
A Wait-free Multi-word Atomic (1,N) Register for Large-scale Data Sharing on
Multi-core Machines

Mauro Ianni, Alessandro Pellegrini
DIAG–Sapienza Università di Roma, Italy
Email: {mianni,pellegrini}@dis.uniroma1.it

Francesco Quaglia
DICII–Università di Roma Tor Vergata, Italy

Email: francesco.quaglia@uniroma2.it

Abstract—We present a multi-word atomic (1,N) register
for multi-core machines exploiting Read-Modify-Write (RMW)
instructions to coordinate the writer and the readers in a wait-
free manner. Our proposal, called Anonymous Readers Count-
ing (ARC), enables large-scale data sharing by admitting up
to 232 − 2 concurrent readers on off-the-shelf 64-bit machines,
as opposed to the most advanced RMW-based approach which
is limited to 58 readers. Further, ARC avoids multiple copies
of the register content while accessing it—this affects classical
register’s algorithms based on atomic read/write operations
on single words. Thus, ARC allows for higher scalability with
respect to the register size.

I. INTRODUCTION

Hardware-based atomicity facilities offered by multi-core
computing platforms to manage single-word shared-objects
are not sufficient to automatically guarantee atomicity when
concurrent threads manipulate multi-word objects. In this
article we face such an issue by providing a pragmatic design
and implementation of a shared-object algorithm in multi-
processor/multi-core shared-memory machines. Specifically,
we present Anonymous Readers Counting (ARC), which is
an atomic (1,N)—one writer, N readers—register of arbi-
trary length. We emphasize that providing optimized (1,N)
registers is a relevant objective since they constitute building
blocks to realize more general (M,N) registers, as already
shown by several works (see, e.g., [1]).

As the core property enabling scalability, ARC guarantees
wait-freedom of both write and read operations. In fact, it
uses no locking scheme, and guarantees that no operation
fails and no retry-cycles are ever needed. This is achieved
by relying on Read-Modify-Write (RMW) atomic instruc-
tions offered by conventional Instruction Set Architectures
(ISAs), which are exploited to manipulate meta-data that are
used by concurrent threads to coordinate themselves when
performing register operations.

A close literature proposal based on RMW instructions,
which still guarantees wait-freedom of read/write operations
on (1,N) registers, is the one in [2]. However, this proposal
allows up to 58 readers only on conventional 64-bit ma-
chines, while ARC can manage up to (232 − 2) readers,
thus enabling a huge scale-up in the level of concurrency.
Also, the approach in [2] is based on deterministically

forcing synchronization (via RMW instructions) upon any
read operation, even in scenarios where the register’s content
has not been modified by the writer since the last read
by the reader. ARC avoids executing RMW instructions in
such situations, since it detects whether the last accessed
snapshot of the register is still consistent by only relying on
conventional memory-read machine instructions.

As opposed to more historical solutions for wait-free
atomic (1,N) registers in shared-memory platforms [3],
which only exploit atomic read/write operations (not RMW
instructions) of individual memory words, we avoid multiple
copies of the register content when performing either read or
write operations. This allows for better scalability of ARC
with respect to the size of the register content. Still related
to buffer management, ARC adheres to the classical lower
bound of N+2 buffers [4] keeping the different snapshots of
the (1,N) register content, to be accessed in wait-free man-
ner in some linearizable execution of read/write operations
by the concurrent threads. Overall, compared to literature
proposals, ARC enables definitely scaled up amounts of
concurrent readers with no increased memory footprint and
by not imposing extra memory-copy operations.

We also report experimental data collected on a 40 vCPUs
virtual platform hosted by Amazon which show the advan-
tages from ARC compared to literature solutions.

II. ANONYMOUS READERS COUNTING

A. Basics

A multi-word shared register is an abstract data structure
shared by concurrent processes1 [3], [5]. Each process is
allowed to perform two operations on the register: a read,
which retrieves the most up-to-date value kept by the reg-
ister, and a write, which stores a new register’s value. We
consider asynchronous processes. Also, the operations by a
same process are assumed to execute sequentially.

The weakest class to which a register can belong is that
of safe registers [4]. A register is safe if its correct value
is guaranteed to be retrievable only if no concurrency is

1From now on we use the term ‘process’ and ‘thread’ interchangeably
since the classical literature on register algorithms uses the term ‘process’
to indicate the active entity that can operate on the register.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/154948819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


allowed among reads and writes. Considering that we target
concurrent objects, we consider a stronger class, namely
regular registers. These are defined in terms of possible
execution histories of concurrent read/write operations. In
particular, each operation O on the register has a wall-clock
time duration, which can be denoted as [Os, Oe] where Os

and Oe are the starting and ending instants, respectively.
A regular register is one that is safe, and in which a read
operation that overlaps (in time) a series of write operations
obtains either the register value before the first of these
writes or one of the values being written [4]. Introducing a
reading function π to assign a write w on the register to each
read r such that the value returned by r is the value written
by w, and defining a precedence relation on the operations
leading to a strict partial order ‘→’ [4], a regular register
always respects the following property:

• No-past. There exists no read r and write w such that
π(r) → w → r.

Nevertheless, in a regular register multiple reads executed
concurrently to a write may not “agree” on the same value.

An even stronger class of registers is that of atomic
registers [2]: A shared register is atomic iff it is regular and
the following condition holds for all possible executions:

• No New-Old inversion. There exist no reads r1 and
r2 such that r1 → r2 and π(r2) → π(r1).

With an atomic register, reads can be separated among
those “happening” before or after the linearization point [6],
[7] of some write. This categorization marks the difference
among the concurrent reads that can return the old value
and those which need to return the new value. In particular,
if two reads from the same process overlap a write then
the later read cannot return the old value if the earlier read
returns the new one. Atomic registers have been shown to
be linearizable [8].

B. Memory Consistency Model
We assume the Total Store Order (TSO) [9] memory

consistency model, which is typical of most off-the-shelf
platforms (e.g. SPARC and x86). With TSO, CPU-cores use
store buffers to hold the stores committed by the overlying
pipeline until the underlying memory hierarchy is able to
process them. A store leaves the buffer whenever the cache
line to be written is in a coherence state such that the update
can be safely performed. TSO allows store bypasses: even
if a CPU-core outputs a write before a read, their order on
memory (as seen by other CPU-cores) can be reversed.

Store bypasses can affect the correctness of synchroniza-
tion algorithms for concurrent processes only relying on
individual read/write operations (just like [5]). On the other
hand, TSO-based architectures offer particular instructions,
called memory fences, which enable recovering sequential
consistency by explicitly flushing store buffers before exe-
cuting any other memory operation, thus allowing to pre-
serve the ordering across subsequent read/write operations.

For scenarios where process synchronization requires to
atomically perform pairs (or more) operations, memory
fences do not suffice. To cope with this issue, TSO-based
conventional architectures offer Read-Modify-Write (RMW)
instructions, whose execution directly interacts with cache
controllers so as to ensure that cache lines keeping syn-
chronization variables are held in an exclusive state until a
couple of read/write operations are executed atomically [9].
In ARC we exploit the following RMW instructions: atomic
exchange, which atomically reads the content of a mem-
ory location and updates its value; add and fetch, which
increments a memory location and reads the updated value;
atomic inc, which atomically increments the value of a
memory location.

C. The Register Algorithm

In our algorithm we use N + 2 buffers to keep different
snapshots of the register value. Also, we exploit a single-
word synchronization variable called current. It is a 64-
bit shared variable divided into two fields: index, keeping
the index of the slot containing the most up-to-date register
value, and counter, namely the readers’ presence counter
(the number of standing concurrent reads on the slot targeted
by index). index is 32-bit wide, so up to (232−2) concurrent
readers are allowed2. Additionally, our register data structure
is made up by N +2 slots forming an array which we refer
to as register[]. Each array slot is an instance of a data
structure containing the following fields:
r_start The number of read operations started on the slot

since its last update.
r_end The number of read operations completed on the

slot since its last update.
size The size of the register value stored in the slot.
content A pointer to the memory location (the buffer)

where the register content is stored.
The size field is introduced since we support writes

(hence reads) of different sizes, meaning that each regis-
ter value can have a different size (clearly up to some
admissible maximum). Also, with no loss of generality,
while presenting the register pseudo-code we assume that
the buffer pointed by the content field of the register
slot is already allocated, and that it can host the maximum
sized register content (depending on the usage scenario). In
any real implementation of our register algorithm, dynamic
buffer allocation/release, with each buffer made up by the
amount of bytes fitting the size of the register value to be
stored upon write operations could be employed. The initial
setup of the register data structure is shown in Algorithm 1.

2We have selected 32 as a meaningful value for common off-the-shelf
architectures which use 64-bit words and RMW instructions targeting 64-
bit memory locations. In different architectures, this could be set to an
even larger value, by simply having the current variable enlarged in
size, depending on the actual size of memory locations targeted by RMW
instructions.



Algorithm 1 Register initialization.
1: procedure INIT(content, size)
2: for all slot ∈ [0, N + 1] do
3: register[slot].size← 0
4: register[slot].r_start← 0
5: register[slot].r_end← 0

6: MEMCOPY(register[0].content, content, size)
7: register[0].size← size
8: current← N ◃ I1

Algorithm 2 The atomic register read operation.
1: procedure READ( )
2: index← current≫ 32 ◃ R1
3: if last_index = index then
4: entry ← register[last_index]
5: return ⟨entry.content, entry.size⟩ ◃ R2
6: ATOMICINC(register[last_index].r_end) ◃ R3
7: tmp_curr ← ATOMICADDANDFETCH(current, 1) ◃ R4
8: last_index← tmp_curr ≫ 32 ◃ R5
9: entry ← register[last_index]

10: return ⟨entry.content, entry.size⟩

With no loss of generality, we assume that the register keeps
its initial value into register[0], and that the other N+1
entries are all available for posting some new register value.

Algorithm 2 shows the pseudo-code for the read opera-
tion. By exploiting the AtomicAddAndFetch instruction
targeting current, a reader process is able to atomically
retrieve the index of the slot containing the most up-to-
date register value and increment the corresponding presence
counter (R4). This allows us to enforce visible reads [10],
although we do this in an anonymous way. In fact, the pres-
ence counter is not used to indicate who has started reading
the up-to-date register value, rather how many processes did
it. The index of the slot from which the up-to-date value is
to be found is extracted by executing bitwise instructions on
the value returned by AtomicAddAndFetch.

We consider a read operation from a slot as concluded
when the reader reads again from the register. When, this
happens, the r_end counter of the slot from which the
reader took the register value upon its last read is incre-
mented atomically. A special case occurs when the already-
read slot still keeps the most up-to-date register value (R2).
In this case, r_end is not incremented to indicate that the
reader did not yet conclude its operations on the slot—a new
read is just starting, bound to that same slot. Incrementing
r_end only when moving to another slot allows us to avoid
overflows of counter variables (R3). Thus, we enable an
infinite number of reads (by any reader) to occur on a slot
that still keeps the up-to-date register value. In order to
remember from which slot the reader took the register value
upon its last read we use the last_index variable, where
we load the index of the target slot for the read operation
each time the reader accesses a newer register value (R5).
The check on whether the last accessed register value is
still the most up-to-date is executed by loading the index

Algorithm 3 The atomic register write operation.
1: procedure WRITE(content, size)
2: pick slot such that slot ̸= last_slot∧register[slot].r_start =

register[slot].r_end ◃ W1
3: MEMCOPY(register[slot].content, content, size)
4: register[slot].size← size
5: register[slot].r_start← 0
6: register[slot].r_end← 0
7: old_curr ← ATOMICEXCHANGE(current, slot≪ 32) ◃ W2
8: old_slot← old_curr ≫ 32
9: register[old_slot].r_start← old_curr & (232 − 1) ◃ W3

10: last_slot← slot

kept by current (R1) as soon as the read operation starts,
and then comparing it with last_index. Given that the
value of current is manipulated by any process (including
the writer, as we will show) via RMW instructions only,
then the index value returned by reading current (R1)
is guaranteed to represent a correct snapshot of the shared
synchronization variable we use in our register algorithm
under the assumed TSO memory consistency model.

At startup current is initialized to N (I1). This sets
its most-significant 32 bits (the index field) to zero and
initializes the counter field as if all the readers had already
started reading from the 0-th (initially-valid) slot. Therefore,
if no update is ever made on the register’s content, readers
will indefinitely read this value (R1).

The pseudo-code for the write operation is shown in
Algorithm 3. Upon writing, the writer process selects a free
slot, namely a slot which is not currently bound to any not
yet finalized read operation by whichever process, and which
is different from the slot that was used for the last write
operation (say the one kept by current). In compliance
with the initialization of the register, we assume that the
last_slot local variable kept by the writer, indicating
the last slot used for a write, is initialized to the value
0. In fact, at init-time the initial register content is posted
onto the 0-th slot. The writer detects if no more processes
are currently reading from a slot by checking whether the
two counters r_start and r_end associated with the
slot keep the same value. The writer then performs a copy
operation of the new value to the selected slot, and updates
all the fields of the slot entry. In particular, it sets both
r_start and r_end to zero, and size to the actual
size of the new register value that is being stored. Then, by
using an AtomicExchange instruction (W2), the writer
changes the content of the current shared synchronization
variable so as to “publish” the index of the new slot from
which readers can start performing read operations. Given
that the update of current is based on the execution of
an RMW instruction, the content of the slot selected for
the new write operation is guaranteed to be coherent when
the current variable is updated under the assumed TSO
memory consistency model. In other words, if a reader gets
the updated current value (R4) and accesses the target



slot, the accessed data are guaranteed to be coherent with
the corresponding updates performed by the writer.

The new value of current which is atomically written
by the writer (W2) has a counter field set to zero, telling that
the new version has not yet been read by any process. The
AtomicExchange allows to retrieve as well the old value
of current, which is loaded into the old_current
variable local to the writer. This is used by the writer to
extract the old counter field, and store its value in the
r_start field of the old (the last written) slot (W3). In this
way, the number (not the identity) of readers which started
an operation on the old slot is “freezed” into the slot man-
agement meta-data. We note that, after such freezing takes
place for some slot, the corresponding values r_start and
r_end are such that r_start ≥ r_end. But eventually
these two values will be the same, which is the condition
telling the writer that the slot has been released by all
the readers since they moved to some fresher slot. In fact,
the condition r_start = r_end indicates to the writer
that the slot is free again (W1). On the other hand, any
written slot that is never accessed by any reader up to the
point in time where some newer register value is atomically
published by the writer, will have its r_start and r_end
fields both set to zero, which implies it is a free slot.

The formal proof of correctness of ARC, in terms of
atomicity and wait-freedom, can be found in [11].

III. EXPERIMENTAL RESULTS

We compared ARC with a few literature proposals,
namely the Readers-Field (RF) wait-free algorithm presented
in [2], still based on RMW instructions, and Peterson’s
wait-free algorithm [5]. Additionally, we included a clas-
sical lock-based approach not ensuring wait-freedom. All
these algorithms have been implemented according to their
original specification by relying on mixed C/ASM pro-
gramming3. In all the implementations4 we relied on pre-
allocated buffers, and the “process entity”, encapsulating the
sequence of read/write register operations, is instantiated via
an individual thread. We tested the algorithms on an Amazon
m4.10xlarge instance equipped with 2.4 GHz Intel Xeon E5-
2676 v3 (Haswell) processors offering a total capacity of
40 vCPUs, equipped with 160 GB of RAM. This virtual
machine runs Ubuntu Server 14.04 LTS (kernel 4.2).

We recall again that ARC and RF not only differ by the
different amounts of readers they can handle—58 in RF
vs (232 − 2) in ARC. Rather, they also differ by the way
RMW instructions are exploited along the execution path
of read/write register operations. This makes a comparative
analysis of the two algorithms interesting independently of
the huge readers’ count scale up admitted by ARC.

3For Peterson’s algorithm ASM is used to nest memory-fence instructions
that simulate the required sequential consistency memory model.

4Code available at https://github.com/HPDCS/ARC.

 0

 50

 100

 150

 200

 250

 300

 0  5  10  15  20  25  30  35  40

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(a) 4KB register size

 0

 200

 400

 600

 800

 1000

 1200

 0  5  10  15  20  25  30  35  40

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(b) 128KB register size

Figure 1. Throughput with different register size values.

In our tests one thread continuously executes write op-
erations on the register, while all the others continuously
execute read operations on the register. Each reported sample
is the average over 10 runs, with each run made up by at
least 2× 106 read/write operations. Also, the different plots
refer to 2 different sizes of the register, a minimal size of
4KB (a single operating system page), and a large size of
128KB. By the plots in Figure 1 we see how both ARC and
RF outperform the other solutions at any thread count. Also,
ARC outperforms RF at any thread count and for any tested
register size, providing up to an order of magnitude better
throughput for larger size. The reason for this behavior is
that RF executes an RMW instruction (i.e. a FetchAndOr)
upon any read, while ARC executes an RMW instruction
only if the write operation of a newer register value is
serialized before the execution of the statement R1 of the
read operation in Algorithm 2. Hence, ARC is more efficient
(since it avoids the execution of RMW instructions) upon
reading a register content that is still valid (i.e. it did not
change since the last read operation executed by the same
thread). This scenario shows up when increasing the level of
concurrency of read operations or when the write operation
takes longer time due to the larger size of the register content
to be posted by the writer—we recall that a memory copy
is executed upon a write. In both cases more threads will
likely find a not-yet-updated register value upon subsequent
reads, a scenario which is captured more efficiently by
ARC, compared to RF, just avoiding the execution of RMW
instructions.

IV. CONCLUSIONS

We have presented Anonymous Readers Counting, a
multi-word wait-free atomic (1,N) register algorithm target-
ing shared-memory TSO-consistent parallel architectures. It
enables up to (232 − 2) readers on 64-bit machines and
avoids any intermediate copy of the register content upon
any operation, while still using the classical lower bound
of N + 2 buffers for ensuring wait-freedom. It exploits
Read-Modify-Write (RMW) instructions by also reducing
the impact of actually running these instructions compared
to the reference literature proposal in [2], which also has the
disadvantage of handling up to 58 readers only.



REFERENCES

[1] M. Li, J. Tromp, and P. M. B. Vitányi, “How to share
concurrent wait-free variables,” Journal of the ACM, vol. 43,
pp. 723–746, 1996.

[2] A. Larsson, A. Gidenstam, P. H. Ha, M. Papatriantafilou, and
P. Tsigas, “Multiword atomic read/write registers on multi-
processor systems,” Journal of Experimental Algorithmics,
vol. 13, no. 1, p. 1.7, 2009.

[3] L. Lamport, “Concurrent reading and writing,” Communica-
tions of the ACM, vol. 20, no. 11, pp. 806–811, 1977.

[4] L. Lamport, “On interprocess communication,” Distributed
Computing, vol. 1, pp. 86–101, 1986.

[5] G. L. Peterson, “Concurrent Reading While Writing,” ACM
Transactions on Programming Languages and Systems, vol. 5,
pp. 46–55, 1983.

[6] M. P. Herlihy and J. M. Wing, “Axioms for concur-
rent objects,” in Proceedings of the 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Lan-
guages, pp. 13–26, 1987.

[7] M. P. Herlihy and J. M. Wing, “Linearizability: a correctness
condition for concurrent objects,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 12, no. 3, pp. 463–
492, 1990.

[8] M. Herlihy and N. Shavit, The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann, 2008.

[9] D. J. Sorin, M. D. Hill, and D. A. Wood, “A Primer
on Memory Consistency and Cache Coherence,” Synthesis
Lectures on Computer Architecture, vol. 6, no. 3, pp. 1–212,
2011.

[10] J. Burns and N. A. Lynch, “Mutual Exclusion Using Invisible
Reads and Writes,” in Proceedings of the 18th Annual Aller-
ton Conference on Communication, Control, and Computing,
pp. 833–842, 1980.

[11] M. Ianni, A. Pellegrini, and F. Quaglia, “A wait-free multi-
word atomic (1,N) register for large-scale data sharing on
multi-core machines,” CoRR, vol. cs.DC/1707.07478, 2017.


