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Abstract 

This paper addresses the use of multichannel receivers 
for blind equalization in TDMA under fiequency 
selective channels and OFDM systems in fiequency flat 
fading channels. A new criteria is proposed for blind 
equalization offinite length mobile channels. 

1. Introduction 

Mobile communications operate in a very hostile 
environment due to multipath propagation and vehicle 
displacement. Depending on the transmission rate and 
vehicle speed, either fiequency-selectivity or Doppler 
spectrum spreading becomes the major concern 
However, in both cases, the receiver must be able to 
track and compensate channel distortion. 

In this paper, we propose a new spatio-temporal linear 
equalization technique which can be applied to block 
transmission schemes (e.g..’IDMA) operating fresuency 
selective channels and also to OFDM modulation subject 
to multiplicative distortion (frequency flat fading or F ). 

The suggested approach is blind and needs of the use of 
dwersity receivers which will allow for the application d 
multichannel farmulation. In the case of fr’equency 
selective channels, this diversity can be achieved either 
by means of oversampling the received signal or using 
spatial diversity, whereas it will be shown that in the 
case of OFDM modulation in multiplicative channels 
spatial dwersity is necessary. 

The proposed method only exploits the fact that the 
transmitted signal is the same in all the channels, but 
makes no assumptions on its value. The algorithm can 
be classified as a blind deterministic criteria and so, its 
performance and its constraints are similar to those d 
other methods of the same type ([l]), that is, it obtains 
good results for relatively short sets of data, it assumes 
the channel is FIR with known length and its derivation 
does not take into account the additive noise. As we will 
see, the impact of the noise will be considered in the 
optimization procedure of the algorithm, later on. 

2. Problem formulation 

For convolutive channels in TDMA and F’ channels in 
OFDM, it is possible to express the channel distortion 
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as a linear convolution. Assuming D-th order diversity is 
available, for each of the relceiving channels we have: 

(1) q(z) = T ( z )  . ci (z) + y (2) i = 1,. . . D 

being T(z), Yi(Z), Ci(Z) and Wi(Z), the z-transform~ af 
the transmitted and received signals, the channel 
response and noise term in the i-th channel respectively. 
Notice that if z-transforms .are regarded as polynomials, it 
turns out that in the noiseless case (assuming Ci(Z) 
coprime): 

qz) = g.c.d.(Y,(z:L Y,(z) , . a . ,  Y&)} (2) 
where g.c.d(.} stands for .the greatest commoin &visor. 
The proposed equaher is based on ths  fact. It will try 
to estimate the greatest common &visor of all Yi(z), 
knowing that it is equivalent to the estimation of the 
transmitted signal. Of course, in order to make use of 
this property, the receiver must be able to observe the 
complete signals Yi(z). Thus is the main &ercnce with 
respect to other blind allgorithms which have been 
developed in the past. The equalizer will be developed 
under the assumption that the receiver observes the 
complete convolution output. Although Yi(:z) is not 
available if continuous transmission schemes are used, 
this is not a major constraint because block transmission 
is the most common scheme in mobile commiunications 
(for both TDD and IFDD). Next, two different 
environments ~IC shown where the present approach can 
be applied. 

Case a. Block transmission Jystems operating in 
convolutive channels. 

The proposed algorithm can be applied here if after each 
frame is transmitted, a guard-time is introduced. If the 
guard-time is longer than channel impulse response 
dmtion then inter-frame interference disappears and Yi(z) 
can be fully observed. Notice that this case includes both 
single carrier and OFDM inoddation systems, although 
in the case of OFDM, the usual cyclic prefix extension 
([2]) should be replaced by the already mentioned guard- 
time. In the single canica case, the diversity can be 
achieved either by means of oversampling or by means of 
spatial diversity. 

Case b. OFDM in F’ channels. 

Although in this case the distortion 
multiplicative, it can be compensated by 

becomes 
means af 
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multichannel filtering, as shown next. Fig. 1 summarizes 
the scenario we will deal with (only those stages of the 
OFDM transmission system relevant to ow analysis are 
shown). In [3] the authors r e c o p e d  that because of the 
IDFTDFT performed at both ends of the channel, the 
multiplicative distortion behaved in the transformed 
domain as a convolutive channel. However, the 
convolution performed was circular (CC) (€3) rather than 
linear (LC): 

y; [k]  = q k ]  €3 ci [k]  + y [k] (3) 

Unfortunately, equation (1) does not hold for clrcular 
convolution ([4]) and so the channel cannot be equalized 
by meam of (2) .  In spite of thaf it can be seen that 
oversampling the received signals yi(t) is equivalent to 
zero padding the transfomed domain sequences T[z], 
Cl[z] and C2[z] as long as there was no aliasing 
introduced when they were sampled at the symbol rate. 
Moreover, as a result of the zero padding the CC will 
operate as a LC of the not-oversampled sequences: 

(AI 
\ T J  

$ [ k ]  = r, [ k ]  8 cizp [k ]  + yp [ k ]  = q k ]  * ci [ k ]  + y p  [ k ]  

In other words, in OFDM the CC can be turned into a 
LC (*) at the expense of doubling the sampling rate. 
Notice that in h s  case oversampling is necessary, but it 
does not provide the desired diversity and so, more than 
one antenna will be required. 

As will be shown next, the equalizer will be developed 
under the hypothesis of having 3FIR transmission 
channels. In the case of OFDM in F environments, the 
channel will be slowly varying and therefore it can be 
regarded as a low-pass signal. However, its description 
by means of only low fiquency components (CF] cf 
finite length) is approximated, and the equalizer 
hypothesis will not be completely fulfilled in this case. 
This will be an obstacle for equalizer performance, but 
simulations will show that the proposed algorithm is 
robust and also works for the case of OFDM in F 
channels. 

3. Algorithm basis 

In this section we will show how equation (2) can be 
used to blindly estimate the equalizer coefficients and in 
section 4 we provide an algorithm based o this idea. The 
proposed algorithm is based on a genelalization of the 
Bezout equation ([5],[6]). 

Property: Given a set of D polynomials Ai(Z), then, the 
equation: 

(5)  i=l 

has a solution in ai@) iff Ai(Z) are coprime. Furthermore, 
assuming Ai(Z) have all degree L-1, then the 

polynomials ai@) have degree M2(L-l)/@-1). 

The relationship of equation (5) with multichannel 
equalization and perfect reconstruction filter banks has 
been acknowledged in the literature ([7]) and will become 
evident once we will have formulated the equalization 
problem mathematically. Figure 2 shows a block 
diagram of the equivalent transmission channel and linear 
equalizer for the multichannel formulation. In h s  figure, 
Ei(z) stands for the i-th channel equahzer response and 
Q(z) for the equalize output. 

As shown, we will use FIR filters to equalize FIR 
channels up to a multiplicative constant. As was noticed 
in the literature too, this property of multichannel 
approaches means that the zero-forcing equalizer does not 
necessanly have to emphasize noise, although in any 
case it will not perform in terms of noise as well as the 
MMSE equalizer. Besides, it is worth mentioning that 
in OFDM in multiplicative channels an FIR channel can 
be perfectly equalized by means of another FIR filter. 

The output of the e q u w r  of this structure follows the 
equation 

i=l (6) i=l 

This equation states that Q(z) will always be a multiple 
of T(z). Qm] will be the result of convolving the 
transmitted data T[k] with the equivalent channel-plus- 
equalizer filter H(z) 

Furthermore, notice that in order to acheve perfect 
equalization (in the zero-forcing sense), i.e. Q(z)=T(z), 
the following equation must be verified: 

D 

H ( z )  = 2 ci (2) . E; (2) = 1 
i=l (8) 

Notice that deg{T(z)H(z)>2deg{T(z)), with equality 
only when H(z)=l (up to a multiplicative constant). 
Therefore, asking for Q(z) of minimum degree 
tantamounts to asking for Q(z)=T(z). Ths  is the 
condition over which the blind algorithm will be built. 
The equalizer will be designed to yield an estmate Q(z) 
of minimum length and this will lead it to the ISI-fke 
solution. 

Equation (8) is in fact a particular case of (3, where 
Ai(Z)=Ci(Z) and ai(Z)=Ei(z). Therefore, the propem 
above tells us when this procedure will be feasible. It 
will be able to achieve an ISI-free output if the channel 
responses Ci(Z) are coprime and if we let E&) to have 
enough coefficients. 
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The coprimeness condition is well known in the 
literature and applies to all blind ChanneUequalizer 
identcfication techniques based on second-order statistics 
and deterministic approaches ([S],[l]). Notice that if the 
channels were not coprime, the g.C.d{Yi(z)} would not 
yield T(z), because it would rather include the common 
factors of all channels too. 

The factthat equation (8) has infinite solutions means 
that the zero-forcmg solution is not unique, being the 
difference among all possible solutions their behavior in 
front of the noise ( [9 ] ) .  Two particula~ cases are specially 
interesting: D=2 and D=L. In the dual-diversity case 
@=2), we can find a closed form for all zero-forcing 
solutions ([lo]) : 

- - (9) 

[I 

r, 
i (12) 

IN 

0 
0 

0 

being Elo(z) and EzO(z) the only solution of length 
M=L-I (any other solution will have at least length L) 
and F(z) an &itmy factor which provides the infinite 
available solutions. The fact that in the two channel case, 
a unique solution exists for M=L-1 is well known ([7]). 

In the extreme case of D=L, it turns out that M21. In the 
spatial diversity case this means that the IS1 hspersive 
channel can be perfectly equalized by means of spatial 
filtering only, a fact which was also previously reported 
u11. 

4. Algorithm formulation 

Although the procedure canbe applied to any number d 
channels D, fo the sake of simpliciy the algorithm will 
be developed for the dual diversity receiver @=2). In this 
case, any zero-forcing solution for E&) and E&) will 
satisfy 

T(z )  = &(z).q,(z)+ YZ(Z)E,(Z) (10) 

This equation can be written in matrix form as in 
equations (1 1) and (12). Notice that the formulation will 
be different for the two cases considered in section 2. 

Case a. Block transmission in Convolutional channels 

In this case eq. (10) yields a Sylvester matrix 

- 
YII Y 1 . z ~  ... YI.ZN-L-I YZI Y Z Z N  ... Yz.zN-L-~ 

YIZ YII _'' : Y22 Y:!1 " '  

YII Yu Y ! 2  ." YZl 
, ... 

Y13 Yl2 "' 

. ... 
YIJN Y1.2N-1 "' Yl.2N-L-2 Y2.2N Y2.7.N-1 " '  Y2,ZN-L-2- 

where d is the duration of' the transmitted f m e  at the 
output of the channel, that is, if the length of the 
transmitted frame is denoted by N then d=N+L-1. 

Case b. OFDM in a multiplicative channel 

As was mentioned in section 2, the description of the 
channel response in the transform domain C[k] as a short 
duration sequence is only approximated. Therefore, even 
if the received signal is oversmpled, it will still be the 
result of a circular convolution. To take into account this 
fact, in this case we have nmoWied matrix formulation af 
the equalizer. the new equations take into account the 
circular nature of the DFT and in the case af 

r 
e1 1 

e12 
: 

%L-I 

e21 

e22 : 

_eZ.L-l 

Both, eq. (1 1) and (12) can be represented in as follows: 

[ f y ][ E2 "1 = [ i] or [ =O Y -  ' f ] E  = [ '1 Q (13) 

where the set of equations 1x3s been grouped in two sets: 
{It, I> and {Io, 0). Niotice that the second set af 
esuations only depends on the chanhel output. Thus, it 
is possible to estimate the channel equalizer by 
considering the following s8et of linear equations;: 

=O- Y E=Q 

Equation (14) tantamounts to requiring the equalizer 
output to have minimum length, as described in section 
3. Furthermore, once an estimate of the channell equalizer 
has been obtained, it is possible to recover the 
transmitted data: 

It is important to remark that the presence of the noise in 
the channel implies that ecpation (14) can not be longer 
satisfied. If the channel is; per€* zero-forced by the 
equalizer liI, then, the residue in equation (141) will be 
due only to the noise at the output of the equalizer. 
Thus, if we want a channel equalization taking into 
account the noise level and spectral distribution for a 
better symbol decisions, we can minimize the following 
cost function: 
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with any non-trivial constraint. The best performance af 
this criteria was found when taking the noise sub-space of 
matrix xo and applying the minimum-norm algorithm. 
Othergore simple non-trivial constrains have been also 
considered with some performance degradation 

5. Simulations 

The simulations in fig.3 illustrate the behavior of the 
algorithm in the more demanding case of OFDM and 
multiplicative distortion (the convolutional channel case 
performs better). Fig.3a-3f show the results obtained for a 
p&icular realization of the mobile channel with the 
following parameters: OFDM fiame of 128 QPSK 
symbols, EbNo=22B, Rayleigh fadmg channel 
correspondmg to f,&u=lGHz, vehlcle speed: 100 K d h ,  
transmission rate 5OKb/s, oversampling factor: 2 ,  
equalizer length M=5, noise subspace chmension: 2. 
Figure 3g illustrates the performance averaged over 500 
channel realizations with the same parameters except for 
the EbNo, which was gven two values: 22 and 3 2 B .  It 
shows the % of transmitted frames for whlch the received 
EbNo in B was below a specified threshold. Notice that 
because of the random behavior of the channel sometimes 
the output EbNo is higher than the input one. 
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Fig.3. Algorithm simulation. (a>(c) Multiplicative response 
of Cl(z), C2(z) and H(z); (d>(f) Constellations for Yl[k], 
Yz[k], and Q[k]; (g) (see section 5) 
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