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Abstract— Compute-and-Forward is an emerging technique
to deal with interference. It allows the receiver to decode a
suitably chosen integer linear combination of the transmitted
messages. The integer coefficients should be adapted to the
channel fading state. Optimizing these coefficients is a Shortest
Lattice Vector (SLV) problem. In general, the SLV problem is
known to be prohibitively complex. In this paper, we show that
the particular SLV instance resulting from the Compute-and-
Forward problem can be solved in low polynomial complexity
and give an explicit deterministic algorithm that is guaranteed
to find the optimal solution.

I. INTRODUCTION

Compute-and-Forward is an emerging paradigm for deal-
ing with interference in wireless multiuser channels. Con-
trary to previous approaches, Compute-and-Forward does
not view interference as inherently undesirable. The key
idea is that the relay nodes aim at recovering integer
linear combinations of transmitted codewords instead of
attempting to decode the individual codewords and treating
interference as noise. Nested lattice codes ensure that an
integer linear combination of codewords is a codeword
itself. This method is shown to considerably enhance the
achievable rates compared to other techniques [1], [2], [3].

In a typical Compute-and-Forward scenario, n trans-
mitting nodes, each with transmission power P, share a
wireless channel to send their messages to a relay node. The
relay receives a noisy linear combination of the transmitted
messages, namely

y =
n

∑
i=1

hixi + z

where y is the received signal, xi and hi respectively rep-
resent the signal transmitted by node i and the effect of
channel from this node to the relay and z denotes additive
white Gaussian noise of unit variance. The receiver then
recovers an integer linear combination of the transmitted
codewords (Figure 1). It is proved in [1] that the achievable
rate for the Compute-and-Forward scheme is at least as large
as:

R(h,a) =
1
2

log+
((
‖a‖2− P|hT a|2

1+P‖h‖2

)−1
)

(1)

where a describes the coefficient vector of the linear com-
bination of messages to be recovered at the relay node.

From the perspective of a single receiver, a reasonable
choice for the vector a is one that maximizes the achievable
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Fig. 1. n transmitters send their signals to one relay. The relay decodes
an integer linear combination of the codewords.

rate given by (1), that is:

a∗ = argmax
a∈Zn\{0}

1
2

log+
((
‖a‖2− P|hT a|2

1+P‖h‖2

)−1
)
. (2)

It is shown in [1] that a∗ satisfies

‖a∗‖ ≤
√

P‖h‖2 +1. (3)

Given the bounded interval, one can attempt to solve prob-
lem (3) by exhaustive search. For a small number of users n
this is feasible, but it quickly becomes prohibitively complex
as n grows large.

With slight manipulation, this optimization problem can
be rewritten as

a∗ = argmin
a∈Zn\{0}

f (a) = aT Ga (4)

where
G = (1+P‖h‖2)I−PhhT .

is a positive definite matrix. This is an instance of a well-
known problem in discrete mathematics called the Shortest
Lattice Vector problem. The SLV problem is known to be
NP-hard in its general form, that is for a general positive
definite matrix G. Due to this fact, it has been suggested that
approximation algorithms must be used in order to solve (4).
The problem with such algorithms is that the best known
polynomial complexity approximation algorithms for the
SLV problem have exponential approximation factors. The
most famous among them are the celebrated LLL algorithm
[4] and its extensions, most notably [5]. In fact, Khot in
[6] has shown that assuming NP * RP , no constant factor
approximation algorithm can be found for the SLV problem
which runs in polynomial complexity. Other results on
hardness of the SLV problem have been found, for instance
in [7], [8], [9].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148007425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


On the bright side, efficient algorithms for special lattices
have been known for a long time. For instance Gauss found
an algorithm for solving the SLV problem in dimension two.
Conway in [10] provides exact algorithms for a class of root
lattices in higher dimensions. Based on [11] McKilliam [12]
showed that if an obtuse superbase for a lattice is known,
the shortest vector can be found in polynomial complexity.

Since the publication of Compute-and-Forward paper [1],
there has been a few attempts to tackle the special case
of SLV problem which appears in (4). Performance of the
proposed methods are mostly exhibited through simulation
results or heuristic arguments and NP-hardness of the prob-
lem in hand is typically the underlying assumption [13],
[14], [15].

In this work we show that the special case of SLV problem
which appears in Compute-and-Forward admits an exact
solution of polynomial complexity. The following theorem,
albeit provable mostly by elementary manipulations of inte-
ger inequalities, establishes an important fact that provides
the foundation of our SLV algorithm. (Note that the operator
d·c rounds each element of its vector input to the closest
integer.)

Theorem 1. The solution to (4) satisfies

a∗− 1
2

1 < hx < a∗+
1
2

1

and thus
a∗ = dhxc

for some x ∈ R. Or a∗ must be a standard unit vector, up
to a sign.

It follows from Theorem 1 that for the special lattices
of interest, the shortest vector can be obtained by solving
an optimization problem over only one variable. Equation
(3) tells us the search only has to be done over a bounded
region. An individual examination of the standard unit vec-
tors must also be performed. This will significantly reduce
the number of candidate vectors a. We will find an upper
bound on this number, propose a method to enumerate all
such candidates and find the one that minimizes f as defined
in (4). We will prove that the complexity of our algorithm
is

O
(

n2
√

1+P‖h‖2

)
.

Remark 1. The formula given by Theorem 1 has some
resemblance to the results of [16] and [17]. However the
span of these works are Coxeter lattices and the goal is to
find faster algorithms for problems which are already known
to be polynomially solvable.

The rest of the paper is organized as follows: First we
define the notation used throughout the paper. In Section III
we introduce an algorithm which solves the optimization
problem (4) based on Theorem 1. The complexity of the
algorithm will then be calculated. This will be followed
by a generalization of Theorem 1 and the corresponding

algorithm to the case of MIMO Compute-and-Forward
respectively in Sections IV and V. An analysis of the
complexity of this algorithm will be given in Section V-A.
In Section VI the proof of Theorem 2 which is a generalized
version of Theorem 1 is given. Finally we will conclude our
work in Section VII.

II. NOTATION

We use boldface lowercase letters to denote vectors.
All vectors are assumed to be vertical. In particular we
use 1 to denote the all-ones vector and 0 for the all-zero
vector. Boldface capital letters represent matrices. Scalars
are written with plain letters. For example, for a matrix A
we use Ai j to refer to the element in its i-th row and j-
th column. Similarly, for the vector a, we denote its i-th
element by ai. When referring to indexed vectors, we use
boldface letters. For instance, ai denotes the i-th vectors,
whereas ai j indicates the j-th element of the i-th vector.
For an n×m matrix A and for a set π ⊆ {1, . . . ,n} we define
Aπ as the submatrix of A which consists of the rows indexed
in π . For a vector a, we define aπ in a similar manner. For an
n×n matrix A we use diag(A) to denote a vector consisting
of its diagonal elements.
All the vector inequalities used throughout the paper are
elementwise. The operator d·e returns the smallest integer
greater or equal to its input. The two operators d·c and b·e
return the closest integer to their input. Their difference is
at half-integers: the former rounds the half-integers up and
the latter rounds them down. We use ‖ · ‖ to represent the
2-norm of a vector. Finally, R represents the set of real
numbers and Z the set of integers.

III. ALGORITHM I

In this section we provide an efficient algorithm for
solving the optimization problem (4). We will show that
the algorithm runs in polynomial complexity in n. For the
sake of convenience we define ψ =

√
1+P‖h‖2.

In line with Theorem 1 define a(x) = dhxc. Note that
Theorem 1 reduces the problem to a one-dimensional op-
timization task. Since every ai(x) is a piecewise constant
function of x, so is the objective function f . Overall, the
goal is to find a set of points which fully represent all the
intervals in which f is constant and choose the point that
minimizes f . Being a piecewise constant function, f can be
represented as:

f (a(x)) =

{
fi , if ξi < x < ξi+1 , i = . . . ,−1,0,1, . . .
hi , if x = ξi , i = . . . ,−1,0,1, . . .

(5)
ξi values are sorted real numbers denoting the points of
discontinuity of f . Since f is a continuous function of
a, these are in fact the discontinuity points of a(x) (or
a subset of them) or equivalently the points where ai(x)
is discontinuous, for some i = 1 . . .n. Since we have that
ai(x) = dhixc, the discontinuity points of ai(x) are the points
where hix is a half-integer. Or equivalently the points of



the form x = c
|hi| where c is a half-integer and hi 6= 0. To

conclude this argument, we write:

ξi ∈
{

c
|h j|

∣∣∣∣ j = 1 . . .n ,h j 6= 0 , c− 1
2
∈ Z
}

i = . . . ,−1,0,1, . . .
(6)

We can also see from Theorem 1 that a∗ satisfies a∗− 1
2 1 <

hx < a∗+ 1
2 1 for some x ∈ R. Hence any x satisfying

a∗i −
1
2
< xhi < a∗i +

1
2

, i = 1 . . .n , hi 6= 0 (7)

minimizes f . As a result, x belongs to the interior of an
interval and not the boundary. Therefore, in the process of
minimizing f , one can ignore the hi values in (5), check all
fi values and choose the smallest one.

min
a∈Zn\{0}

f (a) = min
i=···−1,0,1...

fi

Since ξi+ξi+1
2 belongs to the interval (ξi,ξi+1), we can

rewrite fi as fi = f (a( ξi+ξi+1
2 )). Thus:

min
a∈Zn\{0}

f (a) = min
i=···−1,0,1...

f (a(
ξi +ξi+1

2
)) (8)

On the other hand, (3) tells us that we do not need to check
the whole range of x. It follows from the constraint ‖a‖ ≤
ψ =

√
1+P‖h‖2 that |ai| ≤ ψ and thus, from (7) we have

− 1
|hi|

(ψ +
1
2
)< x <

1
|hi|

(ψ +
1
2
) , i = 1 . . .n , hi 6= 0

⇒−β (ψ +
1
2
)< x < β (ψ +

1
2
)

where

β = min
i=1...n , hi 6=0

1
|hi|

(9)

It follows from this expression and equation (6) that the
largest ξi+1 that we need to check in equation (8) is β (dψe+
1
2 ). Similarly the smallest ξi to be checked is −β (dψe+ 1

2 ).
We can now rewrite equation (8) as:

min
a∈Zn\{0}

f (a) = min
i=···−1,0,1...

ξi≥−β (dψe+ 1
2 )

ξi+1≤β (dψe+ 1
2 )

f (a(
ξi +ξi+1

2
)) (10)

Using equation (6) we can translate the constraints in
equation (10) into:

c
|h j|
≤ β (dψe+ 1

2
)⇒ c≤ dψe+ 1

2
, j = 1 . . .n , and

(11)
c
|h j|
≥ −β (dψe+ 1

2
)⇒ c≥−(dψe+ 1

2
) , j = 1 . . .n (12)

By defining the sets Φ j , j = 1 . . .n and the set Φ as follows:

Φ j =

{
c
|h j|

∣∣∣∣ |c| ≤ dψe+ 1
2
, c− 1

2
∈ Z
}

j = 1 . . .n , h j 6= 0
(13)

Φ j = /0 , j = 1 . . .n , h j = 0 (14)

Φ =
n⋃

j=1

Φ j (15)

and after sorting the elements of Φ, we can write the
equation (10) as

min
a∈Zn\{0}

f (a) = min
ξi , ξi+1∈Φ

f (a(
ξi +ξi+1

2
)) (16)

Thus, the algorithm starts by calculating the sets Φ j and
their union Φ, sorting the elements of Φ and then running
the optimization problem described by equation (16). The
standard unit vectors will also be individually checked. The
number of elements in Φ j is upper-bounded by 2dψe+ 2
and thus the number of elements in Φ is upper-bounded by
n(2dψe+2). Also the value of f can be calculated in O(n).
So the complexity of the algorithm is O(n2

√
1+P‖h‖2).

The procedure is summarized in Algorithm 1.

Algorithm 1 Finding the optimal coefficient vector
Input: Channel vector h and transmission power P
Output: a∗
Initialization :

1: ui := standard unit vector in the direction of i-th axis
2: ψ :=

√
1+P‖h‖2

3: Φ = /0
4: G := (1+P‖h‖2)I−PhhT

5: f (a) := aT Ga
6: fmin = min(diag(G))
7: a∗ = uargmin(diag(G))

Phase 1:
8: for all i ∈ {1, . . . ,n}, and hi 6= 0 do
9: for all c , |c| ≤ dψe+ 1

2 and c− 1
2 ∈ Z do

10: calculate x = c
|hi|

11: Set Φ = Φ∪{x}
12: end for
13: end for

Phase 2:
14: sort Φ

15: for every two consecutive members of Φ do
16: calculate x = average of the two points
17: calculate a = dhxc
18: if f (a)< fmin AND a is not the all zero vector then
19: set a∗ = a
20: set fmin = f (a)
21: end if
22: end for
23: return a∗



IV. A GENERALIZATION TO MIMO
COMPUTE-AND-FORWARD

In this section we provide a generalization of Theorem 1
and the corresponding algorithm by relaxing several con-
straints that we imposed on the structure of the Gram matrix.
The generalized theorem can be applied to maximize the
achievable rate of MIMO Compute-and-Forward studied in
[18]. The scenario is very similar to what mentioned in the
introduction, with the difference that the relay node now has
multiple antennas. The objective remains the same: decode
the best integer linear combination of the received code-
words. Assume there are n transmitters with transmission
power P and the receiver node has k antennas. Let hi be
the channel vector from the transmitting nodes to the i-th
antenna of the relay. Also, let H be the n×k matrix whose
columns are the hi vectors. It directly follows from the
results of [18] that the achievable rate satisfies the following
equation:

R(a) =−1
2

logaT Ga (17)

where
G = WRWT . (18)

Here W is a unitary matrix in Rn×n whose columns are the
eigenvectors of HHT , and R is a diagonal square matrix
with the first k diagonal elements satisfying

ri =
1

1+Pγ2
i

, i = 1 · · ·k

and the last n− k diagonal elements equal to 1. Finally, γ2
i

is the i-th eigenvalue of HHT (same order as the columns
of W).
The goal is to maximize the achievable rate or equivalently,
to find

a∗ = argmin
a∈Zn\{0}

aT Ga

as in the single antenna case.
We first mention a generalization of Theorem 1 and

next we show that the Gram matrix which appears in this
optimization problem satisfies the constrains of the new
theorem. To begin with, we define the following:

Definition 1 (DPk decomposable matrices). We call a
positive definite matrix DPk decomposable if it can be
written as G = D−P where P is a positive semi-definite
matrix of rank k and D is a diagonal matrix. We call such
a representation a DPk decomposition of the matrix G.

It follows from the definition that all diagonal elements
of D are strictly positive. This is due to the fact that
G is positive definite and P is positive semi-definite.
Furthermore, we find it convenient to write P as P = VVT

where V is an n× k matrix whose columns are linearly
independent. Such a decomposition is not unique, but our
arguments will be valid regardless of how the matrix V
is chosen. We will use this notation throughout the paper

without redefining them.

Theorem 2. Assume a positive definite matrix G is DPk

decomposable, that is G = D−VVT as defined. Let a∗ be
a solution to

argmin
a∈Zn\{0}

f (a) = aTGa

Then both the following statements are true:
a) there exists a vector x∈Rk such that a∗− 1

2 1<D−1Vx<
a∗+ 1

2 1 and thus a∗ = dD−1Vxc. Or a∗ must be a standard
unit vector, up to a sign.
b) ‖a∗‖ ≤ ψ =

√
Gmin
λmin

where Gmin is the smallest diagonal
element of G and λmin is the smallest eigenvalue of G.

Note that Theorem 1 is a special case of Theorem 2 where
k = 1 , D = (1+P‖h‖2)I and P = PhhT . The bound on the
norm of a∗ given by (3) is also equivalent to the bound
given in part b) of Theorem 2 , since we have λmin = 1 and
Gmin ≤ 1+P‖h‖2 in the lattice studied in Theorem 1.

The Gram matrix in equation (18) also satisfies the
constraints of Theorem 2: Since W is a unitary matrix, G can
be rewritten as I−W(I−R)WT . Clearly, W(I−R)WT is
of rank k (since I−R has only k non-zero diagonal entries),
and positive semi-definite. The bound given by part b) of
the theorem translates into ‖a‖ ≤

√
1+Pγ2

max where γmax
is the maximum γi value. This is because Gmin ≤ 1 and the
eigenvalues of G are easily seen to be equal to 1

1+Pγ2
i

(with

the same eigenvectors as HHT ) or 1.

Remark 2. The SLV problem is easy to solve for diagonal
Gram matrices: as the given basis is already orthogonal,
the length of the shortest vector is the square root of the
minimum diagonal element of the Gram matrix. Theorem 2
implies that subtracting a positive semi-definite low rank
perturbation from a diagonal Gram matrix does not change
the property of being polynomially solvable.

Remark 3. Deciding whether a matrix is DPk decomposable
or not is outside of the scope of this work. Throughout this
paper we will assume that the DPk decomposition of the
Gram matrix is given a priori. The interested reader is re-
ferred to [19], [20] for the state of the art algorithms which,
under a set of conditions, can find the DPk decomposition
of a matrix, with minimal k.

V. ALGORITHM II

For the case k = 1 we presented an algorithm which
finds precisely one point inside every interval in which
f is constant. For the general case, it is not clear to us
how to find exactly one point per region. As a result we
will present an algorithm which finds multiple points per
region, while guaranteeing that first, every region has at
least one representative point, and second, the number of
points remains manageable, in the sense that it grows only
as a polynomial function of n.
From Theorem 2 we know that the vector a∗ satisfies the



2n inequalities:

a∗− 1
2

1 < D−1Vx < a∗+
1
2

1

for some x. In other words, x belongs to the interior of
the polytope described by these constraints. By analogy to
the case k = 1 , we start by finding the set of vertices
of all such polytopes. Each vertex is the intersection of
at least k linearly independent hyperplanes of the form
ci = (D−1V){i}x, for half-integer ci. Thus in order to find a
vertex, we choose any set π ⊆ {1, . . . ,n} for which |π|= k
and (D−1V)π is full rank and solve (D−1V)π x = c for x
where the vector c consists of half integer elements. An
arbitrary vertex ξi thus falls in the following set:

ξi ∈
{
((D−1V)π)

−1c
∣∣ π ⊆ {1, . . . ,n} , |π|= k,

(D−1V)π full rank , c− 1
2

1 ∈ Zk
}

(19)

According to part b) of Theorem 2 not all such vertices
need to be checked, since: ‖a∗π‖ ≤ ‖a∗‖ ≤ ψ . Thus like in
the case k = 1 we only need to check the vertices where

−(ψ +
1
2
)1 < (D−1V)π x < (ψ +

1
2
)1

and so
−(dψe+ 1

2
)1≤ c≤ (dψe+ 1

2
)1

Now we can define the sets of all vertices of interest, Φπ

and their union Φ as

Φπ =

{
((D−1V)π)

−1c
∣∣∣∣ |c| ≤ (dψe+ 1

2
)1 , c− 1

2
1 ∈ Zk

}
π ⊆ {1 . . .n} , |π|= k ,(D−1V)π full rank

Φπ = /0 , π ⊆ {1 . . .n} , |π|= k ,(D−1V)π rank deficient

Φ =
⋃

π⊆{1...n}
|π|=k

Φπ

In the next phase of the algorithm we use this set of
vertices to find a set of interior points of polytopes of
interest. It is not clear to us how to find exactly one point
per polytope. The major difficulty is to identify which vertex
belongs to which polytope. But for our main goal of showing
a polynomial bound on complexity, this is immaterial.
In order to find at least one point in the interior of each
polytope, we then consider all possible combinations of k +
1 vertices. Assuming they form a simplex in Rk, we can then
find an interior point of this simplex by taking the average
of the k + 1 vertices. Note that if the chosen vertices lie
in a k-dimensional space, then they do not form a simplex.
Nonetheless the algorithm can check the average of these
points, even if the theorem does not consider it a potential
minimizer.

Since any convex polytope can be decomposed into
simplexes, an interior point of all the polytopes must have
been found in this process. The last step is to check the
value of f over all these candidate points. In line with the

theorem, one also has to separately check all the standard
unit vectors.
This is summarized in Algorithm 2.

Algorithm 2 Finding the optimal coefficient vector, the
general case

Input: Gram matrix G and its DPk decomposition, D
and V matrices as defined
Output: a∗

Initialization:
1: ui := standard unit vector in the direction of i-th axis
2: λmin := minimum eigenvalue of G
3: Gmin := minimum diagonal element of G
4: ψ :=

√
Gmin
λmin

5: Φ = /0
6: f (a) := aTGa
7: fmin = Gmin
8: a∗ = uargmin(diag(G))

Phase 1:
9: for all π ⊆ {1, . . . ,n}, |π| = k, and (D−1V)π full rank

do
10: for all c , |c| ≤ (dψe+ 1

2 )1 and c− 1
2 1 ∈ Zk do

11: calculate x = ((D−1V)π)
−1cπ

12: Set Φ = Φ∪{x}
13: end for
14: end for

Phase 2:
15: for all possible choices of k+1 points in Φ do
16: calculate p = average of the points
17: calculate b = D−1Vp
18: calculate a = dbc
19: if f (a)< fmin AND a is not the all zero vector then
20: set a∗ = a
21: set fmin = f (a)
22: end if
23: end for
24: return a∗

A. Complexity Analysis

The running time of the algorithm is clearly dominated
by phase 2, where all possible k + 1 combinations of the
points found in phase 1 are checked as potential vertices
of a simplex. First we count the number of points found in
phase 1. This number is given by

∑
π⊂{1...n}
|π|=k

(2dψe+2)k =

(
n
k

)
(2dψe+2)k

≤ nk

k!
(2dψe+2)k =

(2n(dψe+1))k

k!

(**)



The number of loops in phase 2 is the number of possible
choices of k+1 points out of all points found in the phase
1. It can be upper bounded using equation (**):( (2n(dψe+1))k

k!
k+1

)
≤ (2n(dψe+1))k(k+1)

(k!)k+1(k+1)!

In order to find the complexity of the algorithm, we need
to multiply this number of loops with the running time of
each loop. Inside the loop, calculating the vector b can be
done in O(kn) and f (a) can also be calculated in O(kn)
operations. Thus the complexity of the algorithm is

O

(
kn

(2n(dψe+1))k(k+1)

(k!)k+1(k+1)!

)
= O

(
n(2n(dψe+1))k(k+1)

(k!)k+2

)
Since this expression is a polynomial function of dψe=⌈√

Gmin
λmin

⌉
, we conclude that as long as Gmin

λmin
is upper-

bounded by a polynomial function of n the complexity of
the algorithm is polynomial in n. As we saw, in the case of
MIMO Compute-and-Forward, we have ψ =

√
1+Pγ2

max.
Also, we know that γ2

max ≤ trace(HHT ) ≤ nkH2
max, where

Hmax is the maximum of all |Hi j| values. Thus, if Hmax is
bounded by a polynomial function of n, the algorithm will
be of polynomial complexity. This is truly the case in all
practical models, such as Rayleigh fading or any model with
bounded channel coefficients.

VI. PROOF OF THEOREM 2

part a)
First note that we can rewrite f (a) = aTGa as follows:

f (a) =
n

∑
i=1

(Dii−Pii)a2
i −2

n

∑
i=1

i−1

∑
j=1

Pi jaia j

Assume that we already know the optimal value for all
a∗i elements except for one element, a j. Note that f is a
convex parabola in a j (this is because D j j −Pj j = G j j is
a diagonal element of a positive definite matrix) thus the
optimal integer value for a j is the closest integer to its
optimal real value. By taking partial derivative with respect
to a j, the optimal real value of a j is easily seen to be equal
to

∑
n
i=1,i 6= j Pi ja∗i
D j j−Pj j

.

Taking the closest integer to the real valued solution, we
find:

⇒ a∗j =
⌈

∑
n
i=1,i6= j Pi ja∗i
D j j−Pj j

⌋
OR a∗j =

⌊
∑

n
i=1,i 6= j Pi ja∗i
D j j−Pj j

⌉
(I)

Due to the symmetry of the parabola, both functions return
equally correct solutions for a∗j .
Note that this expression must be true for any j: If for a∗
and for some j, a∗j does not satisfy at least one of these
two equations, we can achieve a strictly smaller value over
f by replacing a∗j with the value given above, and so a∗
cannot be optimal. The only situation where this logic fails
is when in the optimal vector we have: a∗i = 0 , i = 1 . . .n ,

i 6= j. In this case, replacing the value of a∗j with its round
expression will result in the all zero vector, a∗ = 0. Hence,
the case where a∗ is zero except in one element requires
separate attention, as pointed out by the theorem. Under this
assumption, f (a∗) = G j ja∗2j . Thus it must be that |a∗j |= 1,
and so a∗ is a standard unit vector, up to a sign.
Returning to the general case of a∗ and from (I) we have
that:

a∗j +
1
2
≥

∑
n
i=1,i6= j Pi ja∗i
D j j−Pj j

, and (II)

a∗j −
1
2
≤

∑
n
i=1,i6= j Pi ja∗i
D j j−Pj j

(III)

Starting with equation (II), we multiply both sides by the
denominator, and add the term a∗jPj j to obtain:

(a∗j +
1
2
)D j j ≥

n

∑
i=1

Pi ja∗i +
1
2

Pj j

Dropping the non-negative term 1
2 Pj j we conclude

(a∗j +
1
2
)D j j ≥

n

∑
i=1

Pi ja∗i

Now we show that this inequality is strict, even if Pj j = 0.
Due to the fact that P is positive semi-definite, we must have
that if Pj j = 0 then Pi j = 0 , i = 1 . . .n. Thus in that case, the
inequality turns into (a∗j +

1
2 )D j j ≥ 0. But we have that a∗j is

an integer and D j j−Pj j > 0 thus D j j > 0. So, (a∗j +
1
2 )D j j

cannot be equal to zero and this inequality must be strict.
As a result, we have:

(a∗j +
1
2
)D j j >

n

∑
i=1

Pi ja∗i

⇒ (a∗j +
1
2
)>

∑
n
i=1 Pi ja∗i

D j j
, j = 1 . . .n

Writing this inequality in vector format, we obtain

a∗+
1
2

1 > D−1PT a∗ = D−1V(VT a∗) (IV)

In a similar fashion one can show that equation (III) results
in

⇒ a∗− 1
2

1 < D−1PT a∗ = D−1V(VT a∗) (V)

Defining x = VT a∗, it follows from (IV) and (V) that

a∗− 1
2

1 < D−1Vx < a∗+
1
2

1

⇒ a∗ = dD−1Vxc

This completes the proof of part a).



part b)
First note that

f (a∗) = a∗T Ga∗ ≥ λmin‖a∗‖2

By simply choosing a to be the i-th standard unit vector, we
have f (a) = Gii. Thus:

Gmin ≥ f (a∗)≥ λmin‖a∗‖2

from which we can conclude

‖a∗‖ ≤
√

Gmin

λmin

which is the claim made by part b) of the theorem.

VII. CONCLUSIONS AND FUTURE WORK
In this paper we introduced an exact algorithm of polyno-

mial complexity for solving the special case of SLV problem
which appears in the context of Compute-and-Forward. We
then generalized our results to the case of MIMO Compute-
and-Forward. There are several possibilities to continue
this work. The results may be extendable to more general
lattices. Furthermore such Gram matrices may be used as
a point of reference for approximating the shortest vector
in a wider range of lattices. Finally, we conjecture that
particular choices of the matrix V in decomposition of the
Gram matrix may allow for a more efficient algorithm by
establishing simple relations between the xi values.
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