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Chapter 1

Introduction

The desire to move data at high rates across transmission media with limited band-

width has prompted the development of sophisticated communications systems, for

example, voice band modems and microwave radio relay systems. Success in these

applications has led to great interest in other communication scenarios in which

economic or regulatory considerations limit the available transmission bandwidth.

An important example of such an application is the wireless and cable distribution

of digital television.

Information-bearing signals transmitted between remote locations often encounter

a signal-altering physical channel. Examples of common physical channels include

coaxial, fiber optic, or twisted-pair cable in wired communications and the at-

mosphere or ocean in wireless communications. Each of these physical channels

may cause signal distortion, including echoes and frequency-selective filtering of the

1
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transmitted signal. In digital communications, a critical manifestation of distortion

is inter-symbol interference (ISI), whereby symbols transmitted before and after a

given symbol corrupt the detection of that symbol. All physical channels (at high

data rates) tend to exhibit ISI. The presence of ISI is readily observable in the sam-

pled impulse response of a channel; an impulse response corresponding to a lack of

ISI contains a single spike of width less than the time between symbols.

Central to the successful employment of most high-data-rate transmission sys-

tems is the use of adaptive equalization to counteract the disruptive effects of the

signal’s propagation from the transmitter to the receiver. Linear channel equaliza-

tion, an approach commonly used to counter the effects of linear channel distortion,

can be viewed as an application of a linear filter (i.e., the equalizer) to the received

signal. The equalizer attempts to extract the transmitted symbol sequence by coun-

teracting the effects of ISI, thereby improving the probability of correct symbol

detection.

Since it is common for the channel characteristics to be unknown (e.g., at startup)

or to change over time, the preferred embodiment of the equalizer is a structure

adaptive in nature. The general operating modes of equalizer include tracking and

training. First a known, fixed-length training sequence is sent by the transmitter so

that the receiver’s equalizer may adapt to a proper setting for minimum bit error

rate (BER) detection.

The training sequence is typically a pseudo-random binary signal or a fixed pre-
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Figure 1.1: Inter-Symbol Interference

scribed pattern. Immediately following this training sequence, the user data (which

may or may not include coding bits) is sent, and the adaptive equalizer at the

receiver utilizes a recursive algorithm to evaluate the inverse of the channel and

estimate the filter coefficients to compensate for the distortion created by multipath

in the channel. The training sequence is designed to permit an equalizer at the re-

ceiver to acquire the proper filter coefficients in the worst possible channel conditions

(e.g., fastest velocity, longest time delay spread, deepest fades etc.) so that when

the training sequence is finished, the filter coefficients are near the optimal values

for reception of user data. As user data are received, the adaptive algorithm of the

equalizer tracks the changing channel. As a consequence, the adaptive equalizer

is continually changing its filter characteristics over time. When the equalizer has
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been properly trained, it is said to have converged.

Classical equalization techniques employ a time-slot (recurring periodically for

time- varying situations) during which a training signal, known in advance by the

receiver, is transmitted. The receiver adapts the equalizer so that its output closely

matches the known reference training signal. The more recent emergence of digi-

tal multipoint and broadcast systems has produced communication scenarios where

training is infeasible or prohibited, since the inclusion of such signals sacrifices valu-

able channel capacity.

1.1 Blind Equalization

Blind adaptive equalizers are those that do not need training to achieve convergence

from an acceptable equalizer setting to a desired one. During the 1980’s, linear

equalization methods capable of blind start up moved from concept into practice.

Blind equalization is desirable in multipoint and broadcast systems and necessary

in noninvasive test and intercept scenarios. Even in point-to-point communication

systems, blind equalization has been adopted for various reasons, including capacity

gain and procedural convenience.

During the 1990’s blind equalization was incorporated into several emerging com-

munication technologies [2, 3], for example, digital cable TV. Also in the 1990’s real-

ization of the ideal capabilities of fractionally-spaced data-adaptive equalizers, espe-
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cially blind finite-length varieties [4], have energized the study of finite-length frac-

tionally spaced blind equalizers. The problem of blind equalization can be described

using a simple system diagram shown in Figure 1.2 . The complex baseband model

of a typical quadrature amplitude modulated signal (QAM) data communication
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Figure 1.2: Baseband representation of QAM data communication system

system consists of a linear-time invariant(LTI) channel which represents all the

interconnections between the transmitter and the receiver at the baseband. The

baseband equivalent of the complex valued input data a(k), each element of which

belongs to a complex alphabet Â (or constellation) of a QAM symbol. The data

sequence a(k) is sent through a baseband-equivalent complex LTI channel whose

output x(t) is observed by the receiver. The function of the receiver is to restore

the original data a(k) from the observation x(t) by producing a sequence of esti-

mates for a(k). For a causal and complex LTI communication channel with impulse

response h(t), the input/output relationship of the QAM system can be written in
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the baseband as:

x(t) =
∞∑

k=−∞
a(k)h(t− kT − t0) + n(t) (1.1)

where T is the symbols baud period. Typically the noise n(t) is assumed to be sta-

tionary, white, independent of the channel input a(k). When the distortion caused

by the nonideal channel impairs the receiver’s ability to correctly detect the input

sequence, as it is of the the case in practice, equalization is needed to remove the

inter-symbol interference (ISI) at the sampling instants such that the transmitted

sequence a(k) can be recovered at the receiver. The function of the the receiver is

to restore the original data a(k) from the observed signal x(t). Since undesirable ISI

is introduced at the channel output x(t) from which a simple memory less decision

device may not be able to recover the original data sequence, equalizers need to be

applied to remove the unwanted ISI .

Traditional channel equalizers adopt often the minimum mean square error (MMSE)

criteria based on the known actual channel input sequence during training. Equal-

ization with training is common to many digital communication systems such as high

speed telephone modem, satellite communication systems, digital cellular communi-

cation systems. When the channel noise n(t) is of secondary importance, zero forcing

(ZF) equalization can be used which essentially attempt to achieve the channel in-

verse and cancel the ISI. When the channel noise is significant, MMSE equalizers

are more effective in reducing the probability of symbol detection error. Both meth-
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ods require the identification of the channel frequency response either directly or

indirectly. The channel identification process is explicit in non linear channel equal-

ization schemes such as the decision feedback equalizer (DFE) and the maximum

likelihood sequence estimator (MLSE) and implicit in linear equalizers where a ZF

or MMSE criterion is applied.

The basic problem of blind equalization of a linear channel is nearly identical to

that of the system identification without the knowledge of the input signal [5]. Given

an output signal of a linear system, the linear system parameters can be uniquely

identified if the input signal is persistently exciting. In fact, any constant but finite

delay introduced by the channel and equalizer combination is acceptable. once the

channel is identified, a desired equalizer can be constructed accordingly. Since the

first published work by Sato [6] in 1975, blind equalization has been studied by many

researchers and there have been many algorithms proposed.

1.2 Baud Spaced and Fractionally Spaced Equal-

izers

The 1970’s witnessed the emergence of fractionally spaced equalizer (FSE) imple-

mentations [7], that is, those that used sampling rates faster than the source-symbol

rate. Improved band-edge equalization capabilities and reduced sensitivity to tim-

ing synchronization errors were cited as motivation The practical necessity of “tap
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leakage” for long FSEs was the most significant adaptive equalizer algorithm modifi-

cation [8]. Performance analyzes for both fractionally spaced and baud-spaced equal-

izers commonly included assumptions of effectively infinite equalizer length, which

permitted perfect equalization and easy translation between time-and frequency do-

main interpretations. For performance reasons, fractional spacing of the equalizer

became preferred where technologically was feasible. However, performance analysis

of blind equalizers remained focused almost exclusively on baud-spaced realizations

[9].

For a fractionally spaced equalizer (FSE), the tap spacing of the equalizer is a

fraction of the baud spacing (in time) or the transmitted symbol period. As the

output of the equalizer has the same rate as the input symbol rate, the output

of the FSE needs to be calculated once in every symbol period. In this situation,

the FSE can be modeled as a parallel combination of a number of baud spaced

equalizers.The over-sampling factor determines the tap spacing of the FSE. If T is

the symbol period, then

tap spacing =
T

over sampling factor
(1.2)

The FSE is an FIR filter and the tap spacing of this filter is T/M , where M is

the over-sampling factor. As the sample period of the input sequence is the same

as the tap spacing of the filter, the input sequence to the FSE, x(t), needs to be

sampled at intervals T/M apart. The expression for the discrete time equivalent
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signal x(n T
M

) is given as

x(n
T

M
) =

∞∑

k=−∞
a(k)h(n

T

M
− kT − t0) + n(n

T

M
) (1.3)

where n is an integer

1.3 Motivation

Lin [10] proposed an algorithm using the principle of minimal disturbance and the

decision directed mode. The proposed algorithm performed dual operation of si-

multaneous equalization and phase recovery utilizing the advantage of principle of

minimal disturbance to achieve better stability and robustness with respect to vari-

ous noise characteristics and time-varying channels. Also higher convergence speed

and lower steady state error were obtained by means of simple switch between the

blind and decision directed modes without increasing the computational complexity.

Tanrikulu et.al. [11] proposed constant modulus adaptive blind algorithms which

corresponded to an error performance surface, much improved upon that of the exist-

ing algorithms. Many undesirable local solutions were avoided by using a determin-

istic optimization criterion with a soft constraint to obtain an update equation which

contains a normalized gradient vector and a particular continuous non-linearity. This

approach was extended to multiple constraints to yield faster converging algorithms.

The intended research work is to combine the ideas proposed by Lin and extend
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it using the multiple constraints criterion as given by Tanrikulu and his co-workers

[11].

1.4 Objectives and Outline of Thesis

In this research work, blind equalizers for digital communication systems will be

investigated. The main objective of this thesis is to study different blind equalization

algorithms based on constant modulus approach, and then derive a new scheme of

blind equalization. The main objectives of this thesis are as follows:

1. To derive a new blind equalization algorithm using the principle of minimal

disturbance. The derivation involves solving of the constrained problem as

specified by Lin [10] using the method of Lagrange multipliers and extending

it using the idea proposed by Tanrikulu et.al.[11], i.e., by using multiple con-

straints. According to Tanrikulu et. al. [11] the algorithm when optimized

using multiple constraints achieves a faster convergence rate. The aim here is

to achieve a faster convergence rate than that of the algorithm proposed by

Lin.

2. To simulate the new algorithm using MATLAB and test it on complex channels

with and without phase offsets. Primarily, the channel considered will be that

given in previous work of Picchi and Prati [1]. Moreover the algorithm will be

tested on the other channels and its performance will be evaluated for different
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scenarios.

3. To simulate the new algorithm using fractionally spaced equalizer. A T/2

fractionally spaced equalizer will be considered and the algorithm will be im-

plemented on it. According to the theory this implementation should give

improved results when compared to that of the baud spaced equalizer

This thesis is organized as follows: In Chapter 2, a comprehensive literature

survey with results regenerated for some well known algorithms will be carried out.

Chapter 3 focuses on the derivation of the new blind equalization scheme using the

principle of minimal disturbance. In Chapter 4, simulation results for the proposed

scheme on various channels under different scenarios for baud spaced equalizers

will be presented. Chapter 5 demonstrates the simulation results of the proposed

scheme for fractionally spaced equalizer and a comparison will be made with the

baud spaced results. Chapter 6 concludes the thesis and summarizes the results of

the work. Areas for future work are suggested in this chapter.



Chapter 2

Blind Equalization Algorithms

The concept of blind equalization without a training sequence received its first wide

coverage in 1975 when Sato [6] presented a simple linear equalizer for pulse amplitude

modulated (PAM) signals under the framework of a discrete system modeled by the

equation (1.1)

The major analytical breakthrough of Blind equalization was presented by Ben-

veniste and Goursat [12]. They established the principles of blind deconvolution

for analog channel input signals. Benveniste and Goursat officially introduced the

term blind equalization in 1982 [13]. In fact, the very term ‘blind equalization’ can

be attributed to them as witnessed by the title of their paper in 1982 [12]. The

seminal paper of Benveniste established the connection between the task of blind

equalization and the use of higher order statistics of the channel output. Through

rigorous analysis, they generalized the original Sato algorithm [6] into a class of

12
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algorithms based on non-MSE cost function exhibiting some desired convergence

behavior. More importantly, the convergence properties of the proposed algorithms

were carefully investigated. One of the most important issues was to determine

whether the channel has been equalized. It was shown by Benveniste et al [12] that

if the channel input sequence is indpendantly identically distributed(i.i.d.) and the

noise is absent, the channel equalization is accomplished if and only if the equalizer

output sequence {y(k)} has identical distribution as the channel input.

A different generalization of the Sato method came from Godard [14]. Explicitly

exploiting the higher order moments of the channel output in its cost functions se-

lection, this new class of adaptive blind equalization can also be applied to complex

QAM channel input signals. The work of Triechler and Larimore [2] introduced

the philosophy of signal restoration in their cost functions. The constant modu-

lus algorithm (CMA), they presented, assumed a constant modulus input signal

and adjusted the blind equalizer accordingly to yield a constant modulus output.

Incidentally the CMA happens to be an effective member of the Godard class of

algorithms. However, the main drawbacks of CMA were presence of local minima

and slow rate of convergence [3],[15]-[16],[17].

The constant modulus algorithm became the most popular and effective blind

equalization algorithm for linear T -spaced equalizers. Its convergence behavior also

became better understood in time. The convergence of the CMA blind equalizer

was first studied by G. Foschini [18] while the local convergence of the CMA was
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established by Ding et al [19].

The issue of local convergence of Blind Equalization algorithms was investigated

by many researchers [3],[15]-[16],[17]. It was then concluded that the presence of local

minima are due to the finite length of the equalizer filter and due to the operation

of the equalizer at baud rate [16]. Many strategies such as center-tap initialization

and tap centering were then proposed [18]. Later on, various blind equalization

algorithms were analyzed and a way to counter the parasitic local solutions was

proposed [15].

However, for some applications such as the mobile-radio systems a faster conver-

gence of the deconvolution algorithm is needed. Hilal and Duhammel came up with

the novel idea of normalizing the CMA [20] by introducing a second order norm of

the equalizer input in the denominator of the tap update equation. The normaliza-

tion factor so introduced caused the algorithm to achieve a faster convergence rate

than the un-normalized one. This is in analogy to the case of normalized LMS [21]

and LMS [22].

Although CMA remains to be an effective and popular blind equalization algo-

rithm implicitly exploiting the higher order statistics of the channel output there

have been many efforts aimed at developing faster algorithms for blind equalization

with faster convergence behavior. Notable examples include a stop and go strategy

proposed by Prichi and Prati [1] , the so called Bussgang algorithms presented by

Godfrey and Rocca [23], Maximum a Posteriori (MAP) symbols estimator based
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on the assumption that the effect of the channel distortion and noise is collectively

Gaussian; a generalization of CMA by Shalvi and Weinstien [24], and a batch cu-

mulant “super exponential” algorithm again by Shalvi and Weinstein [25].

For a two dimensional system a phase error in an output constellation after equal-

ization is general. This type of phase error pulls down the efficiency of the equalizer

significantly because it prevents the decision device from recovering the transmit-

ted data from the output of the equalizer. Therefore, to combat this performance

degradation caused by the phase error, a carrier tracking loop is used instead for

recovering the carrier phase after the equalizer. In order to combat the phase errors

introduced by the channel a modified version CMA was proposed [26].

There are basically two different approaches to the problem of blind equaliza-

tion. The stochastic gradient descent (SGD) approach which iteratively minimizes a

chosen cost function over all possible choices of equalizer coefficients, while the sta-

tistical approach uses sufficient stationary statistics collected over a block of received

data for a channel identification or equalization. The latter approach often exploits

higher order cyclostationary statistical information directly [27]. The intended work

is focused on blind equalization method using stochastic gradient approach.

For reasons of practicality and ease of adaptation, linear channel equalization is

typically implemented as a linear filter. Denote the equalizer parameter vector at

the sample instant k as:
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w(k) = [w−M(k), w−M+1(k), w−M+1(k)...w0(k), w1(k)...wM−1(k), wM(k)]T

where (2M + 1) is the length of the equalizer and the superscript T represents the

transpose operation, and the input sequence to the equalizer as:

x(k) = [x(k), x(k − 1), x(k − 2)......x(k −m), x(k −m + 1)]T

The output signal of the linear equalizer at the sample instant is thus given by

y(k) =
M∑

i=−M

wi(k)x(k − i) (2.1)

In the ensuing analysis the linear blind equalization system is described.

2.1 Linear Blind Equalization System

The Least Mean Square (LMS) [22] adaptive equalizer employing a training sequence

is given by

w(k + 1) = w(k) + µe(k)x(k) (2.2)

where µ is a small step size controlling the convergence of the algorithm, and e(k)

the difference between the output of the equalizer and the transmitted symbol .

Naturally this algorithm requires that the channel input a(k − v) be available, the

equalizer iteratively minimizes the E = |e(k)|2 mean square error(MSE) cost func-
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tion in which the error is defined as

e(k) = y(k)− a(k − v) (2.3)

if the MSE is small such that after training the equalizer output y(k) is a close

estimate of the true channel input , then the decision device output can replace

a(k − v) in a decision directed algorithm that continues to track the modest time

variations in the channel dynamics [27].

In blind equalization the channel input a(k) is unavailable, and thus different

minimization criteria are explored. The crudest blind equalization scheme is the

decision-directed scheme that updates the adaptive equalizer coefficients according

to

w(k + 1) = w(k) + µ(yk −Q[y(k)])x(k) (2.4)

where Q[y(k)] = â(k−v). The ability of the equalizer to achieve desired convergence

results when it is initialized with sufficiently small inter symbol interference (ISI)

accounts for the key role that decision-directed algorithm plays in channel equal-

ization. Without direct training, a blind equalization algorithm is therefore used

to provide a good initialization scheme for the decision-directed equalizer because

of the decision-directed equalizer’s poor convergence behavior under high ISI. Thus

a better adaptive algorithm is needed for the blind equalization of linear channels

when the initial coefficients are far from ideal. The general structure of the blind

adaptive algorithm is shown in the Figure 2.1. Blind Adaptive equalization algo-
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Figure 2.1: Linear Blind Equalization Systems

rithms are often designed by minimizing special non-MSE cost functions that do

not directly involve the input a(k) while still reflect the current level of ISI in the

equalizer output. Let the mean cost function be defined as

Jw = E{Ψ(y(k))} (2.5)

where Ψ(.) is a scalar function of the equalizer output. The mean cost function

J(w) should be specified such that its minimum, the corresponding w results in a

minimum ISI or MSE equalizer. Because of the symmetric distribution of {a(k)}

over alphabet Â the blind equalizer is unable to distinguish between ±a(k − v).

Thus the function Ψ(.) should be even. In other words, both y(k) = a(k − v)

and y(k) = −a(k − v) are acceptable objectives as global minima of the mean cost

function.
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Using equation (2.5), the stochastic gradient descent minimization algorithm is

easily derived and is given by

w(k + 1) = w(k) + µ
∂Ψ(y(k))

∂w
(2.6)

= w(k) + µΨ
′
(wH(k)x(k)) (2.7)

where Ψ
′
= ∂Ψ(x)

∂(x)
The resulting blind equalization algorithm can be written as

w(k + 1) = w(k) + µΨ
′
(wH(k)x(k)) (2.8)

Hence, a blind equalizer can be defined by its cost function or its derivative. The

derivative of the cost function is also called as the error function as it replaces the

prediction error of the LMS algorithm.

2.2 Sato Algorithm and its Generalization

2.2.1 The Sato Algorithm

The first blind equalizer for multilevel PAM signals was introduced by Sato [6]. In

essence, it is identical to the decision-directed algorithm when the PAM input is

binary ±1. For M-level PAM signals, It is defined by the error function

es(k) = y(k)−Rssgn[y(k)] (2.9)

where

Rs , E[|a(k)|2]
E[|a(k)|] (2.10)
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Clearly the Sato algorithm effectively replaces the input a(k− v) with Rssgn[y(k)].

The multilevel PAM is viewed as an equivalent binary input signal in this case. The

parameter vector is updated via

w(k + 1) = w(k)− [y(k)− a(k − v)]x(k) (2.11)

It is clear that the convergence of the Sato’s algorithm clearly depends on how often

the errors y(k) − a(k − v) and es(k) have identical signs. The Sato algorithm was

simulated for a real channel as depicted in Figure 2.2. The equalizer was tested for

a 16-QAM constellation as shown in Figure 2.3. The above constellation was passed

through the channel as shown in Figure 2.2. The noise variance was assumed to be

0.01 and the signal to noise ratio was taken as 30dB. The equalizer was assumed

to have 9 taps. Once the signal was passed through the channel and noise was

added, the signal got corrupted as shown in Figure 2.4 and its eyediagram is shown

in Figure 2.5 This corrupted signal is then passed through the equalizer inorder to

remove the channel distortion at the output of the equalizer is as shown in Figure

2.7 and Figure 2.6 The mean square error and the residual ISI gives an ample idea

of when the equalizer is converging and with what steady state error. The MSE

and the ISI plots for Sato’s algorithm are shown in the Figure 2.8 and Figure 2.9

The Sato’s algorithm under the specifications stated above converged around 9500

symbols with a MSE of -17 dB. The residual ISI achieved a steady state of -32 dB.
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Figure 2.4: Signal constellation before convergence.
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Figure 2.5: Eye-diagram of the signal before convergence.
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Figure 2.6: Signal constellation after convergence (the last 1000 bits) for Sato’s
Algorithm.
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Figure 2.7: Eye-diagram of the signal for last 1000 bits after convergence for Sato’s
Algorithm.



24

0 5000 10000 15000
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Sample Space

M
ea

n 
E

rr
or

 S
qu

ar
e 

in
 d

B

Figure 2.8: The Mean Square Error curve for Sato’s Algorithm.



25

0 5000 10000 15000
−35

−30

−25

−20

−15

−10

Sample Space

R
es

id
ua

l I
S

I i
n 

dB

Figure 2.9: The Residual ISI for Sato’s Algorithm.
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The residual ISI was calculated using the formula [24]:

ISI =

∑
k |h(k) ∗w∗(k)| − |h(k) ∗w∗(k)|max

|h(k) ∗w∗(k)|max

(2.12)

where h(k) represents the channel impulse response and ‘∗′ represents the complex

convolution

2.2.2 BGR Algorithms

The Sato’s algorithm was extended by Benveniste, Goursat and Ruget [13] into a

class of error functions given by:

eb(k) = ψ̃[y(k)]−Rbsgn[y(k)] (2.13)

where

Rb , E{|ψ̃[a(k)]a(k)|}
E[|a(k)|] (2.14)

In this case, ψ̃(x) is an odd and twice differentiable function satisfying equation

(2.15):

ψ̃(x) ≥ 0, ∀x ≥ 0 (2.15)

The usage of odd function ψ̃(x) generalizes the linear function ψ̃(x) = x in the

Sato’s algorithm. The end window update equation can be written as

w(k + 1) = w(k)− eb(k)x(k) (2.16)
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2.2.3 Stop-and-Go Algorithms

It is apparent that the convergent characteristics of Blind equalization algorithms

are largely determined by the sign of the error signal . In order for the coefficients

of the blind equalizer to converge in the vicinity of the optimum MMSE solution

achievable by LMS algorithm, the sign of its error signal should agree with the signs

of the LMS prediction error . Slow convergence or the convergence of the parameters

to local minima of the cost function that do not provide proper equalization, can

occur if the signs of these two errors differ sufficiently often. In order to improve the

convergence properties of blind equalizer, the so called “stop-and-go” methodology

was proposed by Picchi and Prati [1]

The idea behind the stop-and-go algorithm is to allow “to go” only when the error

function is more likely to have the correct sign for the gradient descent direction.

Given several criteria for blind equalization, one can expect a more accurate descent

direction when more than one of the existing algorithms agree on the sign (direction)

of the error functions. When the error signs differ for a particular output sample,

parameter adaptation is stopped.

In [1], Picchi and Prati combined the Sato and decision directed algorithms to

achieve faster convergence results through the corresponding error function.

Consider two algorithms with error functions ψ1(y) and ψ2(y) . A stop and go
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algorithm is defined as follows:

w(k + 1) =





w(k)− µψ1[y(k)]x(k), if sgn[ψ1(y(k))] = sgn[ψ2(y(k))];

w(k), if sgn[ψ1(y(k))] 6= sgn[ψ2(y(k))].

(2.17)

2.3 Constant Modulus Algorithms

2.3.1 Constant Modulus (Godard) Algorithm

Integrating the Sato error function es(x) shows that the Sato Algorithm has an

equivalent cost function:

Js(w) = E[|y(k)| −Rs]
2 (2.18)

This cost function was generalized by Godard into another class of algorithms that

are specified by the cost function [14]:

Jq(w) = E[|y(k)|q −Rq]
2, q = 1, 2, . . . (2.19)

and

Rq , E[|a(k)|2q]

E[|a(k)|q] (2.20)

This class of Godard algorithms is indexed by a positive integer q. Using the sto-

chastic gradient approach, the Godard algorithms are given by

w(k + 1) = w(k)− µ(|y(k)|q −Rq)|y(k)|q−2|y(k)|xH(k) (2.21)



29

For q=2 the special Godard algorithm was developed as the “constant modulus

algorithm”. For channel input signal that has constant modulus |a(k)|2 = R2, the

CMA equalizer penalizes output samples that do not have the constant modulus

characteristics. The modulus error is simply

e(k) = |y(k)|2 −R2 (2.22)

and the squaring of the error yields the constant modulus cost function that is iden-

tical to the Godard cost function for minimization. This modulus restoral concept

has a particular advantage in that it allows the equalizer to be adapted indepen-

dently of carrier recovery. A carrier frequency offset causes the phase rotation of

the equalizer output. Because the CMA cost function is insensitive to the phase of

the output y(k), the equalizer parameter adaptation can occur independently and

simultaneously with the operation of the carrier recovery system. This property also

makes CMA applicable to the analog modulation systems [2].

The Godard’s algorithm was simulated for the channel as shown in the Figure

2.2 with SNR= 30 dB. The equalizer was assumed to have 9 complex taps. The

noise variance was taken to be 0.01. The following results were obtained: The MSE

obtained a steady state value of -17 dB (from Figure 2.12) and the residual ISI

obtained the steady state of -30 dB (from Figure 2.13). The algorithm was found

to converge around 11,000 symbols. Also the signal constellation and eyediagrams

after equalization are plotted in the Figures 2.10 and 2.11.
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Figure 2.10: Signal constellation after convergence (the last 1000 bits) for Godard’s
Algorithm.
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Figure 2.11: Eye-diagram of the signal after convergence (the last 1000 bits) for
Godard’s Algorithm.
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2.3.2 Shalvi and Weinstein Algorithms

Unlike previously introduced algorithms, the method of Shalvi-Weinstein [24] are

explicitly based on the higher order statistics of the equalizer output. Define the

kurtosis of the equalizer [24]:

Ky , E[|y(k)|4]− 2{E[|y(k)|2]}2 (2.23)

The Shalvi-Weinstein algorithm maximizes |Ky| subject to the constant power con-

straint E[|y(k)|]2 = E[|a(k)|]2. Define c(k) as the combined channel-equalizer im-

pulse response given by:

c(i) ,
m∑

k=0

w(k)h(i− k), −∞ < i < ∞ (2.24)

The Shalvi-Weinstein equalizer is equivalent to the following criteria

maximize
∞∑

i=−∞
|c(i)|4, subject to

∞∑
i=−∞

|c(i)|2 = 1 (2.25)

2.3.3 Normalised Constant Modulus Algorithm (NCMA)

The greatest drawback of the CMA is its relatively slow convergence which becomes

ever more significant as wireless applications involving rapid changes in the channel

characteristic become more prominent. Various enhancements of the CMA offering

improved convergence have been investigated [10]-[11],[28]-[29], but most involve

significant increases in complexity or computational cost.
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The normalized CMA (NCMA) was introduced in order to maximize the con-

vergence speed of the CMA [20]. For blind equalization employing the constant

modulus algorithm the constrained optimization problem takes the following form.

min
w(k+1)

||w(k + 1)−w(k)||2 subject to |wH(k + 1)x(k)|2 = R2
2 (2.26)

where R2
2 is the dispersion constant as chosen in equation (2.20) In order to solve the

equation (2.26) the method of Lagrange multipliers can be used. The cost function

of the NCMA can be written in the following form

J(w) = ||w(k + 1)−w(k)||2 + λ(|wH(k + 1)x(k)|2 − 1) (2.27)

Partially differentiating the cost function with respect to the window tap vector w

and equating it to 0 we have

2[w(k + 1)−w(k)] + λx(k) = 0 (2.28)

Thus, the value of λ is obtained as

λ = −2[w(k + 1)−w(k)]

x(k)
(2.29)

Substituting the value of λ in equation (2.28) and after some manipulations we have,

w(k + 1)−w(k) =
sgn[y∗(k)]− y∗(k)

||x(k)||2 x(k) (2.30)

where y(k) = wH(k)x(k). Introducing the step size parameter µ the equation (2.30)

modifies to

w(k + 1) = w(k) + µ
sgn[y∗(k)]− y∗(k)

||x(k)||2 x(k) (2.31)
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The above equation is the complete update equation of the normalized CMA. The

NCMA speeds up the convergence rate but at a higher MSE and with a slight

increase in complexity. Many modifications were made to NCMA [11] It can be

observed from Figure 2.16 and Figure 2.17 that NCMA algorithm converges at a

faster rate than than the conventional CMA but at a cost of an increase in error

floor. The MSE was observed to converge around 7000 symbols at a error floor of

-15 dB whereas the ISI was observed to converge at a steady state around -25 dB.

When a comparison of NCMA is made with that of the CMA it was found that

NCMA converged 4000-4500 symbols before, with a loss of 1 dB. Also the signal

constellation and eyediagram after the equalization process are plotted as shown in

the Figures 2.14 and 2.15.

2.3.4 Modified Constant Modulus Algorithm (MCMA)

One of the features of the cost function used in CMA is that it is phase blind, i.e., the

CMA can converge even in the presence of phase error. Although it is the merit of

the CMA, at convergence the equalizer output will have a constant phase rotation.

Furthermore, the constellation will be spinning at the carrier frequency offset rate

by lack of carrier frequency lock [3]. While this phase-blind nature of the CMA is

not a serious problem for the constant phase rotation, for time varying channels such

as digital radio channel, the performance of CMA is severely degraded. Kil came

up with an idea of dividing cost function as proposed by Godard [14] (in equation
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Figure 2.14: Signal constellation after convergence (the last 1000 bits) for NCMA
algorithm.
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Figure 2.15: Eye-diagram of the signal after convergence (the last 1000 bits) for
NCMA algorithm.
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Figure 2.16: The Mean Square Error curve for NCMA algorithm.
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Figure 2.17: The Residual ISI for NCMA algorithm.
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(2.18)) into real and imaginary parts for q = 2

J2R(k) = E[(|y(k)|2 −R2R)2]

J2I(k) = E[(|y(k)|2 −R2I)
2]

(2.32)

where the values of the dispersion constants R2R and R2I are given by:

R2R , E[|aR(k)|4]
E[|aR(k)|2]

R2I , E[|aI(k)|4]
E[|aI(k)|2]

(2.33)

The end tap update equation is given as:

w(k + 1) = w(k)− µe(k)x∗(k) (2.34)

where the error signal e(k) = eR(k) + jeI(k) is given by:

eR(k) = yR(k)(|yR(k)|2 −R2R)

eI(k) = yI(k)(|yI(k)|2 −R2I)

(2.35)

The CMA attempts to drive the equalizer output to lie on the circle of radius
√

R2 .

Since the cost function is based only on the equalizer output modulus, the equalizer

converges independently of the phase error. So if there is no carrier offset the

equalizer output will be formed into constellation with arbitrary phase rotation due

to channel characteristics. However, if there is an offset the equalizer output will be

spinning at the offset rate.

In contrast to the CMA the error function in equation (2.35) separates the equal-

izer output to real and imaginary parts and then estimates the errors for real and
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imaginary parts independently. Under perfect equalization the error e(k) = 0 i.e.

yR(k) = ±√R2R and yI(k) = ±√R2I . It implies that the MCMA tries to move the

real part of the equalizer output lie on the points
√

R2R and −√R2R. Similar is the

case with the imaginary part. Since the cost functions employ both the modulus

and the phase of the equalizer output, carrier phase recovery is accomplished with

blind equalization.

The MCMA was simulated for the channel as shown in the Figure 2.18 and

Figure 2.19.The signal to noise ratio was maintained at 30 dB and an equalizer with

9 taps was considered. This channel was taken from the paper by Picchi and Prati

[1]. The MCMA was found to converge very well for the channel which offered a

phase error to the signal.Figure 2.20 and Figure 2.21 clearly depicts that the some

amount of phase error is induced into the signal.Once the signal is passed through

the equalizer the phase shift is removed as well as the ISI which can be seen from

Figure 2.23 and Figure 2.23. As evident from Figure 2.24 and Figure 2.25, the

MCMA converged approximately after 2500 symbols with a steady state MSE of

-15 dB and steady state residual ISI of -25 dB.

2.3.5 Dual Mode Modified Constant Modulus Algorithm

In 1995 Kil proposed an improved version of the MCMA by infusing the decision

directed mode into the MCMA [30]. The MCMA proposed previously was effective

in an aspect of phase recovery with equalization. However, the error signals used
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Figure 2.18: Impulse response of the real part of the channel.
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Figure 2.19: Impulse response of the imaginary part of the channel.
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Figure 2.20: Signal constellation after convergence (the last 1000 bits) for MCMA
algorithm.
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Figure 2.21: Eye-diagram of the signal after convergence (the last 1000 bits) for
MCMA algorithm.
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Figure 2.22: Signal constellation after convergence (the last 1000 bits) for MCMA
algorithm.
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Figure 2.23: Eye-diagram of the signal after convergence (the last 1000 bits) for
MCMA Algorithm.
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Figure 2.24: The Mean Square Error curve for MCMA algorithm.
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Figure 2.25: The Residual ISI for MCMA algorithm.



46

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.9

0.95

1

1.05

1.1

1.15

Sample Space

ce
nt

er
 ta

p

Figure 2.26: Behavior of the center tap of the equalizer for MCMA algorithm.



47

in MCMA, as in CMA would not be zero even when the channel is perfectly equal-

ized. This in turn results in large output error in the steady state. Therefore Kil

switched the MCMA into the decision directed (DD) mode to improve the steady

state performance, i.e, the convergence speed and the output error levels, when the

eye pattern of the equalizer is opened to some extent by the MCMA. The MCMA

is dominant mode in the blind mode and the conventional DD takes over in the

tracking mode.

To avoid the weakness of the DD algorithm, the DD mode of operation is confined

to the high confidence zones. The confidence zones were selected as shown in Figure

2.27 and Figure 2.28. With this dual mode of operation when perfect equalization

is reached, the error signal will be almost equal to zero in the steady state.

The error eR and eI can be written as:

eR(k) =





yR(k)− dec(yR(k)), if yR(k) ε CR

yR(k)(|yR(k)|2 −RR), otherwise

(2.36)

eI(k) =





yI(k)− dec(yI(k)), if yI(k) ε CI

yI(k)(|yI(k)|2 −RI), otherwise

(2.37)

where CR and CI represent the confidence zones for the real and imaginary part

of the output of the equalizer respectively and ZR and ZI are the confidence zone

parameters with 0 < ZR, ZI < 1, which determine the time instants to switch

between the MCMA and the DD mode. According to Macchi and Ewada [17] an
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open eye condition can be expressed as

|y(k)− a[k]| < D

2
, ∀k (2.38)

where D is the minimum distance between the symbols in the constellation. The

dual mode MCMA was simulated for the channel as shown in Figure 2.18 and

Figure 2.19. The SNR was maintained at 30 dB and an equalizer with 9 taps was

considered. The values of Zr and Zi were chosen to be 0.5. As is evident from

the Figure 2.31 and Figure 2.32 the equalizer converges around 3200 symbols. Also

a mark difference between the constellation after convergence between the MCMA

and MCMA-DD can be observed from Figure 2.14 and Figure 2.29

2.4 Summary

The main purpose of this chapter is to introduce the reader to the historical evolution

of blind equalization schemes. In brief it can be said that Sato’s [6] work formed the

basis for all the algorithms that were derived or proposed. Godard [14] extended his

work to propose the CMA which suffered from the problem of phase recovery and

slow convergence. NCMA [20] was then proposed to speed up the convergence rate

followed by MCMA [26] which was able to recover the phase jitter due to complex

channels. The tap update functions for some of the algorithms described in this

chapter are summarized in Table 2.1
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Figure 2.29: Signal constellation after convergence (the last 1000 bits) for MCMA-
DD algorithm.
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Figure 2.30: Eye-diagram of the signal after convergence (the last 1000 bits) for
MCMA-DD algorithm.
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Figure 2.31: The Mean Square Error curve for MCMA-DD algorithm.
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Figure 2.32: The Residual ISI for MCMA-DD algorithm.
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Figure 2.33: Behavior of the center tap of the equalizer for MCMA-DD algorithm.
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Table 2.1: Different blind equalization algorithms

Algorithm Tap Update Function

Sato w(k + 1) = w(k)− [y(k)−Rssgn[y(k)]]x(k)

Rs , E[a(k)]2

E[a(k)]

BGR ‡ w(k + 1) = w(k)− eb[y(k)]x(k)

Godard † w(k + 1) = w(k)− µ(|y(k)|q −Rq)|y(k)|q−2|y(k)|xH(k)

Rq , E|a(k)|2q

E|a(k)|q

Stop and Go w(k + 1) = w(k)− µψ1[y(k)]x(k)
if sgn[ψ1(y(k))] = sgn[ψ2(y(k))]

= w(k),
if sgn[ψ1(y(k))] 6= sgn[ψ2(y(k))]

NCMA w(k + 1)−w(k) = µ
sgn[y∗(k)]− y∗(k)

||x(k)||2 x(k)

w(k + 1 = w(k)− µe(k)x∗(k)

MCMA e2R(k) = yR(k)(y2
R(k)−R2R)

e2I(k) = yI(k)(y2
I (k)−R2I)

†CMA is a special case of Godard Algorithm at q = 2.
‡For the case of BGR algorithms refer Section 2.2.2



Chapter 3

Derivation of the Proposed

Algorithm

3.1 Principle of Minimal Disturbance

“In the light of new input data, the parameters of an adaptive system should only be

disturbed in a minimal fashion.”

In terms of an adaptive filter the statement can be modified as “from one iteration

to the next, the weight vector of the adaptive filter should be changed in a minimal

manner, subject to a constraint imposed on the updated filter’s output.” [9]

The normalized LMS [21] uses this principle to combat the gradient noise am-

plification problem in LMS, which takes place when the inputs to the equalizer are

large. In particular the adjustment applied to the tap-weight vector at iteration

55
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(k + 1) is normalized with respect to the squared euclidean norm of the tap input

vector.

3.2 Normalization of Modified Constant Modulus

Algorithm(MCMA)

Lin [10] used the constraint optimization technique by utilizing the principle of

minimal disturbance to propose a normalized version of MCMA. This algorithm

also used the decision directed mode once the outputs were below a specified level.

The optimization problem was formulated as follows:

min
w(k+1)

‖w(k + 1)−w(k)‖2 subject to





sR(k)[s2
R(k)−R2

R] = 0,

sI(k)[s2
I(k)−R2

I ] = 0

(3.1)

Hence the minimization problem can be formulated as follows

min
w(k+1)

{‖w(k + 1)−w(k)‖2 + λ1sR(k)(s2
R(k)−R2

R) + λ2sI(k)(s2
I(k)−R2

I)
}

(3.2)

where

s(k) = wH(k + 1)x(k)

= RRsgn[yR(k)] + jRIsgn[yI(k)].

(3.3)

R2
R , E[|sR(k)|4]

E[|sR(k)|2] and R2
I , E[|sI(k)|4]

E[|sI(k)|2] . (3.4)
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The method of Lagrange multipliers was used to solve the above constrained problem

and the update equation was obtained as

w(k + 1) = w(k)− µ

‖ x(k) ‖2
x(k)[eR(k) + jeI(k)]∗ (3.5)

where

eR(k) =





yR(k)− dec[yR(k)] if y(k) ⊆ CR

yR(k)−RRsgn[yR(k)] if y(k) * CR,

(3.6)

and

eI(k) =





yI(k)− dec[yI(k)] if y(k) ⊆ CI

yI(k)−RIsgn[yI(k)] if y(k) * CI .

(3.7)

where CI and CR are the confidence zones as assumed in the case of MCMA-DD

(Figure 2.28 and Figure 2.27). The algorithm in the blind mode updates the tap

weight vector in such a way that the value w(k + 1) computed at (k + 1) exhibits a

minimum change in euclidean norm with respect to the known value w(k) at time

k.

The scheme proposed by Lin [10] was able to accomplish blind equalization and

carrier phase recovery simultaneously by taking the advantage of the principle of

minimal disturbance since it introduces a normalization factor in the weight update

equation. It was able to exploit the time varying step-size parameter to handle the

nonstability and gradient noise amplification problem. It was also able to handle

small carrier phase offsets in a better way than MCMA algorithm.
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3.3 Generalization of Lin’s Scheme

The cost function as given by Lin [10] can be modified by utilizing the behavior

of the past inputs and adding multiple constraints [11]. Thus the new constrained

problem can be formulated in the floowing manner

Find w(k+1) so as to minimize Euclidean norm of the change in the estimate given by

‖w(k + 1)−w(k)‖ subject to the following constraints

sR(k)(s2
R(k)−R2

R) = 0 and sI(k)(s2
I(k)−R2

I) = 0

sR(k − 1)(s2
R(k − 1)−R2

R) = 0 and sI(k − 1)(s2
I(k − 1)−R2

I) = 0

.

.

.

sR(k−m+1)(s2
R(k−m+1)−R2

R) = 0 and sI(k−m+1)(s2
I(k−m+1)−R2

I) = 0

(3.8)

Hence the following extended optimization problem can be established for m con-

straints:

min
w(k+1)





‖w(k + 1)−w(k)‖2

+
m∑

i=1

λ1isR(k − i + 1)(s2
R(k − i + 1)−R2

R)

+
m∑

i=1

λ2ksI(k − i + 1)(s2
I(k − i + 1)−R2

I)





(3.9)
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where RR and RI are same as in the equation (3.4), λ1i, λ2i where iε{1, 2, . . . ,m},

are the Lagrange multipliers. The a priori output s(k) can be set in the following

way.

s(k) = sR(k) + jsI(k)

= wH
apriorix(k)

(3.10)

where wapriori = w(k + 1). The a priori output s(k) can be assumed in similar way

as was assumed in [20]:

s(k) = RRsgn[yR(k)] + jRIsgn[yI(k)] (3.11)

By using the method of Lagrange multipliers, equation (3.9) can be solved and the

tap update recursion relation can be obtained. For simplicity reasons, the algorithm

is initially derived for m = 2, i.e, the minimization problem contains only four con-

straints, then it is extended for m constraints. Doing so, the minimization problem

can be written as:

min
w(k+1)





‖w(k + 1)−w(k)‖2

+ λ11s
2
R(k)[sR(k)−R2

R] + λ12sI(k)[s2
I(k)−R2

I ]

+ λ21sR(k)[s2
R(k − 1)−R2

R] + λ22sI(k − 1)[s2
I(k − 1)−R2

I ]





(3.12)
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where

s(k) = wH(k + 1)x(k) (3.13)

= sR(k) + jsI(k) (3.14)

and

s(k − 1) = wH(k + 1)x(k − 1) (3.15)

= sR(k − 1) + jsI(k − 1) (3.16)

In the ensuing analysis, the following notations are considered

wl(k) = al(k) + jbl(k), and x(k) = u(k) + jv(k). (3.17)

Therefore, the squared norm of the difference ‖w(k + 1)−w(k)‖2 in the tap-weight

vector w(k + 1) can be expressed as

‖w(k + 1)−w(k)‖2 =
N−1∑

l=0

([al(k + 1)− al(k)]2 + [bl(k + 1)− bl(k)]2) (3.18)

A real-valued cost function J(k) for the constrained optimization problem can be

then formulated by combining the equation (3.12) and (3.18).

J(k) =
N−1∑

l=0

([al(k + 1)− al(k)]2 + [bl(k + 1)− bl(k)]2)

+ λ11s
2
R(k)[sR(k)−R2

R] + λ12sI(k)[s2
I(k)−R2

I ]

+ λ21sR(k)[s2
R(k − 1)−R2

R] + λ22sI(k − 1)[s2
I(k − 1)−R2

I ] (3.19)
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To find the optimal values of al(k + 1) and bl(k + 1) the above given cost function

J(k) is differentiated with respect to these parameters and the results are set to

zero. i.e,

∂J(k)

∂al(k + 1)
= 0 and

∂J(k)

∂bl(k + 1)
= 0 (3.20)

which yield the following equations respectively,

2[al(k + 1)− al(k)] + λ11[s
2
R(k)−R2

R]u(k) + 2λ11s
2
R(k)u(k)

+ λ12[s
2
I(k)−R2

I ]v(k) + 2λ12sI(k)v(k)

+ λ21[s
2
R(k − 1)−R2

R]u(k − 1) + 2λ21sR(k − 1)u(k − 1)

+ λ22[s
2
I(k − 1)−R2

I ]v(k − 1) + 2λ22sI(k − 1)v(k − 1) = 0 (3.21)

2[bl(k + 1)− bl(k)] + λ11[s
2
R(k)−R2

R]v(k) + 2λ11sR(k)v(k)

− λ12[s
2
I(k)−R2

I ]u(k)− 2λ21sI(k)u(k)

+ λ21[s
2
R(k − 1)−R2

R]v(k − 1) + 2λ21sR(k − 1)v(k − 1)

− λ22[s
2
I(k − 1)−R2

I ]u(k − 1)− 2λ22sI(k − 1)u(k − 1) = 0 (3.22)

Since the method of Lagrange multipliers is used, the minimization problem defined

in (3.12) is also partially differentiable with respect to the Lagrange multipliers.

Doing so, the following values are obtained after the partial derivative of the mini-
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mization problem is set to zero:

s2
R(k) = R2

R,

s2
I(k) = R2

I ,

s2
R(k − 1) = R2

R,

s2
2I(k − 1) = R2

I .

(3.23)

Adding the equations (3.21) and (3.22), and using the equation (3.23), the following

equation is obtained:

wl(k + 1)− wl(k) + λ11RR[u(k)− jv(k)] + λ12RI [v(k) + ju(k)]+

λ21RR[u(k − 1)− jv(k − 1)] + λ22RI [v(k − 1) + ju(k − 1)] = 0 (3.24)

Rearranging the above equation to the following form we have from equation (3.24)

wl(k + 1)− wl(k)− [λ11 − jλ21][u(k) + jv(k)]− [λ12 − jλ22][u(k − 1) + jv(k − 1)] = 0

(3.25)

In the vector form, equation (3.25) can be written as:

w(k + 1) = w(k) + λax(k) + λbx(k − 1) (3.26)

where

λa = RRλ11 − jRIλ12 (3.27)

λb = RRλ21 − jRIλ22 (3.28)
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Equation (3.25) can also be written in matrix form as

w(k + 1) = w(k) +

[
x(k) x(k − 1)

]



λa

λb


 (3.29)

where

x(k) =

[
x(k) x(k − 1) x(k − 2)..... x(k −M)

]T

(3.30)

x(k − 1) =

[
x(k − 1) x(k − 2) x(k − 3)..... x(k −M − 1)

]T

(3.31)

Equation (3.29) can also be written as

w(k + 1) = w(k) + XΛ (3.32)

where

Λ =




λa

λb


 (3.33)

X =

[
x(k) x(k − 1)

]
(3.34)

Multiplying both the sides of equation (3.32) by XH we have the value of λ as

Λ = [XHX]−1[XHw(k + 1)−XHw(k)] (3.35)

or

Λ = Ω−1[sH − yH ] (3.36)
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where

Ω = XHX (3.37)

s =

[
wH(k + 1)x(k) wH(k + 1)x(k − 1)]

]
(3.38)

y =

[
wH(k)x(k) wH(k)x(k − 1)

]
(3.39)

Substituting the value of Λ in equation (3.32) we have

w(k + 1) = w(k) + XΩ−1[sH − yH ] (3.40)

where

s =

[
s(k) s(k − 1) .... s(k − i + 1)

]

y =

[
y(k) y(k − 1) .... y(k − i + 1)

]

X =

[
x(k) x(k − 1) .... x(k − i + 1)

]

Ω = XHX

y(k) = wH(k)x(k)

s(k) = wH(k + 1)x(k)

3.3.1 Decision Directed Mode

Lin [10] incorporated the decision directed mode in his algorithm in order to obtain

better convergence rates and lower steady state errors. The above derived algorithm

can also be switched into the decision directed mode once the error drops below a
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particular threshold value. The threshold value can be chosen as shown in the

Figures 2.28 and 2.27 which was taken from the previous work of Kil [30]

Equation (3.40) can be modified by replacing the difference of the vectors s and

y by a single vector E:

w(k + 1) = w(k) + µLRXΩ−1EH (3.41)

where µLR is the learning rate used to control the convergence speed. For the case

of two constraints E can be written as:

E =

[
E1 E2 .... Ei

]
(3.42)

where

E1 =RRsgn[yR(k)] + jRIsgn[yI(k)]− y(k)

E2 =RRsgn[yR(k − 1)] + jRIsgn[yI(k − 1)]− y(k − 1)

...

...

Ei =RRsgn[yR(k − i + 1)] + jRIsgn[yI(k − i + 1)]− y(k − i + 1)

(3.43)

Once the equalizer output y(k) reaches the boundary levels as specified in Figure

3.1, the algorithm can be switched in the decision directed mode. Thus the values

of E1, E2, ....Ei can be changed according to the following equation:
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Figure 3.1: Decision boundaries for a 16-QAM constellation

Ei =





RRsgn[yRk − i + 1)]+jRIsgn[yI(k − i + 1)]− y(k − i + 1),∀ y(k − i + 1) * C

RRsgn[yR(k − i + 1)]+jRIsgn[yI(k − i + 1)]− Â,∀ y(k − i + 1) ⊆ C

(3.44)

Where Â is a set desired output as shown in the Figure 3.1. Another good aspect

of this algorithm is the smooth shift from the blind mode to the decision directed

mode according to the magnitude of the equalizer output error without any specific

detection mechanism, because the algorithm can cluster the output signal at the
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right positions . Hence the equalization of the derived technique both in the blind

mode and decision directed mode operates with the same stability as the normalized

least mean square algorithm which can also be treated as a least squares solution [9].

The main difference between the new scheme and the one proposed by Lin [10] with

respect to the decision directed mode is that, in the new scheme unless and until

both the real and the imaginary parts of the output signal are inside the bounded

box simultaneously as shown in Figure 3.1, the algorithm doesn’t shift to the decision

directed mode, whereas in case of the Lin’s algorithm the decision directed mode is

applied to the real and the imaginary parts independently. Applying the decision

directed mode in a way as used in the newly derived algorithm, gives more scope

for the algorithm and it performs in a better fashion when dealing with the signal

infected by phase offset.

The complexity of the newly derived algorithm is compared with that of other

blind equalization algorithms based on CMA in the Table. The complexity was

calculated for each iteration of window update. N represents the number of window

taps used in the equalizer

3.4 Summary

This chapter in briefly deals with the derivation of the new scheme using Lagrange

multipliers optimization technique. The newly derived scheme can be said as an
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Algorithm Addition Multiplication

Sato 2N 2N+2

Godard 2N 2N+1

NCMA 2N 2N+2

MCMA 2N 2N+8

New scheme with Single Constraint 2N+1 2N+3

New scheme with Double Constraints 2(2N+1) 4N+6

New scheme with Triple Constraints 3(2N+1) 6N+8

New scheme with m Constraints m(2N+1) m(2N+2)+2

Table 3.1: Complexity comparison table of different algorithms
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extension of the algorithm as derived by Lin [10] using the idea as given by Tan-

rikulu [28]. It is expected that the new algorithm will perform better than Lin’s

algorithm. The constraints added to this algorithm are meant for this purpose.

The performance analysis of this algorithm for both T−spaced and T/2− spaced

equalizers will be detailed in Chapter 4 and Chapter 5 with the help of simulation

results. Finally, the computational complexity among other well established blind

equalization algorithms is detailed Table 3.1



Chapter 4

Simulations for Baud Spaced

Equalizer

The above derived algorithm is simulated under various scenarios and conditions. All

the results are plotted for 100 Monte Carlo iterations. The signal constellation used

is as shown in Figure 2.3. For each scenario the input and the output constellation

are plotted along with the eye diagrams. In order to investigate the convergence rate

and the steady state error the residual ISI and the MSE are also plotted for single,

double and triple constraints. Single, double and triple constraints corresponds to

i = 1, 2, 3 in the equation 3.9. The residual ISI is calculated using the formula as

given in equation (2.12)

70
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4.1 Real Channel

The simplest of all scenarios is the performance under the real channel. The channel

chosen is as shown in Figure 2.2. The variance of noise is assumed to be 0.01. An

equalizer with 9 taps is used. It is found that the mean square error converges at

approximately -22 dB. However, it is observed that no matter how many constraints

are added the convergence rate of the learning curve remained almost the same.

Similar is the case with residual ISI ( from Figure 4.5 and Figure 4.6).Only the

learning curve for algorithm with double constraints is plotted as the curve is almost

the same for different constraints.Since the center tap of the equalizer is assumed to

be equal to 1, its behavior is also plotted inorder to confirm the convergence rate.

4.2 Complex Channel-I

The complex channel is selected from the paper by Picchi and Prati [1] ( as shown in

the Figure 4.8 and Figure 4.9). It is found out by simulation that the mean square

error converges approximately at -20 dB and the ISI around -36 dB. Since the center

tap of the equalizer is assumed to be equal to 1, its behavior is also plotted in order

to confirm the convergence rate, the behavior of the center tap is plotted in Figure

4.2.

As is evident from the Figures 4.16 and 4.17 the equalizer for single constraint
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Figure 4.1: Constellation of 16-QAM signal before convergence when passed through
real channel (last 1000 samples).
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Figure 4.2: Constellation of 16-QAM signal after convergence when passed through
real channel (last 1000 samples).
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Figure 4.3: Eye diagram of 16-QAM signal before convergence when passed through
real channel (last 1000 samples).
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Figure 4.4: Eye diagram of 16-QAM signal after convergence when passed through
real channel (last 1000 samples).
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Figure 4.5: MSE curve for the signal passing through real channel and the algorithm
using double constraints.
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Figure 4.6: Residual ISI for single,double and triple constraints for real channel.
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Figure 4.7: Behaviour of the center tap of the equalizer for the real channel (double
constraints).
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Figure 4.8: Real part of the complex channel.
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Figure 4.9: Imaginary part of the complex channel.



78

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−6

−4

−2

0

2

4

6

Time

A
m

pl
itu

de

Eye Diagram for In−Phase Signal

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−6

−4

−2

0

2

4

6

Time

A
m

pl
itu

de

Eye Diagram for Quadrature Signal

Figure 4.10: Eye diagram of 16-QAM signal before convergence when passed through
complex channel-I as given in [1] (last 1000 samples).

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−4

−2

0

2

4

Time

A
m

pl
itu

de

Eye Diagram for In−Phase Signal

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−4

−2

0

2

4

Time

A
m

pl
itu

de

Eye Diagram for Quadrature Signal

Figure 4.11: Eye diagram of 16-QAM signal after convergence when passed through
complex channel-I as given in [1] (last 1000 samples).
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Figure 4.12: Constellation of 16-QAM signal before equalization when passed
through complex channel-I as given in [1] (last 1000 samples).
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Figure 4.13: Constellation of 16-QAM signal after equalization when passed through
complex channel-I as given in [1] (last 1000 samples) for single constraint.
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Figure 4.14: Constellation of 16-QAM signal after equalization when passed through
complex channel-I as given in [1] (last 1000 samples) for double constraints.
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Figure 4.15: Constellation of 16-QAM signal after equalization when passed through
complex channel-I as given in [1] (last 1000 samples) for triple constraints.
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Figure 4.16: Comparison of the convergence rate for different constraints on complex
channel-I as given in [1] using the MSE.
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Figure 4.17: Comparison of the convergence rate for different constraints on complex
channel-I as given in [1] using the Residual ISI.
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Figure 4.18: Comparison of the convergence rate for different constraints on complex
channel-I as given in [1] using the absolute value of the center tap.
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converged around 2500 symbols where as for double and triple constraints converged

around 1700 and 1100 respectively which corroborates the fact as stated by Tan-

rikulu [11] that as the number of constraints increased according to the equation

(3.9) the rate of convergence also increased.

4.3 Complex Channel-II

The impulse response of the channel-II is tabulated in Table 4.1 which is taken from

paper by Chen [31]. A 25 tap equalizer is used instead of 9 because of the large

number of channel taps.

It is found out by simulation that the mean square error converged approxi-

mately at -20 dB and the Residual-ISI around -32 dB. As can be seen from the

Figures 4.25 and 4.26 the equalizer with single constraint converges at 9000 sym-

bols whereas the equalizer with double and triple constraints converges at 6500 and

5000 symbols respectively. Thus it can be said that for severe channels it is more

effective to increase the number of constraints in the cost function than to the less

severe channels. The severity of the channel can be analyzed from constellation of

the signal before equalization . From Figures 4.12 and 4.21 it can be concluded that

the complex channel II is more severe than complex channel I. Since the center tap

of the equalizer is assumed to be equal to 1, its behavior is also plotted in order to

confirm the convergence rate (from Figure 4.27).
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Table 4.1: Channel II Impulse Response

Tap No. Real Imaginary

0 0.0145 0.0006
1 0.0750 0.0176
2 0.3951 0.0033
3 0.7491 0.1718
4 0.1951 0.0972
5 -0.2856 0.1896
6 0.0575 0.2096
7 0.0655 0.1139
8 -0.0825 0.0424
9 0.0623 0.0085
10 -0.0438 0.0034
11 0.0294 0.0049
12 -0.0181 0.0032
13 0.0091 0.0003
14 -0.0038 0.0023
15 0.0019 0.0027
16 -0.0018 0.0014
17 0.0006 0.0003
18 0.0005 0.0000
19 -0.0008 0.0001
20 0.0000 0.0002
21 0.0001 0.0006
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Figure 4.19: Eye diagram of 16-QAM signal before convergence when passed through
complex channel-II as given in Table 4.1 (last 1000 samples).
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Figure 4.20: Eye diagram of 16-QAM signal after convergence when passed through
complex channel-II as given in Table 4.1 (last 1000 samples).
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Figure 4.21: Constellation of 16-QAM signal before equalization when passed
through complex channel-II as given in Table 4.1 (last 1000 samples).
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Figure 4.22: Constellation of 16-QAM signal after equalization when passed through
complex channel-II as given in Table 4.1 (last 1000 samples) for single constraint.
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Figure 4.23: Constellation of 16-QAM signal after equalization when passed through
complex channel-II as given in Table 4.1 (last 1000 samples) for double constraints.
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Figure 4.24: Constellation of 16-QAM signal after equalization when passed through
complex channel-II as given in Table 4.1 (last 1000 samples) for triple constraints.



89

0 5000 10000 15000
−30

−25

−20

−15

−10

−5

0

5

10

M
ea

n 
E

rr
or

 S
qu

ar
e 

in
 d

B

Sample Space

Single Constraint 

Double Constraints 

Triple Constraints 

Figure 4.25: Comparison of the convergence rate for different constraints on complex
channel-II as given in Table 4.1 using the MSE.
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Figure 4.26: Comparison of the convergence rate for different constraints on complex
channel-II as given in Table 4.1 using the Residual ISI.
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Figure 4.27: Comparison of the convergence rate for different constraints on complex
channel-II as given in Table 4.1 using the center tap of the equalizer.
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4.4 Simulation without the aid of decision directed

mode

The following results are obtained after the decision directed algorithm is removed

from the new scheme. Although the performance for increased number of constraints

is almost constant, a slight improvement in the steady state error is observed. The

algorithm for triple constraints converges for 3500 symbols with a steady state resid-

ual ISI of −25 dB and for the single constraint converges around 5000 symbols with

a steady state residual ISI of −24.5 dB (from Figure 4.32). In the case of MSE

the algorithm converges around -14 dB (as shown in the Figure 4.31). Hence it can

be concluded from these results that applying multiple constraints for the newly

derived scheme, in certain cases does not necessarily increases the convergence rate.

The dispersion constant used in this scenario for simulation is varied i.e , the

dispersion constants as given by Sato [6], Godard [14] and Yang et.al. [32] are used.

For the case of CMA, i.e., when q = 2 in equation (2.20) the dispersion constant for

the Godard’s algorithm equals to that of the Multi Modulus Algorithm (MMA) as

given by Yang et.al. As can be seen from the Figures 4.28, 4.29, 4.49 and Figures

4.34, 4.35, 4.36 better results are obtained for the dispersion constant as given by

Sato (from equation (2.10)). The above fact can also be corroborated by observing

the MSE curves for both the situations (from Figures 4.31 and 4.37). Hence it can

be said that the newly derived scheme bear the characteristics of reduced constel-
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Figure 4.28: Constellation of 16-QAM signal after equalization when passed through
complex channel-I (last 1000 samples) for single constraint without the aid of deci-
sion directed mode with dispersion constant as given by Sato (equation (2.10)).
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Figure 4.29: Constellation of 16-QAM signal after equalization when passed through
complex channel-I (last 1000 samples) for double constraints without the aid of
decision directed mode with dispersion constant as given by Sato (equation (2.10)).
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Figure 4.30: Constellation of 16-QAM signal after equalization when passed through
complex channel-I (last 1000 samples) for triple constraints without the aid of deci-
sion directed mode with dispersion constant as given by Sato (equation (2.10)).

lation algorithm (RCA) [32] rather than the CMA. RCA uses the fixed dispersion

constant as specified by Sato [6]. But according to Yang et.al., performance wise,

CMA and multi-modulus algorithm (MMA) are better than RCA. Hence the newly

proposed scheme without the aid of the decision directed mode performs poorly

when compared to its peers like the MCMA which has its traits in CMA. The above

statement can be proved by observing the MSE curves for the newly derived scheme

without the aid of the decision directed mode (Figure 4.31) and MCMA (Figure

2.24). Since the center tap of the equalizer is assumed to be equal to 1, its behavior

is also plotted inorder to confirm the convergence rate ( from Figure 4.33 and Figure

4.39).
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Figure 4.31: Comparison of the convergence rate for different constraints on complex
channel-I as given in Figures 4.8 and 4.9 without DD mode with dispersion constant
as given by Sato (equation (2.10)) using the MSE .
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Figure 4.32: Comparison of the convergence rate for different constraints on complex
channel-I as given in Figures 4.8 and 4.9 without DD mode with dispersion constant
as given by Sato (equation (2.10)) using the Residual ISI .
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Figure 4.33: Comparison of the convergence rate for different constraints on complex
channel-I as given in Figures 4.8 and 4.9 using the center tap of the equalizer without
DD mode with dispersion constant as given by Sato (equation (2.10)).
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Figure 4.34: Constellation of 16-QAM signal after equalization when passed through
complex channel-I (last 1000 samples) for single constraint without the aid of deci-
sion directed mode with dispersion constant as given by Godard (equation (2.20)).
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Figure 4.35: Constellation of 16-QAM signal after equalization when passed through
complex channel-I (last 1000 samples) for double constraints without the aid of de-
cision directed mode with dispersion constant as given by Godard (equation (2.20)).
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Figure 4.36: Constellation of 16-QAM signal after equalization when passed through
complex channel-I (last 1000 samples) for triple constraints without the aid of deci-
sion directed mode with dispersion constant as given by Godard (equation (2.20)).

When the dispersion constant is varied and the DD mode is used, it is observed

that the results remained the same. Hence it can be concluded that RCA exhibits

a smooth shift from the blind mode to the decision directed mode and if a decision

directed mode is used, variation in the dispersion constant as specified by Sato [6]

or Godard[14] or Yang et.al [32] does not have any impact on the equalizer output.
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Figure 4.37: Comparison of the convergence rate for different constraints on complex
channel-I as given in Figures 4.8 and 4.9 without DD mode with the dispersion
constant as given by Godard (equation (2.20)) using the MSE.
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Figure 4.38: Comparison of the convergence rate for different constraints on complex
channel-I as given in Figures 4.8 and 4.9 without DD mode with the dispersion
constant as given by Godard (equation (2.20)) using the Residual ISI .
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Figure 4.39: Comparison of the convergence rate for different constraints on complex
channel-I as given in Figures 4.8 and 4.9 without DD mode with the dispersion
constant as given by Godard (equation (2.20)) using the center tap of the equalizer.
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4.5 Simulation at a SNR = 20dB

The following results are obtained after the SNR of the signal is reduced from 30

dB to 20 dB for a channel depicted in Figures 4.9 and 4.8. It is observed that the

algorithm behaved in the same manner as in the previous scenarios excepting that

the error floor is raised above. The MSE is observed to converge at a steady state

value of -11 dB as shown in the Figure 4.43 and the ISI is observed to converge at a

steady state value of -31 dB as shown in the Figure 4.44. The algorithm for single

constraint is observed to converge at 2300 symbols where as for double and triple

constraints converge below 1500 symbols. The constellation diagrams of the signals

after equalization for single, double and triple constraints are also plotted in Figures

4.40, 4.41 and 4.42. Since the center tap of the equalizer is assumed to be equal

to 1, its behavior is also plotted inorder to confirm the convergence rate in Figure

4.45

4.6 Simulation when the signal is affected by phase

offset

In order to introduce a phase offset in the signal, the signal is multiplied by an

exponential term as given in the equation below

x(k) =
L−1∑
i=0

h(k)a(k − i)ejφ(k) + ω(k) (4.1)
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Figure 4.40: Constellation of 16-QAM signal after equalization when passed through
complex channel-I ( last 1000 samples) for single constraint when SNR = 20dB.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

real

im
ag

Figure 4.41: Constellation of 16-QAM signal after equalization when passed through
complex channel-I (last 1000 samples) for double constraints when SNR = 20dB.
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Figure 4.42: Constellation of 16-QAM signal after equalization when passed through
complex channel-I (last 1000 samples) for triple constraints when SNR = 20dB.

where h(i), i = 0, 1, . . . L− 1 are the complex channel tap weights, L is the length of

the channel response, a(k) are the complex data symbols, k is the time index, ejφ(k)

is caused by a carrier phase error given by φ(k) = 2π∆f/R where R is the dispersion

constant used and ∆f in the frequency shift. The value of ∆f/R is chosen to be

equal to 10−5.

The simulation is done using a complex channel I [1]. The phase offset caused by

the channel can be clearly observed by comparing the Figures 4.12 and 4.46. The

algorithm converges with single constraint on 2700 symbols, with double constraints

on 2300 and symbols with triple constraints on 1700. Also the constellation diagrams

of the signals after the convergence are plotted in Figures 4.47, 4.48 and 4.47. In
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Figure 4.43: Comparison of the convergence rate for different constraints on complex
channel-I as given in Figures 4.8 and 4.9 using the MSE with SNR = 20dB.
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Figure 4.44: Comparison of the convergence rate for different constraints on complex
channel-I as given in Figures 4.8 and 4.9 using the Residual ISI with SNR = 20dB.
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Figure 4.45: Comparison of the convergence rate for different constraints on complex
channel-I as given in Figures 4.8 and 4.9 using the center tap of the equalizer with
SNR = 20dB.
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order to confirm the convergence rate the residual ISI and the center tap behavior is

also plotted as shown in the Figure 4.52. Hence it can be concluded that the newly

derived scheme can handle small phase offsets introduced in the channel apart from

small phase jitters.

4.7 Summary

The main aim of this chapter is to illustrate the point that as the number of con-

straints in the newly derived scheme are increased the faster convergence rate is

observed using simulations. The new scheme is tested on three different channels.

In case of real channel the convergence rate remained constant no matter how many

constraints are increased. In the other two complex channels a mark difference is

observed in the convergence rates. Simulations are also done for signals with low

signal to noise ratio , the equalizer without the aid of the decision directed mode and

for signals infected by phase offsets. All of them corroborated that any increment

in the number of constraints caused the convergence rate to improve
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Figure 4.46: Constellation of 16-QAM signal before equalization when passed
through complex channel-I (last 1000 samples) affected by phase offset .
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Figure 4.47: Constellation of 16-QAM signal after equalization when passed through
complex channel-I (last 1000 samples) affected by phase offset for a single constraint.
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Figure 4.48: Constellation of 16-QAM signal after equalization when passed through
complex channel-I (last 1000 samples) affected by phase offset for double constraints.
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Figure 4.49: Constellation of 16-QAM signal after equalization when passed through
complex channel-I (last 1000 samples) affected by phase offset for triple constraints.
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Figure 4.50: Comparison of the convergence rate for different constraints on complex
channel-I as given in Figures 4.8 and 4.9 affected by phase offset, using the MSE.
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Figure 4.51: Comparison of the convergence rate for different constraints on complex
channel-I as given in Figures 4.8 and 4.9 affected by phase offset using the Residual
ISI .
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Figure 4.52: Comparison of the convergence rate for different constraints on complex
channel-I as given in Figures 4.8 and 4.9 affected by phase offset using the center
tap of the equalizer.



Chapter 5

Simulations for Fractionally

Spaced Equalizer

Fractionally spaced equalizers are those which use a fraction of symbol duration

spacing between the different window taps of an equalizer filter (as shown in Figure

5.1).

The CMA and its variants were primarily designed for linear equalization using

the baud spaced FIR equalizer. However, because of baud spacing the CMA and its

variants suffered from two main disadvantages

1. For finitely parameterized equalizers, the Godard algorithm has local minima

that do not correspond to acceptable equalizer setting [19]

2. Noise enhancement can be severe for channels with zeros on or near the the

115
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unit circle. Longer equalizer is typically required in order to over come this

drawback [33]

In practice, Godard algorithm and its variants are often been implemented as Frac-

tionally Spaced Equalizers (FSE). The main advantages of implementation of FSE

are suppression of timing phase sensitivity and noise enhancement [8], apart from

convergence to global minima and counteracting the affect of zeros near the unit

circle [34].

The fractionally spaced equalizer can be represented as a filter as shown in the

Figure 5.1.
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Figure 5.1: Fractionally spaced equalizer as a linear filter
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The newly derived algorithm is implemented on a fractionally spaced equalizer

for four different scenarios and the results are plotted. The implementation of FSE

is done by over sampling the input sequence by a rate 2 just before the signal enters

the equalizer.

5.1 Complex Channel-I

The tap space is reduced from baud rate to T/2 and the performance of the algorithm

is observed for the complex channel I. It is observed by simulation that the mean

square error converges approximately at -22dB (from Figure 5.6), a difference of

2 dB, when compared to the baud spaced scenario. Also it is observed that the

difference in the algorithm convergence rate for double and three constraints at T/2

is reduced when compared to the difference in the convergence rate for double and

three constraints at baud spacing. The signal constellation after convergence is also

plotted in Figure 5.3, Figure 5.4 and Figure 5.5 which also proves the improvement

in the MSE when compared to that of the baud spacing scenario.

Since the center tap of the equalizer was assumed to be equal to 1, its behaviour

was also plotted inorder to confirm the convergence rate (from Figure 5.7)
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Figure 5.2: Constellation of 16-QAM signal before equalization when passed through
complex channel-I as given in [1] (last 1000 samples)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

real

im
ag

Figure 5.3: Constellation of 16-QAM signal after equalization when passed through
complex channel-I as given in [1] (last 1000 samples) for single constraint at T/2
spacing
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Figure 5.4: Constellation of 16-QAM signal after equalization when passed through
complex channel-I as given in [1] (last 1000 samples) for double constraints at T/2
spacing
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Figure 5.5: Constellation of 16-QAM signal after equalization when passed through
complex channel-I as given by [1] (last 1000 samples) for three constraints at T/2
spacing
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Figure 5.6: Comparison of the convergence rate for different constraints on complex
channel-I using the MSE for T/2 spaced equalizer
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Figure 5.7: Comparison of the convergence rate for different constraints on complex
channel-I using the behaviour of the center tap of a T/2 spaced equalizer
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5.2 Complex Channel-II

The channel assumed is taken from the paper by Chen [31]( Table 4.1). It is evident

from Figure 5.11 that the MSE converges around 3000 symbols for single constraint,

2200 symbols for double constraints and 1700 symbols for triple constraints. When

these results are compared with those in the baud spaced equalizer, a mark im-

provement not only in the convergence rate was observed but also in the MSE. The

difference in the MSE is observed to be −3 dB. The constellation after convergence

are also observed to be more concentrated than their counterparts in the baud spaced

scenarios (from Figures 5.8, 5.9 and 5.10). Also the behaviour of the center tap is

plotted to prove the convergence rate in Figure 5.12

5.3 Without the aid of decision directed scheme

The algorithm is simulated without the aid of the decision directed scheme as is

done in the case of baud spaced. A nominal difference is observed in the rate of

convergence for single, double and triple constraints as is seen in the case of baud

spaced scenario (as shown in the Figure 5.16) . The steady state MSE is observed to

be around −15 dB, a difference 2 dB from its counterpart in baud spaced scenario.

The signal constellations after convergence are also plotted in Figures 5.13, 5.14 and

5.15. Since the center tap of the equalizer was assumed to be equal to 1, its

behaviour is also plotted in order to confirm the convergence rate in Figure 5.17.
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Figure 5.8: Constellation of 16-QAM signal after equalization when passed through
complex channel-II as given by Table 4.1 (last 1000 samples) for single constraint
at T/2 spacing
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Figure 5.9: Constellation of 16-QAM signal after equalization when passed through
complex channel-II as given by Table 4.1 (last 1000 samples) for double constraints
at T/2 spacing
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Figure 5.10: Constellation of 16-QAM signal after equalization when passed through
complex channel-II as given by Table 4.1 (last 1000 samples) for three constraints
at T/2 spacing

5.4 Simulation when the signal is effected by the

phase offset

Phase offset is introduced in the signal in similar manner as done in the previous

case of baud spaced equalizers (Section 4.6). The algorithm for single constraint con-

verges around 2500 symbols. However, for the case of double and three constraints

the algorithm converges at almost the same rate of 1000 symbols (as shown in Figure

5.21). In order to confirm the convergence rates the behavior of the absolute value

of the center tap is also plotted (as shown in Figure 5.22). These results when are

compared with the results of its counterpart in baud spaced equalizer, clearly sug-
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Figure 5.11: Comparison of the convergence rate for different constraints on complex
channel-II as given by Table 4.1 using the MSE for T/2 spaced equalizer
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Figure 5.12: Comparison of the convergence rate for different constraints on complex
channel-II as given by Table 4.1 using the center tap of the T/2 spaced equalizer
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Figure 5.13: Constellation of 16-QAM signal after equalization when passed through
complex channel-I as given by Picchi and Pratti [1] (last 1000 samples) for single
constraint at T/2 spacing without the aid of decision directed mode
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Figure 5.14: Constellation of 16-QAM signal after equalization when passed through
complex channel-I as given by Picchi and Pratti [1] (last 1000 samples) for double
constraints at T/2 spacing without the aid of decision directed mode



128

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

real

im
ag

Figure 5.15: Constellation of 16-QAM signal after equalization when passed through
complex channel-I as given by Picchi and Pratti [1] (last 1000 samples) for three
constraints at T/2 spacing without the aid of decision directed mode
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Figure 5.16: Comparison of the convergence rate for different constraints on complex
channel-I as given by Picchi and Pratti [1] using the MSE for T/2 spaced equalizer
without the aid of decision directed mode
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Figure 5.17: Comparison of the convergence rate for different constraints on complex
channel-I as given by Picchi and Pratti [1] using the center tap of the T/2 spaced
equalizer without the aid of decision directed mode
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gests that introducing the fractional spacing concept in the equalizer which employs

the newly derived scheme, not only gives better MSE but also better convergence

rates. Also the signal constellations after the convergence are plotted for single,

double and triple constraints in Figure 5.18, Figure 5.19 and Figure 5.20.

5.5 Summary

This chapter gives a brief over view about blind fractionally spaced equalization

techniques, the conditions for their convergence and the performance of the newly

derived scheme for T/2 spacing. As is evident from the simulation results the newly

derived scheme can be implemented for fractional spacing also apart from baud

spacing. In all the learning curves simulated, fractionally spaced equalizer performed

better than the baud spaced equalizer.
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Figure 5.18: Constellation of 16-QAM signal after equalization when passed through
complex channel-I as given by Picchi and Pratti [1] (last 1000 samples) effected by
phase offset for single constraint at T/2 spacing
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Figure 5.19: Constellation of 16-QAM signal after equalization when passed through
complex channel-I as given by Picchi and Pratti [1] (last 1000 samples) effected by
phase offset for double constraints at T/2 spacing



133

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

real

im
ag

Figure 5.20: Constellation of 16-QAM signal after equalization when passed through
complex channel-I as given by Picchi and Pratti [1] (last 1000 samples) effected by
phase offset for triple constraints at T/2 spacing
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Figure 5.21: Comparison of the convergence rate for different constraints on complex
channel-I as given by Picchi and Pratti [1] effected by phase offset using the MSE
for T/2 spaced equalizer
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Figure 5.22: Comparison of the convergence rate for different constraints on complex
channel-I as given by Picchi and Pratti [1] effected by phase offset using the center
tap of the T/2 spaced equalizer



Chapter 6

Conclusions & Future Work

6.1 Conclusions

A new blind equalization scheme based on principle of minimal disturbance is suc-

cessfully derived by introducing the concept of multiple constraints and using the

method of Lagrange multipliers. The new scheme when compared with the existing

similar schemes gives better convergence rates at the cost of complexity (from Table:

3.1). As more number of constraints are added, it is observed that the algorithm

converges with an improved rate.

It is also seen that the algorithm performs well, only when used along with

the decision directed mode. When the new scheme is simulated without the aid of

the decision directed mode it gives results which are poorer to the existing similar

algorithms. Also in the case of no decision directed mode a large impact of the

136
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dispersion constant on convergence rates is observed. It can also be analyzed from

the simulation results that the new algorithm performs better when a dispersion

constant as used by Sato [6] is used than that as used by Godard [14]. Hence it can

be concluded that the new algorithm has its basic traits in the R.C.A and not in

C.M.A. However, when the decision directed mode is included and the dispersion

constant is varied i.e. from the one used by Sato [6] to the one used by Godard [14],

the algorithm exhibits no change. This is precisely due to the smooth shift of the

algorithm into the decision directed mode. Hence it can be concluded that when

the decision directed mode is used, the variation of the dispersion constant does not

have any impact on the algorithm.

The algorithm follows the same pattern for a more severe channel, i.e. the con-

vergence rate is improved as the number of constraints are increased. The difference

between the convergence rate between the single and double constraints is also ob-

served to increase. The main reason for the good performance of the algorithm is

because of the utilization of the previous set of inputs which are left unused in the

previous other algorithms and the application of the decision directed mode.

When the signal is affected by small values of phase offsets, the algorithm con-

verges with a good rate and a steady state MSE . Hence this algorithm is also in

a position to handle small phase offsets introduced by the channel apart from the

phase error introduced by the complex nature of the channel. The algorithm does

not shift into the decision directed mode unless and until both the real and the imag-
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inary parts of the output of the equalizer are in the decision zone, whereas in the

case of other algorithms the shift in the real and the imaginary parts is separate. In

case of severity in the channel and phase offset those algorithms exhibit high MSE’s

than the new one.

Inspite of the algorithm being simulated for SNR = 20 dB, it still retained its

nature of good convergence for higher number of constraints.

The algorithm is also simulated for fractionally spaced scenario Firstly, it can be

concluded from the simulation results that the algorithm can be implemented for

fractional spacing. Secondly, in the case of severe channels the results are promising,

not only an improvement in the MSE but also an improvement in the convergence

rate is observed. However, for the case of less severe channels and the without the

aid of the decision directed mode the algorithm behaved in a similar manner from

the convergence point of view. A difference of 2 dB is observed in the case of MSE

when a comparison between baud spaced and fractionally spaced is made.

6.2 Future Work

All the constants that are present in the newly derived scheme can be varied in a

optimal way to achieve better results
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6.2.1 Step size parameter

The step size parameter in every algorithm controls the convergence speed, the

greater the step size the more faster convergence rate is achieved. If this parameter

is made to vary according to the shift in the newly derived algorithm from the blind

mode to the decision directed mode, the algorithm should give better convergence

rates. In order to maintain good steady state MSE, the value of the step size

parameter should be varied in such a manner that in the blind mode it should be

less than that in the decision directed mode.

6.2.2 Dispersion constant

The dispersion constants can be varied accordingly to the soft constraint approach

as specified in the paper by Tanrikulu [11]. According to Tanrikulu the application

of soft constraints to the algorithm gives better steady state MSE.

6.2.3 Application of DD mode

The other aspect which can be looked upon is the application of the decision directed

mode. In the newly derived scheme the output of the algorithm is tested first for the

decision zones, if the output is not in the decision zones, the algorithm is forced to

use the blind mode tap update function. There exists a possibility that the decision

directed mode can be applied to the algorithm simultaneously with that of the blind
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mode, thus imparting greater stability and good convergence rate. However, at the

rate of increased complexity.

6.2.4 Complexity

One of the major disadvantages of the newly derived scheme is the increment in the

complexity. Further study can be carried out in order to reduce the complexity of

the algorithm.
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