181 research outputs found

    Linear-time nearest point algorithms for Coxeter lattices

    Full text link
    The Coxeter lattices, which we denote An/mA_{n/m}, are a family of lattices containing many of the important lattices in low dimensions. This includes AnA_n, E7E_7, E8E_8 and their duals AnA_n^*, E7E_7^* and E8E_8^*. We consider the problem of finding a nearest point in a Coxeter lattice. We describe two new algorithms, one with worst case arithmetic complexity O(nlogn)O(n\log{n}) and the other with worst case complexity O(n) where nn is the dimension of the lattice. We show that for the particular lattices AnA_n and AnA_n^* the algorithms reduce to simple nearest point algorithms that already exist in the literature.Comment: submitted to IEEE Transactions on Information Theor

    New Shortest Lattice Vector Problems of Polynomial Complexity

    Full text link
    The Shortest Lattice Vector (SLV) problem is in general hard to solve, except for special cases (such as root lattices and lattices for which an obtuse superbase is known). In this paper, we present a new class of SLV problems that can be solved efficiently. Specifically, if for an nn-dimensional lattice, a Gram matrix is known that can be written as the difference of a diagonal matrix and a positive semidefinite matrix of rank kk (for some constant kk), we show that the SLV problem can be reduced to a kk-dimensional optimization problem with countably many candidate points. Moreover, we show that the number of candidate points is bounded by a polynomial function of the ratio of the smallest diagonal element and the smallest eigenvalue of the Gram matrix. Hence, as long as this ratio is upper bounded by a polynomial function of nn, the corresponding SLV problem can be solved in polynomial complexity. Our investigations are motivated by the emergence of such lattices in the field of Network Information Theory. Further applications may exist in other areas.Comment: 13 page

    Compute-and-Forward: Finding the Best Equation

    Get PDF
    Compute-and-Forward is an emerging technique to deal with interference. It allows the receiver to decode a suitably chosen integer linear combination of the transmitted messages. The integer coefficients should be adapted to the channel fading state. Optimizing these coefficients is a Shortest Lattice Vector (SLV) problem. In general, the SLV problem is known to be prohibitively complex. In this paper, we show that the particular SLV instance resulting from the Compute-and-Forward problem can be solved in low polynomial complexity and give an explicit deterministic algorithm that is guaranteed to find the optimal solution.Comment: Paper presented at 52nd Allerton Conference, October 201

    Image Sampling with Quasicrystals

    Get PDF
    We investigate the use of quasicrystals in image sampling. Quasicrystals produce space-filling, non-periodic point sets that are uniformly discrete and relatively dense, thereby ensuring the sample sites are evenly spread out throughout the sampled image. Their self-similar structure can be attractive for creating sampling patterns endowed with a decorative symmetry. We present a brief general overview of the algebraic theory of cut-and-project quasicrystals based on the geometry of the golden ratio. To assess the practical utility of quasicrystal sampling, we evaluate the visual effects of a variety of non-adaptive image sampling strategies on photorealistic image reconstruction and non-photorealistic image rendering used in multiresolution image representations. For computer visualization of point sets used in image sampling, we introduce a mosaic rendering technique.Comment: For a full resolution version of this paper, along with supplementary materials, please visit at http://www.Eyemaginary.com/Portfolio/Publications.htm

    Finding a closest point in a lattice of Voronoi's first kind

    Get PDF
    We show that for those lattices of Voronoi's first kind with known obtuse superbasis, a closest lattice point can be computed in O(n4)O(n^4) operations where nn is the dimension of the lattice. To achieve this a series of relevant lattice vectors that converges to a closest lattice point is found. We show that the series converges after at most nn terms. Each vector in the series can be efficiently computed in O(n3)O(n^3) operations using an algorithm to compute a minimum cut in an undirected flow network

    Symmetric box-splines on root lattices

    Get PDF
    AbstractRoot lattices are efficient sampling lattices for reconstructing isotropic signals in arbitrary dimensions, due to their highly symmetric structure. One root lattice, the Cartesian grid, is almost exclusively used since it matches the coordinate grid; but it is less efficient than other root lattices. Box-splines, on the other hand, generalize tensor-product B-splines by allowing non-Cartesian directions. They provide, in any number of dimensions, higher-order reconstructions of fields, often of higher efficiency than tensored B-splines. But on non-Cartesian lattices, such as the BCC (Body-Centered Cubic) or the FCC (Face-Centered Cubic) lattice, only some box-splines and then only up to dimension three have been investigated.This paper derives and completely characterizes efficient symmetric box-spline reconstruction filters on all irreducible root lattices that exist in any number of dimensions n≥2 (n≥3 for Dn and Dn∗ lattices). In all cases, box-splines are constructed by convolution using the lattice directions, generalizing the known constructions in two and three variables. For each box-spline, we document the basic properties for computational use: the polynomial degree, the continuity, the linear independence of shifts on the lattice and optimal quasi-interpolants for fast approximation of fields

    06271 Abstracts Collection -- Challenges in Symbolic Computation Software

    Get PDF
    From 02.07.06 to 07.07.06, the Dagstuhl Seminar 06271 ``Challenges in Symbolic Computation Software\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    corecore