363 research outputs found

    Flat Foldings of Plane Graphs with Prescribed Angles and Edge Lengths

    Get PDF
    When can a plane graph with prescribed edge lengths and prescribed angles (from among {0,180∘,360∘\{0,180^\circ, 360^\circ\}) be folded flat to lie in an infinitesimally thin line, without crossings? This problem generalizes the classic theory of single-vertex flat origami with prescribed mountain-valley assignment, which corresponds to the case of a cycle graph. We characterize such flat-foldable plane graphs by two obviously necessary but also sufficient conditions, proving a conjecture made in 2001: the angles at each vertex should sum to 360∘360^\circ, and every face of the graph must itself be flat foldable. This characterization leads to a linear-time algorithm for testing flat foldability of plane graphs with prescribed edge lengths and angles, and a polynomial-time algorithm for counting the number of distinct folded states.Comment: 21 pages, 10 figure

    Zyklische Levelzeichnungen gerichteter Graphen

    Get PDF
    The Sugiyama framework proposed in the seminal paper of 1981 is one of the most important algorithms in graph drawing and is widely used for visualizing directed graphs. In its common version, it draws graphs hierarchically and, hence, maps the topological direction to a geometric direction. However, such a hierarchical layout is not possible if the graph contains cycles, which have to be destroyed in a preceding step. In certain application and problem settings, e.g., bio sciences or periodic scheduling problems, it is important that the cyclic structure of the input graph is preserved and clearly visible in drawings. Sugiyama et al. also suggested apart from the nowadays standard horizontal algorithm a cyclic version they called recurrent hierarchies. However, this cyclic drawing style has not received much attention since. In this thesis we consider such cyclic drawings and investigate the Sugiyama framework for this new scenario. As our goal is to visualize cycles directly, the first phase of the Sugiyama framework, which is concerned with removing such cycles, can be neglected. The cyclic structure of the graph leads to new problems in the remaining phases, however, for which solutions are proposed in this thesis. The aim is a complete adaption of the Sugiyama framework for cyclic drawings. To complement our adaption of the Sugiyama framework, we also treat the problem of cyclic level planarity and present a linear time cyclic level planarity testing and embedding algorithm for strongly connected graphs

    Multilevel Planarity

    Get PDF
    In this paper, we introduce and study multilevel planarity, a generalization of upward planarity and level planarity. Let G=(V,E)G = (V, E) be a directed graph and let ℓ:V→P(Z)\ell: V \to \mathcal P(\mathbb Z) be a function that assigns a finite set of integers to each vertex. A multilevel-planar drawing of GG is a planar drawing of GG such that for each vertex v∈Vv\in V its yy-coordinate y(v)y(v) is in ℓ(v)\ell(v), nd each edge is drawn as a strictly yy-monotone curve. We present linear-time algorithms for testing multilevel planarity of embedded graphs with a single source and of oriented cycles. Complementing these algorithmic results, we show that multilevel-planarity testing is NP-complete even in very restricted cases

    Planarity Variants for Directed Graphs

    Get PDF

    Hanani-Tutte for Approximating Maps of Graphs

    Get PDF
    We resolve in the affirmative conjectures of A. Skopenkov and Repovs (1998), and M. Skopenkov (2003) generalizing the classical Hanani-Tutte theorem to the setting of approximating maps of graphs on 2-dimensional surfaces by embeddings. Our proof of this result is constructive and almost immediately implies an efficient algorithm for testing whether a given piecewise linear map of a graph in a surface is approximable by an embedding. More precisely, an instance of this problem consists of (i) a graph G whose vertices are partitioned into clusters and whose inter-cluster edges are partitioned into bundles, and (ii) a region R of a 2-dimensional compact surface M given as the union of a set of pairwise disjoint discs corresponding to the clusters and a set of pairwise disjoint "pipes" corresponding to the bundles, connecting certain pairs of these discs. We are to decide whether G can be embedded inside M so that the vertices in every cluster are drawn in the corresponding disc, the edges in every bundle pass only through its corresponding pipe, and every edge crosses the boundary of each disc at most once

    Planar L-Drawings of Directed Graphs

    Full text link
    We study planar drawings of directed graphs in the L-drawing standard. We provide necessary conditions for the existence of these drawings and show that testing for the existence of a planar L-drawing is an NP-complete problem. Motivated by this result, we focus on upward-planar L-drawings. We show that directed st-graphs admitting an upward- (resp. upward-rightward-) planar L-drawing are exactly those admitting a bitonic (resp. monotonically increasing) st-ordering. We give a linear-time algorithm that computes a bitonic (resp. monotonically increasing) st-ordering of a planar st-graph or reports that there exists none.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    The many faces of planarity : matching, augmentation, and embedding algorithms for planar graphs

    Get PDF

    Planare Graphen und ihre Dualgraphen auf Zylinderoberflächen

    Get PDF
    In this thesis, we investigates plane drawings of undirected and directed graphs on cylinder surfaces. In the case of undirected graphs, the vertices are positioned on a line that is parallel to the cylinder’s axis and the edge curves must not intersect this line. We show that a plane drawing is possible if and only if the graph is a double-ended queue (deque) graph, i. e., the vertices of the graph can be processed according to a linear order and the edges correspond to items in the deque inserted and removed at their end vertices. A surprising consequence resulting from these observations is that the deque characterizes planar graphs with a Hamiltonian path. This result extends the known characterization of planar graphs with a Hamiltonian cycle by two stacks. By these insights, we also obtain a new characterization of queue graphs and their duals. We also consider the complexity of deciding whether a graph is a deque graph and prove that it is NP-complete. By introducing a split operation, we obtain the splittable deque and show that it characterizes planarity. For the proof, we devise an algorithm that uses the splittable deque to test whether a rotation system is planar. In the case of directed graphs, we study upward plane drawings where the edge curves follow the direction of the cylinder’s axis (standing upward planarity; SUP) or they wind around the axis (rolling upward planarity; RUP). We characterize RUP graphs by means of their duals and show that RUP and SUP swap their roles when considering a graph and its dual. There is a physical interpretation underlying this characterization: A SUP graph is to its RUP dual graph as electric current passing through a conductor to the magnetic field surrounding the conductor. Whereas testing whether a graph is RUP is NP-hard in general [Bra14], for directed graphs without sources and sink, we develop a linear-time recognition algorithm that is based on our dual graph characterization of RUP graphs.Die Arbeit beschäftigt sich mit planaren Zeichnungen ungerichteter und gerichteter Graphen auf Zylinderoberflächen. Im ungerichteten Fall werden Zeichnungen betrachtet, bei denen die Knoten auf einer Linie parallel zur Zylinderachse positioniert werden und die Kanten diese Linie nicht schneiden dürfen. Es kann gezeigt werden, dass eine planare Zeichnung genau dann möglich ist, wenn die Kanten des Graphen in einer double-ended queue (Deque) verarbeitet werden können. Ebenso lassen sich dadurch Queue, Stack und Doppelstack charakterisieren. Eine überraschende Konsequenz aus diesen Erkenntnissen ist, dass die Deque genau die planaren Graphen mit Hamiltonpfad charakterisiert. Dies erweitert die bereits bekannte Charakterisierung planarer Graphen mit Hamiltonkreis durch den Doppelstack. Im gerichteten Fall müssen die Kantenkurven entweder in Richtung der Zylinderachse verlaufen (SUP-Graphen) oder sich um die Achse herumbewegen (RUP-Graphen). Die Arbeit charakterisiert RUP-Graphen und zeigt, dass RUP und SUP ihre Rollen tauschen, wenn man Graph und Dualgraph betrachtet. Der SUP-Graph verhält sich dabei zum RUP-Graphen wie elektrischer Strom durch einen Leiter zum induzierten Magnetfeld. Ausgehend von dieser Charakterisierung ist es möglich einen Linearzeit-Algorithmus zu entwickeln, der entscheidet ob ein gerichteter Graph ohne Quellen und Senken ein RUP-Graph ist, während der allgemeine Fall NP-hart ist [Bra14]
    • …
    corecore