3,641 research outputs found

    A Wait-free Multi-word Atomic (1,N) Register for Large-scale Data Sharing on Multi-core Machines

    Get PDF
    We present a multi-word atomic (1,N) register for multi-core machines exploiting Read-Modify-Write (RMW) instructions to coordinate the writer and the readers in a wait-free manner. Our proposal, called Anonymous Readers Counting (ARC), enables large-scale data sharing by admitting up to 232−22^{32}-2 concurrent readers on off-the-shelf 64-bits machines, as opposed to the most advanced RMW-based approach which is limited to 58 readers. Further, ARC avoids multiple copies of the register content when accessing it---this affects classical register's algorithms based on atomic read/write operations on single words. Thus it allows for higher scalability with respect to the register size. Moreover, ARC explicitly reduces improves performance via a proper limitation of RMW instructions in case of read operations, and by supporting constant time for read operations and amortized constant time for write operations. A proof of correctness of our register algorithm is also provided, together with experimental data for a comparison with literature proposals. Beyond assessing ARC on physical platforms, we carry out as well an experimentation on virtualized infrastructures, which shows the resilience of wait-free synchronization as provided by ARC with respect to CPU-steal times, proper of more modern paradigms such as cloud computing.Comment: non

    Anonymous Obstruction-free (n,k)(n,k)-Set Agreement with n−k+1n-k+1 Atomic Read/Write Registers

    Get PDF
    The kk-set agreement problem is a generalization of the consensus problem. Namely, assuming each process proposes a value, each non-faulty process has to decide a value such that each decided value was proposed, and no more than kk different values are decided. This is a hard problem in the sense that it cannot be solved in asynchronous systems as soon as kk or more processes may crash. One way to circumvent this impossibility consists in weakening its termination property, requiring that a process terminates (decides) only if it executes alone during a long enough period. This is the well-known obstruction-freedom progress condition. Considering a system of nn {\it anonymous asynchronous} processes, which communicate through atomic {\it read/write registers only}, and where {\it any number of processes may crash}, this paper addresses and solves the challenging open problem of designing an obstruction-free kk-set agreement algorithm with (n−k+1)(n-k+1) atomic registers only. From a shared memory cost point of view, this algorithm is the best algorithm known so far, thereby establishing a new upper bound on the number of registers needed to solve the problem (its gain is (n−k)(n-k) with respect to the previous upper bound). The algorithm is then extended to address the repeated version of (n,k)(n,k)-set agreement. As it is optimal in the number of atomic read/write registers, this algorithm closes the gap on previously established lower/upper bounds for both the anonymous and non-anonymous versions of the repeated (n,k)(n,k)-set agreement problem. Finally, for 1 \leq x\leq k \textless{} n, a generalization suited to xx-obstruction-freedom is also described, which requires (n−k+x)(n-k+x) atomic registers only

    A Simple Snapshot Algorithm for Multicore Systems

    Get PDF
    An atomic snapshot object is an object that can be concurrently accessed by n asynchronous processes prone to crash. It is made of m components (base atomic registers) and is defined by two operations: an update operation that allows a process to atomically assign a new value to a component and a snapshot operation that atomically reads and returns the values of all the components. To cope with the net effect of concurrency, asynchrony and failures, the algorithm implementing the update operation has to help concurrent snapshot operations in order they can always terminate. This paper presents a new and particularly simple construction of a snapshot object. This construction relies on a new principle, that we call “write first, help later” strategy. This strategy directs an update operation first to write its value and only then computes an helping snapshot value that can be used by a snapshot operation in order to terminate. Interestingly, not only the algorithms implementing the snapshot and update operations are simple and have easy proofs, but they are also efficient in terms of the number of accesses to the underlying atomic registers shared by the processes. An operation costs O(m) in the best case and O(n m) in the worst case

    Compositional competitiveness for distributed algorithms

    Full text link
    We define a measure of competitive performance for distributed algorithms based on throughput, the number of tasks that an algorithm can carry out in a fixed amount of work. This new measure complements the latency measure of Ajtai et al., which measures how quickly an algorithm can finish tasks that start at specified times. The novel feature of the throughput measure, which distinguishes it from the latency measure, is that it is compositional: it supports a notion of algorithms that are competitive relative to a class of subroutines, with the property that an algorithm that is k-competitive relative to a class of subroutines, combined with an l-competitive member of that class, gives a combined algorithm that is kl-competitive. In particular, we prove the throughput-competitiveness of a class of algorithms for collect operations, in which each of a group of n processes obtains all values stored in an array of n registers. Collects are a fundamental building block of a wide variety of shared-memory distributed algorithms, and we show that several such algorithms are competitive relative to collects. Inserting a competitive collect in these algorithms gives the first examples of competitive distributed algorithms obtained by composition using a general construction.Comment: 33 pages, 2 figures; full version of STOC 96 paper titled "Modular competitiveness for distributed algorithms.

    On the Space Complexity of Set Agreement

    Full text link
    The kk-set agreement problem is a generalization of the classical consensus problem in which processes are permitted to output up to kk different input values. In a system of nn processes, an mm-obstruction-free solution to the problem requires termination only in executions where the number of processes taking steps is eventually bounded by mm. This family of progress conditions generalizes wait-freedom (m=nm=n) and obstruction-freedom (m=1m=1). In this paper, we prove upper and lower bounds on the number of registers required to solve mm-obstruction-free kk-set agreement, considering both one-shot and repeated formulations. In particular, we show that repeated kk set agreement can be solved using n+2m−kn+2m-k registers and establish a nearly matching lower bound of n+m−kn+m-k

    Progress-Space Tradeoffs in Single-Writer Memory Implementations

    Get PDF
    Many algorithms designed for shared-memory distributed systems assume the single-writer multi- reader (SWMR) setting where each process is provided with a unique register that can only be written by the process and read by all. In a system where computation is performed by a bounded number n of processes coming from a large (possibly unbounded) set of potential participants, the assumption of an SWMR memory is no longer reasonable. If only a bounded number of multi- writer multi-reader (MWMR) registers are provided, we cannot rely on an a priori assignment of processes to registers. In this setting, implementing an SWMR memory, or equivalently, ensuring stable writes (i.e., every written value persists in the memory), is desirable. In this paper, we propose an SWMR implementation that adapts the number of MWMR registers used to the desired progress condition. For any given k from 1 to n, we present an algorithm that uses n + k ? 1 registers to implement a k-lock-free SWMR memory. In the special case of 2-lock-freedom, we also give a matching lower bound of n + 1 registers, which supports our conjecture that the algorithm is space-optimal. Our lower bound holds for the strictly weaker progress condition of 2-obstruction-freedom, which suggests that the space complexity for k-obstruction-free and k-lock-free SWMR implementations might coincide
    • 

    corecore