526 research outputs found

    Digital Demodulator for BFSK waveform based upon Correlator and Differentiator Systems

    Get PDF
    The present article relates in general to digital demodulation of Binary Frequency Shift Keying (BFSK waveform) . New processing methods for demodulating the BFSK-signals are proposed here. Based on Sampler Correlator, the hardware consumption for the proposed techniques is reduced in comparison with other reported. Theoretical details concerning limits of applicability are also given by closed-form expressions. Simulation experiments are illustrated to validate the overall performance

    Analisi e progettazione di filtri IIR derivativi per segnali quantizzati. Analysis and design of IIR differentiator for quantized signals

    Get PDF
    The IIR differentiators are nowadays largely studied for different kind of uses, such as in Sigma-Delta modulation and data compression. However, estimation of velocity, based on quantized signals (i.e. provided by incremental optical encoder) and using differentiators is still a challenge, since the quantization process has an associated error that shows non-linearity properties. The thesis provides a complete framework on IIR digital differentiators when used for velocity estimation with quantized position signals as input: the most important is a procedure that allows everyone to calculate the mean square error at the output of the filter when the autocorrelation of the input error is known. This achievement can be also applied to every kind of IIR filter giving to it a wide range of applications. Moreover, a comparison between the real error and the white noise approximation has been made, and also a new approximation, based on the worst case, has been developed. Last, a full spectral analysis of the filters and signals has been provided. Most of the results above have been provided and tested for the constant rate case, in order to optimize the IIR differentiator for system with low frequencies rate of changeopenEmbargo per motivi di segretezza e di proprietà dei risultati e informazioni sensibil

    Recursive and non-recursive filters for sequential smoothing and prediction with instantaneous phase and frequency estimation applications (extended version)

    Full text link
    A simple procedure for the design of recursive digital filters with an infinite impulse response (IIR) and non-recursive digital filters with a finite impulse response (FIR) is described. The fixed-lag smoothing filters are designed to track an approximately polynomial signal of specified degree without bias at steady state, while minimizing the gain of high-frequency (coloured) noise with a specified power spectral density. For the IIR variant, the procedure determines the optimal lag (i.e. the passband group delay) yielding a recursive low-complexity smoother of low order, with a specified bandwidth, and excellent passband phase linearity. The filters are applied to the problem of instantaneous frequency estimation, e.g. for Doppler-shift measurement, for a complex exponential with polynomial phase progression in additive white noise. For this classical problem, simulations show that the incorporation of a prediction filter (with a one-sample lead) reduces the incidence of (phase or frequency) angle unwrapping errors, particularly for signals with high rates of angle change, which are known to limit the performance of standard FIR estimators at low SNR. This improvement allows the instantaneous phase of low-frequency signals to be estimated, e.g. for time-delay measurement, and/or the instantaneous frequency of frequency-modulated signals, down to a lower SNR. In the absence of unwrapping errors, the error variance of the IIR estimators (with the optimal phase lag) reaches the FIR lower bound, at a significantly lower computational cost. Guidelines for configuring and tuning both FIR and IIR filters are provided.Comment: Reduced page count from 80 down to 50 by removing page breaks between figures and reducing figure size. Added page numbers. Added (extended version) to titl

    Improved IIR Low-Pass Smoothers and Differentiators with Tunable Delay

    Full text link
    Regression analysis using orthogonal polynomials in the time domain is used to derive closed-form expressions for causal and non-causal filters with an infinite impulse response (IIR) and a maximally-flat magnitude and delay response. The phase response of the resulting low-order smoothers and differentiators, with low-pass characteristics, may be tuned to yield the desired delay in the pass band or for zero gain at the Nyquist frequency. The filter response is improved when the shape of the exponential weighting function is modified and discrete associated Laguerre polynomials are used in the analysis. As an illustrative example, the derivative filters are used to generate an optical-flow field and to detect moving ground targets, in real video data collected from an airborne platform with an electro-optic sensor.Comment: To appear in Proc. International Conference on Digital Image Computing: Techniques and Applications (DICTA), Adelaide, 23rd-25th Nov. 201

    Digital Filter Design Using Improved Artificial Bee Colony Algorithms

    Get PDF
    Digital filters are often used in digital signal processing applications. The design objective of a digital filter is to find the optimal set of filter coefficients, which satisfies the desired specifications of magnitude and group delay responses. Evolutionary algorithms are population-based meta-heuristic algorithms inspired by the biological behaviors of species. Compared to gradient-based optimization algorithms such as steepest descent and Newton’s like methods, these bio-inspired algorithms have the advantages of not getting stuck at local optima and being independent of the starting point in the solution space. The limitations of evolutionary algorithms include the presence of control parameters, problem specific tuning procedure, premature convergence and slower convergence rate. The artificial bee colony (ABC) algorithm is a swarm-based search meta-heuristic algorithm inspired by the foraging behaviors of honey bee colonies, with the benefit of a relatively fewer control parameters. In its original form, the ABC algorithm has certain limitations such as low convergence rate, and insufficient balance between exploration and exploitation in the search equations. In this dissertation, an ABC-AMR algorithm is proposed by incorporating an adaptive modification rate (AMR) into the original ABC algorithm to increase convergence rate by adjusting the balance between exploration and exploitation in the search equations through an adaptive determination of the number of parameters to be updated in every iteration. A constrained ABC-AMR algorithm is also developed for solving constrained optimization problems.There are many real-world problems requiring simultaneous optimizations of more than one conflicting objectives. Multiobjective (MO) optimization produces a set of feasible solutions called the Pareto front instead of a single optimum solution. For multiobjective optimization, if a decision maker’s preferences can be incorporated during the optimization process, the search process can be confined to the region of interest instead of searching the entire region. In this dissertation, two algorithms are developed for such incorporation. The first one is a reference-point-based MOABC algorithm in which a decision maker’s preferences are included in the optimization process as the reference point. The second one is a physical-programming-based MOABC algorithm in which physical programming is used for setting the region of interest of a decision maker. In this dissertation, the four developed algorithms are applied to solve digital filter design problems. The ABC-AMR algorithm is used to design Types 3 and 4 linear phase FIR differentiators, and the results are compared to those obtained by the original ABC algorithm, three improved ABC algorithms, and the Parks-McClellan algorithm. The constrained ABC-AMR algorithm is applied to the design of sparse Type 1 linear phase FIR filters of filter orders 60, 70 and 80, and the results are compared to three state-of-the-art design methods. The reference-point-based multiobjective ABC algorithm is used to design of asymmetric lowpass, highpass, bandpass and bandstop FIR filters, and the results are compared to those obtained by the preference-based multiobjective differential evolution algorithm. The physical-programming-based multiobjective ABC algorithm is used to design IIR lowpass, highpass and bandpass filters, and the results are compared to three state-of-the-art design methods. Based on the obtained design results, the four design algorithms are shown to be competitive as compared to the state-of-the-art design methods

    Design and frequency analysis of continuous finite-time-convergent differentiator

    Full text link
    In this paper, a continuous finite-time-convergent differentiator is presented based on a strong Lyapunov function. The continuous differentiator can reduce chattering phenomenon sufficiently than normal sliding mode differentiator, and the outputs of signal tracking and derivative estimation are all smooth. Frequency analysis is applied to compare the continuous differentiator with sliding mode differentiator. The beauties of the continuous finite-time-convergent differentiator include its simplicity, restraining noises sufficiently, and avoiding the chattering phenomenon

    Digital Filters for Instantaneous Frequency Estimation

    Full text link
    This technical note is on digital filters for the high-fidelity estimation of a sinusoidal signal's frequency in the presence of additive noise. The complex noise is assumed to be white (i.e. uncorrelated) however it need not be Gaussian. The complex signal is assumed to be of (approximately) constant magnitude and (approximately) polynomial phase such as the chirps emitted by bats, whale songs, pulse-compression radars, and frequency-modulated (FM) radios, over sufficiently short timescales. Such digital signals may be found at the end of a sequence of analogue heterodyning (i.e. mixing and low-pass filtering), down to a bandwidth that is matched to an analogue-to-digital converter (ADC), followed by digital heterodyning and sample rate reduction (optional) to match the clock frequency of the processor. The spacing of the discrete frequency bins (in cycles per sample) produced by the Fast Fourier Transform (FFT) is equal to the reciprocal of the window length (in samples). However, a long FFT (for fine frequency resolution) has a high complexity and a long latency, which may be prohibitive in embedded closed-loop systems, and unnecessary when the channel only contains a single sinusoid. In such cases, and for signals of constant frequency, the conventional approach involves the (weighted) average of instantaneous phase differences. General, naive, optimal, and pragmatic (recursive), filtering solutions are discussed and analysed here using Monte-Carlo (MC) simulations.Comment: Added arXiv ID to header and fixed a few typo

    On algebraic time-derivative estimation and deadbeat state reconstruction

    Get PDF
    This note places into perspective the so-called algebraic time-derivative estimation method recently introduced by Fliess and co-authors with standard results from linear state-space theory for control systems. In particular, it is shown that the algebraic method can in a sense be seen as a special case of deadbeat state estimation based on the reconstructibility Gramian of the considered system.Comment: Maple-supplements available at https://www.tu-ilmenau.de/regelungstechnik/mitarbeiter/johann-reger

    Velocity Determination for an Inverted Pseudolite Navigation Reference System

    Get PDF
    As navigation systems continue to improve in performance and features, the Air Force must develop better Navigation Reference Systems (NRS) to keep pace with technology. Specifically, with the advent of enhanced, integrated Global Positioning System (GPS) and Inertial Navigation System (INS) navigators, emphasis is placed on the measuring performance in the presence of GPS jamming. To meet these needs, a new NRS, dubbed the Sub-Meter Accuracy Reference System (SARS), is being developed by the 746th Test Squadron, Holloman AFB, New Mexico. SARS uses a unique, inverted GPS pseudolite positioning system to determine a reference trajectory. This research investigates two post processing methods of determining velocity from a discrete position data at a constant data rate. The first method employs numerical differentiation along with digital filters provide noise reduction. The second method uses kinematic model based Kalman filter and smoothing to determine the reference velocity
    corecore