4 research outputs found

    Linear extensions of partial orders and Reverse Mathematics

    Full text link
    We introduce the notion of \tau-like partial order, where \tau is one of the linear order types \omega, \omega*, \omega+\omega*, and \zeta. For example, being \omega-like means that every element has finitely many predecessors, while being \zeta-like means that every interval is finite. We consider statements of the form "any \tau-like partial order has a \tau-like linear extension" and "any \tau-like partial order is embeddable into \tau" (when \tau\ is \zeta\ this result appears to be new). Working in the framework of reverse mathematics, we show that these statements are equivalent either to B\Sigma^0_2 or to ACA_0 over the usual base system RCA_0.Comment: 8 pages, minor changes suggested by referee. To appear in MLQ - Mathematical Logic Quarterl

    Reverse mathematics, well-quasi-orders, and Noetherian spaces

    Get PDF
    A quasi-order Q induces two natural quasi-orders on P(Q) P(Q) , but if Q is a well-quasi-order, then these quasi-orders need not necessarily be well-quasi-orders. Nevertheless, Goubault-Larrecq (Proceedings of the 22nd Annual IEEE Symposium 4 on Logic in Computer Science (LICS’07), pp. 453–462, 2007) showed that moving from a well-quasi-order Q to the quasi-orders on P(Q) P(Q) preserves well-quasi-orderedness in a topological sense. Specifically, Goubault-Larrecq proved that the upper topologies of the induced quasi-orders on P(Q) P(Q) are Noetherian, which means that they contain no infinite strictly descending sequences of closed sets. We analyze various theorems of the form “if Q is a well-quasi-order then a certain topology on (a subset of) P(Q) P(Q) is Noetherian” in the style of reverse mathematics, proving that these theorems are equivalent to ACA0 over RCA0. To state these theorems in RCA0 we introduce a new framework for dealing with second-countable topological spaces

    Le direzioni della logica in Italia: la reverse mathematics e l'analisi computazionale

    Get PDF
    Nelle conversazioni tra matematici non \ue8 infrequente sentire affermazioni del tipo \u201ci teoremi \u3a6 e \u3a8 sono equivalenti\u201d, oppure \u201cil teorema \u3a6 \ue8 pi\uf9 forte del teorema \u3a8\u201d. Dato che \u3a6 e \u3a8 (essendo teoremi) sono entrambi dimostrabili, prendendo alla lettera le due affermazioni abbiamo che la prima \ue8 banalmente vera e la seconda banalmente falsa. Sappiamo tutti per\uf2 che queste affermazioni hanno un altro significato, molto meno banale, e c\u2019\ue8 quindi una ragione per cui vengono fatte. Negli ultimi decenni la logica matematica ha sviluppato alcuni strumenti in grado di rendere precise, e suscettibili di dimostrazione o refutazione, affermazioni come le precedenti. In particolare ci riferiamo alla reverse mathematics e all\u2019analisi computazionale. Questi sono due programmi di ricerca di origine diverse che nell\u2019ultimo decennio, anche grazie al contributo di alcuni ricercatori italiani, hanno trovato significativi punti di contatto. In questo lavoro presenteremo i due programmi, con particolare riferimento alle loro aree di contatto. Evidenzieremo in particolare i contributi dei ricercatori italiani attivi in queste aree, e concluderemo indicando alcune prospettive di sviluppo su cui anche in Italia si sta cercando di lavorare

    逆数学と可算代数系

    Get PDF
    Tohoku University山崎武課
    corecore