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Abstract. We show that for those lattices of Voronoi’s first kind with known obtuse superbasis,
a closest lattice point can be computed in O(n?) operations, where n is the dimension of the lattice.
To achieve this a series of relevant lattice vectors that converges to a closest lattice point is found.
We show that the series converges after at most n terms. Each vector in the series can be efficiently
computed in O(n3) operations using an algorithm to compute a minimum cut in an undirected flow
network.
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1. Introduction. An n-dimensional lattice A is a discrete set of vectors from
R™, m > n, formed by the integer linear combinations of a set of linearly independent
basis vectors by, . .., b, from R™ [11]. That is, A consists of all those vectors, or lattice
points, x € R™, satisfying

T = biuy + baus + - -+ byu, ULy evoy Uy € 2.

Given a lattice A in R™ and a vector y € R™, a problem of interest is to find a lattice
point = € A such that the squared Euclidean norm

m

ly—al? = > (i — )2

=1

is minimized. This is called the closest lattice point problem (or closest vector problem)
and a solution is called a closest lattice point (or simply closest point) to y. A related
problem is to find a lattice point of minimum nonzero Euclidean length, that is, a
lattice point of length

min ||;1c||27
zeA\{0}

where A\{0} denotes the set of lattice points not equal to the origin 0. This is called
the shortest vector problem and a solution is called a short vector.

The closest lattice point problem and the shortest vector problem have interested
mathematicians and computer scientists due to their relationship with integer pro-
gramming [29, 26, 4], the factoring of polynomials [28], and cryptanalysis [25, 43, 41].
Solutions of the closest lattice point problem have engineering applications. For exam-
ple, if a lattice is used as a vector quantizer then the closest lattice point corresponds

*Received by the editors January 15, 2014; accepted for publication (in revised form) July 30,
2014; published electronically September 9, 2014.
http://www.siam.org/journals/sidma/28-3/95280.html
TInstitute for Telecommunications Research, University of South Australia, 5006 Adelaide, Aus-
tralia (robby.mckilliam@unisa.edu.au, alex.grant@unisa.edu.au).
¥School of Information Technology and Electrical Engineering, University of Queensland, 4072
Brisbane, Australia (v.clarkson@Qug.edu.au).

1405

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

brought to you by .{ CORE

provided by University of Queensland eSpace



https://core.ac.uk/display/43360359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.siam.org/journals/sidma/28-3/95280.html
mailto:robby.mckilliam@unisa.edu.au
mailto:alex.grant@unisa.edu.au
mailto:v.clarkson@uq.edu.au

Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1406 R. G. McKILLIAM, A. GRANT, AND I. V. L. CLARKSON

to the minimum distortion point [9, 8, 7]. If the lattice is used as a code, then the
closest lattice point corresponds to what is called lattice decoding and has been shown
to yield arbitrarily good codes [18, 17]. The closest lattice point problem occurs in
communications systems involving multiple antennas [48, 56]. The unwrapping of
phase data for location estimation can be posed as a closest lattice point problem
and this has been applied to the global positioning system [52, 22]. The problem has
also found application to circular statistics [36], single frequency estimation [37], and
related signal processing problems [32, 6, 33, 46, 38].

The closest lattice point problem is known to be NP-hard [40, 15, 47, 20, 24].
Nevertheless, algorithms exist that can compute a closest lattice point in reasonable
time if the dimension is small [45, 26, 1]. These algorithms require a number of
operations that grows as O(n®™) or O(no("2)), where n is the dimension of the
lattice. Recently, Micciancio and Voulgaris [42] described a solution for the closest
lattice point problem that requires a number of operations that grows as O(22"). This
single exponential growth in complexity is the best known.

Although the problem is NP-hard in general, fast algorithms are known for specific
highly regular lattices, such as the integer lattice Z", the root lattices A4, and D,,
their dual lattices A% and D}, and the related Coxeter lattices [11, Chap. 4], [7, 34,
39]. In this paper we consider a particular class of lattices, those of Voronoi’s first
kind [10, 54, 55]. Each lattice of Voronoi’s first kind has what is called an obtuse
superbasis. We show that if the obtuse superbasis is known, then a closest lattice
point can be computed in O(n*) operations. This is achieved by enumerating a series
of relevant vectors of the lattice. Each relevant vector in the series can be computed in
O(n?) operations using an algorithm for computing a minimum cut in an undirected
flow network [44, 49, 53, 12]. We show that the series converges to a closest lattice
point after at most n terms, resulting in O(n?) operations in total. This result extends
upon a recent result by some of the authors showing that a short vector in a lattice
of Voronoi’s first kind can be found by computing a minimum cut in a weighted
graph [35].

Our results can be placed in the context of a modification of the closest lattice
point problem called the closest vector problem with preprocessing [40, 20, 47, 3, 27,
14]. In this problem some “advice” about the lattice is assumed to be given. The
advice might come in the form of a particular basis for the lattice or might take other
forms. The advice may be used to compute a closest lattice point, hopefully with
reduced complexity. Our algorithm can be viewed as an efficient solution for the
closest vector problem with preprocessing for the lattices of Voronoi’s first kind. The
advice given is the obtuse superbasis.

The paper is structured as follows. Section 2 describes the relevant vectors and
the Voronoi cell of a lattice. Section 3 describes a procedure to find a closest lattice
point by enumerating a series of relevant vectors. The series is guaranteed to converge
to a closest point after a finite number of terms. In general the procedure might be
computationally expensive because the number of terms required might be large and
because computation of each relevant vector in the series might be expensive. Section 4
describes lattices of Voronoi’s first kind and their obtuse superbasis. In section 5 it is
shown that for these lattices the series of relevant vectors results in a closest lattice
point after at most n terms. Section 6 shows that each relevant vector in the series
can be computed in O(n?) operations by computing a minimum cut in an undirected
flow network. Section 7 discusses some potential applications of this algorithm and
poses some interesting questions for future research.
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2. Voronoi cells and relevant vectors. The (closed) Voronoi cell, denoted
Vor(A), of a lattice A in R™ is the subset of R™ containing all points closer or of
equal distance (here with respect to the Euclidean norm) to the lattice point at the
origin than to any other lattice point. The Voronoi cell is an m-dimensional convex
polytope that is symmetric about the origin.

Equivalently, the Voronoi cell can be defined as the intersection of the half-spaces

Hy = {z € R" | ] < [}z - o]}
1
:{xER”|x-v<§v-v}

for all v € A\{0}. We denote by z - v the inner product of vectors x and v. It is not
necessary to consider all v € A\{0} to define the Voronoi cell. The relevant vectors
are those lattice points v € A\{0} for which

v-r<T-T for all x € A\{0}.

Denote by Rel(A) the set of relevant vectors of the lattice A. The Voronoi cell is the
intersection of the half-spaces corresponding with the relevant vectors, that is,

Vor(A) = Nyerei(a) Ho-

The closest lattice point problem and the Voronoi cell are related in that z € A is a
closest lattice point to y if and only y — « € Vor(A), that is, if and only if

(2.1) ly —zl| < |ly -z — o for all v € Rel(A).
If s is a short vector in a lattice A then
L2 el
2 2 zeA\{0}

is called the packing radius (or inradius) of A [11]. The packing radius is the minimum
distance between the boundary of the Voronoi cell and the origin. It is also the radius
of the largest sphere that can be placed at every lattice point such that no two spheres
intersect (see Figure 1). The following well-known results will be useful.

PROPOSITION 2.1. Let A C R™ be an n-dimensional lattice. For r € R let |r]
denote the largest integer less than or equal to r. Let t € R™. The number of lattice
points inside the scaled and translated Voronoi cell r Vor(A)+t is at most (|r]+1)™.

Proof. Let V' C Vor(A) contain all those points from the interior of the closed
Voronoi cell Vor(A), but with boundaries defined so that V' tessellates R™ under
translations by A. That is, R™ = Ugzea (V' 4 2) and the intersection (V +z) N (V +y)
is empty for distinct lattice points x and y. For positive integer k, the scaled and
translated cell £V + ¢ contains precisely one coset representative for each element
of the quotient group A/kA [31, section 2.4]. There are k™ coset representatives.
Thus, the number of lattice points inside r Vor(A) +t C (|r| + 1)V + ¢ is at most
(lr]+1™ O

PROPOSITION 2.2. Let A C R™ be an n-dimensional lattice with packing radius p.
Let S be an m-dimensional hypersphere of radius r centered at t € R™. The number
of lattice points from A in the sphere S is at most (|r/p] + 1)™.

Proof. The packing radius p is the Euclidean length of a point on the boundary
of the Voronoi cell Vor(A) that is closest to the origin. Therefore, the sphere S is
a subset of Vor(A) scaled by r/p and translated by ¢. That is, S C r/p Vor(A) + ¢.
The proof follows because the number of lattice points in r/p Vor(A) + ¢ is at most
(lr/p] +1)™ by Proposition 2.1. a
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/

Fia. 1. The 2-dimensional lattice with basis vectors (3,0.6) and (0.6,3). The lattice points
are represented by dots and the relevant vectors are circled. The Voronoi cell Vor(A) is the shaded
region and the packing radius p and corresponding sphere packing (circles) are depicted.

3. Finding a closest lattice point by a series of relevant vectors. Let A
be a lattice in R™ and let y € R™. A simple method to compute a lattice point z € A
closest to y is as follows. Let zg be some lattice point from A, for example, the origin.
Motivated by Sommer, Feder, and Shalvi [51] and Micciancio and Voulgaris [42], we
consider the following iteration,

Th41 = Tk + Uk,

(3.1) v = arg ly — xr — v||,

min
vERel(A)U{0}
where Rel(A) U {0} is the set of relevant vectors of A including the origin. This
iterative procedure is depicted in Figure 2. The minimum over Rel(A) U {0} may not
be unique, that is, there may be multiple vectors from Rel(A) U {0} that are closest
to y — xi. In this case, any one of the minimizers may be chosen. The results that
we will describe do not depend on this choice. We make the following straightforward
propositions.

PROPOSITION 3.1. At the kth iteration either xy is a closest lattice point to y or
ly = 2ll > ly — wasa .

Proof. If xy, is a closest lattice point to y then ||y — x| < ||y —2x+1]| by definition.
On the other hand if zj is not a closest lattice point to y we have y — x, ¢ Vor(A)
and from (2.1) there exists a relevant vector v such that

1y = zkll > [ly — 2% — o

> ' r—

zarg L min 1y vll
= [ly — 2 — v

= |y — x|l O
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Lyq

F1G. 2. Ezample of the iterative procedure described in (3.1) to compute a closest lattice point
toy = (4,3.5) (marked with a cross) in the 2-dimensional lattice generated by basis vectors (2,0.4)
and (0.4,2). The initial lattice point for the iteration is xg = (—4.4, —2.8). The shaded region is the
Voronoi cell surrounding the closest lattice point x¢ = (4.4,2.8).

PROPOSITION 3.2. There is a finite number K such that xx,xx11,TK+2,... are
all closest points to y.
Proof. Suppose no such finite K exists, then

ly = 2ol > lly — 21l > lly — @2 > -

and so zg,z1,... is an infinite sequence of distinct (due to the strict inequal-
ity) lattice points all contained inside an n-dimensional hypersphere of radius r =
|ly — zo]| centered at y. This is a contradiction because, if p is the packing radius
of the lattice, then less than (|r/p] + 1) lattice points lie inside this sphere by
Proposition 2.2. d

Proposition 3.2 asserts that after some finite number K of iterations the procedure
arrives at xx, a closest lattice point to y. Using Proposition 3.1 we can detect that
x is a closest lattice point by checking whether ||y — 2k < ||y — xx+1]|. This
simple iterative approach to compute a closest lattice point is related to what is
called the iterative slicer [51]. Micciancio and Voulgaris [42] describe a related, but
more sophisticated, iterative algorithm that can compute a closest point in a number
of operations that grows exponentially as O(22"). This single exponential growth in
complexity is the best known.

Two factors contribute to the computational complexity of this iterative approach
to compute a closest lattice point. The first factor is computing the minimum over the
set Rel(A) U {0} in (3.1). In general a lattice can have as many as 27! — 2 relevant
vectors so computing a minimizer directly can require a number of operations that
grows exponentially with n. To add to this it is often the case that the set of relevant

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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vectors Rel(A) must be stored in memory so the algorithm can require an amount of
memory that grows exponentially with n [42, 51]. We will show that for a lattice of
Voronoi’s first kind the set of relevant vectors has a compact representation in terms
of what is called its obtuse superbasis. To store the obtuse superbasis requires an
amount of memory of order O(n?) in the worst case. We also show that for a lattice
of Voronoi’s first kind the minimization over Rel(A) U {0} in (3.1) can be solved
efficiently by computing a minimum cut in an undirected flow network. Using known
algorithms a minimizer can be computed in O(n?) operations [21, 16, 12].

The other factor affecting the complexity is the number of iterations required
before the algorithm arrives at a closest lattice point, that is, the size of K. Propo-
sition 2.2 suggests that this number might be as large as (|r/p] + 1), where r =
lly — 20]|? and p is the packing radius of the lattice. Thus, the number of iterations
required might grow exponentially with n. The number of iterations required de-
pends on the lattice point that starts the iteration zy. It is helpful for x¢ to be, in
some sense, a close approximation of the closest point zx. Unfortunately, computing
close approximations of a closest lattice point is known to be computationally diffi-
cult [20, 47, 2, 3, 14]. We will show that for a lattice of Voronoi’s first kind a simple
and easy to compute choice for xy ensures that a closest lattice point is reached in at
most n iterations and so K < n. Combining this with the fact that each iteration of
the algorithm requires O(n?) operations results in an algorithm that requires O(n?)
operations to compute a closest point in a lattice of Voronoi’s first kind.

4. Lattices of Voronoi’s first kind. An n-dimensional lattice A is said to be
of Voronoi’s first kind if it has what is called an obtuse superbasis [10]. That is, there
exists a set of n + 1 vectors by, ..., b,11 such that by,...,b, are a basis for A,

(4.1) b1 +bs--+by1=0
(the superbasis condition), and the inner products satisfy
(4.2) qij =b;-0; <0 for h,j=1,...,n+1,i#j

(the obtuse condition). The g;; are called the Selling parameters [50]. It is known
that all lattices of dimension less than or equal to 3 are of Voronoi’s first kind [10].
An interesting property of lattices of Voronoi’s first kind is that their relevant vectors
have a straightforward description.

THEOREM 4.1 (Conway and Sloane [10, Theorem 3]). Let A be a lattice of
Voronoi’s first kind with obtuse superbasis by, ...,b,11. The relevant vectors of A are
of the form

S

el

where I is a strict subset of {1,2,...,n+1} that is not empty, i.e., I C {1,2,...,n+1}
and I # 0.

Classical examples of lattices of Voronoi’s first kind are the n-dimensional root
lattice A,, and its dual lattice A% [11]. For A, and A} there exist efficient algorithms
that can compute a closest lattice point in O(n) operations [39, 7]. For this reason we
do not recommend using the algorithm described in this paper for A, and A}. The
fast algorithms for A4,, and A} rely of the special structure of these lattices and are not
applicable to other lattices. In contrast, the algorithm we describe here works for all
lattices of Voronoi’s first kind. Questions that arise are how “large” (in some sense) is

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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the set of lattices of Voronoi’s first kind? Are there lattices of Voronoi’s first kind that
are useful in applications such as coding, quantization, or signal processing? These
questions are discussed in section 7. We now focus on the problem of computing a
closest point in a lattice of Voronoi’s first kind.

5. A series of relevant vectors from a lattice of Voronoi’s first kind. Let
A C R™ be an n-dimensional lattice of Voronoi’s first kind with obtuse superbasis

bi,...,bpt1 and let y € R™. We want to find n integers wy, ..., w, that minimize
" 2
Y- Z biw;
i=1
We can equivalently find n + 1 integers wy, ..., w,+1 that minimize
n+1 2

Yy— Z bjw;
i=1

The iterative procedure described in (3.1) will be used to do this. In what follows
it is assumed that y lies in the space spanned by the basis vectors by,...,b,. This
assumption is without loss of generality because = is a closest lattice point to y if
and only if x is a closest lattice point to the orthogonal projection of y into the space
spanned by by, ...,b,. Let

B=(b by ... buy1)

be the m by n 4+ 1 matrix with columns given by bq,...,b,41 and let z € R™*! be
a column vector such that y = Bz. We now want to find a column vector w =
(w1, ...,wp41) of integers such that

(5-1) 1B(z — w)|*

is minimized. Define the column vector ug = [z], where |-] operates on vectors
elementwise. In view of Theorem 4.1 the iterative procedure (3.1) to compute a
closest lattice point can be written in the form

(5.2) Tp+1 = Bugta,

Uk+1 = U + Tk,
5.3 t = i B(z —uy — 1),
(5.3) o= arg_min Bz~ 1)

where {0,1}"*! denotes the set of column vectors of length n + 1 with elements equal
to zero or one. The procedure is initialized at the lattice point g = Bug = B|z].
This choice of initial lattice point is important. In section 6 we show how minimization
over {0,1}"*! in (5.3) can be computed efficiently in O(n3) operations by computing
a minimum cut in an undirected flow network. The minimizer may not be unique
corresponding with the existence of multiple minimum cuts. In this case any one of
the minimizers may be chosen. Our results do not depend on this choice. In the
remainder of this section we prove that this iterative procedure results in a closest
lattice point after at most n iterations. That is, we show that there exists a positive
integer K < n such that xx is a closest lattice point to y = Bz.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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We first provide an intuitive description of our proof technique. Denote by min(p)
and max(p) the minimum and maximum values obtained by the elements of the vector
p € R"! and define the function

rng(p) = max(p) — min(p).

Observe that rng(p) cannot be negative and that if rng(p) = 0 then all of the elements
of p are equal. Let ¢ be a nonegative integer. Say that a lattice point z is ¢-close to
y if there exists a v € Z"*! with rng(v) = ¢ such that x + Bv is a closest point to
y. We will show (Lemma 5.6) that the lattice point g = B|z]| that initializes the
iterative procedure (5.2) is K-close to y where K < n. We then prove (Lemma 5.8)
that if the lattice point x; obtained on the kth iteration of the procedure is ¢-close,
then the lattice point xp41 obtained on the next iteration is (¢ — 1)-close. Since zg is
K-close it follows that after K < n iterations the lattice point xy is 0-close. At this
stage it is guaranteed that xx itself is a closest lattice point to y. This is shown in
the following lemma.

LEMMA 5.1. If x is a lattice point that is O-close to y then = is a closest lattice
point to y.

Proof. Because z is O-close there exists a v € Z"*! with rng(v) = 0 such that
x + Bu is a closest point to y. Because rng(v) = 0 all elements from v are identical,
that is, v1 = v9 = --+ = v, y1. In this case Bv = Z?:ll Upbp = U1 Z?:ll b, =0 as a
result of the superbasis condition (4.1). Thus = 2+ Bu is a closest point to y. a

We now proceed with a formal proof culminating in Theorem 5.9 stated at the
end of this section. We first introduce some notation. For S a subset of indices
{1,...,n+1}, let 15 denote the column vector of length n+ 1 with ith element equal
to one if i € S and zero otherwise. For S C {1,...,n+ 1} and p € R**! define the
function

icS j¢s

where ¢;; = b; - b; are the Selling parameters from (4.2). Denote by S the complement
of the set of indices S, that is S = {i € {1,...,n+1}|i ¢ S}.
LEMMA 5.2. Let p € R"™! and let S and T be subsets of the indices of p. The
following equalities hold:
L ||Bp|l> = | B(p + 1s)||> = ®(S,p);
2. || Bp|]* = || B(p — 1s)[* = ®(S,p); )
3. | Bpll> = |B(p+ 1s — 17)|1> = ®(S,p) + (T, p) + 23 ic5 > jer Gis-
Proof. Part 3 follows immediately from parts 1 and 2 because

|Bp||> = |B(p+ 15 — 17)||* = | Bp|*> — | B(p + 15)|?
+1Bpl> = 1Blp— 1)1 +2) > aij-

ieS jeT

We give a proof for part 1. The proof for part 2 is similar. Put Q = B’B where
superscript ’ indicates the vector or matrix transpose. The n + 1 by n + 1 matrix
Q@ has elements given by the Selling parameters, that is, Q;; = g;; = b; - bj. Denote
by 1 the column vector of length n + 1 containing all ones. Now B1 = Z?:ll b; =0
as a result of the superbasis condition (4.1) and so Q1 = 0. Since 1g =1 — 15 it

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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follows that Q1g = —Q1g. With o the elementwise vector product, i.e., the Schur or
Hadamard product, we have

1Bpl* — 1B(p + 1)

—15Q1s — 2p'Q1s
=15Q15 — 2p'Q1s
=15Q15 —2(po1ls)'Qls —2(pols)'Qls
=15Q15 —2(po15)'Qls +2(po 15)'Qlg
which is precisely ®(S,p). d
Define the function subr(p) to return the largest subset, say S, of the indices of p

such that min{p;,i € S} — max{p;,i ¢ S} > 2. If no such subset exists then subr(p)
is the empty set (). For example,

subr(2, —1,4) = {1, 3}, subr(2,1,3) =0, subr(1,3,1) = {2}.

To make the definition of subr clear we give the following alternative and equivalent
definition. Let p € R™ and let o be the permutation of the indices {1,...,n} that
puts the elements of p in ascending order, that is,

Po(1) S Po2) < < Po(n)-
Let T' be the smallest integer from {2,...,n} such that p,ry — por—1y > 2. If no
such integer T exists then subr(p) = (. Otherwise
subr(p) = {o(T),o0(T +1),...,0(n)}.

The following straightforward property of subr will be useful.

PROPOSITION 5.3. Let p € Z"L. If subr(p) = () then rng(p) < n.

Proof. Let o be the permutation of the indices {1,...,n 4+ 1} that puts the
elements of p in ascending order. Because subr(p) = () and because the elements of p
are integers we have p,(;y1) < po(s) + 1 for alli =1,... n. It follows that

Po(nt1) S Pon) T 1 S Pon-1) +2< - <pory +1

and 50 rng(p) = Po(n+1) — Po(1) < M- a
Finally, define the function

decrng(p) =D 1subr(p)

that decrements those elements from p with indices from subr(p). If subr(p) = 0, then
decrng(p) = p, that is, decrng does not modify p. On the other hand, if subr(p) # ()
then

g (decrng(p)) =rng(p) —1

because subr(p) contains all those indices ¢ such that p; = max(p). By repeatedly ap-
plying decrng to a vector one eventually obtains a vector for which further application
of decrng has no effect. For example,

2,-1,4) = Laubr(e,—1,0) = (2, -1,4) = 1133y = (1, -1, 3),
1,-1,3) — 13 = (0,—1,2),

0,-1,2) — 1(5 = (0,-1,1),

0,-1,1)— 1p = (0, —1,1).

decrng(2, —1,4) =
decrng(1,—1,3) =
decrng(0,—1,2) =
decrng(0,—1,1) =

A~~~

This will be a useful property so we state it formally in the following proposition.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/15/15 to 130.102.82.110. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1414 R. G. McKILLIAM, A. GRANT, AND I. V. L. CLARKSON

PROPOSITION 5.4. Let p € R and define the infinite sequence do,dy,ds, ... of
vectors according to dy = p and dp+1 = decrng(dy). There is a finite integer T such
that dT = dT+1 = dTJrg =,

Proof. Assume that no such 7" exists. In this case decrng(dy) # d, for all positive
integers k and so

rng(dy) = mg(dg—1) — 1 =rng(dk_2) — 2 = --- = rng(p) — k.

Choosing k£ > rng(p) we have rng(dy) < 0 contradicting that rng(dy) is nonega-
tive. O

We are now ready to study properties of the lattice point xy = B|z| that initializes
the iterative procedure (5.2).

LEMMA 5.5. If v € Z""! is such that B(|z] +v) is a closest lattice point to
y = Bz, then B(|z] 4 decrng(v)) is also a closest lattice point to y.

Proof. The lemma is trivial if subr(v) = @) so that decrng(v) = v. It remains to
prove the lemma when subr(v) # (. In this case put S = subr(v) and put

u = decrng(v) = v — 1g.

Let ¢ = z — | z] be the column vector containing the fractional parts of the elements
of z. We have ( —u = —v+ 1g. Applying part 1 of Lemma 5.2 with p = { — v we
obtain

(5.4) IB(¢ = v)lI? = 1B = )| = &(S,¢ —v)
=33 ai(1+2(G — ) = 2(v — ;).
€S j¢s
Observe that ¢; = z; — |z;] € [0,1) foralli=1,...,n+1and so -1 < (; —(; < 1 for
alli,j=1,...,n+ 1. Also, for i € S and j ¢ S we have
v; —v; > min{v;, i € S} —max{v;,j ¢ S} > 2

by the definition of subr(v) = S. Thus,

14+2(G—¢) —2(vi—vj) <1+2-4=-1<0 forie Sandj¢s.

Substituting this inequality into (5.4) and using that g;; < 0 for ¢ # j (the obtuse
condition (4.2)) we find that

IB(z = 2] = o)l = |1 B(z — 2] — )| > 0.

It follows that B(|z] + u) = B(|z] + decrng(v)) is a closest lattice point to y = Bz
whenever B(|z] + v) is. a

LEMMA 5.6. There exists a closest lattice point to y = Bz in the form B(|z]+v),
where v € Z" with tng(v) < n.

Proof. Let dy € Z™! be such that B(|z]| + dp) is a closest lattice point to
y. Define the sequence of vectors dy,dq,... from Z"*! according to the recursion
dip+1 = decrng(dy). It follows from Lemma 5.5 that B(|z| + di) is a closest lattice
point for all positive integers k. By Proposition 5.4 there is a finite 7" such that

dpy1 = dp = decrng(dr).
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Thus subr(dr) = 0 and rng(dr) < n by Proposition 5.3. The proof follows with
v = dT. O

Recall that a lattice point z is said to be /-close to y if there exists a v € Z"*1
with rng(v) = ¢ such that « + Bv is a closest point to y. Lemma 5.6 above asserts
that the lattice point o = B|z| that initializes the iterative procedure is K-close to
y, where K < n. We now prove Lemma 5.8 from which it will follow that if the lattice
point xj obtained on the kth iteration of the procedure is f-close, then the lattice
point xp41 obtained on the next iteration is (¢ — 1)-close. Before giving the proof of
Lemma 5.8 we require the following simple result.

LEMMA 5.7. Let h € {0,1}""! and v € Z"*! with rg(v) > 1. Suppose that
h; = 0 whenever v; = min(v) and that h; = 1 whenever v; = max(v). Then

hi—hjg’l)i—’l)j

when either v; = max(v) or v; = min(v).

Proof. If v; = max(v) then h; = 1 and we need only show that 1—h; < max(v)—v;
for all j. If v; = max(v) then h; = 1 and the results hold since 1 — h; = 0 =
max(v) —v;. Otherwise if v; < max(v) then 1—h; <1 < max(v)—v; because max(v)
and v; are integers.

Now, if v; = min(v) then h; = 0 and we need only show that h; < v; — min(v)
for all i. If v; = min(v) then h; = 0 = v; — min(v) and the results hold. Otherwise if
v; > min(v) then h; <1 <wv; —min(v) because min(v) and v; are integers. O

LEMMA 5.8. Let Bu with v € Z"*! be a lattice point that is (-close to y = Bz,
where £ > 0. Let g € {0,1}" "1 be such that

2 : 2
(5:5) 1B(z —u—g)|" = e 1B(z —u—1)[°
The lattice point B(u + g) is ({ — 1)-close to y.

Proof. Because Bu is (-close to y there exists v € Z"*! with rng(v) = £ such that

B(u + v) is a closest lattice point to y. Define subsets of indices

S={i]gi=0,v; = max(v)}, T={i|g;=1,v; =min(v)},

and put h = g+ 1g — 17 € {0,1}"*! and w = v — h. Observe that h; = 0 whenever
v; = min(v) and so min(w) = min(v — k) = min(v). Also, h; = 1 whenever v; =
max(v) and so max(w) = max(v — h) = max(v) — 1. Thus,

rng(w) = max(v) — 1 —min(v) = rmg(v) — 1 =0 — 1.

The lemma will follow if we show that B(u+ g+ w) is a closest lattice point to y since
then the lattice point B(u+g) will be (¢ —1)-close to 3. The proof is by contradiction.
Suppose B(u + g + w) is not a closest point to y, that is, suppose

IB(z —u—g—w)®>||B(z —u—v)|.
Putting p = z — u — v we have
IB(p +1s — 17)||* > || Bp]*.

By part 3 of Lemma 5.2 we obtain

(5.6) IBpl* = | B(p+ 1s — 17)[|* = ©(S,p) + ®(T,p) + 2> Y ai; <O.
ieS jeT
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As stated already h; = 0 whenever v; = min(v) and h; = 1 whenever v; = max(v).
It follows from Lemma 5.7 that

(57) hl — hj S Vi — Uy

when either v; = max(v) or v; = min(v). Since v; = max(v) for i € S and v; = min(v)
for j € T the inequality (5.7) holds when either i € S or j € T

Put r =z —wu—h. By (5.7) we have r; —r; > p; — p; when either i € SorjeT.
Now, since g;; < 0 for ¢ # j,

(I)(S, ’I") = quij(l + 27“1' - 27"j) S quij(l + 2p1' — 2pj) = (I)(S,p)

i€S j¢s i€S j¢s
and

(I)(T, 7‘) = Z Zqij(l + 27“1' - 27"j) S Z Zqij(l + 2p1' — 2pj) = @(T,p).

i¢T jeT igT jET
Using part 3 of Lemma 5.2 again,
1B(z = u—h)|]> = |B(z —u—g)|* = | Brl|* = | B(r + 15 — 17)]|?
=0(S,r) + (T, 1) +2) ) g

€S jeT

i€S jeT
as a result of (5.6). However, h € {0,1}"*! and so this implies

B(z —u— > ||B(z —u—h)|| > i B(z—u—1
I1B(z —u=g)ll > |B(z —u=h)[ 2 _min  [|B(z—u-1)]

contradicting (5.5). Thus, our original supposition is false and B(u+g+w) is a closest
lattice point to y. Because rng(w) = ¢ — 1 the lattice point B(u + g) is (£ — 1)-close
to y. a

We are now ready to prove our main theorem asserting that the iterative proce-
dure (5.2) converges to a closest lattice point in K < n iterations. This is the primary
result of this section.

THEOREM 5.9. Let A C R™ be a lattice of Voronoi’s first kind with obtuse
superbasis by, ...,byy1. Let z € R"Y let y = Bz, and let xg,x1,... be a sequence of
lattice points given by the iterative procedure (5.2). There exists K < n such that xx
is a closest lattice point to y.

Proof. Let z, = Buj be the lattice point obtained on the kth iteration of the
procedure. Suppose that xj is ¢-close to y with ¢ > 0. The procedure computes
tr € {0, 1} satisfying

B(z—up—tp)||= min |B(z—up—t
1Bz~ ue—t)l = _min_ | B(=~w —1)|

and puts xg1 = B(ug + tg). It follows from Lemma 5.8 that 2441 is (£ — 1)-close to
y. By Lemma 5.6 the lattice point that initializes the procedure g = B|z] is K-close
to y where K < n. Thus, z1 is (K — 1)-close, x5 is (K — 2)-close, and so on until x x
is O-close. That z is a closest lattice point to y follows from Lemma 5.1. O
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6. Computing a closest relevant vector. In the previous section we showed
that the iterative procedure (5.2) results in a closest lattice point in at most n it-
erations. It remains to show that each iteration of the procedure can be computed
efficiently. Specifically, it remains to show that the minimization over the set of binary
vectors {0,1}""! described in (5.3) can be computed efficiently. Putting p = z — uy
n (5.3) we require an efficient method to compute a t € {0, 1}"*! such that the binary
quadratic form

n+1 2

Zb

is minimized. Expanding this quadratic form gives

1B —t)|* =

2

n+1 n+1ln+1 n+ln+1 n+1n+1
> bilpi — =) aipin; —2) > aupiti+ > Y aijtit-
i=1 i=1 j=1 i=1 j=1 i=1 j=1

The first sum above is independent of ¢ and can be ignored for the purpose of min-
imization. Letting s; = —2 Z;Z;rll ¢;jp;j, we can equivalently minimize the binary
quadratic form

n+1 n+1ln+1
(6.1) Zst +) 0> aitit;.
=1 j=1

We will show that a minimizer of Q(t) can be found efficiently by computing a
minimum cut in an undirected flow network. This technique has appeared previ-
ously [44, 49, 53, 12] but we include the derivation here so that this paper is self-
contained. At the core of this technique is the fact that a one-to-one correspondence
exists between the obtuse superbasis of a lattice of Voronoi’s first kind and the Lapla-
cian matriz [5, 13] of a simple weighted graph with n + 1 vertices and positive edge
weights equal to the negated Selling parameters —g;;.

Let G be an undirected graph with n+ 3 vertices v, . .., v, 42 contained in the set
V' and edges e;; connecting v; to v;. To each edge we assign a weight w;; € R. The
graph is undirected so the weights are symmetric, that is, w;; = wj;. By calling the
vertex vg the source and the vertex vy, o the sink the graph G is what is called a flow
network. The flow network is undirected because the weights assigned to each edge
are undirected. A cut in the flow network G is a subset C' C V of vertices with its
complement C' C V such that the source vertex vy € C' and the sink vertex v, 2 € C.

The weight of a cut is

C)=>_ > wi,

i€l jeJ

where I = {i | v; € C} and J = {j | v; € C}. That is, W(C,C) is the sum of the
weights on the edges crossing from the vertices in C' to the vertices in C. In what
follows we often drop the argument and write W rather than W (C,C). A minimum
cut is a C and C that minimize the weight W. If all of the edge weights w;; for
i # j are nonnegative, a minimum cut can be computed in order O(n?) arithmetic
operations [12, 19].

We require some properties of the weights w;; in relation to W. If the graph is
allowed to contain loops, that is, edges from a vertex to itself, then the weight of
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these edges w;; has no effect on the weight of any cut. We may choose any values
for the w;; without affecting W. It will be convenient to set wp,o = Wny2,nt2 = 0.
The remaining w;; shall be specified shortly. The edge e 2 is in every cut. If a
constant is added to the weight of this edge, that is, w12 is replaced by wg ny2 + ¢
then W is replaced by W + ¢ for every C and C. In particular, the subsets C' and
C corresponding to a minimum cut are not changed. It will be convenient to choose
Wo,n4+2 = Wny2,0 = 0.

If vertex v; is in C' then edge e; 4o contributes to the weight of the cut. If v; ¢ C,
ie., v; € C, then edge eo,; contributes to the weight of the cut. So, either eg ; or €; 12,
but not both, contribute to every cut. If a constant, say ¢, is added to the weights of
these edges, that is, wg; and w; n42 are replaced by wo; + ¢ and w; 5,42 + ¢, then W
is replaced by W + ¢ for every C' and C. The C and C corresponding to a minimum
cut are unchanged. In this way, the minimum cut is only affected by the differences

di = W py2 — Wo,i

for each i and not the specific values of the weights w; 42 and wo ;.
We now show how W(C, C) can be represented as a binary quadratic form. Put

to =1 and tn_,_g =0 and
1, ieC,
t; = _
0, ieC

fori=1,2,...,n+ 1. Observe that

1, ieC,jeC,
ti(l —t;) =
0, otherwise.

The weight can now be written as

n+2n+2
W(C, O) = Z Z Wiy = Z Z wijti(l - tj) = F(t)
ieC jed i=0 j=0
Finding a minimum cut is equivalent to finding the binary vector ¢t = (t1,...,tn41)
that minimizes F'(t). Write
n+2n+2 n+2n+2
F(t) = Z Z wijt; — Z Z wijtit;.
i=0 j=0 i=0 j=0

Letting k; = E?ig wi;, and using that g = 1 and #,,42 = 0,

ntl n+1 nt1 n+1n+1
F(t) = Z kit; — woo — Z wiol; — Z wo;t; — Z Z wistit;.
i=0 i=1 j=1 i=1 j=1
Because wgp = 0 and w;; = w;; we have
n+1 n+1n+1
F(t) = ko + Z(kz — 2wio)t; — Z Z wijtit;.
i=1 i=1 j=1
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The constant term kg is unimportant for the purpose of minimization so finding a
minimum cut is equivalent to minimizing the binary quadratic form

n+1 n+1ln+1

g giti_g g wistits,
i=1 i=1 j=1

n+1

where g; = ki — 2wjo = d; + ) 1 w;;. It only remains to observe the equivalence of
this quadratic form and Q(¢) from (6.1) when the weights are assigned to satisfy

Qij = —Wjj i,j=1,....,n+1,
n+1
Sizgi:di—szij.

j=1

Because the g;; are nonpositive for ¢ # j the weights w;; are nonnegative for all ¢ # j
with 7,7 =1,...,n+ 1. As discussed the value of the weights w;; has no effect on the
weight of any cut W so setting q;; = —w;; for i = 1,...,n 4+ 1 is of no consequence.
Finally the weights w; n4+2 and wp; can be chosen so that both are nonnegative and

n+1
Winy2 — Wo,i = di = 8; + E Qij = Si
J=1
b " = 04d h basis condition (4.1); that i h
ecause ijl Qi = ue to the superbasis condition (4.1); that is, we choose
Wint2 = 8 and wo; = 0 when s; > 0 and w; 42 = 0 and wp; = —s; when s; < 0.

With these choices, all the weights w;; for ¢ # j are nonnegative. A minimizer of
Q(t), and, correspondingly, a solution of (5.3) can be computed in O(n?) operations
by computing a minimum cut in the undirected flow network G assigned with these
nonnegative weights [44, 49, 53, 12].

7. Discussion. The closest lattice point problem has a number of applications,
for example, channel coding and data quantization [9, 8, 7, 18, 17]. A significant hurdle
in the practical application of lattices as codes or as quantizers is that computing
a closest lattice point is computationally difficult in general [40]. The best known
general purpose algorithms require a number of operations of order O(22") [42]. In this
paper we have focused on the class of lattices of Voronoi’s first kind. We have shown
that computing a closest point in a lattice of Voronoi’s first kind can be achieved in a
comparatively modest number of operations of order O(n*) under the assumption that
the obtuse superbasis is known. Besides being of theoretical interest, the algorithm
has potential for practical application.

A question of immediate interest to communications engineers is, do there exist
lattices of Voronoi’s first kind that produce good codes or good quantizers? Since lat-
tices that produce good codes and quantizers often also describe dense sphere pack-
ings [11], a related question is, do there exist lattices of Voronoi’s first kind that
produce dense sphere packings? These questions do not appear to have trivial an-
swers. The questions have heightened importance due to the algorithm described in
this paper.

It is straightforward to construct an “arbitrary” lattice of Voronoi’s first kind. One
approach is to construct the n+ 1 by n+ 1 symmetric matrix QQ = B’ B with elements
Qij = qij = b; - bj given by the Selling parameters. Choose the off-diagonal entries
of @ to be nonpositive with g;; = ¢;; and set the diagonal elements g;; = — Z#i Qij-
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The matrix @ is diagonally dominant, that is, |g;;| > > ot lgi;|, and so @Q is positive
semidefinite. A rank deficient Cholesky decomposition [23] can now be used to recover
a matrix B such that B’B = Q. The columns of B are vectors of the obtuse superbasis.

A number applications such as phase unwrapping [52, 22|, single frequency esti-
mation [37], and related signal processing problems [32, 6, 33, 46] also require com-
puting a closest lattice point. In these applications the particular lattice arises from
the signal processing problem under consideration. If that lattice happens to be of
Voronoi’s first kind then our algorithm can be used. An example where this occurs is
the problem of computing the sample intrinsic mean in circular statistics [36]. In this
particular problem the lattice A7 is involved. A fast closest point algorithm requiring
only O(n) operations exists for A [39, 34] and so the algorithm described in this
paper is not needed in this particular case. However, there may exist other signal
processing problems where lattices of Voronoi’s first kind arise.

Another interesting question is, are there subfamilies of Voronoi’s first kind that
admit even faster algorithms? Both A,, and A} are examples of this, but there might
exist other subfamilies with algorithms faster than O(n*). A related question is, can
the techniques developed in this paper be applied to other families of lattices, i.e.,
beyond just those of Voronoi’s first kind?

A final remark is that our algorithm assumes that the obtuse superbasis is known
in advance. It is known that all lattices of dimension less than or equal to 3 are of
Voronoi’s first kind and an algorithm exists to recover the obtuse superbasis in this
case [11]. Lattices of dimension larger than 3 need not be of Voronoi’s first kind.
Given a lattice, is it possible to efficiently decide whether it is of Voronoi’s first kind?
Is it possible to efficiently find an obtuse superbasis if it exists? It is suspected that
the answer to this second question is no because an efficient solution would yield a
solution to a known problem, that of determining whether a lattice is rectangular (has
a basis consisting of pairwise orthogonal vectors) given an arbitrary basis [30].

8. Conclusion. The paper describes an algorithm to compute a closest lattice
point in a lattice of Voronoi’s first kind when the obtuse superbasis is known [10].
The algorithm requires O(n*) operations where n is the dimension of the lattice. The
algorithm iteratively computes a series of relevant vectors that converges to a closest
lattice point after at most n terms. Each relevant vector in the series can be efficiently
computed in O(n?) operations by computing a minimum cut in an undirected flow
network. The algorithm has potential application in communications engineering
problems such as coding and quantization. An interesting problem for future research
is to find lattices of Voronoi’s first kind that produce good codes, good quantizers, or
dense sphere packings [11, 8].
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