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REVERSE MATHEMATICS, WELL-QUASI-ORDERS, AND NOETHERIAN

SPACES

EMANUELE FRITTAION, MATT HENDTLASS, ALBERTO MARCONE, PAUL SHAFER,
AND JEROEN VAN DER MEEREN

Abstract. A quasi-order Q induces two natural quasi-orders on P(Q), but if Q is a well-quasi-
order, then these quasi-orders need not necessarily be well-quasi-orders. Nevertheless, Goubault-
Larrecq in [GL07] showed that moving from a well-quasi-order Q to the quasi-orders on P(Q)
preserves well-quasi-orderedness in a topological sense. Specifically, Goubault-Larrecq proved that
the upper topologies of the induced quasi-orders on P(Q) are Noetherian, which means that they
contain no infinite strictly descending sequences of closed sets. We analyze various theorems of the
form “if Q is a well-quasi-order then a certain topology on (a subset of) P(Q) is Noetherian” in
the style of reverse mathematics, proving that these theorems are equivalent to ACA0 over RCA0.
To state these theorems in RCA0 we introduce a new framework for dealing with second-countable
topological spaces.

1. Introduction

A topological space is Noetherian if it satisfies the following equivalent conditions.

• Every subspace is compact.
• Every ascending sequence of open sets stabilizes: for every sequence (Gn)n∈N of open sets
such that ∀n(Gn ⊆ Gn+1), there is an N such that (∀n > N)(Gn = GN ).

• Every descending sequence of closed sets stabilizes: for every sequence (Fn)n∈N of closed
sets such that ∀n(Fn ⊇ Fn+1), there is an N such that (∀n > N)(Fn = FN ).

The name ‘Noetherian space’ comes from the typical example of a Noetherian space, which is
the Zariski topology on the spectrum of a Noetherian ring. If R is a commutative ring, let Spec(R),
the spectrum of R, denote the set of prime ideals in R. The Zariski topology on Spec(R) is the
topology whose closed sets are the sets of the form {P ∈ Spec(R) : I ⊆ P}, where I ⊆ R is an
ideal. If the ring R is Noetherian, then Spec(R) with the Zariski topology is a Noetherian space.

The present work, however, is not concerned with the connections between Noetherian spaces
and algebraic geometry but with the connections between Noetherian spaces and the theory of
well-quasi-orders. Goubault-Larrecq in [GL07], motivated by possible applications to verification
problems as explained in [GL10], provided several results demonstrating that Noetherian spaces
can be thought of as topological versions, or generalizations, of well-quasi-orders. We analyze these
theorems in the style of reverse mathematics, proving that they are equivalent to ACA0 over the base
theory RCA0. As a byproduct of this analysis, we obtain elementary proofs of Goubault-Larrecq’s
results which are much more direct than the original category-theoretic arguments used in [GL07].
The logical analysis of Noetherian spaces arising from Noetherian rings is ongoing work.

A quasi-order Q induces various quasi-orders on P(Q), the power set of Q, which in turn induce
various topologies on P(Q). The theorems of [GL07] state that if a quasi-order Q is in fact a
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well-quasi-order, then several of the resulting topologies on P(Q) are Noetherian. In order to state
these results precisely, we must first introduce the relevant definitions.

A quasi-order is a pair (Q,≤Q), where Q is a set and ≤Q is a binary relation on Q satisfying the
reflexivity axiom (∀q ∈ Q)(q ≤Q q) and the transitivity axiom (∀p, q, r ∈ Q)((p ≤Q q ∧ q ≤Q r) →
p ≤Q r). For notational ease, we usually identify (Q,≤Q) and Q. We write p <Q q when we have
both p ≤Q q and q �Q p, and we write p |Q q when we have both p �Q q and q �Q p.

If E ∈ P(Q), then E↓ = {q ∈ Q : (∃p ∈ E)(q ≤Q p)} denotes the downward closure of E and
E↑ = {q ∈ Q : (∃p ∈ E)(p ≤Q q)} denotes the upward closure of E. For p ∈ Q, we usually write p↓

for {p}↓ and p↑ for {p}↑. A quasi-order Q induces the following quasi-orders ≤♭
Q and ≤♯

Q on P(Q).

(We follow the notation of [GL07]. In other works, such as [Mar01,Mar05], ‘≤♭
Q’ is written as ‘≤∃

∀’

and ‘≤♯
Q’ is written as ‘≤∀

∃’.)

Definition 1.1. Let Q be a quasi-order. For A,B ∈ P(Q), define

• A ≤♭
Q B if and only if (∀a ∈ A)(∃b ∈ B)(a ≤Q b), and

• A ≤♯
Q B if and only if (∀b ∈ B)(∃a ∈ A)(a ≤Q b).

Notice that A ≤♭
Q B is equivalent to A ⊆ B↓ and that A ≤♯

Q B is equivalent to B ⊆ A↑. We

denote (P(Q),≤♭
Q) by P♭(Q) and (P(Q),≤♯

Q) by P♯(Q): it is easy to check that these are indeed

quasi-orders (they are partial orders if and only if Q is an antichain).

Both P♭(Q) and P♯(Q) have been studied for a long time by computer scientists. In this con-

text, P♭(Q) is known as the Hoare quasi-order, and P♯(Q) is known as the Smyth quasi-order.
For example, these orders can be used to compare the different executions of a non-deterministic
computation (see e.g. [Win85] for an early presentation).

A quasi-order can be topologized in several ways. We consider the Alexandroff topology and the
upper topology.

Definition 1.2. Let Q be a quasi-order.

• The Alexandroff topology of Q is the topology whose open sets are those of the form E↑
for E ⊆ Q. The topological space consisting of Q with its Alexandroff topology is denoted
A(Q).

• The upper topology of Q is the topology whose basic open sets are those of the form Q\(E↓)
for E ⊆ Q finite. The topological space consisting of Q with its upper topology is denoted
U(Q).

Notice that, unless Q is a partial order, neither A(Q) nor U(Q) are T0 spaces, and, unless Q is
an antichain, neither A(Q) nor U(Q) are T1 spaces. The order-theoretic significances of A(Q) and
U(Q) are that they are the finest and coarsest topologies on Q from which ≤Q can be recovered.
Every topological space X induces a specialization quasi-order on X defined by x � y if and only
if every open set that contains x also contains y. If Q is a quasi-order, then A(Q) (respectively
U(Q)) is the finest (respectively coarsest) topology on Q for which � = ≤Q (see for example
[GL13, Section 4.2]).

Finally, a well-quasi-order (wqo) is a quasi-order Q that is well-founded and has no infinite
antichains. Equivalently, a quasi-order Q is a wqo if for every function f : N → Q, there are
m,n ∈ N with m < n such that f(m) ≤Q f(n). It is easy to check that, for a quasi-order Q,
Q is a wqo if and only if A(Q) is Noetherian, in which case U(Q) is also Noetherian. In fact, in
Proposition 3.8 we show that these facts are provable in RCA0.

For a quasi-order Q, let Pf(Q) denote the set of finite subsets of Q, and let P♭
f (Q) and P♯

f (Q)

denote the respective restrictions of P♭(Q) and P♯(Q) to Pf(Q). If Q is a wqo, then P♭
f (Q) is

also a wqo (see [ER52]), but P♭(Q), P♯(Q), and P♯
f (Q) need not be wqo’s. This can be seen

by considering Rado’s example [Rad54], the well-quasi-order (R,≤R) where R = {(i, j) ∈ N ×
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N : i < j} and (i, j) ≤R (k, ℓ) if (i = k ∧ j ≤ ℓ) ∨ j < k (see [Jan99, Mar01] for a complete
explanation). Nevertheless, Goubault-Larrecq [GL07] proved that although passing from a wqo Q

to the quasi-orders P♭(Q), P♯(Q), and P♯
f (Q) does not necessarily preserve well-quasi-orderedness,

it does preserve well-foundedness in the sense that the upper topologies of P♭(Q) and P♯
f (Q) are

Noetherian.

Theorem 1.3 ([GL07]). If Q is a wqo, then U(P♭(Q)) and U(P♯
f (Q)) are Noetherian.

Though Goubault-Larrecq explicitly proved Theorem 1.3 for U(P♭(Q)) and U(P♯
f (Q)) only, it is

also true that if Q is a wqo, then A(P♭
f (Q)), U(P♭

f (Q)), and U(P♯(Q)) are Noetherian as well. For

A(P♭
f (Q)) and U(P♭

f (Q)), this is because if Q is a wqo, then P♭
f (Q) is also a wqo (the U(P♭

f (Q)) case

also follows from Theorem 1.3). The U(P♯(Q)) case follows from Theorem 1.3 because for every

A ∈ P(Q) there is a B ∈ Pf(Q) that is equivalent to A in the sense that A ≤♯
Q B and B ≤♯

Q A.

Notice, however, that if Q is a wqo, then A(P♭(Q)), A(P♯(Q)), and A(P♯
f (Q)) need not necessarily

be Noetherian. This is because P♭(Q), P♯(Q), and P♯
f (Q) need not necessarily be wqo’s, and a

quasi-order’s Alexandroff topology is Noetherian if and only if the quasi-order itself is a wqo.
Concerning P♭(Q) and P♯(Q), we wish to remark that Nash-Williams [NW68] strengthened well-

quasi-orders to better-quasi-orders (bqo’s), an ingenious insight that led to a rich theory, including
Laver’s proof of Fräıssé’s conjecture in [Lav71]. A few years later, Pouzet [Pou72] introduced a
hierarchy of notions intermediate between wqo and bqo by defining the α-well-quasi-orders (α-
wqo’s) for each countable ordinal α. The ω-wqo’s are exactly the wqo’s, and the larger α is, the
closer the notion of α-wqo is to the notion of bqo. Indeed, Q is a bqo if and only if Q is an α-wqo
for every α < ω1. By imposing these stronger conditions on Q, we may ensure that P♭(Q) and
P♯(Q) are wqo’s.

Theorem 1.4 (see [Mar01] for a complete discussion and further results).

• If Q is a bqo, then P♭(Q), P♯(Q), P♭
f (Q), and P♯

f (Q) are all bqo’s.

• If Q is a ω2-wqo, then P♭(Q), P♯(Q), P♭
f (Q), and P♯

f (Q) are all wqo’s.

The purpose of this work is to study Theorem 1.3 and related statements from the viewpoint of
reverse mathematics. Our main result is the following.

Theorem 4.7. The following are equivalent over RCA0.

(i) ACA0.

(ii) If Q is a wqo, then A(P♭
f (Q)) is Noetherian.

(iii) If Q is a wqo, then U(P♭
f (Q)) is Noetherian.

(iv) If Q is a wqo, then U(P♯
f (Q)) is Noetherian.

(v) If Q is a wqo, then U(P♭(Q)) is Noetherian.
(vi) If Q is a wqo, then U(P♯(Q)) is Noetherian.

The following table summarizes the logical strengths of implications such as “if Q is a wqo, then
P♭
f (Q) is a wqo” and “if Q is a wqo, then U(P♭(Q)) is Noetherian.” The entry ‘false’ indicates

that the corresponding implication is false, as witnessed by Rado’s example. The entry ‘RCA0’
indicates that the corresponding implication is provable in RCA0. The entry ‘ACA0’ indicates that
the corresponding implication is equivalent to ACA0 over RCA0. The entry ‘≤ ACA0’ indicates that
the corresponding implication is provable in ACA0 but a reversal is not yet known. The table also
provides references for the true implications.
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P♭(Q) P♯(Q) P♭
f (Q) P♯

f (Q)

Q wqo ⇒ • wqo false false
ACA0

[Mar05, 5.10]
Thm 2.5

false

Q bqo ⇒ • bqo
≤ ACA0

[Mar05, 5.4]
RCA0

[Mar05, 5.6]
RCA0

[Mar05, 5.4]
RCA0

[Mar05, 5.4]

Q wqo ⇒ A(•) Noeth. false false
ACA0

Thm 4.7
false

Q wqo ⇒ U(•) Noeth.
ACA0

Thm 4.7
ACA0

Thm 4.7
ACA0

Thm 4.7
ACA0

Thm 4.7

If Q is a countable quasi-order, then Pf(Q) is also countable and hence easy to manage in second-

order arithmetic. The spaces A(P♭
f (Q)), U(P♭

f (Q)), and U(P♯
f (Q)) fit very nicely into Dorais’s

framework of countable second-countable spaces in second-order arithmetic [Dor11], and so we
consider the equivalence of items (i)–(iv) in Theorem 4.7 as not only contributing to the reverse
mathematics of wqo’s but also as a proof-of-concept example of the usefulness of Dorais’s framework.

On the other hand, if Q is infinite, then P(Q) is uncountable and hence neither it nor the basic

open sets of U(P♭(Q)) and U(P♯(Q)) exist as sets in second-order arithmetic. Thus for items (v)

and (vi) of Theorem 4.7, we code U(P♭(Q)) and U(P♯(Q)) using a scheme that is broadly similar
to the usual coding of complete separable metric spaces in second-order arithmetic (as detailed
in [Sim09, Section II.5], for example). This scheme can be adapted to deal with quite general
second-countable topological spaces, including the countably based MF spaces of [Mum06].

To prove the reversals of Theorem 4.7, we isolate a way of constructing recursive partial orders
such that every sequence witnessing that such a partial order is not a wqo computes 0′. These
partial orders generalize the recursive linear order of type ω + ω∗ used in [MS11, FM12, FM14]
in which every sequence witnessing that the linear order is not a well-order computes 0′. The
construction is introduced in Definition 4.2, and its main property is proved in Lemma 4.4.

The plan of the paper is as follows. In Section 2 we give some background concerning reverse
mathematics in general, the reverse mathematics of well-quasi-orders, and Dorais’s coding of count-
able second-countable topological spaces. Section 3 covers the details of expressing the notion of
Noetherian space in second-order arithmetic, both in the countable second-countable case and
in the uncountable case. In this section we also show that ACA0 proves statements (ii)-(vi) of
Theorem 4.7. The reversals of these implications are proved in Section 4, using the construction
mentioned in the previous paragraph.

2. Background

2.1. Reverse mathematics. Reverse mathematics is a foundational program introduced by Fried-
man [Fri75] with the goal of classifying the theorems of ordinary mathematics by their proof-
theoretic strengths. Theorem ϕ is considered stronger than theorem ψ if ϕ requires stronger axioms
to prove than ψ does or, equivalently, if ϕ implies ψ but not conversely over some fixed weak base
theory. The usual setting for reverse mathematics is second-order arithmetic. The language of
second-order arithmetic is a two-sorted language, with first-order variables (intended to range over
natural numbers) and second-order variables (intended to range over sets of natural numbers), and
the membership relation to connect the two sorts. In this setting a remarkable phenomenon is that
a natural theorem ϕ is most often equivalent to some well-known theory T over the base theory
B. This means that T ⊢ ϕ and that B + ϕ ⊢ ψ for every ψ ∈ T . The proofs of the axioms of
T from B + ϕ is called a reversal, from which ‘reverse mathematics’ gets its name. This article
is only concerned with the standard base theory RCA0 and the theory ACA0, so we give only the
definitions of these theories and refer the reader to [Sim09] for a comprehensive treatment of the
reverse mathematics program.
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The axioms of RCA0 are: a first-order sentence expressing that N is a discretely ordered com-
mutative semi-ring with identity; the Σ0

1 induction scheme, which consists of the universal closures
(by both first- and second-order quantifiers) of all formulas of the form

[ϕ(0) ∧ ∀n(ϕ(n) → ϕ(n+ 1))] → ∀nϕ(n),

where ϕ is Σ0
1; and the ∆0

1 comprehension scheme, which consists of the universal closures (by both
first- and second-order quantifiers) of all formulas of the form

∀n(ϕ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is Σ0
1, ψ is Π0

1, and X is not free in ϕ.
The system RCA0 is taken as the standard base system in reverse mathematics. The name

‘RCA0’ stands for ‘recursive comprehension axiom’, which refers to the ∆0
1 comprehension scheme

because a set X is ∆0
1 in a set Y if and only if X is recursive in Y . Thus in RCA0, to define a set

by comprehension, one must compute that set from an existing set. For this reason, we think of
RCA0 as capturing what might be called ‘recursive mathematics’ or ‘effective mathematics’. The
subscript ‘0’ in ‘RCA0’ refers to the fact that induction in RCA0 is limited to Σ0

1 formulas (and to
Π0

1 formulas because RCA0 proves the Π
0
1 induction scheme; see [Sim09, Corollary II.3.10]). Despite

being a weak system, several interesting and familiar theorems are provable in RCA0, such as the
intermediate value theorem and the fact that every field has an algebraic closure (though RCA0

does not suffice to prove that algebraic closures are unique). See [Sim09, Chapter II] for more
about RCA0.

The axioms of ACA0 are a first-order sentence expressing that N is a discretely ordered commu-
tative semi-ring with identity; the induction axiom

∀X[[0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X)] → ∀n(n ∈ X)];

and the arithmetical comprehension scheme, which consists of the universal closures (by both first-
and second-order quantifiers) of all formulas of the form

∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is an arithmetical formula in which X is not free. Equivalently, ACA0 may be obtained by
adding the arithmetical comprehension scheme to the axioms of RCA0.

The name ‘ACA0’ stands for ‘arithmetical comprehension axiom’, which refers to the arithmetical
comprehension scheme. The subscript ‘0’ in ‘ACA0’ refers to the fact that induction in ACA0 is
essentially limited to arithmetical formulas, which is what can be derived from the induction axiom
and the arithmetical comprehension scheme. In terms of computability, ACA0 can be characterized
by adding the statement “for every set X, the Turing jump of X exists” to RCA0. Many familiar
theorems are equivalent to ACA0 over RCA0, such as the Bolzano-Weierstraß theorem, the fact
that every vector space has a basis, the fact that every commutative ring has a maximal ideal (the
existence of prime ideals is weaker), König’s lemma, and Ramsey’s theorem for k-tuples for any
fixed k ≥ 3 (Ramsey’s theorem for pairs is weaker, and Ramsey’s theorem for arbitrary tuples is
stronger). See [Sim09, Chapter III] for more about ACA0.

A common strategy for proving that a theorem reverses to ACA0 over RCA0 is to take advantage
of the following lemma, which states that ACA0 is equivalent over RCA0 to the statement that every
injection has a range.

Lemma 2.1 ([Sim09, Lemma III.1.3]). The following are equivalent over RCA0.

(i) ACA0.
(ii) If f : N → N is an injection, then there is a set X such that

∀n(n ∈ X ↔ ∃m(f(m) = n)).
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2.2. Well-quasi-orders in second-order arithmetic. The reverse mathematics of wqo and bqo
theory is a vibrant area with many results and many open problems, and we refer the reader
to [Mar05] for a thorough introduction. Here we simply present the basic information needed for
the work at hand.

In RCA0 we can easily give the definition of quasi-order made in the introduction. In RCA0, the
official definition of a well-quasi-order is the following.

Definition 2.2 (RCA0). A well-quasi-order (wqo) is a quasi-order Q such that for every function
f : N → Q, there are m,n ∈ N with m < n such that f(m) ≤Q f(n).

We usually think of a function f : N → Q as a sequence (qn)n∈N of elements of Q, in which case
Definition 2.2 states that a quasi-order Q is a wqo if for every such sequence there are m,n ∈ N
with m < n such that qm ≤Q qn. Thus Q is not a wqo if and only if there is an infinite so-called bad
sequence (qn)n∈N such that ∀m∀n(m < n → qm �Q qn). For convenience, we also define a finite
sequence (qn)n<k to be bad if ∀m∀n(m < n < k → qm �Q qn).

Several of the well-known classically equivalent definitions of well-quasi-order are not equivalent
over RCA0. For example, RCA0 proves that if Q is a wqo according to Definition 2.2, then Q
has no infinite strictly descending chains and no infinite antichains [Mar05]. However, the reverse
implication, that a quasi-order with no infinite strictly descending chains and no infinite antichains
is a wqo according to Definition 2.2, is equivalent to CAC over RCA0, where CAC states that
every infinite partial order has an infinite chain or an infinite antichain [CMS04,Fri14]. Thus the
equivalence of these two definitions of wqo is provable in RCA0 + CAC but not in RCA0.

By using the usual coding of finite subsets of N as elements of N, one readily sees that RCA0

proves that if Q is a quasi-order, then Pf(Q),

≤♭
Q= {(a,b) ∈ Pf(Q)× Pf(Q) : (∀a ∈ a)(∃b ∈ b)(a ≤Q b)},

and

≤♯
Q= {(a,b) ∈ Pf(Q)× Pf(Q) : (∀b ∈ b)(∃a ∈ a)(a ≤Q b)}

all exist as sets. The proof that if Q is a quasi-order then P♭
f (Q) and P♯

f (Q) are both quasi-orders
is also straightforward in RCA0.

A little care must be taken to describe P♭(Q) and P♯(Q) in RCA0. First, if Q is infinite, then
P(Q) is of course too big to exist as a set in any subsystem of second-order arithmetic. Second, if
Q is a quasi-order and E ⊆ Q, then RCA0 proves that E↓ and E↑ exist as sets when E is finite,
but in general ACA0 is required to prove that E↓ and E↑ exist as sets when E is infinite. Thus

when working in RCA0, ‘A ≤♭
Q B’ and ‘A ≤♯

Q B’ must be interpreted by their respective defining

formulas ‘(∀a ∈ A)(∃b ∈ B)(a ≤Q b)’ and ‘(∀b ∈ B)(∃a ∈ A)(a ≤Q b).’ Under this interpretation,

in RCA0 one can prove that A ≤♭
Q B ≤♭

Q C → A ≤♭
Q C for all A,B,C ⊆ Q, one can work with

sequences (An)n∈N of subsets of Q, and one can consider whether or not there are m,n ∈ N with

m < n such that Am ≤♭
Q An. Using this approach, Marcone has shown the following theorem.

Theorem 2.3 ([Mar05, Theorem 5.4 and Theorem 5.6]).

• RCA0 proves that if Q is a bqo, then P♭
f (Q), P♯

f (Q), and P♯(Q) are all bqo’s.

• ACA0 proves that if Q is a bqo, then P♭(Q) is a bqo.

The reversal for the second item in the above theorem remains open.
Theorem 5.10 of [Mar05] states that ACA0 is equivalent to the statement “if Q is a wqo then

P♭
f (Q) is a wqo” over RCA0 + RT

2
2, where RT

2
2 is Ramsey’s theorem for pairs and two colors. In

the proof of the reversal of this theorem, RT2
2 is only used to prove that Q × R is a wqo (where

(q0, r0) ≤Q×R (q1, r1) if and only if q0 ≤Q q1 and r0 ≤R r1) whenever Q and R are wqo’s. Notice
that by [CMS04, Corollary 4.7] RCA0 and even the stronger system WKL0 do not suffice to prove



REVERSE MATHEMATICS, WELL-QUASI-ORDERS, AND NOETHERIAN SPACES 7

this statement. We eliminate RT
2
2 from the reversal, thereby improving the result of [Mar05], via

the following lemma.

Lemma 2.4 (RCA0). Suppose that P♭
f (Q) is a wqo whenever Q is a wqo. Then Q × R is a wqo

whenever Q and R are wqo’s.

Proof. Let Q and R be wqo’s, and let ((qn, rn))n∈N be a sequence of elements from Q × R. We
need to find m and n in N with m < n such that (qm, rm) ≤Q×R (qn, rn). To this end, let Q ⊕ R
be the disjoint sum of Q and R, where Q⊕R = (Q×{0})∪ (R×{1}) and (x, i) ≤Q⊕R (y, j) if and
only if (i = j = 0 ∧ x ≤Q y) ∨ (i = j = 1 ∧ x ≤R y). It is easy to see that Q ⊕ R is a quasi-order,

and by [Mar05, Lemma 5.13] it is a wqo. By hypothesis, P♭
f (Q ⊕ R) is also a wqo. Consider now

the sequence ({(qn, 0), (rn, 1)})n∈N of elements of P♭
f (Q ⊕ R), and let m and n in N be such that

m < n and {(qm, 0), (rm, 1)} ≤♭
Q⊕R {(qn, 0), (rn, 1)}. It must be that qm ≤Q qn and rm ≤R rn, so

we have our desired m < n such that (qm, rm) ≤Q×R (qn, rn). �

Theorem 2.5. The following are equivalent over RCA0.

(i) ACA0.

(ii) If Q is a wqo, then P♭
f (Q) is a wqo.

Proof. Use the proof of [Mar05, Theorem 5.10], but, in the reversal, prove that L×ω is a wqo using
Lemma 2.4 instead of RT2

2. �

Theorem 4.5 below provides a different proof of the (ii)⇒(i) implication in Theorem 2.5.

2.3. Countable second-countable topological spaces in second-order arithmetic. A topo-
logical space is second-countable if it has a a countable base. Dorais in [Dor11] provides the ap-
propriate definitions for working with countable second-countable spaces in RCA0. We situate our
work in his framework.

Definition 2.6 (RCA0; [Dor11, Definition 2.1]). A base for a topology on a set X is an indexed
sequence U = (Ui)i∈I of subsets of X together with a function k : X × I × I → I such that the
following properties hold.

• If x ∈ X, then x ∈ Ui for some i ∈ I.
• If x ∈ Ui ∩ Uj , then x ∈ Uk(x,i,j) ⊆ Ui ∩ Uj .

Definition 2.7 (RCA0; [Dor11, Definition 2.2]). A countable second-countable space is a triple
(X,U , k) where U = (Ui)i∈I and k : X × I × I → I form a base for a topology on the set X.

Subsets of countable second-countable spaces produce subspaces in a natural way.

Definition 2.8 (RCA0; [Dor11, Definition 2.9]). Let (X,U , k) be a countable second-countable
space with U = (Ui)i∈I . If X ′ ⊆ X, then the corresponding subspace (X ′,U ′, k′) is defined by
U ′
i = Ui ∩X

′ for all i ∈ I and k′ = k ↾ (X ′ × I × I).

Let (X,U , k) be a countable second-countable space, and recall that Pf(I) denotes the set of
finite subsets of I. Every function h : N → Pf(I) codes a so-called effectively open set, the idea
being that h enumerates (sets of) indices of basic open sets whose union is the open set being
coded. Explicitly, h is a code for the open set Gh =

⋃

n∈N
⋃

i∈h(n) Ui. Of course RCA0 does not

prove that such unions exist in general, so we must interpret the statement “x is in the effectively
open set coded by h” as the formula ‘(∃n)(∃i ∈ h(n))(x ∈ Ui)’. To simplify notation, we abbreviate
this formula by ‘x ∈ Gh’ or by ‘x ∈

⋃

n∈N
⋃

i∈h(n) Ui’. Similarly, we also interpret h as coding the

effectively closed set Fh = X \ Gh =
⋂

n∈N
⋂

i∈h(n)(X \ Ui). The reason for coding open sets by

functions N → Pf(I) rather than by functions N → I is that the coding by functions N → Pf(I)
allows for a natural coding of the empty set via the function that is constantly ∅. Otherwise we
would need to enforce that Ui = ∅ for some i ∈ I for there to be a code for the empty set as an
effectively open set.
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Definition 2.9 (RCA0; [Dor11, Definition 3.1]). Let (X,U , k) be a countable second-countable
space with U = (Ui)i∈I . We say that (X,U , k) is compact if for every h : N → Pf(I) such that
X =

⋃

n∈N
⋃

i∈h(n) Ui (i.e., such that (∀x ∈ X)(∃n ∈ N)(∃i ∈ h(n))(x ∈ Ui)), there is an N ∈ N
such that X =

⋃

n<N

⋃

i∈h(n) Ui.

Dorais’s [Dor11, Proposition 3.2] expresses that this definition of compactness does not depend
on the choice of base (U , k) for the topology on X. For matters of convenience, Definition 2.9 defines
compactness in terms of covers by basic open sets. It is equivalent to define compactness in terms
of covers by arbitrary open sets. Let (X,U , k) be a countable second-countable space. A sequence
of effectively open sets in (X,U , k) is a function g : N×N → Pf(I) thought of as coding the sequence
(Gn)n∈N, where each Gn is Gg(n,·) =

⋃

m∈N
⋃

i∈g(n,m) Ui. Similarly, a sequence of effectively closed

sets in (X,U , k) is a function g : N×N → Pf(I) thought of as coding the sequence (Fn)n∈N, where
each Fn is Fg(n,·) =

⋂

m∈N
⋂

i∈g(n,m)X \ Ui. RCA0 proves that a countable second-countable space

(X,U , k) is compact if and only if for every sequence (Gn)n∈N of effectively open sets such that
X =

⋃

n∈NGn, there is an N ∈ N such that X =
⋃

n<N Gn.

3. Noetherian spaces in second-order arithmetic

3.1. Countable second-countable spaces. Let (X,U , k) be a countable second-countable space,
and let Gh be an effectively open set. One is tempted to define compactness for Gh via Definition 2.8
and Definition 2.9 by saying that the subspace corresponding to Gh is compact. However, Gh is a
coded object, and RCA0 need not in general prove that it exists as a set, and so Definition 2.8 need
not apply.1 We simply extend Definition 2.9 as follows.

Definition 3.1 (RCA0). Let (X,U , k) be a countable second-countable space with U = (Ui)i∈I . An
effectively open set Gh is compact if for every function f : N → Pf(I) with Gh ⊆

⋃

n∈N
⋃

i∈f(n) Ui,

there is an N ∈ N such that Gh ⊆
⋃

n<N

⋃

i∈f(n) Ui.

Note that, a posteriori, if Gh is a compact effectively open set, then Gh =
⋃

n<N

⋃

i∈h(n) Ui for

some N ∈ N, so RCA0 does indeed prove that it exists as a set and that the corresponding subspace
is compact.

Now we show that the equivalent definitions of Noetherian space are equivalent over RCA0.

Proposition 3.2 (RCA0). For a countable second-countable space (X,U , k), the following state-
ments are equivalent.

(i) Every effectively open set is compact.
(ii) For every effectively open set Gh, there is an N ∈ N such that Gh =

⋃

n<N

⋃

i∈h(n) Ui.

(iii) Every subspace is compact.
(iv) For every sequence (Gn)n∈N of effectively open sets such that ∀n(Gn ⊆ Gn+1), there is an

N such that (∀n > N)(Gn = GN ).
(v) For every sequence (Fn)n∈N of effectively closed sets such that ∀n(Fn ⊇ Fn+1), there is an

N such that (∀n > N)(Fn = FN ).

Proof. The proof that (i), (ii), (iv), and (v) are equivalent is a simple exercise in chasing the
definitions. Likewise, it is easy to see that each of (i), (ii), (iv), and (v) implies (iii). That (iii)
implies the others requires proof. We show that (iii)⇒(ii). Let (X,U , k) be a countable second-
countable space, and let Gh be an effectively open set. We would like to apply (iii) to the subspace
Gh, but this cannot be done in RCA0 because Gh need not exist as a set.

1However, if Y is a Σ0
1 subset of X and f : N → Y is an enumeration of Y , then (N,V, ℓ), where Vi = f−1(Ui) and

ℓ(n, i, j) = k(f(n), i, j) is a countable second-countable space that is essentially a homeomorphic copy of the subspace
of (X,U , k) corresponding to Y .
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Assume for a contradiction that no N satisfies Gh =
⋃

n<N

⋃

i∈h(n) Ui, and fix an enumeration

g : N → X of the elements of Gh (which is possible because Gh has a Σ0
1 definition). We recursively

define an injection f : N → X. Assuming we defined f(m) for m < n, let

Fn = {f(m) : m < n} ∪
⋃

m<n

⋃

i∈h(m)

Ui,

and define f(n) = g(k) where k is least such that g(k) /∈ Fn. Such a k exists because otherwise
Gh ⊆ Fn is the union of finitely many of the sets

⋃

i∈h(m) Ui.

Let X ′ ⊆ X be an infinite set such that (∀x ∈ X ′)(∃n ∈ N)(f(n) = x). (It is well-known and easy
to show that RCA0 proves that if f : N → X is an injection, then the range of f is infinite and there is
an infinite set X ′ of elements in the range of f . This is a formalization of the fact that every infinite
r.e. set contains an infinite recursive subset.) By (iii), the subspace (X ′,U ′, k′) (using the notation
of Definition 2.8) is compact, so there is an N ∈ N such that X ′ =

⋃

m<N

⋃

i∈h(m)(Ui ∩X
′). Now

pick n > N such that f(n) ∈ X ′. We have the contradiction that both f(n) ∈
⋃

m<N

⋃

i∈h(m) Ui

by the choice of N and f(n) /∈
⋃

m<N

⋃

i∈h(m) Ui by the definition of f . �

Definition 3.3 (RCA0). A countable second-countable space is Noetherian if it satisfies any of the
equivalent conditions from Proposition 3.2.

We can make any quasi-order a countable second-countable space by giving it either the Alexan-
droff topology or the upper topology.

Definition 3.4 (RCA0). Let Q be a quasi-order.

• A base for the Alexandroff topology on Q is given by U = (Uq)q∈Q, where Uq = q↑ for each
q ∈ Q, and k(q, p, r) = q. Let A(Q) denote the countable second-countable space (Q,U , k).

• A base for the upper topology on Q is given by V = (Vi)i∈Pf(Q), where Vi = Q \ (i↓) for
each i ∈ Pf(Q), and ℓ(q, i, j) = i∪ j. Let U(Q) denote the countable second-countable space
(Q,V, ℓ).

That a quasi-order’s Alexandroff topology is finer than its upper topology can be made precise
via the following definition.

Definition 3.5 (RCA0). Let X be a set, and let (U = (Ui)i∈I , k) and (V = (Vj)j∈J , ℓ) be two bases
for topologies on X. We say that (X,U , k) is effectively finer than (X,V, ℓ) and that (X,V, ℓ) is
effectively coarser than (X,U , k) if there is a function f : J × N → Pf(I) such that

(∀j ∈ J)(∀x ∈ X)(x ∈ Vj ↔ (∃n ∈ N)(∃i ∈ f(j, n))(x ∈ Ui)).

Essentially, (X,U , k) is effectively finer than (X,V, ℓ) if there is a sequence of sets (Gj)j∈J indexed
by J and effectively open in (X,U , k) such that (∀j ∈ J)(Gj = Vj). It follows that every effectively
open set in (X,V, ℓ) is effectively open in (X,U , k), which leads to the following proposition.

Proposition 3.6 (RCA0). Let (X,U , k) and (X,V, ℓ) be countable second-countable spaces with
(X,U , k) effectively finer than (X,V, ℓ).

• If (X,U , k) is compact, then (X,V, ℓ) is compact.
• If (X,U , k) is Noetherian, then (X,V, ℓ) is Noetherian.

Proposition 3.7 (RCA0). Let Q be a quasi-order. Then A(Q) is effectively finer than U(Q).

Proof. Let Q be a quasi-order, let ((Uq)q∈Q, k) be the base for the Alexandroff topology on Q, and
let ((Vi)i∈Pf(Q), ℓ) be the base for the upper topology on Q. Define f : Pf(Q)× N → Pf(Q) by

f(i, n) =

{

{n} if n ∈ Q \ (i↓)

∅ otherwise.
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Then for each i ∈ Pf(Q),
⋃

n∈N
⋃

q∈f(i,n) Uq =
⋃

q∈Q\(i↓) Uq = Q \ (i↓) = Vi. So f witnesses that

A(Q) is effectively finer that U(Q). �

The basic relationships among a quasi-order, its Alexandroff topology, and its upper topology
are provable in RCA0.

Proposition 3.8 (RCA0). Let Q be a quasi-order.

(i) If A(Q) Noetherian, then U(Q) Noetherian.
(ii) Q is a wqo if and only if A(Q) is Noetherian.

Proof. Item (i) follows from Proposition 3.7 and Proposition 3.6.
For item (ii), first suppose thatA(Q) is not Noetherian, and let (Gn)n∈N be an ascending sequence

of effectively open sets that does not stabilize, meaning that ∀n(Gn ⊆ Gn+1) and (∀n)(∃m >
n)(Gn $ Gm). We recursively define a bad sequence (qi)i∈N of elements of Q together with a
sequence of indices (ni)i∈N such that ∀i(qi ∈ Gni

). Suppose that (qi)i<k and (ni)i<k have been
defined so that (qi)i<k is a finite bad sequence and that (∀i < k)(qi ∈ Gni

). Search for a qk and nk
such that qk ∈ Gnk

and (∀i < k)(qi �Q qk). Such a pair must exist because there is an m such that
⋃

i<kGni
$ Gm, and in such a Gm there must be a q such that (∀i < k)(qi �Q q).

Conversely, suppose that Q is not a wqo, and let (qi)i∈N be a bad sequence of elements of Q.
Then the sequence (Gn)n∈N, where Gn = {qi : i < n}↑ for each n ∈ N, is an ascending sequence of
effectively open sets that does not stabilize (in fact, Gn $ Gn+1 for each n). �

Our analysis immediately yields the first two forward directions of Theorem 4.7.

Theorem 3.9 (ACA0). If Q is a wqo, then A(P♭
f (Q)) and U(P♭

f (Q)) are Noetherian.

Proof. Let Q be a wqo. Then P♭
f (Q) is a wqo by Theorem 2.5, so A(P♭

f (Q)) and U(P♭
f (Q)) are

Noetherian by Proposition 3.8. �

We defer the proof in ACA0 of the statement “if Q is a wqo, then U(P♯
f (Q)) is Noetherian” to

Corollary 3.22, because a direct proof would essentially repeat the proof of Theorem 3.21, which is
the analogous theorem for the more general P♯(Q) case.

3.2. Uncountable second-countable spaces. If Q is an infinite quasi-order, then P(Q) is

uncountable and thus U(P♭(Q)) and U(P♯(Q)) cannot be coded as countable second-countable
spaces. However, in second-order arithmetic we can still express, for example, that the sets
E0, . . . , En−1 code the basic closed set {E0, . . . , En−1}↓

♭ by defining A ∈ {E0, . . . , En−1}↓
♭ to

mean that (∃i < n)(A ≤♭
Q Ei). (Notice here that we use the notation ‘↓♭’ to emphasize that the

downward closure is with respect to ≤♭
Q. We similarly use ‘↓♯’ to denote the downward closure

with respect to ≤♯
Q.) Although not immediately obvious from the definitions, it is the case that

the spaces U(P♭(Q)) and U(P♯(Q)) are second-countable (as Proposition 3.15 and Proposition 3.17
below imply). This situation and Definition 2.7 inspire the following meta-definition, each instance
of which is made in RCA0.

Definition 3.10 (instance-wise in RCA0). A (general) second-countable space is coded by a set
I ⊆ N and formulas ϕ(X), Ψ=(X,Y ), and Ψ∈(X,n) (possibly with undisplayed parameters) such
that the following properties hold.

• If ϕ(X), then Ψ∈(X, i) for some i ∈ I.
• If ϕ(X), Ψ∈(X, i), and Ψ∈(X, j) for some i, j ∈ I, then there is a k ∈ I such that Ψ∈(X, k)
and ∀Y [Ψ∈(Y, k) → (Ψ∈(Y, i) ∧Ψ∈(Y, j))].

• If ϕ(X), ϕ(Y ), Ψ∈(X, i) for an i ∈ I, and Ψ=(X,Y ), then Ψ∈(Y, i).
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The intuition behind Definition 3.10 is that I is a set of codes for open sets, ϕ(X) says “X codes a
point”, Ψ=(X,Y ) says “X and Y code the same point”, and Ψ∈(X, i) says “the point coded by X is
in the open set coded by i”. Effectively open sets and effectively closed sets are coded as they are in
the countable case. A function h : N → Pf(I) codes the effectively open set Gh =

⋃

n∈N
⋃

i∈h(n){X :

ϕ(X)∧Ψ∈(X, i)} and the effectively closed set Fh =
⋂

n∈N
⋂

i∈h(n){X : ϕ(X)∧¬Ψ∈(X, i)}. Again,

‘X ∈ Gh’ is an abbreviation for the formula ‘ϕ(X) ∧ (∃n ∈ N)(∃i ∈ h(n))Ψ∈(X, i)’, and similarly
for ‘X ∈ Fh’. Sequences of effectively open sets and sequences of effectively closed sets are coded
by functions g : N× N → Pf(I), with g(n, ·) coding the nth set in the sequence.

As an example, the typical coding of complete separable metric spaces in RCA0 (see [Sim09,
Section II.5]) fits nicely into this framework. Here we first fix a set A and a metric d : A×A→ R,
and we let I = A×Q+. Then we let ϕ(X) be a formula expressing that X is a rapidly converging
Cauchy sequence of points in A, Ψ=(X,Y ) be a formula expressing that the distance between the
point coded by X and the point coded by Y is 0, and Ψ∈(X, 〈a, q〉) be a formula expressing that
the distance between X and a is less than q.

Our framework easily accommodates also the countably based MF spaces studied in [Mum06]
(by [MS10] these are exactly the second-countable T1 spaces with the strong Choquet property),
although in this case the existence of some X satisfying ϕ(X) in general requires ACA0, as shown
in [LM06].

We also define compact spaces and Noetherian spaces as in the countable case.

Definition 3.11 (RCA0). A second-countable space coded by I, ϕ, Ψ=, and Ψ∈ is compact if for
every h : N → Pf(I) such that ∀X(ϕ(X) → (∃n ∈ N)(∃i ∈ h(n))Ψ∈(X, i)), there is an N ∈ N such
that ∀X(ϕ(X) → (∃n < N)(∃i ∈ h(n))Ψ∈(X, i)).

Similarly, an effectively open set Gh in a second-countable space is compact if for every f : N →
Pf(I) such that ∀X(X ∈ Gh → (∃n ∈ N)(∃i ∈ f(n))Ψ∈(X, i)), there is an N ∈ N such that
∀X(X ∈ Gh → (∃n < N)(∃i ∈ f(n))Ψ∈(X, i)).

The equivalent characterizations of a Noetherian space given in Proposition 3.1 (i), (ii), (iv)
and (v) are also equivalent in the uncountable case. We omit the “every subspace is compact”
characterization because quantifying over subspaces of an uncountable space is difficult. One could
quantify over a parameterized collection of subspaces of an uncountable space via a formula θ(X,Y )
such that ∀X∀Y (θ(X,Y ) → ϕ(X)), in which case each Y corresponds to a subspace, but this is
not useful for our purposes.

Proposition 3.12 (RCA0). For a second-countable space, the following statements are equivalent.

(i) Every effectively open set is compact.
(ii) For every effectively open set Gh, there is an N ∈ N such that ∀X(X ∈ Gh ↔ (∃n <

N)(∃i ∈ h(n))Ψ∈(X, i))
(iii) For every sequence (Gn)n∈N of effectively open sets such that ∀n(Gn ⊆ Gn+1) there is an

N such that (∀n > N)(Gn = GN ).
(iv) For every sequence (Fn)n∈N of effectively closed sets such that ∀n(Fn ⊇ Fn+1) there is an

N such that (∀n > N)(Fn = FN ).

Definition 3.13 (RCA0). A second-countable space is Noetherian if it satisfies any of the equivalent
conditions from Proposition 3.12.

We now define U(P♭(Q)) and U(P♯(Q)) as second-countable spaces.

Definition 3.14 (RCA0). Let Q be a quasi-order. The second-countable space U(P♭(Q)) is coded
by the set I = Pf(Q) and the formulas

• ϕ(X) := X ⊆ Q;
• Ψ=(X,Y ) := X = Y ;
• Ψ∈(X, i) := i ⊆ X↓.



12 FRITTAION, HENDTLASS, MARCONE, SHAFER, AND VAN DER MEEREN

Notice that i = ∅ codes the whole space and that the code for the intersection of the open sets
coded by i and j is simply i ∪ j. The idea behind Ψ∈(X, i) is that i codes the complement of the

basic closed set {Q \ (q↑) : q ∈ i}↓♭, whence

X /∈ {Q \ (q↑) : q ∈ i}↓♭ ⇔ (∀q ∈ i)[X �♭
Q Q \ (q↑)]

⇔ (∀q ∈ i)[X * Q \ (q↑)]

⇔ (∀q ∈ i)[q ∈ X↓] ⇔ i ⊆ X↓.

The basic closed sets of the upper topology on P♭(Q) are those of the form {E0, . . . , En−1}↓
♭ for

arbitrary subsets E0, . . . , En−1 of Q, whereas in Definition 3.14 we defined the basic closed sets to

be those of the form {Q \ (q0↑), . . . , Q \ (qn−1↑)}↓
♭ for q0, . . . , qn−1 ∈ Q. Thus to show that our

definition really captures the upper topology on P♭(Q), we need to show that every {E0, . . . , En−1}↓
♭

is effectively closed in the topology of Definition 3.14. In fact, it suffices to show that every set
{E}↓♭ is effectively closed in that topology because the effectively closed sets are closed under finite

unions, and {E0, . . . , En−1}↓
♭ = {E0}↓

♭ ∪ · · · ∪ {En−1}↓
♭. Unfortunately, as the next proposition

shows, proving that {E}↓♭ is effectively closed in the topology of Definition 3.14 requires ACA0 in
general, even when Q is a well-order.

Proposition 3.15. The following are equivalent over RCA0.

(i) ACA0.

(ii) If Q is a quasi-order and E ⊆ Q, then {E}↓♭ is effectively closed in U(P♭(Q)).

(iii) If W is a well-order and E ⊆W , then {E}↓♭ is effectively closed in U(P♭(W )).

Proof. For (i)⇒(ii), let Q be a quasi-order and let E ⊆ Q. Using ACA0 to obtain the set E↓, we

can define a code for the effectively closed set F =
⋂

q /∈E↓{Q \ (q↑)}↓♭. Then for any X ⊆ Q,

X ∈ {E}↓♭ ⇔ X ⊆ E↓ ⇔ (∀q /∈ E↓)[X ⊆ Q \ (q↑)] ⇔ X ∈ F.

Thus F = {E}↓♭, and so {E}↓♭ is effectively closed.
The implication (ii)⇒(iii) is clear.
For (iii)⇒(i), let f : N → N be an injection. By Lemma 2.1, it suffices to show that the range of

f exists. Let W be a linear order with the following properties:

• W has order-type ω+ω∗ (that is, every element of W has either finitely many predecessors
or finitely many successors, and there are infinitely many instances of each);

• if W is not a well-order, then the range of f exists; and
• the ω part of W is Σ0

1 in f .

That such a W can be constructed in RCA0 is well-known (see for example [MS11, Lemma 4.2]).
In fact, our main reversals in the next section are based on the construction of generalizations of
such a W , and one may take W = Ξf ({x}, x), where Ξf ({x}, x) is the partial order (in this case
linear order) from Definition 4.2.

If W is not a well-order, then the range of f exists by the assumptions on W . So suppose that
W is a well-order. Let E be an infinite subset of the ω part of W , which exists for the same reason
that the X ′ in the proof of Proposition 3.2 exists because the ω part of W is infinite and Σ0

1 in f .

By (iii), {E}↓♭ is effectively closed, so there is an h : N → Pf(Pf(Q)) such that {E}↓♭ = Fh. For

each w ∈ W , {w} ∈ Fh = {E}↓♭ if and only if w ∈ E↓ if and only if w is in the ω part of W . On
the other hand, by definition {w} ∈ Fh if and only if ∀k(∀i ∈ h(k))(i * w↓), which is Π0

1. Thus
we have a Π0

1 definition of the ω part of W . Thus by ∆0
1 comprehension, the ω part of W exists.

Therefore the ω∗ part of W also exists, contradicting that W is a well-order. �

The previous proposition is not merely an artifact of a poorly chosen base in the definition of
U(P♭(Q)). In fact, the proof of the reversal goes through whenever Ψ∈ is defined in such a way
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that Ψ∈({b}, i) is Σ
0
1. Thus we can see Proposition 3.15 as expressing that the second-countability

of the upper topology on P♭(Q) is equivalent to ACA0.

Definition 3.16 (RCA0). Let Q be a quasi-order. The second-countable space U(P♯(Q)) is coded
by the set I = Pf(Q) and the formulas

• ϕ(X) := X ⊆ Q;
• Ψ=(X,Y ) := X = Y ;
• Ψ∈(X, i) := i ∩X↑ = ∅.

Again, i = ∅ codes the whole space, and the code for the intersection of the open sets coded by
i and j is i ∪ j. The idea behind Ψ∈(X, i) is that i codes the complement of the basic closed set

{{q} : q ∈ i}↓♯, whence

X /∈ {{q} : q ∈ i}↓♯ ⇔ (∀q ∈ i)(X �♯
Q {q})

⇔ (∀q ∈ i)(q /∈ X↑) ⇔ i ∩X↑ = ∅.

Unlike in the ♭ case, RCA0 suffices to show that U(P♯(Q)) as defined in Definition 3.16 indeed
captures the upper topology on P♯(Q).

Proposition 3.17 (RCA0). If Q is a quasi-order and E ⊆ Q, then {E}↓♯ is effectively closed in
U(P♯(Q)).

Proof. Let Q be a quasi-order, and let E ⊆ Q. Then {E}↓♯ is exactly the effectively closed set
⋂

e∈E{e}↓
♯ because

X ∈ {E}↓♯ ⇔ E ⊆ X↑ ⇔ (∀e ∈ E)(e ∈ X↑) ⇔ X ∈
⋂

e∈E

{e}↓♯

for any X ⊆ Q. �

We now examine the correspondences between the countable spaces and the uncountable spaces.
Our goal is to prove, in RCA0, that if Q is a quasi-order, then U(P♭(Q)) is Noetherian implies that

U(P♭
f (Q)) is Noetherian and likewise with ‘♯’ in place of ‘♭.’

We warn the reader that the upper topology on P♭
f (Q) is in general not the same as the subspace

topology on Pf(Q) induced by the upper topology on P♭(Q). For example, if Q is an infinite

antichain and q ∈ Q, then the basic closed set {Q \ {q}}↓♭ in the upper topology on P♭(Q) induces
the closed set {x ∈ Pf(Q) : q /∈ x} in the subspace topology on Pf(Q), but this set is not closed

in the upper topology on P♭
f (Q). To see this, observe that a closed set in the upper topology on

P♭
f (Q) that is not the whole space must be contained in a basic closed set of the form {ei : i < n}↓♭,

and if x ∈ {ei : i < n}↓♭, then |x| ≤ max{|ei| : i < n}. A similar argument shows that these two
topologies need not be the same even if Q is a well-order. Let Q = ω + 1. Then the closed set
ω↓♭ in P♭(Q) induces the closed set {x ∈ Pf(Q) : x ⊆ ω} in the subspace topology on Pf(Q), but

the closed sets in the upper topology on P♭
f (Q) are all of the form {x ∈ Pf(Q) : x ⊆ q↓} for some

q ∈ Q.

However, the upper topology on P♯
f (Q) is indeed the same as the subspace topology on Pf(Q)

induced by the upper topology on P♯(Q). This is easy to see because {{qi} : i < n}↓♯ contains the
same finite sets regardless of whether it is interpreted as a basic closed set in the upper topology

on P♯(Q) or as a basic closed set in the upper topology on P♯
f (Q).

Lemma 3.18 (RCA0). Let Q be a quasi-order.

(i) For every effectively closed set F in U(P♭
f (Q)), there is an effectively closed set F in

U(P♭(Q)) such that (∀x ∈ Pf(Q))(x ∈ F ↔ x ∈ F ).
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(ii) For every effectively closed set F in U(P♯
f (Q)), there is an effectively closed set F in

U(P♯(Q)) such that (∀x ∈ Pf(Q))(x ∈ F ↔ x ∈ F ).

Proof. We first prove (i) for basic closed sets. A basic closed set in U(P♭
f (Q)) has the form E↓♭ for

some E ∈ Pf(Pf(Q)). Suppose that E = {e0, . . . , en−1}, and consider the effectively closed set FE

in U(P♭(Q)) given by

FE =
⋂

(q0,...,qn−1)∈Qn

(∀i<n)(qi /∈ei↓)

{Q \ (qi↑) : i < n}↓♭.

We show that (∀x ∈ Pf(Q))(x ∈ FE ↔ x ∈ E↓♭). Suppose that x ∈ E↓♭. Then there is an

i < n such that x ≤♭
Q ei, so x ⊆ ei↓, and therefore (∀q /∈ ei↓)[x ⊆ Q \ (q↑)]. Hence x ∈ FE .

Conversely, suppose that x /∈ E↓♭. Then (∀i < n)(x �♭
Q ei), so (∀i < n)(x * ei↓), and finally

(∀i < n)(∃qi ∈ x)(qi /∈ ei↓). Then FE ⊆ {Q \ (qi↑) : i < n}↓♭ and x /∈ {Q \ (qi↑) : i < n}↓♭. Thus
x /∈ FE .

To complete the proof of (i), let us now consider the effectively closed set Fh =
⋂

n∈N
⋂

E∈h(n)E↓♭

in U(P♭
f (Q)) coded by h : N → Pf(Pf(Pf(Q))). The procedure that produces (the code for) FE

given E ∈ Pf(Pf(Q)) is uniform in E, so from h we can produce g : N × N → Pf(Pf(Q)) such
that, for every n ∈ N, Fg(n,·) =

⋂

E∈h(n)FE . The intersection of a sequence of effectively closed

sets is also an effectively closed set, so from g we can produce a code for the effectively closed set
F =

⋂

n∈NFg(n,·) =
⋂

n∈N
⋂

E∈h(n)FE . Then, for any x ∈ Pf(Q),

x ∈ F ⇔ x ∈
⋂

n∈N

⋂

E∈h(n)

FE ⇔ x ∈
⋂

n∈N

⋂

E∈h(n)

E↓♭ ⇔ x ∈ Fh.

Now we prove (ii) for basic closed sets. A basic closed set in U(P♯
f (Q)) has the form E↓♯ for

some E ∈ Pf(Pf(Q)). Suppose that E = {e0, . . . , en−1}, and consider the effectively closed set FE

in U(P♯(Q)) given by

FE =
⋂

(q0,...,qn−1)∈e0×···×en−1

{{q0}, . . . , {qn−1}}↓
♯.

We show that (∀x ∈ Pf(Q))(x ∈ FE ↔ x ∈ E↓♯). Suppose that x ∈ E↓♯. Then there is

an i < n such that x ≤♯
Q ei, so ei ⊆ x↑, and therefore (∀q ∈ ei)(q ∈ x↑). Hence x ∈ FE .

Conversely, suppose that x /∈ E↓♯. Then (∀i < n)(x �♯
Q ei), so (∀i < n)(ei * x↑), and therefore

(∀i < n)(∃qi ∈ ei)(qi /∈ x↑). Then FE ⊆ {{q0}, . . . , {qn−1}}↓
♯ and x /∈ {{q0}, . . . , {qn−1}}↓

♯. Thus
x /∈ FE .

To complete the proof of (ii), given an effectively closed set F in U(P♯
f (Q)), we can produce an

effectively closed set F in U(P♯(Q)) such that (∀x ∈ Pf(Q))(x ∈ F ↔ x ∈ F ) just as in the proof
of (i). �

Theorem 3.19 (RCA0). Let Q be a quasi-order.

(i) If U(P♭(Q)) is Noetherian, then U(P♭
f (Q)) is Noetherian.

(ii) If U(P♯(Q)) is Noetherian, then U(P♯
f (Q)) is Noetherian.

Proof. For (i), suppose that U(P♭
f (Q)) is not Noetherian, and let (Fn)n∈N be a non-stabilizing

descending sequence of effectively closed sets in U(P♭
f (Q)). The proof of Lemma 3.18 (i) is uniform,

so from (Fn)n∈N we can produce a sequence (Fn)n∈N of effectively closed sets in U(P♭(Q)) such that
(∀n ∈ N)(∀x ∈ Pf(Q))(x ∈ Fn ↔ x ∈ Fn). Define a new sequence (Hn)n∈N by Hn =

⋂

m≤nFm

for each n ∈ N. Then (Hn)n∈N is a descending sequence of closed sets in U(P♭(Q)) that does not
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stabilize because (Fn)n∈N does not stabilize and (∀n ∈ N)(∀x ∈ Pf(Q))(x ∈ Hn ↔ x ∈ Fn). Hence

U(P♭(Q)) is not Noetherian.
The proof of (ii) is the same, except we use Lemma 3.18 (ii) in place of Lemma 3.18 (i). �

Theorem 3.19 tells us that in the forward direction we need only work with the uncountable
spaces and that in the reverse direction we need only work with the countable spaces.

Theorem 3.20 (ACA0). If Q is a wqo, then U(P♭(Q)) is Noetherian.

Proof. We prove the contrapositive. Let Q be a quasi-order, suppose that U(P♭(Q)) is not Noe-
therian, and let (Fn)n∈N be a non-stabilizing descending sequence of effectively closed sets. Our

goal is to build a bad sequence in P♭
f (Q), thereby proving that P♭

f (Q) is not a wqo and hence, by
Theorem 2.5, that Q is not a wqo.

Claim. If F is an effectively closed set in U(P♭(Q)) and A ⊆ Q, then A ∈ F if and only if
Pf(A) ⊆ F .

Proof of claim. The forward direction is clear because effectively closed sets are closed downward
under ≤♭

Q, and B ≤♭
Q A whenever B ⊆ A. For the reverse direction, suppose that F is coded by

h : N → Pf(Pf(Q)). Then A /∈ F means that (∃n ∈ N)(∃i ∈ h(n))(i ⊆ A↓). As the witnessing i is
finite, there is a finite a ⊆ A such that i ⊆ a↓, and this a satisfies a /∈ F . �

It follows from the claim that if Fn\Fn+1 6= ∅ for some n ∈ N, then there is a finite a ∈ Fn\Fn+1.
Suppose we have constructed a sequence (ai)i<n of elements of Pf(Q) along with an increasing
sequence (mi)i<n such that (∀i < n)(ai ∈ Fmi

\ Fmi+1). As (Fn)n∈N is non-stabilizing, we may
extend the sequence by finding an mn > mn−1 (or an mn ≥ 0 if n = 0) and an an ∈ Pf(Q) that
is in Fmn

\ Fmn+1. In the end, (an)n∈N is a bad sequence because, for each n ∈ N, an ∈ Fmn
but

(∀i < n)(ai /∈ Fmn
), which means that (∀i < n)(ai �♭

Q an). �

Theorem 3.21 (ACA0). If Q is a wqo, then U(P♯(Q)) is Noetherian.

Proof. Let Q be a wqo. Suppose for a contradiction that U(P♯(Q)) is not Noetherian, and let
(Fn)n∈N be a non-stabilizing descending sequence of effectively closed sets. Our goal is to construct
a bad sequence (qn)n∈N of elements of Q, contradicting that Q is a wqo.

Claim 1. If F is an effectively closed set in U(P♯(Q)) and A ⊆ Q, then A ∈ F if and only if
(∃a ∈ Pf(A))(a ∈ F )

Proof of claim. The backwards direction is clear because effectively closed sets are closed downward

under ≤♯
Q, and A ≤♯

Q B whenever B ⊆ A.
For the forward direction, the fact that Q is a wqo implies that there is a finite a ⊆ A such

that a ≤♯
Q A, for otherwise it is easy to construct a bad sequence by choosing elements of A (see

[Mar05, Lemma 4.8]). �

It follows from Claim 1 that two effectively closed sets are equal if and only if they agree on
Pf(Q). Therefore the equality of two effectively closed sets is an arithmetical property of the sets,
and whether or not a descending sequence of effectively closed sets stabilizes is an arithmetical
property of the sequence.

Suppose we have constructed a finite bad sequence (qi)i<k of elements of Q such that the sequence

(F ′
n)n∈N given by F ′

n = Fn ∩
⋂

i<k{qi}↓
♯ for each n ∈ N does not stabilize. Search for an a ∈ Pf(Q)

and an ℓ such that a ∈ F ′
ℓ \ F

′
ℓ+1. As a ∈

⋂

i<k{qi}↓
♯, it must be that a /∈ Fℓ+1 and hence that

a /∈ {{rj} : j < m}↓♯ for some superset {{rj} : j < m}↓♯ of Fℓ+1. Notice that (∀i < k)(∀j <

m)(qi �Q rj) because if qi ≤Q rj for some i < k and j < m, then a ≤♯
Q {qi} ≤♯

Q {rj} would

contradict a /∈ {{rj} : j < m}↓♯. Thus we could chose any rj for j < m to extend our bad
sequence. We need to show that at least one such choice allows us to continue the construction.
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Claim 2. There is j < m such that the sequence (F ′
n ∩ {rj}↓

♯)n∈N does not stabilize.

Proof of claim. Suppose for a contradiction that the sequence (F ′
n ∩ {rj}↓

♯)n∈N stabilizes for each

j < m. Let N > ℓ+1 be large enough so that (∀j < m)(∀n > N)(F ′
n∩{rj}↓

♯ = F ′
N ∩{rj}↓

♯). Such

an N exists because the stabilization of (F ′
n ∩ {rj}↓

♯)n∈N is an arithmetical property, and ACA0

proves the bounding axiom for every arithmetical formula. For all n ≥ N , we have that

⋃

j<m

(F ′
n ∩ {rj}↓

♯) = F ′
n ∩

⋃

j<m

{rj}↓
♯ = F ′

n ∩ {{rj} : j < m}↓♯ = F ′
n,

where the last equality holds because F ′
n ⊆ F ′

ℓ+1 ⊆ {{rj} : j < m}↓♯, and that
⋃

j<m

(F ′
n ∩ {rj}↓

♯) =
⋃

j<m

(F ′
N ∩ {rj}↓

♯) = F ′
N .

Thus (∀n > N)(F ′
n = F ′

N ), contradicting that the sequence (F ′
n)n∈N does not stabilize. �

Let qk be rj for the rj guaranteed by Claim 2. Again, the procedure for computing qk is
arithmetical because the stabilization of a sequence is an arithmetical property. Then (qi)i<k+1 is

a bad sequence and the sequence (Fn ∩
⋂

i<k+1{qi}↓
♯)n∈N does not stabilize, so we may continue

the construction and build a contradictory infinite bad sequence. �

Corollary 3.22 (ACA0). If Q is a wqo, then the countable second-countable space U(P♯
f (Q)) is

Noetherian.

Proof. Immediate from Theorem 3.19 and Theorem 3.21. �

A similar corollary can be obtained from Theorem 3.19 and Theorem 3.20, providing a new
proof that ACA0 proves that if Q is a wqo, then the countable second-countable space U(P♭

f (Q)) is
Noetherian (which we already saw in Theorem 3.9).

Notice also that one could omit the application of Theorem 3.19 and prove directly, in ACA0,

that if Q is a wqo, then U(P♭
f (Q)) (respectively U(P♯

f (Q))) is Noetherian by implementing the proof
of Theorem 3.20 (respectively Theorem 3.21) in the countable second-countable spaces setting. It
is also possible to give a direct proof of Theorem 3.20 in which one builds a bad sequence in Q
instead of in P♭

f (Q) in the style of the proof of Theorem 3.21. Finally, recall that Proposition 3.15

shows, essentially, that without ACA0 the definition of U(P♭(Q)) as a second-countable space (Def-

inition 3.14) codes a coarser topology than the upper topology on P♭(Q). Nevertheless, we may

still give an ad hoc definition of the upper topology on P♭(Q) in RCA0 by interpreting a sequence

((En
i )i<mn

)n∈N of finite sequences of subsets of Q as a code for the closed set
⋂

n∈N{E
n
i : i < mn}↓

♭.
Then, by a proof in the style of that of Theorem 3.21, ACA0 proves that if Q is a wqo, then this
topology is Noetherian.

4. The reversals

The strategy for reversing, for example, the statement “if Q is a wqo, then U(P♭
f (Q)) is Noe-

therian” to ACA0 is to produce a recursive quasi-order Q such that U(P♭
f (Q)) is not Noetherian as

witnessed by some uniformly r.e. descending sequence of closed sets, yet every bad sequence from Q
computes 0′. In [MS11,FM12,FM14] the main reversals to ACA0 are based on the construction of a
recursive linear order of type ω+ω∗ with the property that every descending sequence computes 0′

(we used this technique in the proof of Proposition 3.15). We generalize this construction to partial
orders. Given a finite partial order P and an x ∈ P , we define a recursive partial order Q = Ξ(P, x)
with the property that every bad sequence from Q computes 0′. The special case P = {x} produces
a recursive linear order Ξ({x}, x) of type ω + ω∗ in which every descending sequence computes 0′.
As in the reversals using linear orders of type ω + ω∗, the notion of true stage is crucial.
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Definition 4.1 (RCA0). Let f : N → N be an injection. An n ∈ N is f -true (or simply true)
if (∀k > n)(f(n) < f(k)). An n ∈ N is f -true (or simply true) at stage s ∈ N if n < s and
∀k(n < k ≤ s→ f(n) < f(k)).

The notion of true stages is not new. Dekker [Dek54] introduced this notion (but he used the
term ‘minimal’) to show that every non-recursive r.e. degree contains a hypersimple set. Indeed,
given a recursive enumeration of a non-recursive r.e. set A, the set of non-true stages is hypersimple
and Turing equivalent to A (see also [Rog87, Theorem XVI]). An early use of true stages in reverse
mathematics is in [Sho93, Section 1]. In recursion theory, true stages are also known as non-
deficiency stages (see [Soa87]).

The import of this definition is that the range of an injection f : N → N is ∆0
1 in the join of

f and any infinite set T of f -true stages: indeed for any n ∈ N, ∃m(f(m) = n) if and only if
(∀m ∈ T )(f(m) > n→ (∃k < m)(f(k) = n)). Thus RCA0 proves that, for any injection f , if there
is an infinite set of f -true stages, then the range of f exists.

For the purposes of the following definition, given an injection f : N → N, set

Ts = {n < s : n is f -true at stage s},

and note that RCA0 proves that the sequence (Ts)s∈N exists.

Definition 4.2 (RCA0). Let f : N → N be an injection, let P be a finite partial order, and let
x ∈ P . We define the partial order Q = Ξf (P, x) as follows. Make N disjoint copies of P by letting
Pn = {n} × P for each n ∈ N, and let xn = (n, x) denote the copy of x in Pn. The domain of Q is
⋃

n∈N Pn. Define ≤Q in stages, where at stage s, ≤Q is defined on
⋃

n≤s Pn.

• At stage 0, ≤Q is simply ≤P0
on P0.

• Suppose ≤Q is defined on
⋃

n≤s Ps. There are two cases.

(i) If Ts+1 $ Ts ∪ {s}, let n0 be the least element of (Ts ∪ {s}) \ Ts+1, and place Ps+1

immediately above xn0
. That is, place the elements of Ps+1 above all y ∈

⋃

n≤s Ps such

that y ≤Q xn0
, below all y ∈

⋃

n≤s Ps such that y >Q xn0
, and incomparable with all

y ∈
⋃

n≤s Ps that are incomparable with xn0
.

(ii) If Ts+1 = Ts ∪ {s}, place Ps+1 immediately below xs. That is, place the elements
of Ps+1 above all y ∈

⋃

n≤s Ps such that y <Q xs, below all y ∈
⋃

n≤s Ps such that

y ≥Q xs, and incomparable with all y ∈
⋃

n≤s Ps that are incomparable with xs.
In both cases, define ≤Q to be ≤Ps+1

on Ps+1.

We could extend the construction of Definition 4.2 by starting from any sequence (Pn)n∈N of
finite (or even infinite) quasi-orders and any choice of elements xn ∈ Pn for each n, but we have
no need for such generality. We just note that if each Pn is allowed to be infinite, then Lemma 4.3
is still provable in RCA0, but Lemma 4.4 holds only if each Pn is a wqo, and its proof requires the
infinite pigeonhole principle for an arbitrary number of colors (i.e., ∀kRT1

k, which is equivalent to
BΣ0

2 over RCA0 [Hir87]).
For the purposes of the next lemmas, Pm ≤Q xn means (∀z ∈ Pm)(z ≤Q xn), xn ≤Q Pm means

(∀z ∈ Pm)(xn ≤Q z), and Pm |Q y means (∀z ∈ Pm)(z |Q y).

Lemma 4.3 (RCA0). Let f : N → N, P be a finite partial order, x ∈ P , and Q = Ξf (P, x), and
consider m,n ∈ N with n < m.

(i) If n ∈ Tm, then Pm ≤Q xn and (∀y ∈ Pn)(xn |Q y → Pm |Q y).
(ii) If n /∈ Tm, then xn ≤Q Pm.

Proof. We simultaneously prove (i) and (ii) by Σ0
0 induction on m. The case m = 0 is vacuously

true.
Consider m+1. First suppose that Tm+1 $ Tm∪{m} and thus that Pm+1 is placed immediately

above xn0
, where n0 is the least element of (Tm∪{m})\Tm+1. Now, either n0 = m or n0 ∈ Tm\Tm+1,
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and in both cases it must be that f(m+1) < f(n0) and (∀k ∈ (n0,m])(f(n0) < f(k)). Notice that
the interval (n0,m] is empty when n0 = m.

For item (i), suppose that n < m + 1 is such that n ∈ Tm+1. First we claim that n < n0. As
n ∈ Tm+1 and n0 /∈ Tm+1 we have n 6= n0. Now, if n0 < n, then either f(n0) < f(n), in which case
f(m+1) < f(n0) < f(n), contradicting n ∈ Tm+1, or f(n) < f(n0), contradicting that n0 /∈ Tm+1 is
only witnessed bym+1 6= n. Hence n < n0 as claimed. This implies that n ∈ Tn0

because n ∈ Tm+1

and n0 < m + 1. By the induction hypothesis, Pn0
≤Q xn and (∀y ∈ Pn)(xn |Q y → Pn0

|Q y).
Thus xn0

≤Q xn, so Pm+1 ≤Q xn because Pm+1 is placed immediately above xn0
. Furthermore,

every y ∈ Pn that is incomparable with xn is incomparable with xn0
and is hence incomparable

with every element of Pm+1.
For item (ii), suppose that n < m + 1 is such that n /∈ Tm+1. If n = n0, then Pm+1 is placed

immediately above xn0
= xn, as desired. Suppose n0 < n. Then n0 ∈ Tn because n < m + 1. By

the induction hypothesis, Pn ≤Q xn0
, so xn ≤Q xn0

. Pm+1 is placed immediately above xn0
, so

xn ≤ Pm+1. If instead n < n0, we claim that n /∈ Tn0
. This is clear if f(n0) < f(n), so suppose that

f(n) < f(n0). As n /∈ Tm+1, there is a least k ∈ (n,m + 1] such that f(k) < f(n). If k = m + 1,
then n ∈ (Tm ∪ {m}) \ Tm+1, contradicting that n0 was the least such number. If k ∈ (n0,m], then
f(k) < f(n) < f(n0), contradicting that only m + 1 witnesses that n0 /∈ Tm+1. Thus k ∈ (n, n0],
which means that k witnesses that n /∈ Tn0

, establishing the claim. By the induction hypothesis,
xn ≤Q Pn0

, so xn ≤Q xn0
. Pm+1 is placed immediately above xn0

, so xn ≤Q Pm+1. This concludes
the proof of (i) and (ii) for m+ 1 in the Tm+1 $ Tm ∪ {m} case.

Now suppose that Tm+1 = Tm ∪ {m}, so that Pm+1 is placed immediately below xm. For
item (i), suppose that n ∈ Tm+1. If n = m, then Pm+1 ≤Q xn = xm, and every y ∈ Pn = Pm that is
incomparable with xn = xm is incomparable with every element of Pm+1. If n < m, then n ∈ Tm,
so by the induction hypothesis Pm ≤Q xn and (∀y ∈ Pn)(xn |Q y → Pm |Q y). Thus xm ≤Q xn,
and so Pm+1 ≤Q xn because Pm+1 is placed immediately below xm. Furthermore, every y ∈ Pn

such that xn |Q y is incomparable with xm and is hence incomparable with every element of Pm+1.
For item (ii), suppose that n /∈ Tm+1 = Tm∪{m}. Then n < m and n /∈ Tm, so, by the induction

hypothesis, xn ≤Q Pm. Thus xn ≤Q xm. So xn ≤Q Pm+1 because Pm+1 is placed immediately
below xm. This concludes the proof. �

Lemma 4.4 (RCA0). Let f : N → N, P , x ∈ P , and Q = Ξf (P, x) be as above. If Q is not a wqo,
then the range of f exists.

Proof. Suppose that Q is not a wqo, and let (qi)i∈N be a bad sequence. We show that n ∈ N
is true if and only if ∃i(qi ≤Q xn). Thus the set of true stages has both a Π0

1 definition (as in
Definition 4.1) and a Σ0

1 definition, so it exists by ∆0
1 comprehension. It follows that the range of

f exists as explained following Definition 4.1.
Suppose that n ∈ N is true. The sequence (qi)i∈N is injective and each Pm is of the same finite

size, so there must be an i and an m in N with m > n such that qi ∈ Pm. As n is a true stage,
n ∈ Tm, so Pm ≤Q xn by Lemma 4.3 (i). Thus qi ≤Q xn as desired. Conversely, suppose that
n ∈ N is not true and suppose for a contradiction that qi ≤Q xn for some i ∈ N. As n is not a true
stage, there is some k > n such that f(k) < f(n), and therefore n /∈ Tm for all m ≥ k. Let m > k
be such that Pm contains qj for some j > i. Then xn ≤Q Pm by Lemma 4.3 (ii), so we have that
qi ≤Q xn ≤Q qj , contradicting that (qi)i∈N is a bad sequence. �

We now present our main reversals.

Theorem 4.5. The statement “if Q is a wqo, then U(P♭
f (Q)) is Noetherian” implies ACA0 over

RCA0.

Proof. Let f : N → N be an injection. By Lemma 2.1, it suffices to show that the range of f exists.
Let P be the partial order P = {x, y, z} with x <P z and x, z |P y, and let Q = Ξf (P, x).
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We show that U(P♭
f (Q)) is not Noetherian. Then by our hypothesis Q is not a wqo, and the

existence of the range of f follows from Lemma 4.4. To witness that U(P♭
f (Q)) is not Noetherian, we

define a sequence (Es)s∈N of finite subsets of Pf(Q) so that the corresponding sequence of effectively

closed sets (Fs)s∈N, given by Fs = Es↓
♭ for each s ∈ N, is descending but does not stabilize. Notice

that in fact (Fs)s∈N is a sequence of basic closed sets.
For each s ∈ N, let

Es = {as,bs} ∪ {bn : n ∈ Ts},

where

as = {xs, ys} ∪ {yn : n ∈ Ts} and bs = {zs} ∪ {yn : n ∈ Ts}.

We need to show that Fs % Fs+1 for each s ∈ N. As Ts+1 ⊆ Ts ∪ {s}, by the definition of Es we
always have that {bn : n ∈ Ts+1} ⊆ Es. Thus to prove the inclusion, we focus on as+1 and bs+1.

First suppose that Ts+1 $ Ts ∪ {s}, and let n0 be the least element of (Ts ∪ {s}) \ Ts+1. By the
construction of Q, Ps+1 is placed between xn0

and zn0
, and therefore xs+1, ys+1, zs+1 <Q zn0

. As
argued in the proof of Lemma 4.3, it must be that f(s+1) < f(n0) and (∀k ∈ (n0, s])(f(n0) < f(k)).
Therefore (∀k ∈ [n0, s])(f(s+1) < f(k)), and s+1 witnesses that no element in the interval [n0, s]

is true. This implies that Ts+1 ⊆ Tn0
. We now see that Es↓

♭ ⊇ Es+1↓
♭: as+1,bs+1 ≤

♭
Q bn0

because

xs+1, ys+1, zs+1 <Q zn0
and {yn : n ∈ Ts+1} ⊆ {yn : n ∈ Tn0

}, and bn0
∈ Es because either n0 = s

or n0 ∈ Ts.
We now show that Es↓

♭ % Es+1↓
♭ by showing that bn0

/∈ Es+1↓
♭. This means that we need

to show that bn0
�♭

Q as+1, bn0
�♭

Q bs+1, and bn0
�♭

Q bn for each n ∈ Ts+1. Notice that

xs+1, ys+1, zs+1 <Q zn0
, and if n ∈ Ts+1 ⊆ Tn0

, then zn0
|Q yn by Lemma 4.3 (i). Hence zn0

/∈ as+1↓

and zn0
/∈ bs+1↓. As zn0

∈ bn0
, it follows that bn0

�♭
Q as+1 and bn0

�♭
Q bs+1. Now fix n ∈ Ts+1,

and note that yn ∈ bn0
because Ts+1 ⊆ Tn0

. However, yn /∈ bn↓ because yn |Q zn by the definition

of P , and yn |Q yℓ for all ℓ ∈ Tn by Lemma 4.3 (i). Thus bn0
�♭

Q bn.

Now suppose that Ts+1 = Ts ∪ {s}. Then obviously {yn : n ∈ Ts+1} = {yn : n ∈ Ts} ∪ {ys}
and, since in this case Ps+1 is placed immediately below xs, we have xs+1, ys+1, zs+1 <Q xs.

Thus as+1,bs+1 ≤♭
Q as, and so Es↓

♭ ⊇ Es+1↓
♭. We show that Es↓

♭ % Es+1↓
♭ by showing that

as /∈ Es+1↓
♭. We already noticed that xs+1, ys+1, zs+1 <Q xs. If n ∈ Ts+1, then either n = s, in

which case xs |Q yn by the definition of P , or n ∈ Ts, in which case xs |Q yn by Lemma 4.3 (i).

This shows that xs /∈ as+1↓ ∪ bs+1↓ and thus (because xs ∈ as) that as �♭
Q as+1 and as �♭

Q bs+1.

For n ∈ Ts+1 = Ts∪{s}, we have that as �♭
Q bn because yn ∈ as but, as explained in the preceding

paragraph, yn /∈ bn↓. Thus as �♭
Q bn for each n ∈ Ts+1 and therefore as /∈ Es+1↓

♭.

This completes the proof that (Fs)s∈N witnesses that U(P♭
f (Q)) is not Noetherian. �

Notice that Theorem 4.5 gives an alternate reversal for Theorem 2.5 because the statement “if Q
is a wqo, then P♭

f (Q) is a wqo” implies the statement “if Q is a wqo, then U(P♭
f (Q)) is Noetherian”

over RCA0 by Proposition 3.8. Thus we may see Theorem 4.5 as a strengthening of the reversal in
Theorem 2.5.

Theorem 4.6. The statement “if Q is a wqo, then U(P♯
f (Q)) is Noetherian” implies ACA0 over

RCA0.

Proof. Let f : N → N be an injection. Let P be the partial order P = {x, y} with x |P y, and let

Q = Ξf (P, x). As in the proof of Theorem 4.5, it suffices to show that U(P♯
f (Q)) is not Noetherian,

and then appeal to the hypothesis, Lemma 2.1, and Lemma 4.4.

To show that U(P♯
f (Q)) is not Noetherian, we define a sequence (Es)s∈N of finite subsets of Pf(Q)

so that the sequence of effectively closed sets (Fs)s∈N, where Fs =
⋂

t≤sEt↓
♯ for each s ∈ N, is

descending but does not stabilize. We define the sequence (Es)s∈N in stages along with sequences
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of elements (as)s∈N and (bs)s∈N from Pf(Q). We ensure that Es is always a subset of {at : t ≤
s} ∪ {bt : t ≤ s} and always contains as and bs. Among the sets in Es, as is the unique set
containing xs, and bs is the unique set containing ys.

At stage 0, let a0 = {x0}, let b0 = {y0}, and let E0 = {a0,b0}. At stage s+ 1, the definition of
Es+1 proceeds according to the construction of Q.

(i) If Ts+1 $ Ts∪{s} and n0 is the least element of (Ts∪{s})\Ts+1, then set as+1 = bn0
∪{xs+1},

bs+1 = bn0
∪ {ys+1}, and Es+1 = (En0

\ {an0
,bn0

}) ∪ {as+1,bs+1}.
(ii) If Ts+1 = Ts ∪ {s}, then set as+1 = (as \ {xs}) ∪ {xs+1}, bs+1 = (bs \ {ys}) ∪ {ys+1}, and

Es+1 = (Es \ {as}) ∪ {as+1,bs+1}.

The sequence (Fs)s∈N is clearly descending by definition; we must show that it is strictly de-
scending. To do this, we identify some helpful properties of the sequences (as)s∈N, (bs)s∈N, and
(Es)s∈N. First, observe that ∀s(as \ {xs} = bs \ {ys}) by an easy induction argument.

Claim 1. ∀s(
⋃

Es is an antichain in Q).

Proof of claim. By Σ0
0 induction on s. The case s = 0 is clear because x0 |Q y0. Consider s+1. First

suppose that Es is defined according to (i) and that n0 is the least element of (Ts ∪ {s}) \ Ts+1.
By the induction hypothesis,

⋃

En0
is an antichain. By the construction of Q, xs+1 and ys+1

are placed immediately above xn0
∈

⋃

En0
and hence are incomparable with the elements of

⋃

En0
\ {xn0

}. Thus
⋃

Es+1 ⊆ (
⋃

En0
\ {xn0

}) ∪ {xs+1, ys+1} (in fact the reader can check that
⋃

Es+1 = (
⋃

En0
\ {xn0

}) ∪ {xs+1, ys+1}) is an antichain.
Now suppose that Es+1 is defined according to (ii). By the induction hypothesis,

⋃

Es is an
antichain. By the construction of Q, xs+1 and ys+1 are placed immediately below xs ∈

⋃

Es and
hence are incomparable with the elements of

⋃

Es\{xs}. Thus
⋃

Es+1 ⊆ (
⋃

Es\{xs})∪{xs+1, ys+1}
(again, in fact the reader can check that

⋃

Es+1 = (
⋃

Es \{xs})∪{xs+1, ys+1}) is an antichain. �

Claim 2. ∀s(as /∈ (Es \ {as})↓
♯ ∧ bs /∈ (Es \ {bs})↓

♯).

Proof of claim. By Σ0
0 induction on s. The case s = 0 is clear. Consider s + 1. First suppose

that Es+1 is defined according to (i), and let n0 be the least element of (Ts ∪ {s}) \ Ts+1. Suppose

that as+1 ≤♯
Q e for some e ∈ En0

\ {an0
,bn0

}. Then e ⊆ as+1↑. As an0
is the only element

of En0
containing xn0

, xn0
/∈ e and so e ∪ {xn0

} is an antichain by Claim 1; in particular, no
element of e is ≥Q xn0

. However, as+1 is bn0
∪ {xs+1}, and xs+1 ≥Q xn0

. It follows that e ⊆ bn0
↑

and so bn0
∈ (En0

\ {bn0
})↓♯. This contradiction to the induction hypothesis shows that as+1 /∈

(Es+1 \ {an0
,bn0

})↓♯. Finally, as+1 |
♯
Q bs+1 because as+1 ∪ bs+1 is an antichain by Claim 1, which

means that xs+1 /∈ bs+1↑ and ys+1 /∈ as+1↑. Thus as+1 /∈ (Es+1 \ {as+1})↓
♯. A similar argument

shows that bs+1 /∈ (Es+1 \ {bs+1})↓
♯.

Now consider the case that Es+1 is defined according to (ii), and suppose that as+1 ≤♯
Q e for

some e ∈ Es \ {as}. Then e ⊆ as+1↑. However, since as+1 is given by replacing xs with xs+1

in as and xs+1 is placed immediately below xs, any z ∈ e that is ≥Q xs+1 is also ≥Q xs, and

therefore e ⊆ as↑ as well. So as ∈ (Es \ {as})↓
♯, which contradicts the induction hypothesis. Thus

as+1 /∈ (Es \ {as})↓
♯. Since as+1 |♯Q bs+1, as argued in the previous case, we again have that

as+1 /∈ (Es+1 \ {as+1})↓
♯. A similar argument shows that bs+1 /∈ (Es+1 \ {bs+1})↓

♯. �

Claim 3. (∀s)(∀i ≤ s)(as ∈ Ei↓
♯ ∧ bs ∈ Ei↓

♯).

Proof of claim. By Σ0
0 induction on s. The case s = 0 is clear. Consider s + 1. First suppose

that Es+1 is defined according to (i), and let n0 be the least element of (Ts ∪ {s}) \ Ts+1. By

the induction hypothesis for n0, (∀i ≤ n0)(bn0
∈ Ei↓

♯). Since as+1 ≤♯
Q bn0

and bs+1 ≤♯
Q bn0

, it

suffices to show that (∀i ≤ s)(bn0
∈ Ei↓

♯). By definition, bn0
∈ En0

; and if bn0
∈ Ei and Ei+1 is

defined according to (ii), then bn0
∈ Ei+1. So if bn0

/∈ Ei+1 for some i + 1 ∈ (n0, s], it must be
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because Ei+1 is defined according to (i) and the least element n1 of (Ti ∪{i}) \Ti+1 is less than n0.
Then f(i + 1) < f(n1) < f(n0) because i + 1 is the least number witnessing that n1 is not true,

contradicting that n0 ∈ Ts ∪ {s}. Hence (∀i ≤ s)(bn0
∈ Ei↓

♯).
Now suppose that Es+1 is defined according to (ii). By the induction hypothesis, (∀i ≤ s)(as ∈

Ei↓
♯). As as+1 ≤♯

Q as and bs+1 ≤♯
Q as (because in this case xs+1, ys+1 <Q xs), it follows that

(∀i ≤ s+ 1)(as+1 ∈ Ei↓
♯ ∧ bs+1 ∈ Ei↓

♯) as well. �

We can now show that (Fs)s∈N is strictly descending. Consider s ∈ N. Suppose that Es+1 = En0
\

({an0
,bn0

})∪{as+1,bs+1} is defined according to (i), where n0 is the least element of (Ts∪{s})\Ts+1.

Then bn0
∈

⋂

t≤sEt↓
♯ = Fs as shown in the proof of Claim 3. However, as+1 <♯

Q bn0
and

bs+1 <
♯
Q bn0

because neither xs+1 nor ys+1 is above any element of bn0
by Claim 1, and bn0

is not

≤♯
Q any element of En0

\ {an0
,bn0

} by Claim 2. Thus bn0
/∈ Es+1↓

♯, so bn0
/∈ Fs+1.

Finally, suppose that Es+1 = (Es \ {as}) ∪ {as+1,bs+1} is defined according to (ii). Then by

Claim 3, as ∈
⋂

t≤sEt↓
♯ = Fs. On the other hand, since neither xs+1 nor ys+1 is above any element

of as, as+1 <
♯
Q as and bs+1 <

♯
Q as, while as is not ≤♯

Q any element of Es \ {as} by Claim 2. Thus

as /∈ Es+1↓
♯, and so as /∈ Fs+1.

This completes the proof that (Fs)s∈N witnesses that U(P♭
f (Q)) is not Noetherian. �

Theorem 4.7. The following are equivalent over RCA0.

(i) ACA0.

(ii) If Q is a wqo, then A(P♭
f (Q)) is Noetherian.

(iii) If Q is a wqo, then U(P♭
f (Q)) is Noetherian.

(iv) If Q is a wqo, then U(P♯
f (Q)) is Noetherian.

(v) If Q is a wqo, then U(P♭(Q)) is Noetherian.
(vi) If Q is a wqo, then U(P♯(Q)) is Noetherian.

Proof. That (i) implies (ii) and (iii) is Theorem 3.9. That (i) implies (iv) is Corollary 3.22. That
(i) implies (v) is Theorem 3.20. That (i) implies (vi) is Theorem 3.21. That (ii), (iii), and (v) imply
(i) is Theorem 4.5. For (ii), use also Proposition 3.8, and for (v), use also Theorem 3.19 (i). That
(iv) and (vi) imply (i) is Theorem 4.6. For (vi), use also Theorem 3.19 (ii). �

Upon hearing the third author speak about the results contained in this paper, Takashi Sato
asked whether the converses of the statements in Theorem 4.7 hold, and, for those that do, what
system is needed to prove them. First notice that U(P♭

f (Q)) can be Noetherian without Q being

a wqo. Indeed, if Q is an infinite antichain, then all closed sets in U(P♭
f (Q)) are finite and thus

U(P♭
f (Q)) is Noetherian. Nevertheless, RCA0 easily proves that if U(P♭

f (Q)) is Noetherian, then Q
is well-founded. The next proposition shows that the other converses are provable in RCA0.

Proposition 4.8 (RCA0). Let Q be a quasi-order. If A(P♭
f (Q)), U(P♯

f (Q)), U(P♭(Q)), or U(P♯(Q))
is Noetherian, then Q is a wqo.

Proof. We prove the contrapositive. The result for A(P♭
f (Q)) follows from the fact that if Q is not

wqo then P♭
f (Q) is not wqo (because q 7→ {q} embeds Q into P♭

f (Q)) and from the second part of
Proposition 3.8.

For the other spaces, first fix a bad sequence (qi)i∈N of elements of Q.

To see that U(P♭(Q)) is not Noetherian, let Fn =
⋂

i≤n{Q \ (qi↑)}↓
♭. The sequence (Fn)n∈N is a

non-stabilizing descending sequence of effectively closed sets as witnessed by {qn+1} ∈ Fn \ Fn+1.

To see that U(P♯
f (Q)) is not Noetherian, let Hn = {qi : i ≤ n}↓♯. The sequence (Hn)n∈N is a non-

stabilizing descending sequence of effectively closed sets as witnessed by {qi : i ≤ n} ∈ Hn \Hn+1.

The result for U(P♯(Q)) follows easily from the result for U(P♯
f (Q)) and Theorem 3.19 (ii). �
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[ER52] Paul Erdős and Richard Rado, Advanced Problems and Solutions: Solutions: 4358, Amer. Math. Monthly

59 (1952), no. 4, 255–257. MR1528122
[FM12] Emanuele Frittaion and Alberto Marcone, Linear extensions of partial orders and reverse mathematics,

MLQ Math. Log. Q. 58 (2012), no. 6, 417–423. MR2997030
[FM14] , Reverse mathematics and initial intervals, Ann. Pure Appl. Logic 165 (2014), no. 3, 858–879.

MR3142390
[Fri14] Emanuele Frittaion, Reverse Mathematics and partial orders, Ph.D. Thesis, 2014.
[Fri75] Harvey Friedman, Some systems of second order arithmetic and their use, Proceedings of the International

Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, 1975, pp. 235–242. MR0429508 (55 #2521)
[GL07] Jean Goubault-Larrecq, On Noetherian spaces, Proceedings of the 22nd Annual IEEE Symposium on Logic

in Computer Science (LICS’07), July 2007, pp. 453–462.
[GL10] , Noetherian spaces in verification, Automata, languages and programming. Part II, 2010, pp. 2–21.

MR2734632 (2012g:68151)
[GL13] , Non-Hausdorff topology and domain theory, New Mathematical Monographs, vol. 22, Cambridge

University Press, Cambridge, 2013. [On the cover: Selected topics in point-set topology]. MR3086734
[Hir87] Jeffry Hirst, Combinatorics in Subsystems of Second Order Arithmetic, Ph.D. Thesis, 1987.
[Jan99] Petr Jančar, A note on well quasi-orderings for powersets, Inform. Process. Lett. 72 (1999), no. 5-6, 155–

160. MR1737752
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