150 research outputs found

    Fractional biorthogonal partners in channel equalization and signal interpolation

    Get PDF
    The concept of biorthogonal partners has been introduced recently by the authors. The work presented here is an extension of some of these results to the case where the upsampling and downsampling ratios are not integers but rational numbers, hence, the name fractional biorthogonal partners. The conditions for the existence of stable and of finite impulse response (FIR) fractional biorthogonal partners are derived. It is also shown that the FIR solutions (when they exist) are not unique. This property is further explored in one of the applications of fractional biorthogonal partners, namely, the fractionally spaced equalization in digital communications. The goal is to construct zero-forcing equalizers (ZFEs) that also combat the channel noise. The performance of these equalizers is assessed through computer simulations. Another application considered is the all-FIR interpolation technique with the minimum amount of oversampling required in the input signal. We also consider the extension of the least squares approximation problem to the setting of fractional biorthogonal partners

    Multichannel receivers from ofdm and tdma in mobile communications

    Get PDF
    This paper addresses the use of multichannel receivers for blind equalization in TDMA under frequency selective channels and OFDM systems in frequency flat fading channels. A new criteria is proposed for blind equalization of finite length mobile channels.Peer ReviewedPostprint (published version

    Blind channel identification based on cyclic statistics

    Get PDF

    On the equivalence of blind equalizers based on MRE and subspace intersections

    Full text link

    Efficient Adaptive Filter Algorithms Using Variable Tap-length Scheme

    Get PDF
    Today the usage of digital signal processors has increased, where adaptive filter algorithms are now routinely employed in mostly all contemporary devices such as mobile phones, camcorders, digital cameras, and medical monitoring equipment, to name few. The filter tap-length, or the number of taps, is a significant structural parameter of adaptive filters that can influences both the complexity and steady-state performance characteristics of the filter. Traditional implementation of adaptive filtering algorithms presume some fixed filter-length and focus on estimating variable filter\u27s tap-weights parameters according to some pre-determined cost function. Although this approach can be adequate in some applications, it is not the case in more complicated ones as it does not answer the question of filter size (tap-length). This problem can be more apparent when the application involves a change in impulse response, making it hard for the adaptive filter algorithm to achieve best potential performance. A cost-effective approach is to come up with variable tap-length filtering scheme that can search for the optimal length while the filter is adapting its coefficients. In direct form structure filtering, commonly known as a transversal adaptive filter, several schemes were used to estimate the optimum tap-length. Among existing algorithms, pseudo fractional tap-length (FT) algorithm, is of particular interest because of its fast convergence rate and small steady-state error. Lattice structured adaptive filters, on the other hand, have attracted attention recently due to a number of desirable properties. The aim of this research is to develop efficient adaptive filter algorithms that fill the gap where optimal filter structures were not proposed by incorporating the concept of pseudo fractional tap-length (FT) in adaptive filtering algorithms. The contribution of this research include the development of variable length adaptive filter scheme and hence optimal filter structure for the following applications: (1) lattice prediction; (2) Least-Mean-Squares (LMS) lattice system identification; (3) Recursive Least-Squares (RLS) lattice system identification; (4) Constant Modulus Algorithm (CMA) blind equalization. To demonstrate the capability of proposed algorithms, simulations examples are implemented in different experimental conditions, where the results showed noticeable improvement in the context of mean square Error (MSE), as well as in the context of convergence rate of the proposed algorithms with their counterparts adaptive filter algorithms. Simulation results have also proven that with affordable extra computational complexity, an optimization for both of the adaptive filter coefficients and the filter tap-length can be attained

    Performance comparison of blind and non-blind channel equalizers using artificial neural networks

    Get PDF
    In digital communication systems, multipath propagation induces Inter Symbol Interference (ISI). To reduce the effect of ISI different channel equalization algorithms are used. Complex equalization algorithms allow for achieving the best performance but they do not meet the requirements for implementation of real-time detection at low complexity, thus limiting their application. In this paper, we present different blind and non-blind equalization structures based on Artificial Neural Networks (ANNs) and, also, we analyze their complexity versus performance. Since the activation function at the output layer depends on the cost function with respect to the input, in the present work we use mean squared error as loss function for the output layer. The simulated network is based on multilayer feedforward perceptron ANN, which is trained by utilizing the error back-propagation algorithm. The weights of the network are updated in accordance with training of the network to improve the convergence speed. Simulation results demonstrate that the implementation of equalizers using ANN provides an upper hand over the performance and computational complexity with respect to conventional methods

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems
    • 

    corecore