateE (Vg(GX)) for k > 0 by iteratingk times the above formulas (using
with pg andp,); at every step we identiffg (Vs (G4 1)) with the actual vectovs(G<1).

Corollary 2.2.4. The estimated vectd(Vs(G')) = (I\IAG/'lI\IAG/'C gﬂlgﬁl Bﬁ,ﬁ,ﬁ) for all
integers i(0 < i < k) can be computed in @C) time.

2.2.3 Model characteristics

Genome structure prediction

We prove that our new model respects the distinction betwe&aryotic and prokaryotic genomes.
Note that the following theorems do not deal with the proadsshromosome evolution, only with
its endpoint.

Theorem 2.2.5. Let the ancestral genome have one circular chromosome wgémes. After (n)
rearrangements events, with probabillty- n=©) | the final genome contains a single circular chro-
mosome or a collection of @gn) linear chromosomes.
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Proof. We examine the effect of rearrangements on the genomeustuctiven the original genome
with one circular chromosome, only one of our eight casesreault in a linearizationselect the
same adjacency twiggigure[2.5f). Once we have only linear chromosomes, twesaan directly
result in a change in the number of linear or circular chrarnuess:select the same adjacency twice
(Figurd 2.be) andelect two telomerdg&igure2.5h). The probability for selecting the same asljay
twice is O(1/n); that for selecting two telomeres &(t?/n?), wheret is the number of telomeres.
Every time we select the same adjacency twice, we increasautimber of linear chromosomes by 1.
Let the indicator variable; represent whether or not we select the same adjacency tivibe igh
step and writek for the number of evolutionary events. Set z!‘:lxi and letu be the expectation
of X. The Chernoff bound shows

Pr(X > (1+3)y) < (¢¢/(1+8)*9)"
In our casek = O(n), = O(1), = O(logn), so that we get
Pr(X > O(logn)) < n-®%

Let the indicator variabl¥ represent whether or not we select two telomeres athteep. Sincé=
2X, t is bounded byd(logn) with probability 1—n~°1). Thus, with probability - n-®%), we have

Pr(Y; = 1) < O((logn)?/n?).

Now setY = TK | Yi. We have
k
Pr(Y >0) < ZPr(Yi =1) <n©®,
i=

Overall, then, with probability at least-1n°1 X < O(logn) andY = 0, which means that the
final genome structure has either a collectionQgfogn) linear chromosomes or a single circular
chromosome. O

Theoren{ 2.2]5 tells us that, if the original genomic streetstarts from a circular chromosome,
most current genomes will contain a single circular chraonue or a collection of linear chromo-
somes. However, if the initial genome structure was, e.gixeof linear and circular chromosomes,
would such a structure be stable through evolution? We caracterize all stable structures in our
model under some mild conditions.

Theorem 2.2.6.Let the ancestral genome have n genes and assume that tlegresitive constants
c; anda such that each chromosome in the ancestral genome has at{@édgenes. Let£be some
constant obeying,c> 2c;. After on'~® logn rearrangements, with probability— O(n~%logn), the
final genome contains either a single circular chromosoma oollection of linear chromosomes.

Proof. In our evolutionary model, consider the case of selecting &djacencies or one adjacency
and one telomere in two different chromosomes. If one ofwmedhromosomes is circular, a fusion
will merge the circular chromosome into the linear chronmeo(Figure[ 2.5c). If both chromo-
somes are circular, a fusion will merge the two chromosomés a single circular chromosome
(FigurelZ.5d). We use a graph representat®rfor the genome structure, where each circular chro-
mosome is represented by a verfgxand all of the linear chromosomes (if any) are representeal by
single vertexB . If two adjacencies or one adjacency and one telomere agetedlin two different
chromosomes, we connect the vertices of these two chromassdinwe first ignore circularizations
of linear chromosomes (Figure 2.5h), then the genome endstba single circular chromosome or
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a collection of linear chromosomes if and only if the coragging final graphG is connected. We
therefore bound the probability that the grahs not connected aftenn'~®logn rearrangements.
If Gis not connected, there is at least one bipartition of théoes intoS; andS, in which no edge
has an endpoint in each subset. Assume thergaemdg, genes inS; and S, respectively; then
min{g:, 02} > cn® andg; + g2 = n. Since there are at moétnl‘“ chromosomes, we can write

| 3)+3)) (5
Pr(G is not connected < <c2n1“Iogn / con—%logn

< (1_Cln1—cx)02n1*“|ogn < O(n—Za)

Let indicator variableX; represent whether or not we select the same adjacency tiviceith step
1-a
(FigurelZbe f) and set = y27 '°9"X,. We have

PriXi=1) < 1/n
cont~%logn

Pr(X>0) < Z Pr(X =1) = O(n %logn).

Now we bound the probability of selecting two telomeres ia #ame linear chromosome (Fig-
ure[2.5h), which causes a circularization of this chromasesthe case we deliberately ignored
above. For each linear chromosome, there are four possiéys wf selecting two corresponding
telomeres. Since the number of linear chromosom&ssbounded byc—llnlf“, there are at most
Ciln1*“ ways to circularize one linear chromosome in(all- 1)? ways of selecting two adjacencies
or telomeres. Again, let indicator variabYerepresent circularization of one linear chromosome at

theith step and séf = Y%7 9"y, We have

cont~%logn

Pr(Y >0) < Z Pr(Yi=1)
i=
< 4eplogn/cin® < O(n*logn)

Thus, with probability £ O(n~“logn), we have:G is connectedX = 0, andY = 0, so that the final
genome contains either a single circular chromosome oraatioin of linear chromosomes. [

The restriction on the minimum size of chromosomes in thesinal genomes is very mild, since
the parameten can be arbitrarily small.

Our model also predicts, for genomes composed of a coltectidinear chromosomes, conver-
gence to a certain number of chromosomes, which dependdatti number of genes.

Theorem 2.2.7. Assume there are n genes and fewer tﬁé@ linear chromosomes in the orig-

inal genome. The number of linear chromosomes increasdsgdtgarrangements, converging to
1+v14+4n
SR,

Proof. Assume there arklinear chromosomes in the original genome. In our modelntiraber of
linear chromosomes increases by 1 with probab'ﬁﬁy and decreases by 1 with probabil(ty':l)z.
Since we havé < X" an increase is more likely. The stable equilibrium follofnem the

equationzt = (757)2. O

These theorems are not affected by duplications and loasdeng as the latter are reflected in
the sizes of chromosomes and the total number of genes.
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Sizes of gene families

Of most concern in a duplication and loss model is the digtidin of the sizes of the gene families,
since that is one of the few aspects of the process that hasdiEerved to obey general laws.
Our sole aim in this section is to demonstrate through sitimuia that our model, which uses the
duplication/loss model of Lynch, yields distributions s@tent with what Lynch suggested [66].
Our experiments start with a genome with no duplicated gengis genome is then subjected to
a prescribed numbd; varying from from 0 to 10 times the number of genes, of evohary events
chosen according tpg and p; to obtain different genomeSX. We test a large number of different
choices of parameters on varying sizes of genomes; as thiesrage consistent throughout, we report
two cases: (a) 1'000 genes with= 10, pg = 0.2, andp, = 0.8; and (b) 10’000 genes with= 10,
pg = 0.4, andp, = 0.6. The data in Figure_2.6 summarizes 1’000 runs for each petearsetting.
The shape of the distributions of gene family sizes is gélyesamilar to the observations presented
by Lynch [66].
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(a) 1’000 genes (b) 10000 genes

Figure 2.6: Probability distribution of the size of gene f@s, for various numbers of events, in-
creasing from the leftmost é¢ents= #genej to the rightmost (#vents= 10 x #genes.

2.2.4 Experimental results

We now present experimental results on the accuracy of dunason of the expected vector after a
given number of random evolutionary events and on the gquadibur estimator for the true evolu-
tionary distance (in terms of the actual number of evoligrevents). Our experiments all start with
one genome with no duplicated genes and some chosen nunmlberasfand circular chromosomes
of various sizes. We first apply some number (usually 10) @lidation events l(max = 10 in all
cases) to generate the original geno@avith some initial duplicated genes. Then this genome is
subjected to a prescribed numieof evolutionary events chosen accordingpipand p; to obtain

a final genomeGk. We varyk from 0 to twice the number of genes. We ran tests on any types of
initial genomes designed to resemble actual organismairges; we tested different choices of pa-
rameters on different genomes; and in each case we gen&f@aD runs to obtain a tight estimate
of variance.

We compute the vector representations for all intermedjeteomes and then use our method to
estimate the evolutionary distance. Due to space limitative present results on just three initial
genomes: 200 genes and 25 linear chromosomag=€ 0.05, p; = 0.15); 10 000 genes and 5 linear
chromosomespy = 0.1, py = 0.2); and 1000 genes and 1 circular chromosorpg € 0.2, p, = 0.6).
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Figure 2.7: The vector values as a function of the actual murobevolutionary events.

The first two examples match large and smaller metazoan gesydhe last matches a small bacterial
genome.

Accuracy of the expected vector after k random evolutionaryevents

We study the behavior of our estimatBfVg(G¥)) by comparing its prediction to the sample mean
for V(G¥), as computed from our 1000 trials. In all of our experiments, we find tHatVs(GX))

is very close to the sample mean %g(G¥). FigurelZ.Y shows the values in the vector as a function
of the actual number of evolutionary event§ﬁ§ and NAE represent the number of adjacencies
and genes with at least 3 copies in the original gen@neespectively. The figure shows that our
estimation and the sample mean Yey(G¥) are always very close.

Accuracy of the estimation of the actual number of evolutiormry events

We want to study the accuracy of our estimator for the actualilver of evolutionary events; in order
to do that, we create simulations with controlled numbermsvofutionary events and set up a thresh-
old for correction in the estimation procedure. Specificalle vary the actual number of evolutionary
events from 0 to twice the number of genes in the original gemand we set 4 times the number of
genes as an upper limit on the maximum number of evolutioaaents. Thus our estimated number
k is chosen to minimizéE (Vg (GK)) — Vs (F)|1, the 1-norm distance betwe&fVg(G¥)) andVs(F).

Figure[2.8 shows the mean and standard deviation for thalawtunber of evolutionary events
estimated by our approach. Our approach provides accistibeages, with very small variance.

We also study the mean absolute difference between thel animder of evolutionary events
and our estimator, shown in Figure.9.
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Figure 2.8: Mean %) and standard deviation (vertical bar) for our estimatoadanction of the
actual number of evolutionary events.

Table[Z.2 shows that the estimates are quite accurate upytdarge numbers of events. Rear-
rangements, gene duplications, and gene losses fall unel@ategory of “rare genomic events” (in
the terminology of([817]), yet our estimator works well evem iumbers that would instead indicate
common events.

Robustness to unknown model parameters

Up to now we have fixedpy and p. We now consider the case in which these parameters are
unknown—clearly the more common case in practice. We gend@000 cases with randomly
parametergq and p; (at 1% resolutionpy < 4p;) and with actual numbers of evolutionary events
varying from 0 to twice the number of genes, setting an uppdt bf 4 times the number genes for
the maximum number of evolutionary events.

Table 2.2: Relative error of our estimator as a function efdhtual number of evolutionary events.

actual number of evolutionary events
# genes # genesx1 # genesx<2
Rearrangements Duplications Losse®kearrangements Duplications Losses
1000 7.4 % 3.4% 74% | 6.9% 3.4% 6.9 %
10,000 | 1.7 % 1.4% 2.7% | 26 % 1.4% 3.1%
25,000 | 1.3% 1.5% 20% | 2.6 % 1.5% 2.9%

37



1001 500

801 x 400

40 . " 200

o
o
o ©

—
PR

o + o+

?

X + o+
+++++++ T

L L L , oL+ ! ,
0 500 1000 1500 2000 [ 5000 10000 15000 20000

(a) 1 circular chromosome, 1’000 genes (b) 10 linear chromosomes, 10’000 genes

12501

1000F

750

500

250

S + 1 £t 4o+ 4t
0 10000 20000 30000 40000 50000

(c) 25 linear chromosomes, 25’000 genes

Figure 2.9: The mean absolute difference between the antuaber of evolutionary events and
our estimation as a function of the actual number of evohatig events;o: rearrangementsy-:
duplications,x: losses.

Given the original genome, our estimated ve&s(G')) is in fact a function of, pq, andp;.
We enumerate all possible values fgrandp, (at 1% resolutionpy < 4p;). For each different pair
of parametergg and p;, we compute aIE(VG(Gi)) (i from O to 4 times the number of genes). Our
estimated numbeék s still chosen to minimizéE (Vg (GX)) — Vs (F)|1, the 1-norm distance between
E(V(GX)) andVg(F).

Figure[2.10 shows the comparison of our estimates to thalactumber of evolutionary events.
Our approach still provides accurate estimates in abseragown values forpg and p; and thus is
quite robust. The mean absolute difference between thalagtumber of evolutionary events and
our estimator becomes larger, especially when there aredemmon adjacencies left between the
original and final genomes. (The duplications and lossesalsoypartially cancel each other.)

2.2.5 Discussion

While the mechanism of genome evolution remains uncleas, cam nevertheless study different
models through simulation and through application to realggmes. Thus, while we make no claims
of biological verisimilitude for the operations and coagtts within our model, our Theorerhs 22.5
and2.2.6 show that our model respects the distinction tilee organization of most prokaryotic
genomes (one circular chromosome) and that of most eukargehomes (multiple linear chro-

mosomes). In contrast, the HP modell[40] deals with onlyainehromosomes, while the DCJ
model [6[119] (assuming uniform distribution of all podsiBCJ operations) predicts that over half
of modern genomes consisting of only circular chromosom#ésave more than one circular chro-
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Figure 2.10: Left: meanx) and standard deviation (vertical bar) of our estimator &sation of
the actual number of evolutionary events; right: mean altedlifference between the actual number
of different evolutionary events and our estimatarearrangementst: duplications,x: losses).

mosome. It is perhaps surprising that a simple modificatiothé DCJ model (forbidding the least
realistic operation) can result in simulated genomes tloaety resemble actual genomes—we view
this finding as reinforcing the importance of the DCJ model bssis for future model refinements.

There is evidence about the linearization of circular closomes during bacterial evolution
[113] and the increase in the number of chromosomes of eakaryroups by centric fission [50,51],
both of which accord with Theorem 2.2.7. It is interestingtint that Imaiet al. [52] applied their
minimum interaction theory to the genome evolution in eytes to explain the increment in the
number of linear chromosomes. Their theory predicts thathighest number of chromosomes in
mammals should be 166, while their simulations yield a raog@33—-138 for this numbef [53].
Despite the fact that both models are based on differenb$etgersimplified or unrealistic assump-
tions, the latter range derived by In&tial. is similar to the predictions in our model (as well as the
models in [6,40,119], if we assume that the two cuts are umifpselected) if the number of genes
is around 20’000, a fairly typical value for mammals.

Figure[2.6 shows that our model of gene duplications ana#rssadily generates distributional
forms close to the observations presented by Lyhch [66JeRiht parameters for gene duplications
and losses, and the number of evolutionary events, influtiedae distributions of gene family sizes:
such information can help us improve the estimation of thea@umber of evolutionary events as
well as infer the parameters for duplications and lossesiimmdel [61, 64].

In Sectior 2.2, experimental results on a wide varietyesfagne structures exemplify the high
accuracy and robustness of our estimator. This large gaatéaracy should translate into much
better phylogenetic reconstructions as well as more ategenomic alignments.

According to the analytical results in our model, incregsinumbers of rearrangements, gene
duplications, and gene losses will linearize circular amwsomes, increase the number of linear
chromosomes, and increase the number of genes—i.e., vall &shift from a prokaryotic architec-
ture to a eukaryotic one. However prokaryotic architectueist in large numbers today—Ilarger by
far than eukaryotic ones. The reason is to be found in pdpulaizes. In a large population, as with
most prokaryotic organisms, most alleles are likely to lmialkted by purifying selection, whereas,
in a small population, neutral or even deleterious mutaticen be fixated more easily. Population
sizes decreased dramatically in the transition from prakas to multicellular eukaryotels [66]. Thus
many forms of mutant alleles that are able to drift to fixatiormulticellular eukaryotes are elimi-
nated by purifying selection in prokaryotes. In a similarywihe fixation of rearrangements, gene
duplications, and gene losses (all “rare genomic evehtg]) [® prokaryotic species is also more
difficult compared to that in eukaryotes. Thus, in our mo@ebkaryotes tend to have one circular
chromosome and a small number of genes, while eukaryotesttoeimave multiple linear chromo-
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somes and a large number of genes, in response to a reductiomifying selection. Our model of
gene rearrangement, duplication, and loss is the first ® e naturally to such a structure; and it
does so independently of the choice of parameters, whialeinfe only the tapering rate of the size
of gene families.
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Chapter 3

Distance-based reconstruction with
bootstrapping from whole-genome data

Sankoff and Blanchett&][7] introduced the first algorithayaproach to the reconstruction of a phylo-
genetic tree from whole-genome data, BPAnalysis. The dlgorseeks the tree and internal genomes
which together minimize the total number lofeakpoints—adjacencies present in one genome, but
absentin the other. Moret al.[77] reimplemented this approach in their GRAPPA tool artgeded

it to inversion distances-inversions are the best documented of the hypothesizetlanesns of ge-
nomic rearrangements. This work focused on unichromosgerames; to handle multichromoso-
mal genomes, Bourque and Pevznér [8] proposed MGR, base®aiPBA's distance computations.
Whereas BPAnalysis and GRAPPA search all trees and remirib with the best score (an ap-
proach that limits GRAPPA to trees of 15 taxa unless combimigd the DCM approach [110], in
which case it scales up to 1,000 taxa), MGR uses a heurigjices¢ial addition method to grow the
tree one species at a time. The heuristic approach tradasaagdor scalability, yet MGR does not
scale well—in particular, it cannot be used to infer a phglogfrom modern high-resolution data,
as even just a few such genomes may require days or weeks pitation. Yet to date MGR (and
its more recent derivative MGRA][1]) had remained the onlyl tvailable for the analysis of mul-
tichromosomal genomic rearrangements. All such parsini@sed approaches must produce good
approximations to the NP-hard problem of computing theregmement median of three genomes,
which limits their scalability[[111].

Distance-based methods, in contrast, run in time polyndmthe number and size of genomes—
and fast and accurate heuristics exist for those where tringcfunction cannot be computed in
polynomial time, such as least-squares or minimum evaiutieethods. Moreover, methods like
Neighbor-Joining (NJ)[I90] provably return the true treeemhgiven true evolutionary distances.
Their speed has long been a major attraction, but the dissathat can be computed with sequence
data are often far from the true evolutionary distancestiqudarly on datasets with markedly di-
vergent genomes. Pairwise distances are often computetitastances, that is, as minimum-cost
distances under the assumed model of evolution. Howeven, eith detailed models, such an edit
distance typically underestimates the true distance aatdutiderestimation worsens as the true dis-
tance grows. The result is poor tregs|[73].

The assessment of phylogenies built from whole-genome tizdaalso not been properly ad-
dressed to date. The standard method used in sequencepbgsagenetic inference is the bootstrap,
but it relies on a large number of homologous characterscdwatbe resampled; yet in the case of
whole-genome data, the entire genome is a single charédtematives such as the jackknife suffer
from the same problem, while likelihood tests cannot beiadph the absence of well established
probabilistic models.

In the previous chapter, we have described statistical masthusing exact formulas, to estimate
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the true evolutionary distance between two genomes unddd@J model and also under rearrange-
ments, plus gene duplications and losses. In Setfidn 3.shaw that the high confidence of these
estimators can translate into accurate distance-basedsteactions. In Section 3.2, we propose a
new approach to the assessment of distance-based phyliegaeference from whole-genome data.

3.1 Distance-based reconstruction from whole-genome data

3.1.1 Phylogenetic reconstruction and accuracy testing

For reconstruction, we use the distance-bdseihbor Joining (NJinethod. Given a matrix of pair-
wise distances between taxa, NJ reconstructs the phylg@eeiyding the internal branch lengths)
by iteratively joining a closest pair of leaves accordin@teuitable metric, replacing the two leaves
by a “cherry” (the pair of leaves connected to an internal@)pdomputing distances from the cherry
to all other leaves, and iterating until only three leavesaim. When the distance matrix is additive,
NJ guarantees the reconstruction of the true [90].

We study the accuracy of the reconstructed trees and theinad branch lengths through ex-
tensive simulations—conducted by generating severad tsémulating evolution on these trees, and
using the leaf permutations as inputs to the reconstruatiethod. The reconstructed trees are com-
pared with the “true” trees to test the accuracy of the method

We use the Robinson-Foulds (RF) metfic|[86] to measure theldgical accuracy of inferred
trees. Every edgein a leaf-labeled tree defines a bipartition on the leavasioréng e disconnects
the tree and thus partitions the set of leaveqd. i$ the true tree, and’ is the inferred tree, then the
false positives are the bipartitions ®f not present inl, and the false negatives are the bipartitions
of T notinT’. Divide each count by — 3, the number of internal edges in a binary treendeaves:
the results are the false positive and false negative rates.RF distance between two binary trees
is the average of the number of false negatives and falsévessithe RF error rate is the average of
the false negative and false positive rates.

The accuracy of branch length estimation is measured by#rage branch length error for each
inferred tree:X|g —tj|/Zt; whereg andt; are the edge lengths of edgm the inferred tree and true
tree, respectively, and the summation is over all edgesedtrées.

We also study the accuracy of the phylogenetic reconstmicgainst deviations from the as-
sumed model. We test two scenarios: first by forcing all isigrs to be short inversions and second
by artificially introducing a fixed number of transpositiori$ie motivation for selecting short inver-
sions is biological: there is evidence that short inversiare more common than long ones in some
prokaryotes and in Drosophila [58,121]; transpositiongetta be artificially introduced because our
DCJ model uses two moves to create one transposition.

3.1.2 Experimental design

Our simulation studies follow the standard procedure ingignetic reconstruction [42]: we gener-
ate model trees under various parameter settings, theragbengodel tree to produce a number of
“true trees” on which we evolve artificial genomes from thetrdown to the leaves (by performing
randomly chosen DCJ operations on the current genome) ainateitasets of leaf genomes for which
we know the complete history. We then reconstruct trees earith lengths for each dataset by com-
puting a distance matrix using our DCJ-based true distastima&tor and then using this matrix as
input to NJ. We then compute Robinson-Foulds distances aod mates as well as branch-length
errors.

A model tree consists of a rooted tree topology and correfipgrbranch lengths. The trees are
generated by a three-step process. We first generate tiegsthus birth-death tree generator (from
the geiger library) in the software R[85], with a death raft® and various birth rates (data shown
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below is for a rate of 0.001). The branch lengths in this tmeeudtrametric (the root-to-leaf paths
all have the same length), so, in the second step, the brangths are modified to eliminate the
ultrametricity. Choosing a parameterfor each branch we sample a numiemiformly from the
interval [—c,+c] and multiply the original branch length ® (we used various values of data
shown below is forc = 2). Finally, we rescale branch lengths to achieve a targeneierD for
the model tree (the target diameter is the length of the Ising&th in the tree). Each branch length
now represents thexpectechumber of evolutionary operations on that branch. From glsimodel
tree, a set of trees is generated for simulation studies taynieg the same topology and varying
the branch lengths by sampling, for each branch in the trem & Poisson distribution with a mean
equal to that of the corresponding branch length in the miveel

To test the robustness of the phylogenetic reconstructibanwthere are deviations from the
assumed model, we test it by forcing short inversions andrtifycally introducing transpositions.
To force short inversions, whenever the random DCJ operagtected is an inversion, the second cut
is re-selected (uniformly at random) within a distas@ethe same chromosome. We §x 50 in our
experiments. Transpositions are introduced by randomécseg three cuts, such that the first two
cuts are within a chromosome and the third cut is outsideathge of the first two cuts. We conducted
tests where 20% of the operations in each branch were foodee trandom) transpositions.

All experiments are conducted by varying three main pararaetthe number of leaves, the
number of genes, and the target diameter. The number ofdéavbe trees simulated are 100 and
500, the number of genes arddB0 and 10000 and the target diameters range fraBnQo 4n, where
nis the number of genes. For each setting of the parametdisnt@el trees are generated and from
each model tree 10 datasets are created. The error rate§ findRoranch length shown in the next
section are averages over theseD trees.

We also test our reconstruction technique on a real datgeabmes of 6 species from the En-
sembl Mercator/Pecan alignments with 8,380 common mark#esselect these genomes for their
size, to demonstrate the scalability of our approach, k&d because, among vertebrate genomes,
they are the best assembled: other vertebrate genomesahghment have anywhere from twice to
ten times more contigs than the actual chromosomal numhkeedapecies.

3.1.3 Experimental results
Simulation studies of the phylogenetic reconstruction

Figure[3.1 shows RF error rates for various trees. The ratdsefes with 100 and 500 species, with
genomes of size 5,000 and target diameters ranging fron® 2¢680,000 are shown in Figure B.1.

The error rates are below 10% in all but the oversaturategsca$e rates for trees of 100 species,
with genomes of size 5,000 and 10,000 and diameters vargang lialf the number of genes to four
times that number are shown in Figlrel3.1. As expected, eates are significantly reduced by an
increase in the size of the genome—because the larger nwhgenes reduces the relative error in
the estimated distances.

The corresponding average branch-length errors are showigure[3.1.B. Interestingly, the
average error in branch length grows more slowly that the iR¥f eate with increasing evolutionary
diameters.

The robustness of the reconstruction method when thereesiatidns from the evolutionary
model is illustrated in Figure_3.3. It shows the RF error saia trees of 100 and 500 species, with
diameter 2000 and with genomes of size 1000. We see thattidegdrom the model do not affect
the accuracy of the reconstruction method.

Overall, these simulations (and many others not shown) rortfiat the high precision of our
distance estimator makes it possible to reconstruct atcytaylogenies with what is perhaps the
simplest of all reconstruction methods, and certainly drté@efastest.
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Figure 3.1: RF error rates on trees of 100 and 500 leaves witlbrges of size 5,000 (left) and on
trees of 100 leaves with genomes of size 5,000 and 10,00tx)rig
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Figure 3.2: Average branch length error on trees of 100 afdédves with genomes of size 5,000
(left) and on trees of 100 leaves with genomes of size 5,0aQ.8rD00 (right).
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Figure 3.4: Reconstructed phylogeny of man, rat, mousessapo, dog, and chicken (dotted edges
indicate long branches not shown at scale).

A dataset of high-resolution vertebrate genomes

Figure[3.4 shows the reconstructed phylogeny of 5 mammalshicken. Building this phylogeny
took under a second of computing time on a desktop compubetrast this very fast computation
with the fact that no other tool today can handle this sizeesfagne (over 8,000 syntenic blocks) at
all, not even in weeks or months of computation.

The excellent scaling properties of our method means thatribw possible to study the use
of whole-genome data in phylogenetic reconstruction, stoamprove our understanding of the
evolutionary processes at work, parameterize the moddlegantually make whole-genome data
into a source of information for systematics on a par withaidel sequence data.

3.1.4 Discussion

We have described a very fast, distance-based, phylogeopstguction method for high-resolution
whole-genome data. It takes advantage of some of the unltaracteristics of whole-genome data,
given in terms of syntenic blocks: the absence of duplicdtesequal content among all genomes,
and, most importantly, the lack of both homoplasy and stituran such data, especially when used
with high-resolution data. Our simulations demonstratedbcuracy of the reconstruction method
and a proof-of-concept application to a small collectiohigh-resolution vertebrate genomes yields
results in line with current findings.

Our methods scale to data of very high resolution (tens afshands of syntenic blocks) and, be-
cause of the very fast running times of distance methodsyge Icollections of genomes. Therefore,
they can be used to study whole-genome data and deepen arstamdling of the evolution of the
genome, as well as to turn whole-genome data into a genuureesof phylogenetic information.

3.2 Bootstrapping phylogenies

Bootstrapping was introduced by Efrdn [19] and Felsengteiposed bootstrapping for phylogeny
reconstruction[[30]. There are several expositions onetlessimation methods at different levels
of mathematical detail [20=23,171], while Soltis and Sojfi§] and Holmes|[43] give surveys of
bootstrapping in phylogeny reconstruction.
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Givenndata pointX = {x1, ..., X} and a statistical estimat@&(x, ..., xn), abootstrap replicate
is a fictional dataset = {y;,...,y;} constructed by sampling with replacement frémFrom each
such fictional dataset a value of the estimdfocan be obtained. The key idea of bootstrapping is
that the distribution of values thus obtained closely medctne original distribution o and can
be used to estimate the confidence limits on the estimatoe. atikantage of the method lies in its
applicability to arbitrary and complicated estimatorst timay be analytically intractable [22,123].

In phylogeny reconstruction, the standard bootstrap foueece datd [30, 82] samples columns
with replacement from a multiple sequence alignment toteraanew alignment matrix of identical
dimensions. Thus each bootstrap replicate contains the samber of species and the same num-
ber of columns per species, but some columns from the ofiglignment may be duplicated and
others omitted. Each column can be viewed as a variable gldriivn from a space of ossible
outcomes at each site—assuming nucleic acid sequence dhta species and neglecting inser-
tions, deletions, and ambiguity codes. From each repliGateee can be reconstructed using any
of the available reconstruction techniques (such as disthased methods, maximum parsimony, or
maximum likelihood). The tree thus obtained from a singletbwap replicate is hootstrap tree
Many bootstrap trees are generated through repeated sanapld thebootstrap scordor suppor)
of a branch in the inferred tree is computed as the propodfdhe bootstrap trees that contain this
branch (viewed as a bipartition of leaves). Soltis and S¢&&] and Holmes [43] discuss the pros
and cons of the approach in phylogeny reconstruction.

A jackknifeleaves out one observation at a time, thus creating a saratﬂ(@)s: {X1,.. . Xi-1,
Xit+1,---,% . The estimator can be calculated on this new sample. Thé&nédekoften provides a
good approximation to the bootstrap, but it fails when thinmegtor is not smooth; moreover, the
number of distinct sample sets is limited to the number otolations. Shaet al. [94] found that
the generalized “deletd* jackknife works well in practice, even for non-smooth gsdiors; in this
version,d (or some fixed percentage) of the observations are randdmolsen and omitted to create
the new sample set. A special cas@assimony jackknifing27] in which an observation is omitted
with fixed probability of /e when creating a new sample set. In such a case, the expepgedfsi
the new sample set {d — 1/e) times the size of the original set, which corresponds to aifiedd
bootstrapping procedure in which, after sampling, dupdicamples are not added to the new sample
set.

No systematic comparison of these methods has been codduactee context of phylogeny
reconstruction. Felsenstein [30] hinted at the equivaenicsupport values from classical boot-
strapping and from 50% jackknifing. Fargsal.[28] argued that 50% jackknifing deletes too many
characters and does not allow one to maintain a usefulaakttip between group frequency and sup-
port; they advocated the use of parsimony jackknifing. Selanal. [91] compared bootstrapping
and jackknifing in the context of maximum-parsimony recorgton and reported that bootstrap-
ping and 50%-jackknifing were comparable at confidence $ave90% and higher. Finally, Most
al. [78] compared bootstrapping with 50% and 33% jackknifingtfvaind without branch swapping)
and reported that all three methods provide similar supgues.

A major drawback of phylogenetic reconstruction from whgénome data has been the lack
of any way to assess the robustness of the reconstructed.ettgmvever, the standard bootstrap
cannot be applied directly to whole-genome data becauseditection of permutations forms a
entire character—a single rearrangement or duplicationatgect any part of it. In the world of
sequence data this is equivalent to an alignment with aesit@umn, albeit one where each character
can take any of a huge number of states. Only one approatnjfing genes from whole-genome
data, has been suggested in the past [95].
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3.2.1 Robustness estimation for trees reconstructed fromhwle-genome data

We design different methods for whole-genome data and eleuiglogous methods for sequence
data (if they do not exist) and vice versa. We study their tiehavith both kinds of data with the
aim of developing a method for whole-genome data that is esessful as the classic bootstrap is for
sequence data. For a methiddthat operates on sequence data, we denotdbthe corresponding
method for whole-genome data; we use regular font to dendaséirey methods, bold font to denote
the new methods described in this section.

The methods we present here for whole-genome data rely odistance estimator [60] and so
must be used with distance-based reconstruction methagsdi§€iance estimator computes the es-
timated true distance between two multichromosomal gespbased only on the number of shared
adjacencies and the number of linear chromosomes in eacmgenThis limited view of the input
data is crucial, as many of the sampling approaches we tedeelow do not produce valid genome
permutations (e.g., because of additional copies of ad@es), yet still allow us to tally the number
of linear chromosomes and of shared adjacencies.

We can view the classical bootstrap for sequence data fterel@noted BC) in terms of noise
generation. The original multiple sequence alignmentgige to a distance matrR. Each repli-
cate dataset created by sampling columns with replacemamtthe alignment also gives its corre-
sponding matrixB of perturbed pairwise distances. An entry of the replicaéérix corresponding to
leaves and j can thus be written &8(i, j) = D(i, j) + N(i, j) whereN(i, j) denotes the perturbation
in the distance introduced by the resampling. This noisarpater is hard to characterize exactly,
but it leads us to define bootstrapping approaches basedduaging increasingly refined estimates
of the noise. (In that sense, BP* aBd attempt to shape the noise by returning to the underlying
evolutionary process of rearrangement or mutation.)

Bootstrapping by adding Gaussian Noise (hereafter der®@), adds Gaussian noise of mean
0 to each entry in the distance matrix. The standard dewiasiempirically determined to match as
well as possible the noise added by BC. Since the noise addadjdhe sampling process in BC is
not random, this is a very rough estimate, but a useful coisgrapoint. In the replicate matrices
produced by BC, the noisi(i, j) depends on the pairwise distanbéi, j), so the next step is to
design a bootstrap method based on pairwise comparisoregftez denotedPC. The bootstrap
matrix B(i, j) for BPC is constructed by calculating the perturbed pairwise destafor each pair:
for each pair of sequencesg, we construct a new pair of sequende$ by sampling columns with
replacement, where each column has only two characterseaBdisj) = D(i’, j').

An equivalent metho@PC* can be designed for whole-genome data, albeit with some lcomp
cations. Since our distance estimator relies on the nunmftsrased adjacencies, a natural choice is
to sample adjacencies in the genome. While the evolutionspieaific adjacency depends directly
on several others, independence can be assumed if we adsainoade an adjacency is broken dur-
ing evolution it is not formed again—an analog of Dollo parsny, but one that is very likely in
whole-genome data due to the enormous state space. Foraaofigenomes, j, we construct two
new pairs of genomes. We sample adjacencies from gemavite replacement and use only these
adjacencies to compute the distariggi, j) of leafi to leaf j. (Note that some adjacencies may
be overcounted and some omitted.) Then we sample adjasenoie genome with replacement
and use only these adjacencies to compute the dis@ap@ej) of leaf j to leafi. Finally, we set
B(i. j) = (Da(i, }) + Da(i, }))/2.

The noiseN(i, j) may depend not just on the pairwise distabdg j), but also on other distances
in the tree, since BC samples columns with replacement fteaflsequenceat once The next step
in modelingN(i, j) is thus to sample from all adjacencies (including telomer€éke total number of
possible adjacencies (including telomeres)feyntenic blocks is roughlyr#, but in a given genome
there are at mostrRadjacencies and each adjacency conflicts with at mesitder adjacencies.
Thus, for large genomes, we may assume that adjacenciesdapendent (if rearrangements happen
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randomly), just as columns of an alignment are assumed tadmpéendent in BC. We can now
mimic closely the sampling procedure of BC in a rearrangéroentext, producing proceduC*.
From the list of all possible adjacencieBC* samples with replacement to form a collection of
adjacencies; only adjacencies in this collection are tloasidered in counting the number of shared
adjacencies and then estimating the true evolutionaramiisis between genomes. (Note that some
shared adjacencies are counted more than once due to themgpwigh replacement.)

We know that classical bootstrapping (BC) is comparablesiiggmance to parsimony jackknif-
ing (which we denote PJ) in the sequence world. PJ is (asyitvgllg) equivalent to sampling with
replacement (as in BC), but without overcounting, that ieew sampling gives a column that has
been previously selected, it is not added to the replicatesTve can obtain the equivalent of PJ for
whole-genome data, callRJ*: selected adjacencies are not counted more than once feutimg
the number of shared adjacencies between leaves. Oth@ngerd jackknifing are similarly easy
to design. For instance, @o—jackknife dJK) omitsd% of the columns to create a replicate, so,
from the set of all adjacencies (in all the leaf genomedyY@jackknife @JK*) deletesd% of the
adjacencies at random and only the remaining adjacenaiessad in estimating the true pairwise
distances. In contrast, the previous jackknifing approachvhole-genome data, developed by Shi
et al.[95], produces replicates by deleting syntenic blocks ftbengenome: d%-jackknife, in their
method, produces a dataset whdfé of the markers are randomly deleted from all leaf genomes.
The authors recommend settidg= 40; we call the resulting method JG*. Note that our approach t
jackknifing deletes adjacencies instead of markers.

We also design another robustness estimator based onagigtenturbation, hereafter denoted
BP*, which permutes each leaf genome through a (randomly chosenber of random rearrange-
ments, estimates the new pairwise distances, then subfrant each pairwise estimate the number
of rearrangement operations applied to each of the two gesoirhe number of operations applied
to each genome is chosen from a Gaussian distribution, arfdrssach genome, is potentially dif-
ferent. Ifx operations are applied to leiab yield leafi’ andy operations are applied to leafo yield
leaf j’ (where leavesand | are in the inferred tree and leavieand j’ in the bootstrap), the expected
distance betweeii and ]’ is increased byx-+y) compared to the distance betweaemd j. To keep
the expected pairwise distance after perturbation clogbadistance between the corresponding
pair of leaves before perturbation, we set the final (peemyldistanceB(i’, j') = D(i’, j') — (x+Y).
Thus BP* relies on additivity, a property likely to be resfetwith whole-genome data due to its
huge state space. We can design an equivalent for sequetacefatacach sequence, apply some
random number of randomly chosen mutations, then estinfigiaiewise distances, and finally sub-
tract from that estimate the number of mutations appliedvéngerturbation step to each of the two
sequences—a method we denBfe. BP is less reliable thaBP*, as it is much more likely that
some of the mutations used in the perturbations cancel éaehar cancel some of the mutations on
the edit path between the two sequences.

In summary, we have designed a bootstrapping proce@@#, that closely mimics the classic
bootstrap for phylogenetic reconstruction, BC, and jadiky proceduresdJK* (including, as a
special caselRJ*), that closely mimic thal%—jackknife (and parsimony jackknife PJ). Along the
way, we have also designed less refined versions of bogtgtigagnd their equivalents for sequence
data. In our experiments, we use all of these, plus JG*, thkendvased jackknifing approach of Shi
et al. A summary of all the methods can be found in tdblé 3.1.

3.2.2 Experimental design

Our simulation studies follow the standard procedure inlqmny reconstruction (see, e.d.,[42]):
we generate model trees under various parameter settmgs,use each model tree to produce a
number of true trees on which we evolve artificial genomesftioe root down to the leaves to obtain
datasets of leaf genomes for which we know the completerlisioees are generated by the process
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Table 3.1: A summary of all the methods

BGN, BGN* | Bootstrap by adding Gaussian Noise to the distance matrix.

BPC, BPC* | Bootstrap by Pairwise Comparisons: for each pair of secesfgenomes, sample
columns/adjacencies with replacement to compute distance

BC,BC* Classical Bootstrap: sample columns with replacement taiobeplicate; sample adjacen-
cies with replacement to compute distance matrix.

PJ,PJ* Parsimony Jackknifing: choose each column with1l/e probablity to create replicate; sam-
ple adjacencies with replacement and discard duplicatesrtgute distance matrix.

dJK, dJK* d%-JackKnife: Omid% of columns at random to produce replicate; odfit of adjacencies
at random to compute distance matrix.

BP, BP* Bootstrap by Perturbations: apply random mutations/eggements to get replicates.

JG* Jackknife Genes: Marker based jackknifing method for wiygleeme data [95].

described in Section_3.1.2. Note that the unit of “length’aofedge is one expected evolutionary
operation—mutation or rearrangement.The sequences alkedwby random point mutations under
the Kimura 2-parameter (K2P) model (sé€e [109]) using varitansition/transversion ratios; the
permutations are evolved through double-cut-and-joinJPdperations chosen uniformly at random.
For sequence data, the distances between leaf sequenggsearby the standard distance estimate
for the K2P model[[109] and the tree is reconstructed withNegghbor-Joining (NJ)[90]. For
rearrangement data, we reconstruct trees by computingandes matrix using our DCJ-based true
distance estimator and then using this matrix as input tb bo¢ Neighbor-Joining (NJ) [90] and
FastME [17] algorithms.

Experiments are conducted by varying the number of syntelloicks and the target diameter.
We use trees with 100 leaves. Among the many parameter vedated we show the following
representative settings: for sequence data, each leaf0h@801lcharacters and the tree diameter is
20,000, while, for whole-genome data, we show the resultvonsets of parameters, one where
each genome has 1,000 markers and the tree diameter is 21@@hather where each genome has
5,000 markers and the tree diameter is 15,000. For eachgeftihe parameters, 100 model trees
are generated and from each model tree 10 datasets aredcreatéhen average results over the
resulting 1,000 trees. For each experiment we produce Jfigates and thus 100 bootstrap trees
from which to compute the bootstrap support of each branch.

A Receiver-Operator-Characteristic (ROC) curve is drammelvery method we investigate. In
this plot, a point is a particular bootstrapping test, defibg its sensitivityand specificity in the
system of coordinates of our figures, a perfect test woulldl depoint at the upper left-hand corner
of the diagram, with 100% sensitivity and 100% specificityefiDe E to be the set of edges in the
true tree andl;, for a threshold, to consist of those edges in the inferred tree that are iceutan
more thant% of the bootstrap trees. Sensitivity is the proportion aétedges that are also g,

[Tt NE|/|E|, while specificity is the proportion of edgesTnthat are true edge$l NE|/|Ti|. In our
tests we use every fifth value in the rarj@el00 as thresholds.

3.2.3 Experimental results

Figure[3.b shows the ROC curves of the methods for sequertae fda 100 sequences of 10,000
characters each, and a tree diameter of 20,000. The fowerémte” methods—50%-jackknifing
(50JK), classical bootstrapping (BQ},/e)%-jackknifing (37JK), and parsimony jackknifing (PJ)—
are nearly indistinguishable and clearly dominate thersth&he analogs of all the other methods
developed for whole-genome daBR, BPC andBGN) are clearly worse than the above four, with
BP andBPC being comparable and the most primitive noise-shaping adeBGN, doing the worst.

Figure[3.6 show the ROC curves for whole-genome data foerdifft model conditions. The
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Figure 3.5:Bootstrapping methods for sequence data

results follow the same pattern as for sequence dat@a*, PJ*, 50JK*, and 37JK* are nearly
indistinguishable and clearly dominate all others. Theyfalowed byBP* andBPC*, which are
comparable, while the Gaussian noise approB&i\*, again does the worst. JG*, the marker-based
jackknifing technique of Shet al,, is better thaBBGN*, but trails all other methods. The differences
are particularly marked at very high levels of specificity98% specificity, for instance, the top four
methods retain nearly 90% sensitivity, but JG* drops to 808y high specificity is the essential
characteristic of a good bootstrap method.

Fig.[3.7 shows the ROC curves for whole-genome data wheMEaistused for tree reconstruc-
tion instead of NJ. We observe that the relative behavioheftiootstrap methods do not change:
BC*, PJ*, 50JK*, and37JK* perform equally well and dominate other methods. Sincedhemn-
structed trees using FastME are more accurate, the séysitithe top four methods at high levels
of specificity are even higher compared to the sensitivityiaéd when NJ was used (Figlire]3.6).

A dataset of vertebrate genomes

We also test our bootstrapping methods on a real datasejettmenes of 10 species from the Ensembl
Mercator/Pecan alignments with 8,380 common markers. éfdhese genomes (horse, chimpanzee,
rhesus, and orangutan) are not well assembled: their draftrges have nearly twice as many contigs
as there are chromosomes—but the effect on our adjacesegidistance estimator is minimal,
given the large number of markers. Figlrel 3.8 shows theradephylogeny and highlights the
two edges with lowest bootstrap support (according to out Babtstrapping method). Based on
previous studies [2,11,49,169,79, 118] the edgis uncertain: some studies place the primates in a
clade with rodents, while others place them in a clade wighctirnivores. Thus we would expest

to receive the lowest support in the trd®@C* does give it the lowest support: 77% fer and 83%
for e,. BP* gives low support values for both (49% fer and 44% fore,), but fails to identifye; as

the least supported edge, while JG* erroneously gives highat values to both (100% fes and
90% forey).

3.2.4 Discussion

Our new approach for whole-genome data, based on the saygfladjacencies, matches the clas-
sical bootstrap and parsimony jackknife approaches arglfhawides the first reliable method for
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assessing the quality of phylogenetic reconstruction fsach data.

In the process of testing various methods, we also confirmastfindings about the superiority
of the phylogenetic bootstrap and of the parsimony jaclkk[6E]. Our results clearly indicate that
duplicate samples play no role in the process—parsimorkkijafing works at least as well and
occasionally slightly better. Indeed, the best samplingtstyy appears to be a random sampling of
half of the characters. Given the very high computationat obthe bootstrap, using half the number
of characters in sequence-based analyses appears a witgtbarhputational shortcut.

Our study focuses on distance-based methods, which retdeceotlection of input genomes
to a distance matrix. Our basic approach is to equate sagnphiaracters in sequence data with
sampling adjacencies in whole-genome data. Any recorigirumethod that can handle such data
can use this bootstrap procedure. Our reconstruction méshone such method since our distance
estimator only counts the number of shared adjacenciessbetgenomes and the number of linear
chromosomes in each of them. Possible alternatives foradstfsuch as Maximum Parsimony)
that are unable to handle such data include parsimony j#okdsmnd direct encoding of adjacencies
into sequences. In parsimony jackknifingJ¢), each original genome is represented by a set of
contiguous regions in the bootstrap; if the reconstruati@ihod can handle such inputs, then this is
the best method. Encoding whole-genome data into sequeraseproposed many years ago [116]
in two different versions (binary encodings and multiseeodings). In such methods, the input is
simply a collection of (perfectly) aligned sequences anthemutput can be assessed by the standard
phylogenetic bootstrap. The early encodings fared poarlgamparison with MP methods (for
whole-genome data), but a recent paper [44] suggests thateagomplex encoding may overcome
these problems.
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Chapter 4

Maximume-likelihood reconstruction
from whole-genome data

In the previous chapter, we have focused on distance-bas#tbds from whole-genome data. The
focus is due to two characteristics of distance-based rdsthtihey are efficient compared to op-
timization searches such as maximume-likelihood (ML); anid possible to compute very precise
estimates of the true evolutionary distance up to a largeevaBut distance-based methods still suf-
fer from the problem o$aturation that is, if the true distance is too large, the variance gfestimate
will be huge, making it impossible to deliver an accuraténeste. In sequence-based phylogenetic
analysis, ML approaches has become preferable approashdsstantly related species, although
they are much more computationally expensive than distaased approaches. However, in the
last few years, packages such as RAXML [101] have largelycowee computational limitations
and allowed reconstructions of large trees (with thousaridaxa) and the use of long sequences
(to a hundred thousand characters). It was not until last e the first successful attempt to use
ML reconstruction based on whole-genome data was publi8dresults from this study on bac-
terial genomes were promising, but somewhat difficult tolaxp while the method appeared too
time-consuming to handle eukaryotic genomes.

In this chapter, we describe a new approach that resolves greblems and promises to open the
way to widespread use of whole-genome data in phylogenettysis. Our approach uses a model
that includes both rearrangements and duplications asddog is robust against common assembly
errors; it supports bootstrapping and other standardsstati tests; it returns highly accurate trees
in all our tests under a very wide variety of conditions; anstales as well as approaches based on
sequence data. We describe our approach, detail our ex@eehdesign, present our results on both
simulated and biological data, and discuss our findings owllaation of 68 high-resolution (from
3,000 to over 40,000 genes) eukaryotic genomes from the etzfdbase.

4.1 Methods

Our approach encodes the whole-genome data into binaresegs using both gene adjacencies
and gene content, then estimates the transition paranfetene resulting binary sequence data, and
finally uses sequence-based ML reconstruction to inferrdee Ve call our new approadhiaximum
Likelihood on Whole-genome Data (MLWD)

Encoding genomes into binary sequences

We represent the genome in terms of adjacency informationgane content as follows. Denote
the tail of a geneg by ¢! and its head by". We write +g to indicate an orientation from tail
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Table 4.1: The binary encodings for the two genomes of Figure

adjacency information content information

{aha" | {a,b"} | {a,c"} | {bi,d} [ {a"d"} [ {bd} | a | b | ¢ | d

Genome 1 1 1 1 1 0 0 1 1 1 0
Genome 2 0 1 0 0 1 1 1 1 0 1

to head ¢ — g"), —g otherwise ¢" — ¢). Two consecutive genes and b can be connected
by oneadjacencyof one of the following four typesi{a',b'}, {a"b'}, {a',b"}, and {a",b"}. If
genec lies at one end of a linear chromosome, then we have a condsgpsingleton set{c'} or
{c"}, called atelomere A genomecan then be represented as a multiset of adjacencies anatelo
eres. For example, a toy genome composed of one linear cemn®(+a,+b,-c,4+a,+b,-d,+a),
and one circular one(+e,-f), can be represented by the multiset of adjacencies and ¢eésm
{{a}, {a",b'}, {b".c"}, {c',a"}, {a",b'}, {b",d"}, {d!,a"}, {a"}, {€", "}, {&, f1}}. In the pres-
ence of duplicated genes, there is no one-to-one correspoadetween genomes and multisets of
genes, adjacencies, and telomeres. For example, the gammposed of the linear chromosome
(+a,+b,-d,+a,+b,-c,+a) and the circular oné+e,-f), would have the same multisets of adjacen-
cies and telomeres as our toy example.

For data limited to rearrangements (i.e. for genomes wigmtidal gene content), we encode
only the adjacency information. For a possible adjacendglomere, we write 1 (or 0) to indicate
its presence (or absence) in a genome. We consider only dldgeseencies and telomeres that exist in
at least one of the input genomes. If the total number ofrdisienes among the input genomes, is
then the total number of distinct adjacencies and telomiergS;?), but the number of adjacencies
and telomeres that appear in at least one input genome @atlypfar smaller—in fact, it is usually
linear inn rather than quadratic. For the general model, which indugme duplications, insertions,
and losses in addition to rearrangements, we extend theligigeof adjacencies by also encoding the
gene content. For each gene, we write 1 (or 0) to indicaterisepce (or absence) of this gene in a
genome. For the two toy genomes of Figurd 4.1, the resuliimaryp sequences and their derivation
are shown in Table4.1.

Estimating transition parameters

Since our encodings are binary sequences, the parameténs afodel are simply the transition
probability from presence (1) to absence (0) and that froeeabe (0) to presence (1). Let us first
look at adjacencies. Every DCJ operation will select twaeelhcies (or telomeres) uniformly at
random, and (if adjacencies) break them to create two nemcedgies. Each genome has O(1)
adjacencies and telomered(() is the number of linear chromosomes in the genome, viewed as a
small constant). Thus the transition probability from 1 tatGGome fixed index in the sequence is

n+—<2)(1) under one DCJ operation. Since there are u(&rtpz) possible adjacencies and telomeres, the

O O

~—"1

Genome 1 Genome 2

Figure 4.1: Two toy genomes.
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transition probability from O to 1 i%sz(n). Thus the transition from 0 to 1 is roughly #mes less
likely than that from 1 to 0. Despite the restrictive assuompthat all DCJ operations are equally
likely, this result is in line with general opinion about tpeobability of eventually breaking an
ancestral adjacency (high) vs. that of creating a partiad@gcency along several lineages (low)—a
version of homoplasy for adjacencies.

In the general model, we also have transitions for gene nanBnce again, the probability of los-
ing a gene independently along several lineages is highreslehe probability of gaining the same
gene independently along several lineages (the standardgiasy) is low. However, there is no sim-
ple uniformity assumption that would enable us to derivermfda for the respective probabilities—
there have been attempts to reconstruct phylogenies baggehe content only [47,97,122], but they
were based on a different approach—so we experimented waitbus values of the ratio between
the probability of a transition from 1 to 0 and that of a tréinsi from 0 to 1.

Reconstructing the phylogeny

Once we have the binary sequences encoding the input geraomdesave computed the transition

parameters, we use the ML reconstruction program RAXML]10érsion 7.2.8 was used to pro-

duce the results given in this paper) to build a tree fromdhsquences. Because RAXML uses
a time-reversible model, it estimates the transition patans directly from the input sequences by
computing the base frequencies. In order to set up thati, we simply add a direct assignment of
the two base frequencies in the code.

4.2 Experimental design

We run a series of experiments on simulated datasets in twd®raluate the performance of our
approach against a known “ground truth” under a wide varnétgettings. We then run our recon-
struction algorithm on a dataset of 68 eukaryotic genones) tinicellular parasites to mammalians,
obtained from thé&ukaryotic Gene Order Browser (eGO&3jtabase [65].

Our simulation studies follow standard practice in phylogtéec reconstruction [42]. We generate
model trees under various parameter settings, then useneadbl tree to evolve an artificial root
genome from the root down to the leaves, by performing ramgl@mosen evolutionary events on
the current genome, finally obtaining datasets of leaf gexsofor which we know the complete
evolutionary history. We then reconstruct trees for eatchsdd by applying different reconstruction
methods and compare the results against the model tree.

Simulating phylogenetic trees

A model tree consists of a rooted tree topology and corredipgnbranch lengths. The trees are
generated by a three-step process. We first generate iath-trees using the tree generator in the
software R[[85] (with a birth rate of.001 and a death rate of 0), which simulates the development
of a model tree under a uniform, time-homogeneous birtlikdgancess. The branch lengths in such
trees are ultrametric, so, in the second step, the brangthiemre modified as follows. We choose

a parametec; for each branch we sample a numiseaniformly from the interval|—c,-+c| and
multiply the original branch length bs? (for the experiments in this paper, we set 2). Thus, each
branch length is multiplied by a possibly different randoomtber. Finally, we rescale all branch
lengths to achieve a target diamel®(the length of the longest path, defined as the sum of the edge
lengths along that path) for the model tree; each branchHemgw represents the expected number
of evolutionary events on that branch.
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Our experiments are conducted by varying three main pammethe number of taxa , the
number of genes, and the target diameter. We used two valuesach of the first two parameters:
50 and 100 taxa, and,@00 and 5000 genes. For the third parameter, the diameter of the tree,
we varied it fromn to 4n, wheren is the number of genes. For each setting of the parameters, we
generated 100 datasets; data presented below are avevagéisese 100 datasets.

Simulating evolutionary events along branches in the trees

In the rearrangement-only model, all evolutionary evelisgthe branches are DCJ operations. The
next event is then chosen uniformly at random among all ples§1CJ operations.

In the general model, an event can be a DCJ operation or orgenfeaduplication, gene insertion,
or gene loss. Thus we sample three parameters for each bridwecprobability of occurrence of a
gene duplicationpq, the probability of occurrence of a gene insertigm,and the probability of
occurrence of a gene losp,. (The probability of occurrence of a DCJ operation is thest py =
1—p4—pi— pi.) The next evolutionary event is chosen randomly from the éategories according
to these parameters. For gene duplication, we uniformbcsel position to start duplicating a short
segment of chromosomal material and place the new copy twaaosition within the genome. We
setLmax as the maximum number of genes in the duplicated segmentssudna that the number
of genes in that segment is a uniform random number betweewl L gy In our simulations, we
usedLmax = 5. For gene insertion, we tested two different possible @tes, one for genomes of
prokaryotic type and the other for genomes of eukaryotie tyfpor the former, we uniformly select
one position and insert a new gene; for the latter, we unifpgalect one existing gene and mutate
it into a new gene. Finally, for gene loss, we uniformly setate gene and delete it.

4.3 Experimental results

Results for simulations under rearrangements

We compared the accuracy of three different approaches, PILMLWD * and TIBA. MLWD (Max-
imum Likelihood on Whole-genome Data) is our new approachy\ND* follows the same procedure
as MLWD, but does not use our computation of transition phodlizs—instead, it allows RAXML
to estimate and set them; finally, TIBA is a fast distancestasol to reconstruct phylogenies from
rearrangement data [63], which combines a pairwise distastimator([60] and the FastME |16]
distance-based reconstruction method. We did not compéinetive approach proposed by Hi
al. [44], because it is too slow and limited by their charactercglings to a maximum of 32 taxa.
Figured 4.2 anfl 413 show RF error rates for different apresicthex axis measures the RF error
rates and thg axis indicates the tree diameter.

These simulations show that our MLWD approach can recoctstnuch more accurate phylo-
genies from rearrangement data than the distance-basedaapplIBA, in line with experience in
sequence-based reconstruction. MLWD also outperforms BtWinderlining the importance of
estimating and setting the transition parameters befqulyiag the sequence-based ML method.

Results for simulations under the general model

Here we generated more complex datasets than for the pses&iuof experiments. For example,
among our simulated eukaryotic genomes, the largest gehasienore than 20,000 genes, and the
biggest gene family in a single genome has 42 members. Fgdishows the distributions (averaged
over the datasets) of the number of genes and of the size effgarilies for datasets of 50 simulated
eukaryotic genomes. The encoded sequence of each genorb&éesrhoth the adjacency and gene
content information, which makes it difficult to computeiopdl transition probabilities, as discussed
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Figure 4.2: RF error rates for different approaches forstmgith 50 species, with genomes q0D0
and 5000 genes and tree diameters from one to four times the nunfigenes, under the rearrange-
ment model.
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Figure 4.3: RF error rates for different approaches forstreéh 100 species, with genomes of
1,000 and 5000 genes and tree diameters from one to four times the nuaflgEmes, under the
rearrangement model.
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Figure 4.4: Characteristics of the simulated eukaryotitogees.
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Figure 4.5: RF error rates for different approaches forstrgih 50 species, with initial genomes of
size 1000 and 5000 and tree diameters from one to four times the number aégyanthe initial
genome, under the general model of evolution.

in Sectior 4.1L. Thus we set different bias values in our aggr@nd compare them under simulation
results. If the transition probability of any gene or adjagefrom 0 to 1 in MLWD is set to ben
times less than that in the opposite direction, we name it Ni(#) (m = 10,100, 1000. Figure[4.b
summarizes the RF error rates. Whereas the best ratio iedineangement model war gas derived

in Section[4.11), the best ratio under the general model ishnsmcaller. This difference can be
attributed to the relatively modest change in gene contenmtpared to the change in adjacencies:
since we encode presence or absence of a gene, but not themahtdopies of the gene, not only
rearrangements, but also many duplication and loss evalhtsotvalter the encoded gene content.

Results for simulated poor assemblies

High-throughput sequencing has made it possible to sequerany genomes, but the finishing
steps—producing a good assembly from the sequence dataim@reonsuming and may require
much additional laboratory work. Thus many sequenced gesaemain broken into a number of
contigs, thereby inducing a loss of adjacencies in the sodata. In addition, some assemblies may
have errors, thereby producing spurious adjacencies aimplothers. We designed experiments to
test the robustness of our approach in handling genomesswitih assembly defects. We introduce
artificial breakages in the leaf genomes by “losing” adjages) which correspondingly breaks cur-
rent chromosomes into multiple contigs. For example, MLWB1epresents the cases of losidg
of adjacencies, that ig% of the adjacencies are selected uniformly at random arcdied for each
genome when the adjacency information for that genome igd=ttinto binary sequences.
Figure[4.6 shows RF error rates for MLWD on different quatiffgenome assemblies under the
rearrangement model. Our approach is relatively insersit the quality of assembly, especially
when the tree diameter is large, that is, when it includeblhidiverged taxa. Note that this finding
was to be expected in view of the good results of our approasigwan encoding that, as observed
earlier, does not uniquely identify the ordering of the geal®ng the chromosomes.

Results for a dataset of high-resolution eukaryotic genonse

Figure[4.8 shows the reconstructed phylogeny of 68 eukiargehomes from the eGOB (Eukaryotic
Gene Order Browser) database|[65]. The database conta@nsrdier information of orthologous
genes (identified by OrthoMCL[14]) of 74 different eukargatpecies. The total number of different
gene markers in eGOB is around 1000. We selected 68 genomes for their size (the number of gene

60



20% 20%
BMLWD BMLWD
EMLWD-2% EMLWD-2%
CIMLWD-5% CIMLWD-5%
15%(| JMLWD-10% 15%(| JMLWD-10%
S S
@ 10% @ 10%
[T [T
o o
) ' '_H I_H I‘” ) I
0 in 2n 3n 4n 0 in 2n 3n 4n
tree diameter tree diameter
(a) 1’000 genes (b) 5’000 genes

Figure 4.6: RF error rates for MLWD on different qualities ggnome assemblies, for trees with
50 species, with genomes of sizd@0 and 5000. with tree diameters from one to four times the
number of genes, under the rearrangement model.
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Figure 4.7: Characteristics of the simulated eukaryotimogees.

markers) varying from8to 4; the remaining 6 genomes in the database have too few adjasen
(fewer than 3000). Figurd 4.J7 shows the distributions of the genome sizkdd the size of gene
families in those 68 eukaryotic genomes. We encode the etjgicand gene content information of
all 68 genomes into 68 binary sequences of length@B2 We set the bias ratio to be 100, according
to the result of our simulation studies from Section| 4.3. I@#og this phylogeny (using RAXML
with fast bootstrapping) took under 3 hours of computingetiom a desktop computer. The tree is
drawn by the tool iTOL[[59]; the internal branches are calareo green, yellow and red, indicating,
respectively, strong support (bootstrap valu@0), medium support (bootstrap value between 60 and
90), and weak support (bootstrap vakies0). As shown in Figure4.8, all major groups in those 68
eukaryotic genomes are correctly identified, with the eioapof Amoebozoa. But those incorrect
branches with respect to Amoebozoa do receive extremelptmtstrap values (0 and 2), indicating
that they are very likely to be wrong. For the phylogeny of &keta, the tree is well supported from
existing studies [84, 99]. For the phylogeny of model fishcig (D. rerio, G. aculeatus, O. latipes,
T. rubripes, and T. nigroviridis), two conflicting phyloges have been published, using different
choices of alignment tools and reconstruction methodsdquence data [80]. Our result supports
the second phylogeny, which is considered as the corredbyitge authors in their discussidn [80].
For the phylogeny of Fungi, our results agree with most diaador common species in recent
studies [[35, 114]. It is worth mentioning that among thregitGdiomycota species C. cinereus, P.
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gramnis, and C. neoformans, our phylogeny shows that Cretiseand P. gramnis are more closely
related, which conflicts with the placement of C. cinereu$ @nneoformans as sister taxa, but with
very low support value (bootstrapping score 35) [114]. Crotae, a primitive red algae, has been
the topic of a longrunning debate over its phylogenetic imsi[81]. Our result suggests that C.
merolae is closer to Alveolata than to Viridiplantae, inesgnent with a recent finding obtained by
sequencing and comparing expressed sequence tags fremediffenomes [10].

Finally, in order to explore the relationship between gesrgent and gene order, we ran MLWD
on the 68 eukaryotic genomes using only adjacency infoonats well as using only content infor-
mation. The tree reconstructed from adjacency informatioly is poor, with even major clades
getting mixed—an unsurprising result in view of the hugdatan in gene content among these 68
genomes. The tree reconstructed from gene-content infanmanly correctly identifies all major
groups except Amoebozoa; however, it suffers from some makigarepancies with our current un-
derstanding of several clades, highlighted as red brarioHeigure[4.9. For example, X. tropicalis
is thought to be closer to mammals than to fishes [26]. H. dapsu, U. reesii, and C. immitis
are considered to be in the same order (Onygenales); tageitieA. nidulans and A. terreus they

are considered to be in the same class (Eurotiomycetesk.mddorum is thought to belong to a

different class (Dothideomycete§) [114].

4.4 Discussion

In spite of many compelling reasons for using whole-genoi@ th phylogenetic reconstruction,
practice to date has continued to use selected sequenceslefate length using nucleotide-, aminoacid-
, or codon-level models. Such models are of course much sirapld much better studied than mod-
els for the evolution of genomic architecture. Mostly thbui is the lack of suitable tools that has
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prevented more widespread use of whole-genome data: peetgols all suffered from serious prob-
lems, usually combinations of oversimplified models, pamuaacy, poor scaling, lack of robustness
against errors in the data, and lack of any bootstrappinghar statistical assessment procedures.

The approach we presented is the first to overcome all of thiffgailties: it uses a fairly general
model of genomic evolution (rearrangements plus dupticatiinsertions, and losses of genomic re-
gions), is very accurate, scales as well as sequence-bppezhahes, is quite robust against typical
assembly errors and omissions of genes, and supports sidmlatstrapping methods. Our analysis
of a 68-taxon collection of eukaryotic genomes, rangingnfroarasitic unicellular organisms with
simple genomes to mammals and from around 3,000 genes to46y@00 genes, could not have
been conducted, regardless of computational resourcés,awy other tools without accepting se-
vere compromises in the data (e.g., equalizing gene cQrdettie quality of the analysis (by using
a distance-based reconstruction method). Our analysihalps make the case for phylogenetic re-
construction based on whole-genome data. We did not nedtbtise particular regions of genomes
nor to process the data from the eGOB database in any mamnparticular, we did not need to
perform a multiple sequence alignment. We were able to riongptete analysis on a “Tree of Life”
of all main branches of the Eukaryota, with very divergentaraes (and hence very large pairwise
distances), without taking any special precautions anlowit preinterpreting the data (and thus pos-
sibly biasing the output). We could do all of this in a few h&®on a desktop machine—in spite of the
very long sequences produced by our encoding. We could ruidémtical software on a collection
of organellar genomes or of bacterial genomes with equalessc(and in much less time).
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Chapter 5

Conclusion and discussion

The rapid accumulation of whole-genome data has renewedesttin the study of the evolution
of genomic architecture, under such events as rearrangentuplications, losses. Comparative
genomics, evolutionary biology, and cancer research gllire tools to elucidate the mechanisms,
history, and consequences of those evolutionary eventkg pliylogenetics could use whole-genome
data to enhance its picture of the Tree of Life. Current apges in the area of phylogenetic analysis
are limited to very small collections of closely related geres using low-resolution data (typically
a few hundred syntenic blocks); moreover, these approdgpieslly do not include duplication and
loss events.

There are several improvements in phylogenetic recorgirupresented in this dissertation,
each eliminating one or more of these problems that haveeptest widespead use of whole-genome
data.

Models and distance estimation on whole-genome evolution

We present a method to estimate the true evolutionary distdetween two genomes under the
‘double-cut-and-join’ (DCJ) model of genome rearrangetsescommonly used model under which
a single multichromosomal operation accounts for all genamarrangement events: inversion,
transposition, translocation, block interchange and mimspmal fusion and fission. The estimator
relies on a simple structural characterization of a genoaie gnd is both analytically and com-
putationally tractable. To handle rearrangements, gepécdtions and losses, we propose a new
evolutionary model and the corresponding method for esingdrue evolutionary distance. Our
model, inspired from the DCJ model, is simple and the firstegpect the structural dichotomy in
genomic organization (1-2 circular chromosomes vs. séVarger linear chromosomes) between
most prokaryotes and most eukaryotes. We give the corrdapprestimate of genomic pairwise
distances under the new evolutionary model, which shoualdstate into much better phylogenetic
reconstructions as well as more accurate genomic aligranent

Distance-based reconstruction with bootstrapping from wiole-genome data

We present a novel approach to the assessment of distased-laylogenetic inference from whole-
genome data. Our approach restates the main charactenétice jacknife and bootstrap in terms
of noise shaping, itself a longstanding approach to rolesstmssessment in engineering. For each
feature of our method, we give an equivalent feature in tiggisece-based framework and present
the results of extensive experimental testing, in both secgerbased and genome-based frameworks,
demonstrating that our bootstrapping approach for whelemge data is on par with the classic
phylogenetic bootstrap used in sequence-based recaimmtrud/NVe test our approach on a small
dataset of mammalian genomes, verifying that the suppdwesanatch current thinking about the
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respective branches. Our method is the first to provide alatdnof assessment to match that of
the classic phylogenetic bootstrap for aligned sequendésis our assessment method makes it
possible to conduct phylogenetic analyses on whole genaritieshe same degree of confidence as
for analyses on aligned sequences.

Maximum-likelihood reconstruction from whole-genome daa

We present a maximume-likelihood approach to phylogenetadyesis that takes into account genome
rearrangements as well as duplications, insertions, as$ Our approach is robust against com-
mon assembly errors; it supports bootstrapping and othedatd statistical tests; it returns highly
accurate trees in all our tests under a very wide variety oflitions; and it scales as well as ap-
proaches based on sequence data. The results of extersting ten simulated data show that our
approach returns very accurate results very quickly. Itiqadar, we analyze a 68-taxon collection of
eukaryotic genomes, ranging from parasitic unicellulganisms with simple genomes to mammals
and from around 3000 genes to over 40000 genes; the anahdig]ing bootstrapping, takes just 3
hours on a desktop system and returns a tree in agreemenahwtiell supported branches, while
also suggesting resolutions for some disputed placements.

Naturally, much work remains to be done. In particular, gitlee complexity of genomic architec-
ture, current evolutionary models (such as the one we ugedpa simple, although even at that
level, we need to elucidate simple parameters, such as tieeofathe transition probabilities be-
tween loss and gain of a given gene. Using different trasitirobabilities for adjacencies and for
content, by running a compartmentalized analysis, shauldepbeneficial on larger datasets. Larger
issues of data preparation loom. For instance, moving fremsaembled genome to the type of data
we used (the ordering of genes along each chromosome) gestio require manual intervention—
gene-finding, or syntenic block decomposition, are too dernfor fully automated procedures. The
interplay between data resolution (number of markers) amadity of the resulting tree remains to be
explored. Indeed, most of the methodological questionsthi@aphylogenetic community has been
studying for the last several dozen years in the context @fiesgce-based reconstruction also arise,
in suitably modified terms, in the context of whole-genom&édabut in the latter case, almost alll
are unaddressed.

It is interesting to study whole-genome evolution by exjplgrboth large-scale changes (e.g.,
rearrangements, duplications and losses) and local chdage point mutations and small insertions
and deletions). Such a study includes three major steps.fifBhetep is the reconstruction of the
phylogeny; our current work provides a possible solutiome $econd step is ancestral reconstruction.
Here we envision propagating the adjacency informatiomfieaves to ancestors and inferring partial
contigs with bootstrap scores for ancestor genomes. Tha d¢kep is the characterization of large-
scale and local changes. We envision setting up correspoaddetween large segments of genomes
by selecting sets of non-conflicting and well-supportedtigsn Such correspondences will enable
us to derive the parameters in our evolutionary model, tatiflethe large-scale changes, and to
clarify local changes within large segments in a divide-aadquer strategy. Our goal is to provide
a modern scientific view of evolution at different resolutp a view that reveals mechanisms of
genomic instability and thus facilitates biomedical resha

Human cancers are associated with the somatic acquisitianseries of DNA sequence vari-
ants and mutations. Such variants and mutations fall uideicategories of large-scale changes
(whole-genome data) and local changes (sequence datasskstin this work. Therefore tech-
niques developed to characterize such changes could bieapplthe study of cancer genomes.
Cancer genomes are thought to accumulate chromosomaimgaments in a relatively short period
of time; analyzing genomic data for such cell lines requfesst and reliable tools to handle differ-
ent time scales. Cancer cells are usually associated with womber variations across the whole
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genome; thus a development model for cancer genomes neadsdont for massive gene duplica-

tions and losses. These various characteristics are albptre modeling effort we have pursued,

and this work provides a promising avenue of exploration tmleh and search for mechanisms that
underlie the development of cancer genomes.

67



68



Bibliography

[1]

[2]

[3]

[4]

M.A. Alekseyev and P.A. Pevzner. Breakpoint graphs amckatral genome reconstructions.
Genome Researcth9(5):943-957, 2009.

H. Amrine-Madsen, K.-P. Koepfli, R.K. Wayne, and M.S. Bger. A new phylogenetic
marker, apolipoprotein b, provides compelling evidencefdgherian relationship$dolecular
Phylogenetics and Evolutip28(2):225-240, 2003.

M. Anisimova and O. Gascuel. Approximate likelihoodioatest for branches: A fast, accu-
rate, and powerful alternativ&yst. Biol, 55(4):539-552, 2006.

D.A. Bader, B.M.E. Moret, and M. Yan. A fast linear-timégarithm for inversion distance
with an experimental comparisod. Comput. Biol.8(5):483-491, 2001.

[5] A. Bergeron, P. Medvedeyv, and J. Stoye. Rearrangemedelmand single-cut operationd.

Comput. Biol, 17(9):1213-1225, 2010.

[6] A. Bergeron, J. Mixtacki, and J. Stoye. A unifying view @génome rearrangements. Rmnoc.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

6th Workshop Algs. in Bioinf. (WABI'08yolume 4175 of_ecture Notes in Comp. Scpages
163-173. Springer Verlag, Berlin, 2006.

M. Blanchette, G. Bourque, and D. Sankoff. Breakpoinylpgenies. In S. Miyano and
T. Takagi, editorsiGenome Informaticpages 25—-34. Univ. Academy Press, Tokyo, 1997.

G. Bourque and P.A. Pevzner. Genome-scale evolutionongructing gene orders in the
ancestral specie&senome Resl2:26-36, 2002.

L. Bulteau, G. Fertin, and I. Rusu. Sorting by transgosi is difficult. InProc. 38th Int’l
Collog. on Automata, Languages, and Programming (ICALPL20dolume 6756 ol ecture
Notes in Comp. ScEpringer Verlag, Berlin, 2011.

F. Burki, K. Shalchian-Tabrizi, M. Minge, A. Skjvelané.l. Nikolaev, K.S. Jakobsen, and
J. Pawlowski. Phylogenomics reshuffles the eukaryotic rsupeps. PLoS ONE 2(8):e790,
2007.

G. Cannarozzi, A. Schneider, and G. Gonnet. A phyloggncstudy of human, dog, and
mouse.PLoS Comput. Biol.3:e2, 2007.

A. Caprara. Formulations and hardness of multipleiisgrby reversals. IrProc. 3rd Int’l
Conf. Comput. Mol. Biol. (RECOMB’99ages 84-93. ACM Press, New York, 1999.

M.J. Chaisson, B.J. Raphael, and P.A. Pevzner. Miuassions in mammalian evolution.
Proc. Nat'l Acad. Sci., USAL03(52):19,824-19,829, 2006.

F. Chen, A.J. Mackey, J.K. Vermunt, and D.S. Roos. Asisgsperformance of orthology
detection strategies applied to eukaryotic genorfeseS ONE 2(4):e383, 2007.

69



[15] W.H.E. Day. Computationally difficult parsimony pr@bhs in phylogenetic systematics.
Theoretical Biology103:429-438, 1983.

[16] R. Desper and O. Gascuel. Fast and accurate phylogeoystuction algorithms based on
the minimum-evolution principleJ. Comput. Biol.9(5):687—-705, 2002.

[17] R. Desper and O. Gascuel. Theoretical foundation obtianced minimum evolution method
of phylogenetic inference and its relationship to weigheast-squares tree fitting/lol. Biol.
Evol, 21(3):587-598, 2003.

[18] R. Durrett, R. Nielsen, and T.L. York. Bayesian estiimatof the genomic distanc&enetics
166(1):621-629, 2004.

[19] B. Efron. Bootstrap methods: another look at the jadieknAnnals of Statistics7(1):1-26,
1979.

[20] B. Efron. Nonparametric estimates of standard erroe jackknife, the bootstrap and other
methods.Biometrika 68(3):589, 1981.

[21] B. Efron. The jackknife, the bootstrap and other resiamplans. INCBMS-NSF Regional
Conf. Series in Applied Mathvolume 38. SIAM, 1982.

[22] B. Efron and G. Gong. A leisurely look at the bootstrape jackknife, and cross-validation.
American Statistician37(1):36—48, 1983.

[23] B. Efron and R. TibshiraniAn Introduction to the BootstrapgChapman & Hall/CRC, 1993.

[24] N. El-Mabrouk. Genome rearrangement by reversals asdriions/deletions of contiguous
segments. IProc. 11th Ann. Symp. Combin. Pattern Matching (CPM,0@Jume 1848 of
Lecture Notes in Comp. Scpages 222—-234. Springer Verlag, Berlin, 2000.

[25] M. A. Marra et al. The genome sequence of the sars-adgacicoronavirus. Science
300(5624):1399-1404, 2003.

[26] U. Hellsten et al. The genome of the western clawed fregopus tropicalis. Science
328(5978):633-636, 2010.

[27] J.S. Farris. The future of phylogeny reconstructidoologica Scripta26(4):303—-311, 1997.

[28] J.S. Farris, V.A. Albert, M. Kallersjo, D. Lipscomlnd A.G. Kluge. Parsimony jackknifing
outperforms neighbor-joiningCladistics 12(2):99-124, 1996.

[29] J. Felsenstein. Evolutionary trees from DNA sequengesiaximum likelihood approachl.
Mol. Evol, 17:368-376, 1981.

[30] J. Felsenstein. Confidence limits on phylogenies: gwaach using the bootstrapEvol,
39:783-791, 1985.

[31] J. FelsensteinPhylogenetic Inference Package (PHYLIP), Version 3Jpiversity of Wash-
ington, Seattle, 1993.

[32] J. Felsenstein and H. Kishino. Is there something wneii the bootstrap on phylogenies?
A reply to Hillis and Bull. Syst. Biol, 42(2):193—-200, 1993.

[33] N.M. Ferguson, A.P. Galvani, and R.M. Bush. Ecologiadl immunological determinants of
influenza evolutionNaturg 422:428-433, 2003.

70



[34] G. Fertin, A. Labarre, |. Rusu, E. Tannier, and S. Vi@etCombinatorics of Genome Rear-
rangementsMIT Press, 20009.

[35] D. Fitzpatrick, M. Logue, J. Stajich, and G. Butler. Anfyal phylogeny based on 42 complete
genomes derived from supertree and combined gene analgsiC Evolutionary Biology
6(1):99, 2006.

[36] O. GascuelMathematics of Evolution and Phyloger®xford Univ. Press, UK, 2005.

[37] P. Goloboff. Analyzing large datasets in reasonabieeti: solutions for composite optima.
Cladistics 15:415-428, 1999.

[38] S. Guindon and O. Gascuel. PHYML—a simple, fast, andieate algorithm to estimate large
phylogenies by maximum likelihoodyst. Biol, 52(5):696—-704, 2003.

[39] S. Hannenhalli and P.A. Pevzner. Transforming cabliatgeurnip (polynomial algorithm for
sorting signed permutations by reversals)Phoc. 27th Ann. ACM Symp. Theory of Comput.
(STOC'95) pages 178-189. ACM Press, New York, 1995.

[40] S. Hannenhalli and P.A. Pevzner. Transforming mice imen (polynomial algorithm for
genomic distance problems). Rroc. 36th Ann. IEEE Symp. Foundations of Comput. Sci.
(FOCS'95) pages 581-592. IEEE Press, Piscataway, NJ, 1995.

[41] M. Hasegawa, H. Kishino, and T.-A. Yano. Dating of thertan-ape splitting by a molecular
clock of mitochondrial DNA.J. Mol. Evol, 21:160-174, 1985.

[42] D.M. Hillis and J.P. Huelsenbeck. Assessing molecplaylogenies.Science 267:255—-256,
1995.

[43] S. Holmes. Bootstrapping phylogenetic trees: thearmg aethods. Statistical Science
18(2):241-255, 2003.

[44] F.Hu, N. Gao, M. Zhang, and J. Tang. Maximum likelihodlogenetic reconstruction using
gene order encodings. Froc. 2011 IEEE Symp. Comput. Intell. in Bioinf. & CompubIBi
(CIBCB’11), pages 117-122. IEEE, 2011.

[45] J.P.Huelsenbeck and F. Ronquist. MrBayes: Bayesfanence of phylogenyBioinformatics
17:754b, 2001.

[46] D. Huson, S. Nettles, and T. Warnow. Disk-covering, st faonverging method for phyloge-
netic tree reconstructiord. Comput. Biol.6(3):369-386, 1999.

[47] D. Huson and M. Steel. Phylogenetic trees based on geméemt. Bioinformatics
20(13):2044-2049, 2004.

[48] D. Huson, L. Vawter, and T. Warnow. Solving large scdiglpgenetic problems using DCM-
2. InProc. 7th Int'l Conf. on Intelligent Systems for Mol. BidISMB’99), 1999.

[49] G.A. Huttley, M.J. Wakefield, and S. Easteal. Rates ofagee evolution and branching order
from whole-genome analysis/ol. Biol. Evol, 24(8):1722-1730, 2007.

[50] H.T. Imai. On the origin of telocentric chromosomes iammals.J. Theor. Biol, 71(4):619—
637, 1978.

[51] H.T. Imai and R.H. Crozier. Quantitative analysis ofeditionality in mammalian karyotype
evolution. American Naturalist116(4):537-569, 1980.

71



[52] H.T. Imai, T. Maruyama, T. Gojobori, Y. Inoue, and R.HdZier. Theoretical bases for kary-
otype evolution. 1. the minimume-interaction hypothesimerican Naturalist 128(6):900—
920, 1986.

[53] H.T.Imai, Y. Satta, M. Wada, and N. Takahata. Estimatbthe highest chromosome number
of eukaryotes based on the minimum interaction thedry.heor. Biol, 217(1):61-74, 2002.

[54] T.H. Jukes and C.R. Cantor. Evolution of protein molesu In H.N. Munro, editorMam-
malian Protein Metabolismpages 21-132. Academic Press, New York, 1969.

[55] M. Kimura. A simple method for estimating evolutionargte of base substitutions through
comparative studies of nucleotide sequendes/ol. Evol, 16:111-120, 1980.

[56] S. Kumar, K. Tamura, |.B. Jakobsen, and M. Nei. MEGAZ2:Idtular evolutionary genetics
analysis softwareBioinformatics 17(12):1244-1245, 2001.

[57] B. Larget, J.B. Kadane, and D.L. Simon. A Markov chainno Carlo approach to recon-
structing ancestral genome arrangemehtsl. Biol. Evol, 22:486—-495, 2005.

[58] J.-F. Lefebvre, N. EI-Mabrouk, E.R.M. Tillier, and Dagkoff. Detection and validation of sin-
gle gene inversions. IRroc. 11th Int'l Conf. on Intelligent Systems for Mol. BiGSEMB’03),
volume 19 ofBioinformatics pages i190-i196. Oxford U. Press, 2003.

[59] I. Letunic and P. Bork. Interactive tree of life v2: améi annotation and display of phylogenetic
trees made easucl. Acids Res39(suppl 2):W475-W478, 2011.

[60] V. Lin and B.M.E. Moret. Estimating true evolutionarysthnces under the DCJ model. In
Proc. 16th Int'l Conf. on Intelligent Systems for Mol. Bid5MB’08), volume 24(13) oBioin-
formatics pages i114—i122, 2008.

[61] VY. Lin and B.M.E. Moret. A new genomic evolutionary mader rearrangements, duplica-
tions, and losses that applies across eukaryotes and potéss]. Comput. Biol.18(9):1055—
1064, 2011.

[62] Y. Lin, V. Rajan, and B.M.E. Moret. Bootstrapping phgtnies inferred from rearrangement
data. InProc. 11th Workshop Algs. in Bioinf. (WABI’'1Molume 6833 of_ecture Notes in
Comp. Sci.pages 175-187. Springer Verlag, Berlin, 2011.

[63] Y. Lin, V. Rajan, and B.M.E. Moret. Fast and accuratelpbgnetic reconstruction from high-
resolution whole-genome data and a novel robustness astirdaComput. Biol.18(9):1130—
1139, 2011.

[64] Y. Lin, V. Rajan, K.M. Swenson, and B.M.E. Moret. Estitimg true evolutionary dis-
tances under rearrangements, duplications, and loss&o0dn8th Asia Pacific Bioinf. Conf.
(APBC’10) volume 11 (Suppl. 1):S54 &MC Bioinformatics 2010.

[65] M.D. Lopez and T. Samuelsson. eGOB: Eukaryotic Gende©Browser. Bioinformatics
2011.

[66] M. Lynch. The Origins of Genome Architectur8inauer, 2007.

[67] J. Ma, A. Ratan, B.J. Raney, B.B. Suh, W. Miller, and Dudsler. The infinite sites model of
genome evolutionProc. Nat'l Acad. Sci., USAL05(38):14254-14261, 2008.

[68] G.M. Mace, J. L. Gittleman, and A. Purvis. Preserving ttiee of life. Science
300(5624):1707-1709, 2003.

72



[69] O. Madsen, M. Scally, C.J. Douady, D.J. Kao, R.W. DeBy,Adkins, H.M. Amrine, M.J.
Stanhope, W.W. de Jong, and M.S. Springer. Parallel adapidiations in two major clades
of placental mammald\ature 409:610-614, 2001.

[70] M. Marron, K.M. Swenson, and B.M.E. Moret. Genomic distes under deletions and inser-
tions. Theor. Computer Sciencg25(3):347-360, 2004.

[71] R.G. Miller. The jackknife-a reviewBiometrikg 61(1):1, 1974.

[72] C. Mora, D.P. Tittensor, S. Adl, A.G.B. Simpson, and Bowvi. How many species are there
on earth and in the ocearLoS Bio| 9(8):e1001127, 08 2011.

[73] B.M.E. Moret, J. Tang, L.-S. Wang, and T. Warnow. Stapsard accurate reconstructions of
phylogenies from gene-order dath.Comput. Syst. Scb5(3):508-525, 2002.

[74] B.M.E. Moret, J. Tang, and T. Warnow. Reconstructinglpgenies from gene-content and
gene-order data. In O. Gascuel, editdathematics of Evolution and Phylogemages 321—
352. Oxford Univ. Press, UK, 2005.

[75] B.M.E. Moret, L.-S. Wang, T. Warnow, and S.K. Wyman. Napproaches for reconstructing
phylogenies from gene-order data.Rroc. 9th Int'l Conf. on Intelligent Systems for Mol. Biol.
(ISMB’01), volume 17 ofBioinformatics pages S165-S173, 2001.

[76] B.M.E. Moret and T. Warnow. Advances in phylogeny restomction from gene order and
content data. In E.A. Zimmer and E.H. Roalson, editbts|ecular Evolution: Producing the
Biochemical Data, Part Bvolume 395 ofMethods in Enzymologypages 673—-700. Elsevier,
2005.

[77] B.M.E. Moret, S.K. Wyman, D.A. Bader, T. Warnow, and MarY. A new implementation and
detailed study of breakpoint analysis. Pmoc. 6th Pacific Symp. on Biocomputing (PSB;01)
pages 583-594. World Scientific Pub., 2001.

[78] M.E. Mort, P.S. Soltis, D.E. Soltis, and M.L. Mabry. Ceparison of three methods for esti-
mating internal support on phylogenetic tre8gst. Biol, 49(1):160-171, 2000.

[79] W.J. Murphy, E. Eizirik, W.E. Johnson, Y.P. Zhang, ORyder, and S.J. O’Brien. Molecular
phylogenetics and the origins of placental mammbslisture 409:614—618, 2001.

[80] E. Negrisolo, H. Kuhl, C. Forcato, N. Vitulo, R. Reinlar T. Patarnello, and L. Bargelloni.
Different phylogenomic approaches to resolve the evahatip relationships among model
fish speciesMol. Biol. Evol, 27(12):2757-2774, 2010.

[81] H. Nozaki, M. Matsuzaki, M. Takahara, O. Misumi, H. Kiwa, M. Hasegawa, T. Shin-i,
Y. Kohara, N. Ogasawara, and T. Kuroiwa. The phylogenetsitipm of red algae revealed by
multiple nuclear genes from mitochondria-containing ey&tes and an alternative hypothesis
on the origin of plastidsJ. Mol. Evol, 56:485-497.

[82] Aida Ouangraoua, Frédéric Boyer, Andrew McPherderic Tannier, and Cedric Chauve.
Prediction of contiguous regions in the amniote ancesgabme. volume 5542 dfecture
Notes in Comp. Sgipages 173-185. Springer Verlag, Berlin, 2009.

[83] I. Pe’er and R. Shamir. The median problems for breakgaire NP-completeElec. Collog.
on Comput. Complexityr1, 1998.

73



[84] C.P. Ponting. The functional repertoires of metazoanognes.Nat. Rev. Gengt9(9):689—
698, 2008.

[85] R Development Core TeanR: A Language and Environment for Statistical Computify
Foundation for Statistical Computing, Vienna, AustriaQ20ISBN 3-900051-07-0.

[86] D.R. Robinson and L.R. Foulds. Comparison of phylogiengees. Mathematical Bio-
sciences53:131-147, 1981.

[87] A. Rokas and P.W.H. Holland. Rare genomic changes aslddophylogenetics.Trends in
Ecol. and Evol.15:454-459, 2000.

[88] U. Roshan, B.M.E. Moret, T.L. Williams, and T. Warnowe®I-DCM3: A fast algorithmic
technique for reconstructing large phylogenetic treePrat. 3rd IEEE Comp. Systems Bioinf.
Conf. CSB’04pages 98-109. IEEE Press, Piscataway, NJ, 2004.

[89] H.A. Ross and A.G. Rodrigo. Immune-mediated positigfestion drives human immunode-
ficiency virus type 1 molecular variation and predicts dégeduration.Journal of Virology
76(22):11715-11720, 2002.

[90] N. Saitou and M. Nei. The neighbor-joining method: A nevgthod for reconstructing phy-
logenetic treesMol. Biol. Evol, 4:406—-425, 1987.

[91] N. Salamin, M.W. Chase, T.R. Hodkinson, and V. SavaainAssessing internal support with
large phylogenetic DNA matriceddol. Phyl. Evol, 27(3):528, 2003.

[92] D. Sankoff and M. Blanchette. Multiple genome rearramgnt and breakpoint phylogeny.
Comput. Biol, 5:555-570, 1998.

[93] D. Sankoff and M. Blanchette. Probability models fongene rearrangement and linear invari-
ants for phylogenetic inference. Rroc. 3rd Int'l Conf. Comput. Mol. Biol. (RECOMB’99)
pages 302—-309. ACM Press, New York, 1999.

[94] J. Shao and C.F.J. Wu. A general theory for jackkniféarare estimationAnnals of Statistigs
17(3):1176-1197, 1989.

[95] J. Shi, Y. Zhang, H. Luo, and J. Tang. Using jackknife s3ess the quality of gene order
phylogenies BMC Bioinformatics 11(1):168, 2010.

[96] A.U. Sinha and J. Meller. Sensitivity analysis for resa distance and breakpoint reuse in
genome rearrangements. pages 37—48. World Scientific, 2008

[97] B. Snel, P. Bork, and M.A. Huynen. Genome phylogeny tase gene content.Nature
Genetics21(1):108-110, 1999.

[98] P.S. Soltis and D.E. Soltis. Applying the bootstrap hylegeny reconstructionStatist. Sci.
18(2):256-267, 2003.

[99] M. Srivastava, E. Begovic, J. Chapman, N.H. Putnam, ®lidten, T. Kawashima, A. Kuo,
T. Mitros, A. Salamov, M.L. Carpenter, A.Y. Signorovitch,.M Moreno, K. Kamm, J. Grim-
wood, J. Schmutz, H. Shapiro, I.V. Grigoriev, L.W. Buss, Bhi&rwater, S.L. Dellaporta, and
D.S. Rokhsar. The functional repertoires of metazoan gesolNature 454(7207):955-960,
2008.

[100] A. Stamatakis. RAXML-VI-HPC: maximum likelihood-bad phylogenetic analyses with
thousands of taxa and mixed modeBoinformatics 22(21):2688-2690, 2006.

74



[101] A. Stamatakis. RAXML-VI-HPC: Maximum likelihood-kad phylogenetic analyses with
thousands of taxa and mixed modeBoinformatics 22(21):2688-2690, 2006.

[102] M.A. Steel. The maximum likelihood point for a phylogsic tree is not uniqueSyst. Biol,
43(4):560-564, 1994.

[103] A.H. Sturtevant. A crossover reducer in Drosophildanegaster due to inversion of a section
of the third chromosomeBiol. Zent. BI, 46:697-702, 1926.

[104] A.H. Sturtevant and G.W. Beadle. The relation of imiens in the x-chromosome of
drosophila melanogaster to crossing over and disjunctBenetics 21:554-604, 1936.

[105] K.M. Swenson, M. Marron, J.V. Earnest-DeYoung, anMBEE. Moret. Approximating the
true evolutionary distance between two genomesrbt. 7th SIAM Workshop on Algorithm
Engineering & Experiments (ALENEX'Q5IAM Press, Philadelphia, 2005.

[106] D.L. Swofford.PAUP*: Phylogenetic analysis using parsimony (*and othetinods), version
4.0b8g 2001.

[107] D.L. Swofford, G.J. Olsen, P.J. Waddell, and D.M. Kill Phylogenetic inference. In D.M.
Hillis, B.K. Mable, and C. Moritz, editorsMolecular Systematicpages 407-514. Sinauer
Assoc., Sunderland, MA, 1996.

[108] D.L. Swofford, G.J. Olsen, P.J. Waddell, and D.M. Kill Phylogenetic inference. In D.M.
Hillis, B.K. Mable, and C. Moritz, editorsMolecular Systematicgpages 407-514. Sinauer
Assoc., Sunderland, MA, 1996.

[109] D.L. Swofford, G. Olson, P. Waddell, and D.M. Hillishflogenetic inference. In D.M. Hillis,
C. Moritz, and B. Mable, editordviolecular Systematics, 2nd edhapter 11. Sinauer Assoc.,
Sunderland, MA, 1996.

[110] J. Tang and B.M.E. Moret. Scaling up accurate phylegierreconstruction from gene-order
data. InProc. 11th Int'l Conf. on Intelligent Systems for Mol. Bi@iSMB’03), volume 19 of
Bioinformatics pages i305-i312. Oxford U. Press, 2003.

[111] E. Tannier, C. Zheng, and D. Sankoff. Multichromosbgenome median and halving prob-
lems. InProc. 8th Workshop Algs. in Bioinf. (WABI'Q8)Jolume 5251 ofLecture Notes in
Comp. Sci.pages 1-13. Springer Verlag, Berlin, 2008.

[112] W. Thuiller, S. Lavergne, C. Roquet, |. Boulangeat| Bfourcade, and M. B. Araujo. Conse-
guences of climate change on the tree of life in eurdyeture 470:531-534, 2011.

[113] J.-N. Volff and J. Altenbuchner. A new beginning witbwn ends: linearisation of circular
chromosomes during bacterial evolutidfEMS Microbiol. Lett, 186:143-150, 2000.

[114] H. Wang, Z. Xu, L. Gao, and B. Hao. A fungal phylogeny éh®n 82 complete genomes
using the composition vector methddMC Evolutionary Biology9(1):195, 2009.

[115] L.-S. Wang. Exact-IEBP: a new technique for estinmtévolutionary distances between
whole genomes. IProc. 33rd Ann. ACM Symp. Theory of Comput. (STOC'Papes 637—
646. ACM Press, New York, 2001.

[116] L.-S. Wang, R.K. Jansen, B.M.E. Moret, L.A. Raubesamd T. Warnow. Fast phylogenetic
methods for genome rearrangement evolution: An empirtcalys In Proc. 7th Pacific Symp.
on Biocomputing (PSB’02pages 524-535. World Scientific Pub., 2002.

75



[117] L.-S. Wang and T. Warnow. Estimating true evolutigndistances between genomesPhoc.
1st Workshop Algs. in Bioinf. (WABI'OI)umber 2149 in Lecture Notes in Comp. Sci., pages
176-190. Springer Verlag, Berlin, 2001.

[118] D.E. Wildman, M. Uddin, J.C. Opazo, G. Liu, V. Lefort, Guindon, O. Gascuel, L.l. Gross-
man, R. Romero, and M. Goodman. Genomics, biogeographythendiversification of pla-
cental mammalsProc. Nat'l Acad. Sci., USAL04(36):14395-14400, 2007.

[119] S. Yancopoulos, O. Attie, and R. Friedberg. Efficieotting of genomic permutations by
translocation, inversion and block interchan@éinformatics 21(16):3340-3346, 2005.

[120] S. Yancopoulos and R. Friedberg. Sorting genomesinsgtrtions, deletions and duplications
by DCJ. InProc. 6th RECOMB Workshop Comp. Genomics (RECOMB-CG/8)me 5267
of Lecture Notes in Comp. Scpages 170-183. Springer Verlag, Berlin, 2008.

[121] T.L.York, R. Durrett, and R. Nielsen. Dependence afpantric inversion rate on tract length.
BMC Bioinformatics 8(115), 2007.

[122] H. Zhang, Y. Zhong, B. Hao, and X. Gu. A simple methodghylogenomic inference using
the information of gene content of genom&ene 441:163-168, 2009.

[123] E. Zuckerkandl and L.B. PaulingMolecular disease, evolution, and genetic heterogeneity
pages 189-225. Academic Press, New York, 1962.

76



Yu Lin

CURRICULUM VITAE

CONTACT
INFORMATION

RESEARCH
INTERESTS

EDUCATION

RESEARCH
EXPERIENCE

TEACHING
EXPERIENCE

PROFESSIONAL
ACTIVITIES:

EPFL IC IIF LCBB Phone: (+41)76 65 02468
INJ 211 Station 14 Faz: (+41)21 69 37555
CH-1015, Lausanne E-mail: yu.lin@epfl.ch
Switzerland

Computational Biology and Bioinformatics:

Comparative genomics: models and distance estimations in whole-genome evolution.
Computational phylogenetics: algorithms and statistical inference in phylogenetic recon-
struction based on whole-genome data.

Computational proteomics: models and algorithms of peptide identifications through mass
spectrometry.

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Ph.D., Computer Science, Aug. 2007 — Jul. 2012
e Advisor: Prof. Bernard Moret

Chinese Academy of Sciences(CAS), Beijing, China
M.S., Computer Science, Sep. 2004 — Jul. 2007
e Advisor: Prof. Dongbo Bu

University of Science and Technology of China (USTC), Hefei, China
B.S., Computer Science, Sep. 2000 — Jul. 2004

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Research Assistant in comparative genomics and computational phylogenetics
e Advisor: Prof. Bernard Moret Aug. 2007 — Jul. 2012

Chinese Academy of Sciences, China

Research Assistant in computational proteomics
e Advisor: Prof. Dongbo Bu Sep. 2006 — Jul. 2007

City University of Hong Kong, Hong Kong, China

Research Assistant in biclustering algorithms for biological data
e Advisor: Prof. Lusheng Wang Dec. 2005 — Aug. 2006

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,
Teaching Assistant: Advanced Algorithms (Fall 2009, Fall 2010), Topics in Bioinformat-
ics I (Fall 2007, Fall 2008), Computational Molecular Biology (Spring 2008).

Guest Lecturer: Advanced Algorithms (Fall 2011), Advanced Theoretical Computer Sci-
ence (Spring 2009), Computational Molecular Biology (Spring 2009).

Referee
Journal of Combinatorial Optimization, PLoS One,
RECOMB’10, WABI’'11, WABI'12, ALENEX’12



HONORS

PUBLICATIONS

Chinese Government Award For Outstanding Self-Financed Students Abroad, 2012
Director’s Prize, ICT, Chinese Academy of Sciences, 2007
Guo Moruo Prize, University of Science and Technology of China, 2003

Shao, M., Lin, Y., “Approximating the edit distance for genomes under DCJ, insertion and
deletion,” Proc. 10th RECOMB Workshop on Comparative Genomics (RECOMB-CG’12),
accepted, to appear in BMC' Bioinformatics.

Lin, Y., Rajan, V., and Moret, B.M.E., “Bootstrapping phylogenies inferred from rearrange-
ment data,” BMC Algorithms for Molecular Biology, accepted, to appear.

Lin, Y., Rajan, V., and Moret, B.M.E., “A metric for phylogenetic trees based on matching,”
IEEE/ACM Trans. on Computational Biology and Bioinformatics 9, 4, 1014-1022 (2012).

Lin, Y., Rajan, V., and Moret, B.M.E., “Bootstrapping phylogenies inferred from rearrange-
ment data,” Proc. 11th Workshop on Algorithms in Bioinformatics (WABI’11), Lecture
Notes in Computer Science 6833, 175-187, Springer Verlag (2011).

Lin, Y., and Moret, B.M.E., “A new genomic evolutionary model for rearrangements, du-
plications, and losses that applies across eukaryotes and prokaryotes,” J. Computational
Biology 18, 9, 1055-1064 (2011).

Lin, Y., Rajan, V., and Moret, B.M.E., “Fast and accurate phylogenetic reconstruction from
high-resolution whole-genome data and a novel robustness estimator,” J. Computational
Biology 18,9, 1131-1139 (2011).

Lin, Y., Rajan, V., and Moret, B.M.E., “A metric for phylogenetic trees based on matching,”
Proc. 7th Int’l Symp. Bioinformatics Research & Appls. (ISBRA’11), Lecture Notes in
Computer Science 6674, 197-208, Springer Verlag (2011).

Lin, Y., and Moret, B.M.E., “A new genomic evolutionary model for rearrangements, du-
plications, and losses that applies across eukaryotes and prokaryotes,” Proc. 8th RECOMB
Workshop on Comparative Genomics (RECOMB-CG’10), in Lecture Notes in Computer
Science 6398, 228-239, Springer Verlag (2010).

Lin, Y., Rajan, V., and Moret, B.M.E., “Fast and accurate phylogenetic reconstruction from
high-resolution whole-genome data and a novel robustness estimator,” Proc. §8th RECOMB
Workshop on Comparative Genomics (RECOMB-CG’10), in Lecture Notes in Computer
Science 6398, 137-148, Springer Verlag (2010).

Lin, Y., Rajan, V., Swenson, K.M., and Moret, B.M.E., “Estimating true evolutionary
distances under rearrangements, duplications, and losses,” Proc. 8th Asia-Pacific Bioinfor-
matics Conf. (APBC’10), in BMC Bioinformatics 2010, 11 (Suppl. 1):S54.

Rajan, V., Xu, A.W., Lin, Y., Swenson, K.M., and Moret, B.M.E., “Heuristics for the
inversion median problem,” Proc. 8th Asia-Pacific Bioinformatics Conf. (APBC’10), in
BMC' Bioinformatics (Suppl. 1):S30 (2010).

Swenson, K.M., Rajan, V., Lin, Y., and Moret, B.M.E., “Sorting signed permutations by
inversions in O(nlogn) time,” J. Computational Biology, 17, 3 (2010), 489-501.

Swenson, K.M., Lin, Y., Rajan, V., and Moret, B.M.E., “Hurdles and sorting by inver-
sions: Combinatorial, statistical, and experimental results,” J. Computational Biology,
16(10):1339-1351 (2009).



Swenson, K.M., Rajan, V., Lin, Y., and Moret, B.M.E., “Sorting signed permutations by
inversions in O(nlogn) time,” Proc. 13th Int’l Conf. on Research in Comput. Molecular
Biol. (RECOMB’09), in Lecture Notes in Computer Science 5541, 386-399, Springer Verlag
(2009).

Swenson, K.M., Lin, Y., Rajan, V., and Moret, B.M.E., “Hurdles hardly have to be heeded,”
Proc. 6th RECOMB Workshop on Comparative Genomics (RECOMB-CG’08), in Lecture
Notes in Computer Science 5267, 239-249, Springer Verlag (2008).

Lin, Y., and Moret, B.M.E., “Estimating true evolutionary distances under the DCJ model”,
Proc. 16th Conf. on Intelligent Systems for Molecular Biol. (ISMB’08), in Bioinformatics
24(13):i114-1122 (2008).

Wang, L., Lin, Y., and Liu, X., “Approximation algorithms for biclustering problems”,
SIAM J. Computing 38(4): 1504-1518 (2008).

Lin, Y., Qiao, Y., Sun, S., Yu, C, Dong G., and Bu, D. “A fragmentation event model
for peptide identication by mass spectrometry,” Proc. 12th Int’l Conf. on Research in
Comput. Molecular Biol. (RECOMB’08), in Lecture Notes in Computer Science 4955,
154-166, Springer Verlag (2008).

Sun, S., Yu, C., Qiao, Y., Lin, Y., Dong, G., Liu, C., Zhang, J., Zhang, Z., Cai, J., Zhang,
H., and Bu, D., “Deriving the probabilities of water loss and ammonia loss for amino acids
from tandem mass spectra”, J. Proteome Research, 7 (01): 202-208 (2008).

Yu, C., Lin, Y., Sun, S., Cai, J., Zhang, J., Bu, D., Zhang, Z., and Chen, R., “An iter-
ative algorithm to quantify factors influencing peptide fragmentation during tandem mass
spectrometry”, J. Bioinformatics and Computational Biology, 5(2a):297-311 (2007).

Wang, L., Lin, Y., and Liu, X., “Approximation algorithms for bi-clustering problems,”
Proc. 6th Workshop on Algorithms in Bioinformatics (WABI'06), Lecture Notes in Com-
puter Science 4175, 310-320, Springer Verlag (2006).

Yu, C., Lin, Y., Sun, S., Cai, J., Zhang, J., Bu, D., Zhang, Z., and Chen, R., “An iterative
algorithm to quantify the factors influencing peptide fragmentation for MS/MS spectrum”,
Proc. 5th Comput. Systems Bioinformatics Conf. (CSB’06), 353-360, Imperial College
Press (2006)



	Introduction
	Data and models of molecular evolution
	Sequence data
	Whole-genome data (at the level of syntenic blocks)

	Methods for phylogenetic reconstruction
	Distance-based methods
	Parsimony-based methods
	Likelihood-based methods

	Handling whole-genome data
	Contributions in this dissertation
	Models and distance estimation on whole-genome evolution
	Distance-based reconstruction with bootstrapping from whole-genome data
	Maximum-likelihood reconstruction from whole-genome data


	Models and distance estimation on whole-genome evolution
	Estimating true evolutionary distances under the DCJ model
	Preliminaries on whole-genome data and the DCJ model
	True distance estimation under the DCJ model
	Experimental results
	Discussion

	Models and distance estimations under rearrangements, duplications, and losses
	Preliminaries on gene-order data and the new evolutionary model
	True distance estimation under the new evolutionary model
	Model characteristics
	Experimental results
	Discussion


	Distance-based reconstruction with bootstrapping from whole-genome data
	Distance-based reconstruction from whole-genome data
	Phylogenetic reconstruction and accuracy testing
	Experimental design
	Experimental results
	Discussion

	Bootstrapping phylogenies
	Robustness estimation for trees reconstructed from whole-genome data
	Experimental design
	Experimental results
	Discussion


	Maximum-likelihood reconstruction from whole-genome data
	Methods
	Experimental design
	Experimental results
	Discussion

	Conclusion and discussion

