
Planarity Variants
for Directed Graphs

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Guido Brückner

Tag der mündlichen Prüfung: 19. Februar 2021
Erste Referentin: Prof. Dr. Dorothea Wagner
Zweiter Referent: Prof. Dr. Ignaz Rutter
Dritter Referent: Prof. Dr. Giuseppe Di Battista

i

Danksagung

Gleich zu Beginn meines Studiums der Informatik stellte ich fest, dass mich vor allem
die theoretischen Aspekte der Informatik interessierten. Ich vertiefte mich in diese
Richtung weiter und hörte so die meisten theoretisch geprägten Informatikvorlesun-
gen, die am KIT angeboten wurden. Während der Promotion durfte ich nun mehrere
Jahre lang selber theoretische Informatik betreiben – dadurch ist ein großer Traum
wahr geworden.

Bei Ignaz Rutter möchte ich mich für die absolut erstklassige Betreuung bedanken.
Die regelmäßigen Forschungstreffen (ob virtuell über Skype oder persönlich in Eind-
hoven und Passau), die hunderten ausführlich rot annotierten PDF-Seiten und die
unzähligen Stunden, in denen wir gemeinsam im Deadlinestress bis tief in die Nacht
an unseren Einreichungen gearbeitet haben, haben ganz entscheidend zu dieser
Dissertation beigetragen.
Ich danke Dorothea Wagner dafür, dass sie mir die Möglichkeit geboten hat, zu

promovieren, und dass ich in ihrer Gruppe immer gut aufgehoben war. Besonders gut
werden mir die zahlreichen Konferenzen und Summer Schools, zu denen ich reisen
durfte, in Erinnerung bleiben. Sehr dankbar bin ich auch für ihre große Flexibilität,
die es mir ermöglichte, für ein paar Monate über den Tellerrand hinaus auf die
angewandte Seite der Informatik zu blicken.

I want to thank Giuseppe Di Battista for kindly accepting to referee my thesis and
for navigating the formalities of my defense during the pandemic. More broadly, I
want to thank the whole graph drawing and algorithms community for being very
welcoming, very down to earth, and for being truly dedicated to the spirit of science.
It has been a great pleasure to be a part of this community.

ii

Ganz herzlich möchte ich mich außerdem bei meinen Kollegen Lukas Barth, Moritz
Baum, Valentin Buchhold, Lars Gottesbüren, Sascha Gritzbach, Michael Hamann,
Paul Jungeblut, Tamara Mchedlidze, Laura Merker, Benjamin Niedermann, Roman
Prutkin, Marcel Radermacher, Jonas Sauer, Ben Strasser, Torsten Ueckerdt, Franziska
Wegner, Matthias Wolf, Tim Zeitz und Tobias Zündorf bedanken. Es war eine sehr
schöne Zeit mit euch! Ich denke sehr gerne an die regelmäßigen Kaffeerunden,
die Streifzüge der antikapitalistischen Automatenfront und die stets aufreibenden
wie fairen Kickerrunden zurück. Besonderer Dank geht an meinen langjährigen
Bürokollegen Jonas: zusammen konnten wir im Detail Freude und Leid über die
Forschung, die Lehre (im Allgemeinen und über TGI im Besonderen) und über die
Studenten teilen. Ich dankeMarcel für die zahlreichen Reisen zusammen, undValentin
für das gemeinsame wackere Standhalten gegen Corona.
Schließlich danke ich Lilian Beckert, Isabelle Junge, Laurette Lauffer und Tanja

Wehrmann für ihre ausdauernde Hilfe im Kampf mit der Bürokratie. Bei Ralf Kölmel
bedanke ich mich für die Pflege der technischen Infrastruktur, auf die ich mich immer
verlassen konnte.

iii

Deutsche Zusammenfassung

Diese Dissertation trägt zur Theorie von planaren Graphen bei, insbesondere zu Pla-
naritätsvarianten für gerichtete Graphen. Sie ist in drei Teile gegliedert. Im ersten Teil
behandeln wir das Testen eines Graphen auf (radiale) Levelplanarität. Wir räumen
einige der Probleme, die aktuelle Ansätze mit sich bringen, aus dem Weg und unter-
suchen den Fall, wenn die Einbettung des zu testenden Graphen fest ist. Der zweite
Teil befasst sich mit eingeschränkten Einbettungsproblemen. Hier untersuchen wir
zwei Ansätze, nämlich erstens die PQ-Baum Datenstruktur zu erweitern, um mit
Teileinbettungen levelplanarer Graphen umgehen zu können, und zweitens SPQR-
Baumartige Einbettungsrepräsentation für gerichtete planare Graphen zu entwickeln,
mithilfe derer wir Algorithmen für ungerichtete planare Graphen einfach auf den
gerichteten Fall übertragen können. Schließlich werden im dritten Teil neue Zeichen-
stile eingeführt und analysiert. Wir betrachten besonders symmetrische Zeichnungen
mit wenigen Steigungen, eine Verallgemeinerung von Level- und Aufwärtsplanarität
und Zeichnungen, die gleichzeitig zwei Ordnungen auf den Knoten eines Graphen
darstellen, wobei eine Ordnung von unten nach oben und die andere Ordnung von
links nach rechts visualisiert wird.

Teil I — Levelplanaritätsteste

Im ersten Teil dieser Arbeit betrachten wir drei Aspekte davon, einen Graphen auf
(radiale) Levelplanarität zu testen. Zunächst untersuchen wir das Testen von Graphen
auf Levelplanarität unter der Bedingung, dass die Einbettung des Graphen fest ist.
Dabei betrachten wir drei unterschiedliche Definition einer Einbettung, nämlich

iv

das Fixieren der zyklischen Ordnung von Kanten um jeden Knoten, das Fixieren
der linearen Ordnungen von ein- und ausgehenden Kanten um jeden Knoten, und
schließlich das Fixieren der linearen Ordnung von Knoten und Kanten auf jedem
Level. Wir geben für jeden dieser Fälle einen Linearzeitalgorithmus an, der das
entsprechende Problem löst. Außerdem charakterisieren wir radiale aufwärtsplanare
Einbettungen, was uns unsere Ergebnisse für radiale Levelplanarität erweitern lässt.

(b)(a) 𝑥 𝑦 𝑧

𝑢 𝑣 𝑤

𝑢𝑣 ⇔ 𝑦𝑧

𝑢𝑤 < 𝑥𝑦

𝑣𝑤 < 𝑥𝑧

𝑣𝑤 < 𝑦𝑧

2-Sat Formulierung von Levelplanari-
tät (a) und Hanani-Tutte-Zeichnung (b).

Der besonders einfache Levelplanari-
tätstest mit quadratischer Laufzeit von
Randerath et al. [Ran+01] reduziert das
Testen auf Levelplanarität auf das Pro-
blem 2-Sat. Allerdings haben manche
Autoren Zweifel an der Vollständigkeit
des dazugehörigen Korrektheitsbewei-
ses geäußert [FPSŠ13]. Kürzlich haben
Fulek et al. [FPSŠ13, FPS17, FPS16] eine
Hanani-Tutte-artige topologische Cha-
rakterisierung von (radialer) Levelpla-

narität gegeben, d.h., ein Graph ist (radial) levelplanar, wenn er eine (radiale) Le-
velzeichnung besitzt, in der sich alle Paare von unabhängigen Kanten gerade oft
kreuzen. Wir zeigen, dass die 2-Sat-Formulierung von Levelplanarität von Bach-
maier et al. äquivalent zu dem starken Hanani-Tutte Theorem für Levelplanarität ist.
Unser Resultat kann entweder als vollständiger Korrektheitsbeweis des Algorithmus
von Randerath et al. interpretiert werden, oder, wenn man von dessen Korrektheit
bereits überzeugt war, als alternativer, einfacher Beweis des Hanani-Tutte Theorems
für Levelplanarität angesehen werden. Wir zeigen außerdem, dass im radialen Fall
ein ähnlicher Zusammenhang besteht. Dadurch ergibt sich ein neuer, sehr einfacher
Testalgorithmus für radiale Levelplanarität in quadratischer Zeit.

Danach beschreiben wir einen Linearzeitalgorithmus, der einen Levelgraphen
auf (radiale) Levelplanarität testet und, sollte das Ergebnis positiv sein, eine (ra-
diale) levelplanare Einbettung berechnet. Unser Algorithmus folgt dem etablierten
Ansatz, den Graphen Level für Level zu bearbeiten und dabei einen PQ-Baum pro
Zusammenhangskomponente zu verwalten. Im Gegensatz zu den bekannten Algo-
rithmen nutzen wir die deutlich vereinfachte Variante des PQ-Baums von Hsu und
McConnell [HM03] und beschriften diese anders, nämlich mit Knoten aus 𝐺 die
bezeugen, wie viel Platz zwischen zwei benachbarten Knoten einer Zusammenhangs-
komponente ist. Wachsen mehrere Zusammenhangskomponenten zusammen, so
müssen die entsprechenden PQ-Bäume mitsamt ihrer Beschriftungen verschmolzen
werden.Im Vergleich zu den bekannten, sehr komplexen Algorithmen ist unser Al-

v

gorithmus vergleichsweise einfach. Außerdem behandelt er einen wichtigen Fall,
der von Bachmaier et al. [BBF05] scheinbar übersehen wurde. Damit ist unser Al-
gorithmus der erste vollständige Linearzeitalgorithms für das Testen von radialer
Levelplanarität.

Teil II — Eingeschränkte Einbettungen

Oftmals sucht man nicht nach einer beliebigen planaren Einbettung eines Graphen,
sondern einer, die zusätzlichen Einschränkungen genügt. Eine gängige Frage ist etwa,
ob sich eine Einbettung eines Teils eines Graphen auf eine planare Einbettung des
gesamten Graphen erweitern lässt, ohne die Teileinbettung dabei zu verändern. Eine
weitere Frage ist, ob zwei Graphen𝐺1,𝐺2 planare Einbettungen besitzen, deren Ein-
schränkungen auf den gemeinsamen Graphen𝐺1∩𝐺2 identisch sind. Im planaren Fall
spielt der SPQR-Baum eine entscheidene Rolle bei der Entwicklung von Algorithmen,
die diese Fragen beantworten.

(a)

(b)

Levelgraph mit eingeschränkter
Einbettung (a) und entsprechen-
der PQ-Baum (b).

Im zweiten Teil dieser Arbeit betrachten wir ein-
geschränkte Einbettungen von gerichteten plana-
ren Graphen. Eine eingeschränkte Einbettung ei-
nes Levelgraphen besteht aus Halbordnungen der
Knoten undKanten auf jedemLevel.Wir verfolgen
zwei Ansätze. Als Erstes erweitern wir PQ-Bäume,
die sich als nützliches Werkzeug für Algorithmen
für levelplanare Graphen erwiesen haben, um in
Polynomialzeit eingeschränkte Einbettungen zu
finden; siehe die Abbildung rechts. Außerdem zei-
gen wir, dass der allgemeine Fall NP-schwer ist.

Ein Nachteil von PQ-Bäumen ist, dass sie nur
eine lokale Sichtweise auf Graphen und deren Ein-
bettungen ermöglichen. Im Gegensatz dazu bieten SPQR-Bäume eine globale Sicht-
weise auf alle planaren Einbettungen eines Graphen. Als Zweites entwickeln wir
deshalb SPQR-Baumartige Einbettungsrepräsentationen für zweifachzusammenhän-
gende levelplanare und aufwärtsplanare Graphen mit nur einer Quelle, die wir als
LP-Baum und UP-Baum bezeichnen. Beide Bäume teilen wichtige Eigenschaften von
SPQR-Bäumen. Dies ermöglicht es uns Algorithmen, die auf SPQR-Bäumen basieren,
auf einfache Art und Weise für die gerichteten Planaritätsvarianten zu adaptieren. So
konstruieren wir einen Algorithms für das eingeschränkte Einbettungsproblem für
levelplanare Graphen, dessen Laufzeit besser als die des auf PQ-Bäumen basierenden
Algorithmus ist. Außerdem lösen wir einen Fall des simultanen Einbettungsproblems

vi

für levelplanare Graphen und, mit UP-Bäumen, auch das eingeschränkte Einbettungs-
problem für aufwärtsplanare Graphen.

Teil III — Neue Zeichenstile

Im dritten Teil dieser Arbeit betrachten wir neue Zeichenstile für gerichtete planare
Graphen. Zunächst führen wir geradlinige levelplanare Zeichnugen mit einer festen
Anzahl _ von Steigungen ein. Für _ = 2 entspricht dieser Zeichenstil in etwa dem
verbreiteten orthogonalen Zeichenstil für planare Graphen. Für Levelgraphen bei de-
nen alle Kanten Knoten benachbarter Level verbinden, geben wir einen Algorithmus
mit beinahe linearer Laufzeit an, der entweder eine solche Zeichnung findet, oder
feststellt, dass es keine solche Zeichnung gibt. Wir betrachten außerdem das Erwei-
tern von Teilzeichnung und das Finden simultaner Zeichnungen, und kontrastieren
diese algorithmischen Ergebnisse mit NP-Schwerebeweisen für den allgemeinen Fall.

169–125Ma
156–147Ma

68–66Ma68–66Ma

time

Ein phylogenetisches Netzwerk, das
die evolutionären Beziehungen zwi-
schen Dinosaurierspezies unter Be-
rücksichtigung der Zeitalter, zu de-
nen sie lebten visualisiert.

Danach betrachten wir das Konzept von
Multilevelplanarität, einer Verallgemeinerung
von Levelplanarität und Aufwärtsplanarität.
Sei 𝐺 = (𝑉 , 𝐸) ein gerichteter Graph und
sei ℓ : 𝑉 → P (Z) eine Funktion die je-
dem Knoten von 𝐺 eine Menge von gan-
zen Zahlen zuordnet. Eine aufwärtsplanare
Zeichnung von𝐺 ist multilevelplanar, wenn
die 𝑦-Koordinate jedes Knotens v ∈ 𝑉 in
der Menge ℓ (v) liegt; siehe die Abbildung
rechts für ein Beispiel. Wir präsentieren Li-
nearzeitalgorithmen für Kreise und eingebette
Graphen mit nur einer Quelle Fälle, und NP-
Schwereresultate für den allgemeinen Fall.

Schließlich untersuchen wir , ob zwei Halbordnungen über derselben Menge so
gezeichnet werden können, dass die eine Halbordnung von unten nach oben und die
andere Halbordnung von links nach rechts dargestellt ist. Die Eingabe besteht aus
einem gerichteten Graphen𝐺 = (𝑉 , 𝐸) und zwei Mengen𝑋,𝑌 mit𝑋 ∪𝑌 = 𝐸, wobei𝑋
und 𝑌 als partielle Ordnungen von 𝑉 interpretiert werden können. Die Aufgabe ist
es, eine Zeichnung von 𝐺 zu finden, in der jede gerichtete Kante in 𝑋 bzw. 𝑌 als 𝑥-
bzw. 𝑦-monotone Kurve gezeichnet ist. Eine solche Zeichnung ist 𝑥𝑦-planar.

Im Allgemeinen ist es NP-schwer, zu testen, ob eine Graph eine 𝑥𝑦-planare Zeich-
nung erlaubt. Wir untersuchen dne Fall, dass die Einbettung von𝐺 fest ist und der
durch die Kantenmenge 𝑌 induzierte Teilgraph von 𝐺 ein zusammenhängender und

vii

aufspannender Teilgraph von 𝐺 ist, dessen aufwärtsplanare Einbettung fest ist. Wir
nutzen die Zusammenhänge zwischen 𝑥𝑦-Planarität, Aufwärtsplanarität und einer
neuartigen Charakterisierung von Windrosenplanarität aus, um einen Linearzeitalgo-
rithmus zu entwickeln, der einen Graphen auf 𝑥𝑦-Planarität testet, und im positiven
Fall eine 𝑥𝑦-planare Zeichnung mit höchstens drei Knicken pro Kante ausgibt.

ix

Contents

1 Introduction 1

1.1 Contribution . 2
2 Terminology 9

I Level Planarity Testing 17

3 Radial Level Planarity with Fixed Embedding 19

3.1 Introduction . 19
3.2 Preliminaries . 21
3.3 Radial Upward Planarity . 22
3.4 Level Planarity with Fixed Embedding 25
3.5 Conclusion . 32

4 Level-Planarity: Transitivity vs. Even Crossings 33

4.1 Introduction . 33
4.2 Preliminaries . 35
4.3 Level-Planarity . 37
4.4 Radial Level-Planarity . 41

4.4.1 A Constraint System for Radial Level-Planarity 41
4.4.2 Modified Star Form . 46
4.4.3 Constraint System and Assignment for 𝑮+ 47
4.4.4 From a Satisfying Assignment to a Hanani-Tutte Drawing . 52
4.4.5 From a Hanani-Tutte Drawing to a Satisfying Assignment . 55

Contents

x

4.5 Conclusion . 59
5 Level Planarity Testing: A Unified Approach 61

5.1 Introduction . 61
5.2 Preliminaries . 63
5.3 Regularization . 65

5.3.1 Star Form . 65
5.3.2 Redrawing . 66

5.4 PC-Trees . 69
5.5 Invariant Properties . 71
5.6 Grow . 73
5.7 Tree Operation Contract . 75
5.8 Prune . 78
5.9 Tree Operation Update . 80
5.10 Unary Bundle . 82
5.11 General Bundle . 89

5.11.1 Many v-Singular Components 90
5.11.2 Independent Merging . 92
5.11.3 Interdependent Merging . 94

5.12 Disjoint Connected Components . 98
5.13 Implementation in Linear Time . 99
5.14 Conclusion . 101

II Constrained Embeddings 103

6 Partial and Constrained Level Planarity 105

6.1 Introduction . 106
6.2 Preliminaries . 109
6.3 Single-Source Graphs . 110

6.3.1 A Simple Level Planarity Testing Algorithm 111
6.3.2 A Polynomial-Time CLP Algorithm 113
6.3.3 An Efficient CLP Algorithm 119

6.4 Complexity of the General Case . 120
6.4.1 3-Partition Reduction 122
6.4.2 Planar Monotone 3-Sat Reduction 125

6.5 Conclusion . 130
7 An SPQR-Tree-Like Embedding Representation

for Level Planarity 131

7.1 Introduction . 131

Contents

xi

7.2 Preliminaries . 133
7.3 A Decomposition Tree for Level Planarity 138

7.3.1 P-Node Splits . 139
7.3.2 Arc Processing . 142
7.3.3 Correctness . 145
7.3.4 Construction in Linear Time 150

7.4 Applications . 151
7.4.1 Partial Level Planarity . 151
7.4.2 Constrained Level Planarity 153
7.4.3 Simultaneous Level Planarity 153

7.5 Conclusion . 156
8 An SPQR-Tree-Like Embedding Representation

for Upward Planarity 157

8.1 Introduction . 157
8.2 Decomposition Trees and Upward Planar Embeddings 159

8.2.1 Decompositions and Upward Planar Embeddings 159
8.2.2 Decomposition Trees and Upward Planar Embeddings . . . 162

8.3 UP-Trees . 166
8.3.1 P-Node Splits . 167
8.3.2 Arc Contractions . 169
8.3.3 Computation in Linear Time 170

8.4 Partial Upward Embedding . 172
8.5 Conclusion . 173

III Custom Drawing Styles 175

9 Multilevel Planarity 177

9.1 Introduction . 177
9.2 Preliminaries . 180
9.3 Embedded 𝒔𝑻 -Graphs . 182
9.4 Oriented Cycles . 188
9.5 Hardness Results . 191

9.5.1 𝒔𝑻 -Graphs with Variable Embedding 191
9.5.2 Oriented Trees . 193
9.5.3 Embedded Multi-Source Graphs 195

9.6 Conclusion . 197
10 Level-Planar Drawings with Few Slopes 201

10.1 Introduction . 201

Contents

xii

10.2 Preliminaries . 204
10.3 Flow Model . 205

10.3.1 Connected Partial Drawings 207
10.4 Dual Distance Model . 208
10.5 Partial and Simultaneous Drawings 212

10.5.1 Partial Drawings . 213
10.5.2 Simultaneous Drawings . 214

10.6 Complexity of the General Case . 215
10.7 Conclusion . 220

11 Drawing Two Posets 221

11.1 Introduction . 221
11.2 Preliminaries . 223
11.3 Combinatorial View of Windrose Planarity 225
11.4 From 𝑥𝑦-Drawings to Windrose Drawings 227

11.4.1 Simplifying Windrose Planar Embeddings 227
11.4.2 Special Windrose Planar Embeddings 229

11.5 An 𝑥𝑦-Planarity Testing Algorithm 231
11.5.1 Finding a Windrose Planar Derived Graph 231
11.5.2 Correctness . 233

11.6 Conclusion . 236
12 Conclusion and Open Problems 237

Bibliography 241

1

1 Introduction

Planarity is a concept that has been extensively studied. Since the 1930s charac-
terizations of planar graphs in terms of the forbidden minors are known [Kur30,
Wag37]. The Hanani-Tutte theorem provides a topological characterization of pla-
narity [Cho34, Tut70], and there also exists an algebraic characterization [Ver90].
From an algorithmic perspective, testing a graph for planarity, and, if the graph is pla-
nar, finding a planar embedding of it, are classic problems [HT74, SH99, BM04, HT08,
dM12]. For visualization purposes, it is often desirable to find a graph drawing that is
not just planar, but has additional qualities. Examples include drawing an embedded
graph orthogonally [Tam87], with few slopes [DESW07], or symmetrically [HME06];
or inserting an edge or a vertex into a planar drawing so that the number of edge
crossings is minimized [GMW05]. Historically, many of these problems have been
considered for embedded graphs. More recent research has attempted to optimize
not only one fixed embedding, but to optimize across all possible planar embeddings
of a graph [GMW05, BRW16]. A common tool in many of these algorithms is the
SPQR-tree data structure, which offers a global view on all planar embeddings of a
biconnected planar graph [Mac37, Tut66, HT73, DT89, DT90, DT96]. It essentially
decomposes the many and complex choices in choosing a planar embedding into
fewer and well-structured choices. The SPQR-tree is also a key tool for solving
constrained embedding problems such as extending partial embeddings [Ang+15c]
and finding simultaneous embeddings [BKR13].
There also exist planarity variants for directed graphs. A drawing of a directed

graph is upward if each directed edge is drawn as a 𝑦-monotone curve. Level drawings
are upward drawings where additionally the 𝑦-coordinate of each vertex is fixed.

Chapter 1 Introduction

2

Planarity variants for directed graphs such as level planarity or upward planarity are
not understood quite as well. A characterization of level-planar graphs in terms of
minimal forbidden subgraphs is still missing, even for trees [HKL04, FK07, EFK09].
There exists significant research into level planarity testing algorithms. This problem
was initially studied by Di Battista and Nardelli who solved this problem for graphs
with a single source [DN88]. Their idea is to process the graph in a bottom-up sweep
while maintaing all necessary information in form of a PQ-tree. This approach was
extended to the general case with multiple sources in a series of publications [HP95,
HP99, JLM97, JLM98]. The idea is to perform a bottom-up sweep, maintaining one
PQ-tree per connected component and merging them as their components are merged
together. This algorithm was augmented to also output a level-planar embedding
if one exists [JL02], and also to the radial level planar setting, i.e., on the standing
cylinder [BBF05]. Overall, this makes for more than 150 pages of literature. However,
the resulting algorithms are notoriously complex and a convincing proof of their
correctness is, in our opinion, currently not available. In fact, it seems like the
algorithm for radial level planarity testing does not cover an important case. For
these reasons, simpler but slower algorithms have been proposed even long after
the publication of the linear-time algorithm [Ran+01, HK04, HH07, FPS17]. One
particularly simple algorithm is due to Randerath et al. [Ran+01]. However, some
authors have expressed doubts about the completeness of the correctness proof of
this algorithm [FPSŠ13].
The linear-time level planarity algorithms use the PQ-tree data structure, which

offers a localized view of the embeddings of a level graph. It is difficult to qualify how
a localized embedding choice interrelates with embedding choices made elsewhere.
This makes it challenging to develop algorithms for some constrained embedding
problems. Therefore, it would be desirable to have a tool that offers a global view
on all level planar / upward planar embeddings, much like the SPQR-tree does for
planar embeddings.

1.1 Contribution

This thesis contributes to the theory of planar graphs, in particular to the study
of planarity variants tailored to directed graphs. It is split into three parts. In the
first part, we study the problem of level planarity testing. We clear up the problems
of some of the existing approaches and study the very restricted case when the
(upward) planar embedding of the input graph is fixed. The second part of this thesis
is concerned with finding planar embeddings of directed graphs subject to certain
constraints. Here, we explore two approaches, namely extending the PQ-tree data
structure to be able to handle partial and constrained level planar embeddings, and

Contribution Section 1.1

3

adapting the SPQR-tree data structure to represent exactly the level planar or the
upward planar embeddings of a single-source graph and then translating SPQR-
tree-based algorithms to the level planar and upward planar settings. Finally, the
third part of this thesis is dedicated to the study of new drawing styles tailored
specifically to directed graphs. We investigate particularly symmetric drawings with
few slopes, a generalization of level planarity and upward planarity, and drawings
that simultaneously capture two relationships on the vertices of a graph, one of
which is visualized from the bottom up and the other from left to right.

Part I — Level Planarity Testing

In the first part of this thesis, we study three aspects of (radial) level planarity testing.
First, we consider a quite restricted setting, namely when the embedding of the graph
is fixed. Second, we show that the simple level planarity testing algorithm due to
Randerath et al. is indeed correct, and then extend it to the radial level planar setting.
Third, we present a simplified linear-time (radial) level planarity testing algorithm
together with a rigorous but accessible proof of correctness.

Level Planarity Testing with Fixed Embedding

Figure 1.1: Untangling a level planar
embedding to insert an edge.

In Chapter 3, we consider the level planarity
testing problemwhen the embedding is fixed
for three different notions of embedding,
namely the level embedding (i.e., the order
of vertices and edges on each level is fixed),
the upward embedding (i.e., the linear or-
der of incoming and outgoing edges around
each vertex is fixed) and the planar embed-
ding (i.e., the cyclic order of edges around each vertex is fixed). These three notions
allow for increasing flexibility in the corresponding level planar drawings. We show
how to make all faces small by untangling level planar embeddings in order to insert
new edges; see Figure 1.1. Graphs with such small faces and fixed (upward) planar
embedding can be tested for level planarity in linear time. Moreover, we provide a
new characterization of radial upward planar embeddings, which lets us extend these
results to radial level planarity.

Level Planarity Testing and Hanani-Tutte

The simple quadratic-time algorithm for (non-radial) level planarity testing due to
Randerath et al. [Ran+01] reduces level planarity testing to the 2-Satisfiabili-

Chapter 1 Introduction

4

ty (2-Sat) problem; see Figure 1.2 (a). However, some authors have expressed
doubts about the completeness of the correctness proof of this reduction [FPSŠ13].
Recently, Fulek et al. [FPSŠ13, FPS17, FPS16] have presented a Hanani-Tutte-style
topological characterization of (radial) level planarity, i.e., a graph is (radial) level
planar if it admits a (radial) level drawing where any two independent edges cross
an even number of times; see Figure 1.2 (b) for such a drawing.

(b)(a) 𝑥 𝑦 𝑧

𝑢 𝑣 𝑤

𝑢𝑣 ⇔ 𝑦𝑧

𝑢𝑤 < 𝑥𝑦

𝑣𝑤 < 𝑥𝑧

𝑣𝑤 < 𝑦𝑧

Figure 1.2: 2-Sat formulation of level pla-
narity (a) and Hanani-Tutte drawing (b).

In Chapter 4, we show that the 2-
Sat formulation of level planarity test-
ing due to Randerath et al. [Ran+01] is
equivalent to the strong Hanani-Tutte
theorem for level planarity [FPSŠ13].
Our result can be interpreted either as a
complete correctness proof for the algo-
rithm of Randerath et al., or, assuming
completeness of their proof, as an alter-
native, simple proof to the Hanani-Tutte
result for level planarity. In addition to

this, we show that this relationship carries over to radial level planarity, which yields
a novel very simple polynomial-time algorithm for testing radial level planarity.

Level Planarity Testing in Linear Time

𝑣

𝑣 𝑣

𝑣

Figure 1.3:Merging PQ-trees to
represent a multi-source graph.

In Chapter 5, we present a linear-time algorithm
that tests a level graph𝐺 for (radial) level planarity
and, if the outcome is positive, outputs a (radial)
level-planar embedding of 𝐺 . Our algorithm fol-
lows the well-established idea of processing 𝐺 in
a bottom-up sweep, maintaining one PQ-tree per
connected component. In contrast to the existing
algorithms we use a dramatically simpler PQ-tree
data structure due to Hsu and McConnell [HM03]
and annotate it differently, namely with vertices
of 𝐺 that witness how much space there is be-
tween two vertices of a connected component. As
connected components are merged together, their
PQ-trees need to be merged as well; see Figure 1.3.

Compared with the state of the art, our algorithm is simple. Very importantly, our
contribution includes a rigorous proof of correctness of our algorithm. In developing
this proof, we found that the algorithm for radial level planarity testing and radial
level planar embedding by Bachmaier et al. [BBF05] seems to not handle an important

Contribution Section 1.1

5

case. This would make our algorithm the first correct linear-time algorithm for radial
level planarity testing and radial level planar embedding.

Part II — Constrained Embeddings

Often, we are not looking for just any embedding of a graph, but one that satisfies
certain additional constraints. One popular question asks whether a given partial
embedding of a graph 𝐺 , i.e., an embedding of a subgraph of 𝐺 , can be extended to
an embedding of the entire graph 𝐺 without modifying the given partial embedding.
Another question asks whether two graphs 𝐺1,𝐺2 admit planar drawings that are
identical on the shared graph 𝐺1 ∩𝐺2. In the planar setting, the SPQR-tree plays a
crucial role in devising algorithms that answer these questions.
In the second part of this thesis, we consider constrained embeddings of level

planar and upward planar graphs. We attack these problems from two angles. First,
we study how PQ-trees, which have proven to be a very useful tool to solve problems
related to level planarity, can be augmented to find constrained embeddings of level
planar graphs. One downside of PQ-trees is that they offer only a localized view of
the graph and its embeddings. In comparison, the SPQR-tree offers a global view of
all embeddings of a planar graph. Therefore, our second angle of attack is to develop
SPQR-tree-like embedding representations for single-source level planar graphs
and upward planar graphs and use them to translate SPQR-tree-based constrained
embedding algorithms to the directed settings.

Partial and Constrained Level Planarity

(a)

(b)

Figure 1.4: Constrained level
graph (b) and PQ-tree (a).

In Chapter 6, we study the problem of level planarity
testing with partial or constrained level embeddings.
A partial level embedding consists of total left-to-
right orders of a subset of the vertices and edges on
each level. A constrained level embedding consists
of a partial left-to-right order of the vertices and
edges on each level. We show that for single-source
level graphs both of these problems can be solved
in polynomial time. To this end, we start with the
original level planarity testing algorithm for single-
source graphs of Di Battista and Nardelli, and then
augment the PQ-tree data structure to also handle
partial orders of its leaves; see Figure 1.4.

We complement this positive result for single-source level graphs by showing that
the partial and constrained level planarity problems are NP-hard in general.

Chapter 1 Introduction

6

R

RS

R

P

R RRS

(a) (b)

R

R

R P

RR S

S R R

R

P

P

RR S

R

(d)(c)

Figure 1.5: A level planar graph (a), the SPQR-tree of its underlying planar graph (b),
the UP-tree of its underlying upward planar graph (c), and its LP-tree (d).

SPQR-Tree-Like Embedding Representations

In Chapter 7, we show that biconnected single-source level graphs admit an SPQR-
tree-like embedding representation. We formalize this representation under the
name LP-tree. LP-trees share many of the important properties of SPQR-trees. This
makes it possible to use LP-trees almost as a drop-in replacement for SPQR-trees in
algorithms for planar graphs, thereby translating these algorithms from the planar
setting to the level-planar setting with only very few modifications. In particular,
we translate an algorithm for extending partial and constrained planar embeddings
and an algorithm for finding simultaneous planar embeddings to the level-planar
setting. The former algorithm improves upon the running time of the algorithm for
the same problem presented in Chapter 6, the latter algorithm is the first solution to
a previously open problem.

In Chapter 8, we show that an SPQR-tree-like embedding representation also exists
for biconnected single-source upward planar graphs. We dub this representation
UP-tree. We demonstrate the usefulness of the UP-tree by translating the partial
embedding algorithm for planar graphs to the upward planar setting, using the
UP-tree as a drop-in replacement for the SPQR-tree.

See Figure 1.5 for an example of a graph, the SPQR-tree, the LP-tree and the UP-tree.

Contribution Section 1.1

7

Part III — New Drawing Styles

In the third part of this thesis we consider three new drawing styles for planar
directed graphs.

Level Planar Drawings with Few Slopes

Figure 1.6: A drawing
with three slopes.

In Chapter 10, we introduce and study level-planar straight-
line drawings with a fixed number _ of slopes; see Fig-
ure 1.6. For _ = 2 this drawing style is somewhat akin to
the popular orthogonal drawing style for planar graphs.
For proper level graphs (all edges connect vertices of adja-
cent levels), we give an almost-linear-time algorithm that
either finds such a drawing or determines that no such
drawing exists. Moreover, we consider the partial drawing
extension problem, where we seek to extend an immutable
drawing of a subgraph to a drawing of the whole graph,
and the simultaneous drawing problem, which asks about
the existence of drawings of two graphs whose restrictions
to their shared subgraph coincide. We present efficient al-
gorithms for these respective problems on proper level-planar graphs. These positive
results are complemented by our result that testing whether non-proper level graphs
admit level-planar drawings with _ slopes is NP-hard even in restricted cases.

Multilevel Planarity

169–125Ma
156–147Ma

68–66Ma68–66Ma

time

Figure 1.7: Phylogenetic network
showing the evolutionary relationships
of dinosaur species with respect to the
times when they roamed the earth.

In Chapter 9, we introduce and study mul-
tilevel planarity, a generalization of upward
planarity and level planarity. Let𝐺 = (𝑉 , 𝐸)
be a directed graph and let ℓ : 𝑉 → P (Z)
be a function that assigns a finite set of in-
tegers to each vertex. A multilevel-planar
drawing of 𝐺 is an upward planar drawing
of 𝐺 such that for each vertex v ∈ 𝑉 its 𝑦-
coordinate 𝑦 (v) is in ℓ (v). See Figure 1.7
for an example. We present linear-time al-
gorithms for testing multilevel planarity of
embedded graphs with a single source and
of oriented cycles. Complementing these algorithmic results, we show that multilevel-
planarity testing is NP-complete even in very restricted cases.

Chapter 1 Introduction

8

Drawing Two Posets

In Chapter 11, we investigate the problem of drawing two posets of the same ground
set so that one is drawn from left to right and the other one is drawn from the bottom
up. The input to this problem is a directed graph 𝐺 = (𝑉 , 𝐸) and two sets 𝑋,𝑌
with 𝑋 ∪ 𝑌 = 𝐸, each of which can be interpreted as a partial order of 𝑉 . The task
is to find a planar drawing of 𝐺 such that each directed edge in 𝑋 is drawn as an 𝑥-
monotone edge, and each directed edge in 𝑌 is drawn as a 𝑦-monotone edge. Such a
drawing is called an 𝑥𝑦-planar drawing.

Figure 1.8: Inserting rightward
edges (red) into a face of an up-
ward planar graph.

Testing whether a graph admits an 𝑥𝑦-planar
drawing is NP-complete in general. We consider
the case that the planar embedding of 𝐺 is fixed
and the subgraph of 𝐺 induced by the edges in 𝑌

is a connected spanning subgraph of 𝐺 whose
upward embedding is fixed. Exploiting the rela-
tionships between 𝑥𝑦-planarity, upward planarity
and a new combinatorial characterization of win-
drose planarity, we present a linear-time algorithm
that determines whether the edges in 𝑋 can be in-
serted into the upward planar drawing of the graph
spanned by the edges in 𝑌 (see Figure 1.8) and, if
so, produces an 𝑥𝑦-planar polyline drawing with
at most three bends per edge.

9

2 Terminology

In this chapter we introduce some basic terminology used throughout this thesis.

Graphs. An undirected graph is a tuple𝐺 = (𝑉 , 𝐸) that consists of a set of vertices𝑉
and a set of edges 𝐸 ⊆ {{𝑢, v} | 𝑢, v ∈ 𝑉 }. A directed graph is a tuple𝐺 = (𝑉 , 𝐸) that
consists of a set of vertices 𝑉 and a set of (directed) edges 𝐸 ⊆ {(𝑢, v) | 𝑢, v ∈ 𝑉 }.
An edge whose endpoints are identical is a loop. In this work we consider graphs
without loops. A simple graph has at most one edge between any pair of distinct
vertices (although if the graph is directed, two vertices 𝑢, v may be connected by
two edges (𝑢, v) and (v, 𝑢) in opposite directions). In contrast, in a multigraph there
may exist more than one edge between the same two vertices. A subgraph of 𝐺 is
a graph 𝐺 ′ = (𝑉 ′, 𝐸 ′) with 𝑉 ′ ⊆ 𝑉 such that the edges in 𝐸 ′ ⊆ 𝐸 connect vertices
in𝑉 ′. In a directed graph, a vertex v of𝐺 is a source if all edges incident to v originate
from v . Symmetrically, a vertex v of 𝐺 is a sink if all edges incident to v have v as
their endpoint. A cutvertex of 𝐺 is a vertex whose removal disconnects 𝐺 . We say
that 𝐺 is biconnected if it has no cutvertex. Further, {𝑢, v} is a cutpair if there are
connected subgraphs 𝐻1, 𝐻2 of 𝐺 with 𝐻1 ∪ 𝐻2 = 𝐺 and 𝐻1 ∩ 𝐻2 = {𝑢, v} that both
contain at least two edges. If a graph has no cutpair it is triconnected.

Drawings and Embeddings of Graphs. A drawing of 𝐺 maps each vertex to a
point in the plane and each edge to a finite polygonal chain (i.e., a connected series
of line segments) connecting its endpoints such that for each v ∈ 𝑉 the line segments
incident to v of pairwise distinct edges have pairwise distinct slopes. A drawing Γ
of 𝐺 extends a drawing Δ of a subgraph 𝐻 of 𝐺 if the restriction of Γ to 𝐻 is Δ. A

Chapter 2 Terminology

10

drawing is planar if distinct vertices do not coincide and no edges coincide, except in
common endpoints. A (combinatorial) embedding of𝐺 consists of a counter-clockwise
cyclic order of edges incident to v for each v ∈ 𝑉 . An embedding G of 𝐺 extends
an embedding H of a subgraph 𝐻 of 𝐺 if the restriction of G to 𝐻 is H, i.e., if all
edges 𝑒, 𝑓 , 𝑔 in 𝐻 that share a common endpoint v appear in the same cyclic order
around v in G and H. Note that a drawing Γ of𝐺 induces a (combinatorial) embedding
of 𝐺 , which we refer to as the embedding of Γ. An embedding of 𝐺 is planar if it is
induced by a planar drawing of 𝐺 . A planar embedding defines faces bounded by
facial walks v1, v2, . . . , v𝑛, v𝑛+1 = v1 where for each 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 the edge {v𝑖−1, v𝑖 }
immediately precedes the edge {v𝑖 , v𝑖+1} in the counter-clockwise cyclic order of
edges incident to v𝑖 .

The terms drawing and planar drawing extend to directed graphs without modifica-
tions. A drawing Γ is upward if each edge (𝑢, v) ∈ 𝐸 increases strictly 𝑦-monotonically
from 𝑢 to v . It is upward planar if it is both upward and planar. A (combinatorial) up-
ward embedding of𝐺 consists of two left-to-right linear orders for each vertex v ∈ 𝑉 ,
namely one order each of the incoming and outgoing edges incident to v . Observe
that an upward drawing Γ induces an upward embedding of 𝐺 , which we refer to
as the upward embedding of Γ. An upward embedding of 𝐺 is upward planar if it is
induced by an upward planar drawing of 𝐺 .
There is another, alternative view of upward embeddings due to Bertolazzi et

al. [BDLM94]. A source/sink assignment 𝜓 of 𝐺 assigns to each source or sink v
of 𝐺 an ordered pair (𝑒, 𝑒 ′) of edges where 𝑒 immediately precedes 𝑒 ′ in the counter-
clockwise order of edges incident to v . There exists a unique face 𝑓 on whose facial
walk 𝑒 immediately precedes 𝑒 ′, we also say that𝜓 assigns v to 𝑓 . An upward planar
embedding induces a source/sink assignment by assigning each source v to (𝑒, 𝑒 ′),
where 𝑒 and 𝑒 ′ are the leftmost and rightmost outgoing edge incident to v , respectively,
and by assigning each sink v to (𝑒, 𝑒 ′), where 𝑒 and 𝑒 ′ are the rightmost and leftmost
outgoing edge incident to v , respectively. Conversely, a planar embedding together
with a source/sink assignment induces an upward embedding. We therefore use these
concepts interchangeably. Let 𝑓 be a face and let v1, v2, . . . , v𝑛, v𝑛+1 = v1 denote the
facial walk that bounds 𝑓 . For 1 ≤ 𝑖 ≤ 𝑛 the vertex v𝑖 is a face source of 𝑓 if both
edges {v𝑖−1, v𝑖 } and {v𝑖 , v𝑖+1} originate from v𝑖 . Symmetrically, v𝑖 is a face sink of 𝑓 if
both edges {v𝑖−1, v𝑖 } and {v𝑖 , v𝑖+1} have v𝑖 as their endpoint. For each face 𝑓 let 𝑛𝑓

denote the number of face sources of 𝑓 (note that cutvertices of 𝐺 may be counted
multiple times), which equals the number of face sinks of 𝑓 .
For 𝑘 ∈ N a 𝑘-level graph (or simply a level graph) is a directed graph 𝐺 = (𝑉 , 𝐸)

together with a level assignment ℓ : 𝑉 → {1, 2, . . . , 𝑘} that satisfies ℓ (𝑢) < ℓ (v)
for each edge (𝑢, v) ∈ 𝐸. It is proper if for each (𝑢, v) ∈ 𝐸 it is ℓ (𝑢) = ℓ (v) − 1. It
admits a proper subdivision that is obtained from 𝐺 by subdividing each edge (𝑢, v)
where ℓ (𝑢) < ℓ (v) − 1 with additional vertices until it becomes proper. A drawing Γ

Terminology Chapter 2

11

(a) (b)

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

Figure 2.1: A level-planar drawing of a level graph (a) where the blue arrows indicate
the source/sink assignment of the underlying upward planar embedding, and its
proper subdivision.

of 𝐺 is a level drawing if for each vertex v of 𝐺 the 𝑦-coordinate of v in Γ is ℓ (v). A
level drawing that is planar is level planar. A (combinatorial) level embedding of 𝐺 is
an upward embedding of𝐺 together with for each level a left-to-right linear order of
vertices that lie on that level and edges that cross that level. Each level drawing Γ
induces a (combinatorial) level embedding, which we refer to as the level embedding
of Γ. A level embedding of 𝐺 is level planar if it is induced by a level planar drawing
of 𝐺 .
In a radial drawing the vertices of 𝐺 are not mapped onto the plane, but onto

the standing cylinder. The terms defined above extend to radial drawings without
modifications, except for (combinatorial) level embeddings. A (combinatorial) radial
level embedding of𝐺 defines for each level a counter-clockwise cyclic order of vertices
that lie on that level and edges that cross that level.

Decomposition Trees. Our description of decomposition trees follows Angelini
et al. [ABR14]. Let 𝐺 be a biconnected graph. Let {𝑢, v} be a cutpair and let 𝐻1, 𝐻2
be two subgraphs of 𝐺 with 𝐻1 ∪ 𝐻2 = 𝐺 and 𝐻1 ∩ 𝐻2 = {𝑢, v}. Define the tree T
that consists of two nodes `1 and `2 connected by an undirected arc as follows.
For 𝑖 = 1, 2 node `𝑖 is equipped with a multigraph skel(`𝑖) = 𝐻𝑖 + 𝑒𝑖 , called its
skeleton, where 𝑒𝑖 = (𝑢, v) is called a virtual edge. The arc (`1, `2) links the two
virtual edges 𝑒𝑖 in skel(`𝑖) with each other. We also say that the virtual edge 𝑒1
corresponds to `2 and likewise that 𝑒2 corresponds to `1. The idea is that skel(`1)
provides a more abstract view of 𝐺 where 𝑒1 serves as a placeholder for 𝐻2. More
generally, there is a bijection corr` : 𝐸 (skel(`)) → 𝑁 (`) that maps every virtual edge
of skel(`) to a neighbor of ` in T , and vice versa. If it is corr` ((𝑢, v)) = 𝜈, then 𝜈 is
said to have poles 𝑢 and v in `. If ` is clear from the context we simply say that 𝜈 has
poles𝑢, v . When the underlying graph is a level graph, we assume ℓ (𝑢) ≤ ℓ (v)without
loss of generality. For an arc (𝜈, `) of T , the virtual edges 𝑒1, 𝑒2 with corr` (𝑒1) = 𝜈

Chapter 2 Terminology

12

𝑠

𝑡

𝑤𝑤′
𝑤𝑤′

𝑡

𝑠
𝑤′𝑤

𝑡

𝑠

𝑣

𝑢

𝑤′𝑤

𝑠

𝑡
𝑣

𝑢

𝑣

𝑢

skel(`)skel(_)
𝑣

𝑢

𝑣

𝑢

skel(`)skel(_)
𝑣

𝑢

decompose ip compose

Figure 2.2: Decompose the embedded graph 𝐺 on the left at the cutpair 𝑢, v . This
gives the center-left decomposition tree whose skeletons are embedded as well.
Reflecting the embedding of skel(`) or, equivalently, flipping (_, `), yields the same
decomposition tree with a different embedding of skel(`). Then contract (_, `) to
obtain the embedding on the right.

and corr𝜈 (𝑒2) = ` are called twins, and 𝑒1 is called the twin of 𝑒2 and vice versa. This
procedure is called a decomposition, see Fig. 2.2 on the left. It can be re-applied to
skeletons of the nodes of T , which leads to larger trees with smaller skeletons. A
decomposition tree of 𝐺 is an unrooted tree obtained in this way. A decomposition
can be undone by contracting an arc (`1, `2) of T , forming a new node ` with a
larger skeleton as follows. Let 𝑒1, 𝑒2 be twin edges in skel(`1), skel(`2). The skeleton
of ` is the union of skel(`1) and skel(`2) without the two twin edges 𝑒1, 𝑒2. We
call this a composition. Contracting all arcs of a decomposition tree of 𝐺 results in a
decomposition tree consisting of a single node whose skeleton is𝐺 . See Fig. 2.2 on the
right. Let ` be a node of a decomposition tree with a virtual edge 𝑒 with corr` (𝑒) = 𝜈.
The expansion graph of 𝑒 and 𝜈 in `, denoted by 𝐺 (𝑒) and𝐺 (`, 𝜈), respectively, is the
graph obtained by removing the twin of 𝑒 from skel(𝜈) and contracting all arcs in
the subtree that contains 𝜈.

Decomposition Trees and Planar Embeddings. Each skeleton of a decompo-
sition tree of 𝐺 is a minor of 𝐺 . So if 𝐺 is planar, each skeleton of a decomposition
tree T of 𝐺 is planar as well. In fact, decomposition trees can be used to decompose
not only a graph, but also an embedding of it. Consider a biconnected graph 𝐺

together with a planar embedding E and a decomposition tree T . For each node `
of T the embedding of skel(`) is obtained from E by contracting for each virtual
edge 𝑒 of skel(`) the expansion graph 𝐺 (𝑒) into a single edge. These embeddings
of the skeletons of the nodes of T are referred to as a configuration. Conversely,
if (`, `) is an arc of T , and skel(`) and skel(`) have fixed planar embeddings E`

and E𝜈, respectively, then the skeleton of the node _ obtained from contracting (`, 𝜈)
can be equipped with an embedding E by merging these embeddings along the twin
edges corresponding to (`, 𝜈). If we equip every skeleton with a planar embedding
and contract all arcs, we obtain a planar embedding of 𝐺 . The resulting embedding
is independent of the order of the edge contractions. Thus, every decomposition

Terminology Chapter 2

13

tree T of 𝐺 represents (not necessarily all) planar embeddings of 𝐺 by choosing a
planar embedding of each skeleton and contracting all arcs. We call this embedding
representation the skeleton-based embedding representation.

SPQR-Trees. As described in the previous paragraph, decomposition trees separate
independent choices in finding planar embeddings of a graph. We may either choose
an embedding of the entire graph, which is generally very complex, or we may
decompose the graph into smaller skeletons, independently choose embeddings
of these skeletons and compose them into an embedding of the entire graph. In
this sense decomposition trees implement a trade off between making few complex
choices or many simple choices.
The SPQR-tree is a decomposition tree that makes this trade off in favor of many

simple choices. SPQR-trees have four kinds of nodes, all of whose skeletons offer only
few and well-structured embedding choices. (i) R-nodes are nodes whose skeleton
is triconnected. Such skeletons have a unique planar embedding up to flipping.
(ii) S-nodes are nodes whose skeleton is a simple cycle. Such skeletons offer no
embedding choice (not counting the choice of the outer face, which is typically made
by the rooting of the SPQR-tree). Adjacent S-nodes are contracted into one larger
S-node, i.e., an S-node whose skeleton is a larger simple cycle. This means that in
SPQR-trees no two S-nodes are adjacent. (iii) P-nodes are nodes whose skeleton is a
multigraph that consists of two vertices connected by three or more edges. The order
of these edges may be arbitrarily permuted. Again, adjacent P-nodes are contracted
into one larger P-node, i.e., no two P-nodes are adjacent. (iv) Q-nodes are nodes
whose skeleton consists of two vertices connected by two edges, namely one virtual
edge and one non-virtual edge. They serve mostly to ensure that the skeletons of all
non-Q-nodes consist entirely of virtual edges. In particular, they offer no embedding
choice. See Figure 8.6 (a) and (b) for a graph and its SPQR-tree decomposition.

Let 𝑒ref be an edge of𝐺 . Rooting T at the unique node `ref whose skeleton contains
the real edge 𝑒ref identifies a unique parent virtual edge in each of the remaining nodes;
all other virtual edges are called child virtual edges. The arcs of T become directed
from the parent node to the child node. Let ` be a node of T and let 𝑒 be a child
virtual edge in skel(`) with corr` (𝑒) = 𝜈. Then the expansion graph𝐺 (`, 𝜈) is simply
referred to as 𝐺 (𝜈). For rooted SPQR-trees there is also an arc-based embedding
representation. Here the embedding choices are (i) the linear order of the children
in each P-node, and (ii) for each arc (_, `) whose target ` is an R-node whether the
embedding of the expansion graph 𝐺 (`) should be flipped. To obtain the embedding
of 𝐺 , we contract the edges of T from the bottom up. Consider the contraction
of an arc (_, `) whose child ` used to be an R-node in T . At this point, skel(`) is
equipped with a planar embedding E` . If the embedding should be flipped, we reflect

Chapter 2 Terminology

14

𝑣

𝑢

𝑣

𝑢
𝑢

𝑣 𝑣

𝑢

𝑣
S

R

P
S

R
𝑦

𝑦

𝑤

𝑥

𝑤

𝑥

𝑤

𝑥

𝑢

Figure 2.3: An embedded planar graph (left) and its SPQR-tree (right). The five
nodes of the SPQR-tree are represented by their respective skeleton graphs. Dashed
edges connect twin virtual edges and colored edges correspond to Q-nodes (omitted).

the embedding E` before contracting (_, `), otherwise we simply contract (_, `). The
arc-based and the skeleton-based embedding representations are equivalent. See
Fig. 2.3 and Fig. 7.6 (a,b) for examples of a planar graph and its SPQR-tree.

PC-Trees and PQ-Trees. Roughly following the description due to Hsu and Mc-
Connell [HM03], a PC-tree𝑇 is a rooted tree of nodes connected by arcs directed from
the parent to the children. Nodes of 𝑇 that have no child are leaves of 𝑇 . All other
nodes are inner nodes of 𝑇 . Each inner node is explicitly labeled as either a P-node or
a C-node. The node that has no parent is the root of 𝑇 . PC-trees are ordered trees, i.e.,
the arcs incident to each node are fixed in a counter-clockwise cyclic order. For every
non-root node ` splitting the counter-clockwise cyclic order of arcs around ` at the
parent arc yields a linear left-to-right order of the child arcs of `. This also makes
it possible to define a leftmost and rightmost leaf of the subtree of 𝑇 rooted at `. A
counter-clockwise traversal of the leaves of 𝑇 gives a counter-clockwise cyclic order
of the leaves called the frontier of 𝑇 .

There are two equivalence transformations for PC-trees. Namely, the order of arcs
around P-nodes may be arbitrarily permuted and the order of arcs around C-nodes
may be reversed. A PC-tree 𝑆 obtained from 𝑇 by a sequence of such equivalence
transformations is equivalent to 𝑇 , we write 𝑆 ≡ 𝑇 . The PC-tree 𝑇 represents the set
of cyclic orders of its leaves {𝜋 | 𝜋 is the frontier of some 𝑆 ≡ 𝑇 }.

The usefulness of a PC-tree arises from the update operation. Let𝑈 denote a subset
of the leaves of 𝑇 . The update operation yields a new PC-tree 𝑇 ′ that represents
exactly those cyclic orders of its leaves that are represented by 𝑇 and in which the
leaves in 𝑈 appear consecutively. If there are no such orders, then the result is null
tree, which formally represents the empty set of cyclic orders of a ground set.
Updating works in three steps. First, mark each leaf in 𝑈 as black and then

iteratively mark each inner node of𝑇 as black if all of its neighbors except for one are
black. Mark all other nodes of 𝑇 as white. Call an arc of 𝑇 terminal if both subtrees
induced by its removal from 𝑇 contain both black and white leaves. If the terminal

Terminology Chapter 2

15

(a) (b) (c)

𝜒

Figure 2.4: The three-step update procedure for PC-trees; C-nodes are represented
by squares, P-nodes by disks. (a) The terminal path is bold, the subtrees consisting of
only black and of only white vertices are represented by black and white triangles,
respectively. (b) The terminal path is split. (c) A new C-node 𝜒 is connected to all
vertices of the terminal path.

arcs form a path in 𝑇 , call it the terminal path. Otherwise, 𝑇 represents no cyclic
order in which 𝑢1, . . . , 𝑢𝑛 appear consecutively, so define the result of the update as
the null tree. Arrange 𝑇 so that the terminal path is horizontal, and, if necessary,
perform equivalence transformations on nodes of 𝑇 such that all black neighbors of
nodes on the terminal path lie below the terminal path and all white neighbors lie
above; see Figure 2.4 (a). If this is not possible, then 𝑇 represents no cyclic order in
which 𝑢1, . . . , 𝑢𝑛 appear consecutively, again define the result as the null tree. In the
second step, the terminal path is split; see Figure 2.4 (b). For every P-node ` on the
terminal path that has both black and white neighbors, create two split P-nodes, one
black split node and one white split node. Otherwise, create only the split node of
the color of the neighbors. Attach all black (white) neighbors of the original node to
the black (white) split node. In the third step, create a new C-node 𝜒 and attach all
split nodes and all neighbors of C-nodes on the original terminal path to 𝜒 in the
order as they appear around the terminal path; see Figure 2.4 (c). If the root of 𝑇 lies
on the terminal path, then 𝜒 becomes the new root. If the root of 𝑇 does not lie on
the terminal path, the root remains unchanged by the update.

Lemma 1 ([HM03, Lemma 4.7]). Let 𝑇 be a PC-tree and let𝑈 be a subset of its leaves.
Updating 𝑇 with 𝑈 takes 𝑂 (p + |𝑈 |) time, where p is the length of the terminal path
in 𝑇 .

PC-trees were initially developed by Shih and Hsu [SH99] and later simplified
by Hsu and McConnell [HM03]. They generalize the closely related PQ-tree data
structure due to Booth and Lueker [BL76]. In contrast to PC-trees, which represent
sets of cyclic orders, the PQ-tree represents sets of linear orders. To implement the
analogue of the update procedure for PQ-trees, an unwieldy collection of so-called
patterns is used, each of which describes a local modification in the PQ-tree. In
comparison, the update procedure due to Hsu and McConnell described above is a

Chapter 2 Terminology

16

lot more simple. Moreover, the running time of algorithms involving the PC-tree is
sometimes easier to analyze than that of algorithms using PQ-trees. Fortunately, by
inserting a special leaf into a PC-tree with the convention that all cyclic orders are
split at that leaf, a PC-tree can easily simulate a PQ-tree. In this way, PC-trees can be
used instead of PQ-trees in existing algorithms.

17

Part I

Level Planarity Testing

19

3 Radial Level Planarity

with Fixed Embedding

We study level planarity testing of graphs with a fixed combinatorial embedding for
three different notions of combinatorial embeddings, namely the level embedding,
the upward embedding and the planar embedding. These notions allow for increasing
degrees of freedom in their corresponding drawings.
For the fixed level embedding there are known and easy to test level planarity

criteria. We use these criteria to prove an “untangling” lemma that plays a key role
in a simple level planarity test for the case where only the upward embedding is
fixed. This test is then adapted to the case where only the planar embedding is fixed.
Further, we characterize radial upward planar embeddings, which lets us extend
our results to radial level planarity. No algorithms were previously known for these
problems.

This chapter is based on joint work with Ignaz Rutter [BR21].

3.1 Introduction

Level planarity and upward planarity are two natural planarity notions for directed
graphs that enrich the notion of planarity of ordinary graphs by imposing additional
requirements based on the directions of the edges. Informally, a drawing of a directed
graph is upward when all edges are drawn as 𝑦-monotone curves. In the level planar
setting the 𝑦-coordinates of the vertices are fixed. We refer to Section 3.2 for formal
definitions. Both exist also in a radial form.

Chapter 3 Radial Level Planarity with Fixed Embedding

20

There is a natural definition of topological equivalence for such drawings. Namely,
two planar drawings Γ1, Γ2 of a graph 𝐺 are equivalent if they can be continuously
transformed into each other without causing crossings. Formally, there is an (am-
bient) isotopy 𝐹 : R2 × [0, 1] → R2 that takes Γ1 to Γ2. That is, 𝐹 is continuous, for
each 𝑡 ∈ [0, 1] the map 𝐹𝑡 (𝑥) = 𝐹 (𝑥, 𝑡) is a homeomorphism of the plane, 𝐹0 is the
identity map and 𝐹1 maps Γ1 to Γ2. Note that the property of 𝐹𝑡 being a homeomor-
phism ensures that also each intermediate image is planar. In particular, there exists
a family of drawings 𝐹𝑡 (Γ1) for 𝑡 ∈ [0, 1]. For upward planar drawings it is natu-
ral to require that the intermediate drawings are also upward, and for level-planar
drawings it is natural to require that the intermediate drawings are level planar.
We consider connected graphs. Then, equivalence classes of such drawings can be
combinatorially described by so-called embeddings (which give the circular order
of edges around each vertex), upward embeddings (which give the linear orders of
incoming and outgoing edges around each vertex), and level embeddings (specifying
for each level the order of its vertices and the edges that cross it), respectively. These
notions equally make sense in the radial setting, except that there level embeddings
specify circular orderings rather than linear ones.

With this definition, not every embedding (upward embedding, level embedding)
must correspond to a planar drawing (upward planar drawing, level planar drawing).
If such a drawing exists, we call it planar embedding (upward planar embedding, level
planar embedding). Yet a level-planar drawing is also upward-planar (forget about
the levels), and an upward planar drawing is planar (forget about the edge directions).
Thus, a level planar embedding uniquely fixes an upward planar embedding, which
in turn uniquely fixes a planar embedding.
Given a fixed combinatorial embedding of one of the above types, it therefore

makes sense to ask for which planarity notions there exists a planar drawing that
induces the given embedding. In this way, each combination of planarity variant and
combinatorial embedding type gives an instantiation of the planarity testing with
fixed embedding problem.

Contribution and Outline. After introducing some preliminaries in Section 3.2,
we present a characterization of radial upward planar embeddings in Section 3.3.
This characterization can be tested in 𝑂 (𝑛 log3 𝑛) time. We consider the level planar
setting in Section 3.4, finding that in this setting we can “untangle” drawings to insert
additional edges. This lets us devise linear-time algorithms for level planarity testing
with fixed embedding. We note that for the non-radial level planar case there already
exists a quadratic-time algorithm [ADDF17] and a paper that claims a linear-time
algorithm [CD95], although that paper does not contain all proofs and there exists no
full version. We close with some concluding remarks in Section 3.5. The following

Preliminaries Section 3.2

21

table gives an overview of known results and our contribution. Green cells indicate
new results.

type of fixed embedding
planarity notion none embedding upward level

planar 𝑂 (𝑛) 𝑂 (𝑛) n.a. n.a.[HT74] (Euler)

upward NPC 𝑂 (𝑛3/2) 𝑂 (𝑛) n.a.[GT01] [Gab83, BDLM94] [BDLM94]

radial upward NPC 𝑂 (𝑛 log3 𝑛) 𝑂 (𝑛) n.a.[HRK97] Theorem 1 Lemma 4

level 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛)
[JLM98] Theorem 3 Theorem 2 Lemma 5

radial level 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛)
[BBF05] Theorem 3 Theorem 2 Lemma 5

3.2 Preliminaries

Bertolazzi et al. [BDLM94] show the following characterization of upward planar
embeddings of biconnected graphs. Our definition of source/sink assignments follows
the generalization of that characterization to non-biconnected graphs [BC20, Lemma
1].

Lemma 2 ([BDLM94],[BC20, Lemma 1]). Let 𝐺 be a directed acyclic graph. An
upward embedding of 𝐺 is upward planar if and only if there exists a face ℎ (namely,
the outer face) such that the source/sink assignment𝜓 assigns to each (inner) face 𝑓 ≠ ℎ

exactly 𝑛𝑓 − 1 sources/sinks, and to ℎ exactly 𝑛ℎ + 1 sources/sinks.

When the planar embedding of 𝐺 is fixed, Bertolazzi et al. provide a quadratic-
time algorithm to test whether a source/sink assignment subject to the conditions
stated in Lemma 2 exists and if so, compute one. This running time can be improved
to 𝑂 (𝑛3/2) as follows. An upward planar source/sink assignment corresponds to
a capacitated matching in the assignment network 𝑁 , which is defined as follows;
see Figure 3.1 (b). For each face 𝑓 of E the assignment network 𝑁 contains three
vertices 𝑓 , 𝑓𝑠 , 𝑓𝑡 and the edge {𝑓𝑠 , 𝑓𝑡 }. The capacity of 𝑓 is 𝑛𝑓 − 1, and the capacity
of 𝑓𝑠 and 𝑓𝑡 is 1. Each source/sink of 𝐺 is also a vertex in 𝑁 . For each incidence of
a source (a sink) v to a face 𝑓 the assignment network 𝑁 contains an edge {v, 𝑓 }
and an edge {v, 𝑓𝑠 } (and an edge {v, 𝑓𝑡 }). The capacity of v is 1. An upward planar
source/sink assignment exists if and only if the number of sources and sinks in 𝐺

is 2 +∑︁
𝑓 ∈E (𝑛𝑓 − 1) and there exists a subset𝑀 of the edges of 𝑁 such that for each

Chapter 3 Radial Level Planarity with Fixed Embedding

22

(a) (b) (c)

ff fs
ft

Figure 3.1: An upward planar graph 𝐺 (black) together with the source/sink assign-
ment that corresponds to its upward planar embedding (blue) (a), and the assignment
network𝑁 (colored) for𝐺 (b,c). For better readability,𝑁 is shown split over (b) and (c).
Bold edges belong to the capacitated matching that corresponds to the upward planar
source/sink assignment in (a).

vertex v of 𝑁 the number of edges in 𝑀 incident to v equals the capacity of v . In
particular, we interpret an edge {v, 𝑓 }, {v, 𝑓𝑠 }, {v, 𝑓𝑡 } ∈ 𝑀 as v being assigned to 𝑓 .
The edge {𝑓𝑠 , 𝑓𝑡 } of𝑁 guarantees that either𝑛𝑓 −1 or𝑛𝑓 +1 sources/sinks are assigned
to 𝑓 . Such an edge set𝑀 can be found in 𝑂 (𝑛3/2) running time using an algorithm
due to Gabow [Gab83].
The following characterization of radial level planarity is common knowledge.

Lemma 3. A radial level embedding of a level graph 𝐺 in proper form is radial
level planar if for all choices of three independent edges (𝑢,𝑢 ′), (v, v ′), (𝑤, 𝑤 ′) of 𝐺
with ℓ (𝑢) = ℓ (v) = ℓ (𝑤) where 𝑢, v, 𝑤 appear in that cyclic order the vertices 𝑢 ′, v ′, 𝑤 ′

appear in that cyclic order.

Radial level planarity generalizes level planarity: to test a graph𝐺 for level planarity
one can test𝐺 together with two vertices 𝑠, 𝑡 such that 𝑠 lies below all vertices of𝐺
and 𝑡 lies above all vertices of𝐺 connected by the edge (𝑠, 𝑡) for radial level planarity.
Using Lemma 3 it can easily be tested in cubic time whether a (radial) level embedding
is (radial) level planar. In Section 3.4, we improve this to linear time, see Lemma 5.

3.3 Radial Upward Planarity

In this section we generalize the criterion for upward planarity due to Bertolazzi et
al. as stated in Lemma 2 to radial upward planarity.

Lemma 4. Let 𝐺 be a connected directed acyclic graph. An upward embedding of 𝐺 is
radial upward planar if and only if there exist two faces 𝑔, ℎ such that the source/sink
assignment𝜓 assigns to each face 𝑓 exactly 𝑛𝑓 −1 sources/sinks, plus one source if 𝑓 = 𝑔,
and plus one sink if 𝑓 = ℎ.

Radial Upward Planarity Section 3.3

23

s x

s′

g1 g2

h2

h1

t′

t

s g

h

t

(a) (b)

p p

(c)

t′

t

s

s′
x

pp

s

th1

g1

Figure 3.2: Proof of Lemma 4. Extend the radial upward drawing Γ (a) to a radial
upward drawing Γ′ (b), then unwrap it from the cylinder into the plane by cutting
along the path p (c).

Proof. For the forward direction, consider a radial upward planar drawing Γ of𝐺 . If Γ
is upward planar, there exists a source/sink assignment𝜓 that assigns to one face ℎ
exactly 𝑛ℎ + 1 sources/sinks, and to each other face 𝑓 exactly 𝑛𝑓 − 1 sources/sinks.
Let 𝑔 = ℎ. There are exactly 𝑛𝑔 = 𝑛ℎ face sources and face sinks each on the facial
walk that bounds 𝑔 = ℎ. So, at least one source of 𝐺 is assigned to 𝑔, at least one sink
of 𝐺 is assigned to ℎ and 𝑛ℎ − 1 = 𝑛𝑔 − 1 further sources/sinks are assigned to 𝑔 = ℎ.
These are exactly the claimed properties of 𝜓 . Otherwise Γ is not upward planar.
Let 𝑔 denote the lower unbounded face and let ℎ ≠ 𝑔 denote the upper unbounded
face. Let 𝑠 denote the vertex with smallest 𝑦-coordinate in Γ (we may assume without
loss of generality that this vertex is unique); see Figure 3.2 (a). Extend 𝐺 and Γ to
a new graph 𝐺 ′ together with a radial upward planar drawing Γ′ as follows; see
Figure 3.2 (b). Create new vertices 𝑠 ′, 𝑥 and draw 𝑥 below 𝑠 and 𝑠 ′ below 𝑥 Next,
create new edges (𝑠 ′, 𝑥) and (𝑥, 𝑠) drawn as vertical straight-line segments. Finally,
create a new edge (𝑠 ′, 𝑠) and draw it so that the linear order of parent edges around 𝑠 ′
is (𝑠 ′, 𝑠), (𝑠 ′, 𝑥) and the linear order of child edges around 𝑠 is (𝑥, 𝑠), (𝑠 ′, 𝑠). This splits
face 𝑔 into one bounded face 𝑔1 and one unbounded face 𝑔2. Similarly, the upper
unbounded face ℎ can be split into one bounded face ℎ1 and one unbounded face ℎ2.
Because 𝐺 is connected there exists in 𝐺 a simple path from 𝑠 to 𝑡 . Then in 𝐺 ′ there
exists a simple path from 𝑠 ′ to 𝑡 ′ that extends p . Cutting Γ′ along p ′ makes it possible
to unwrap Γ′ from the cylinder and embed it into the plane; see Figure 3.2 (c). Every
inner face of Γ′ (in particular, 𝑔1 and ℎ1) is then drawn as an inner non-radial upward
planar face. Bertolazzi et al. showed that then 𝑛𝑓 − 1 sources/sinks are assigned to
such a face 𝑓 . Now go back from Γ′ to Γ. For each inner face 𝑓 of Γ nothing changes,
i.e., 𝑛𝑓 − 1 sources/sinks are assigned to 𝑓 . Assign 𝑠 and every source/sink previously
assigned to 𝑔1 to 𝑔. Observe 𝑛𝑔 = 𝑛𝑔1 , so 𝑛𝑔 − 1 sources/sinks are assigned to 𝑔, plus

Chapter 3 Radial Level Planarity with Fixed Embedding

24

the source 𝑠 . Likewise, assign 𝑡 and every source/sink previously assigned to ℎ1 to ℎ.
Then 𝑛ℎ − 1 sources/sinks are assigned to ℎ, plus the sink 𝑡 . These are exactly the
claimed properties of the source/sink assignment.
For the reverse direction, consider a source/sink assignment 𝜓 with the stated

properties. If the extra source and sink are assigned to the same face of E , then by
Lemma 2 there exists an upward planar drawing of𝐺 . Otherwise, let 𝑔 denote the face
to which an extra source 𝑠 is assigned, and let ℎ ≠ 𝑔 denote the face to which an extra
sink 𝑡 is assigned. Extend 𝐺 and E to a new graph 𝐺 ′ with a planar embedding E ′,
respectively, as follows. Create new vertices including 𝑠 ′, 𝑡 ′ and edges as described for
the forward direction. In particular, insert the edges (𝑥, 𝑠), (𝑠 ′, 𝑠) around 𝑠 between the
two edges to which 𝑠 is assigned by𝜓 . Recall that this splits face 𝑔 into one bounded
face 𝑔1 and one unbounded face 𝑔2. Assign 𝑠 ′ to 𝑔2, then 𝑛𝑔 −1 = 𝑛𝑔1 −1 sources/sinks
are assigned to 𝑔1. Similarly, face ℎ can be split into one bounded face ℎ1 and one
unbounded face ℎ2. Assign 𝑡 ′ to ℎ2, then 𝑛ℎ − 1 = 𝑛ℎ1 − 1 sources/sinks are assigned
to ℎ1. Observe that each bounded face 𝑓 of𝐺 ′ is assigned exactly 𝑛𝑓 −1 sources/sinks.
Using the result of Bertolazzi et al., an incoming (outgoing) edge can be added to
each source (sink) assigned to 𝑓 and embedded within 𝑓 (see the if-part of the proof
of Theorem 3 in [BDLM94]). After this, 𝐺 ′ is a directed acyclic graph whose single
source is 𝑠 ′ and whose single sink is 𝑡 ′ together with a planar embedding E ′. Hashemi
shows that𝐺 ′ is then upward planar with planar embedding E ′ on the sphere [Has01,
Theorem 1]. Auer et al. show that upward planarity on the sphere coincides with
upward planarity on the standing cylinder [ABBG11, Theorem 1]. Hence,𝐺 ′ is radial
upward planar with planar embedding E ′, and, as a direct consequence, 𝐺 is radial
upward planar with planar embedding E . □

In particular, the face to which the extra source (sink) is assigned is the lower
(upper) unbounded face. The (non-radial) upward planarity criterion due to Bertolazzi
et al. states the special case that 𝑔 = ℎ. A given upward embedding of 𝐺 can easily
be tested for radial upward planarity in linear time using the criterion provided by
Lemma 4. Also observe that in a given radial upward planar embedding, the extra
source/sink can be reassigned to any incident face while maintaining radial upward
planarity. In the non-radial setting, the extra source and sink can only be reassigned
to faces that are incident to both of these vertices while maintaining upward planarity.

Theorem 1. Let 𝐺 be a directed graph together with a planar embedding E . It can be
tested in 𝑂 (𝑛 log3 𝑛) time whether 𝐺 admits a radial upward planar embedding with
planar embedding E .

Proof. The criterion from Lemma 4 can be tested by solving a maximum flow problem
on the following network 𝑁 . The sources of 𝑁 are the sources/sinks of 𝐺 and the
sinks of 𝑁 are the faces of E together with two vertices 𝑠 (for the extra source) and 𝑡

Level Planarity with Fixed Embedding Section 3.4

25

(for the extra sink). For each source (sink) v on the facial walk that bounds 𝑓 , create
one arc from v to 𝑓 and one arc from v to 𝑠 (one arc from v to 𝑡). Set the capacity of
each source of 𝑁 to one. Set the demand of 𝑓 to 𝑛𝑓 − 1 and of 𝑠 and 𝑡 to one. Note
that 𝑁 is not necessarily planar, but removing 𝑠 and 𝑡 makes it planar. This means
that we can compute a maximum flow in 𝑁 using the𝑂 (𝑛 log3 𝑛)-time algorithm due
to Borradaile et al. [Bor+17, Corollary 5.1]. □

Note that testing a graph for radial upward planarity with a given planar embedding
is faster compared to testing a graph for (non-radial) upward planarity with a given
planar embedding due to the independent treatment of the extra source and extra
sink.

3.4 Level Planarity with Fixed Embedding

In this section, we investigate (radial) level planarity testing with fixed embedding.
We begin with the most restricted embedding notion, which is that of (radial) level
embeddings. In particular, we show that the problem of deciding whether a given
radial level embedding is radial level planar can be solved in linear time using the
characterization provided by Lemma 3. Recall from Section 3.2 that this generalizes
the treatment of non-radial level embeddings.

Lemma 5. It can be tested in linear time whether a (radial) level embedding of a level
graph in proper from is (radial) level planar.

Proof. Let 𝐺 be a 𝑘-level graph and let E be a radial level embedding of 𝐺 . To check
whether E is level planar it suffices to check for each 1 ≤ 𝑖 < 𝑘 whether the edges
between levels 𝑖 and 𝑖 + 1 induce no crossings. To this end, proceed as follows. First,
remove all vertices on level 𝑖 (on level 𝑖 + 1) that have no neighbor on level 𝑖 + 1 (on
level 𝑖). If at most one vertex remains on level 𝑖 or 𝑖 + 1, then E is radial level planar.
Otherwise, let 𝑢 denote a vertex on level 𝑖 . If the neighbors of 𝑢 on level 𝑖 + 1 do
not appear consecutively in the counter-clockwise cyclic order of vertices level 𝑖 + 1,
then E is not radial level planar. This can be checked in linear time for each vertex𝑢 on
level 𝑖 . If this check passes, the counter-clockwise cyclic order induces a left-to-right
linear order of the neighbors 𝑢 ′

1, 𝑢
′
2, . . . , 𝑢

′
𝑛 of 𝑢 on level 𝑖 + 1. If any 𝑢 ′

𝑗 for 1 < 𝑗 < 𝑛

has a neighbor other than 𝑢, then E is not radial level planar. Next, contract all
neighbors of 𝑢 into a single vertex 𝑢 ′ on level 𝑖 + 1. Iteratively perform this step for
each vertex on level 𝑖 , and, symmetrically, for each vertex on level 𝑖 + 1. The result is
that each vertex has exactly one neighbor on the other level, i.e., we are left with a
set of independent edges and counter-clockwise cyclic orders of their endpoints on
each level 𝑖, 𝑖 + 1. Then E is radial level planar if and only if these cyclic orders can

Chapter 3 Radial Level Planarity with Fixed Embedding

26

i

y

x t

s
s

t

(a) (b)

γ
3

γ
2

γ
1

i
Oi

3

Oi
3Oi

1

Oi
2 Oi

3

Oi
3

Oi
2

Oi
1

x

y

γ′′

γ 1

γ 2

Figure 3.3: Eliminating the turns 𝑥 and 𝑦 in the proof of Lemma 6.

be translated into each other by renaming each vertex to its unique neighbor on the
other level. This can be checked in linear time. □

Next, we consider the slightly more relaxed version where we seek to decide
whether a given radial upward planar embedding is radial level planar. To this end,
we provide the following lemma, which explains how to “untangle” radial level planar
drawings without changing the underlying radial upward embedding. This property
is partially known [Ark+04, Lemma 3.4], [ADDF17, Claim 2], but only for non-radial
level planar drawings.

Lemma 6. Let 𝐺 = (𝑉 , 𝐸) be a level graph, let Γ be a (radial) level planar drawing
of 𝐺 with (radial) upward embedding E . Let 𝑎, 𝑏 ∈ 𝑉 with ℓ (𝑎) < ℓ (𝑏) be incident to
a face 𝑓 such that embedding (𝑎, 𝑏) inside 𝑓 yields a (radial) upward embedding E ′

of 𝐺 + (𝑎, 𝑏). If there exists a curve 𝛾 inside the face 𝑓 of Γ that connects 𝑎 and 𝑏 and
does not intersect the levels ℓ (𝑎) and ℓ (𝑏), there exists a (radial) level planar drawing Γ′
of 𝐺 + (𝑎, 𝑏) with (radial) upward embedding E ′.

Proof. Let 𝛾 be such a curve. Insert between any pair of consecutive levels so-called
half-levels, and subdivide 𝛾 such that it becomes a path that crosses all levels and
half-levels at vertices. A vertex of 𝛾 is a turn if its two neighbors lie on the same level.
We can assume that all turns lie on half-levels. Note that such a curve has an even
number of turns.
If 𝛾 has no turns, it corresponds to an upward drawing of (𝑎, 𝑏) and we can

choose Γ as Γ′. Assume that 𝛾 has at least one turn. Consider two consecutive
turns 𝑥, 𝑦 , ℓ (𝑥) > ℓ (𝑦) that minimize ℓ (𝑥)−ℓ (𝑦). Wemodify the drawing to eliminate
these two turns. Let 𝑠 be the last vertex before 𝑥 with ℓ (𝑠) = ℓ (𝑦) and let 𝑡 be the first
vertex after 𝑦 with ℓ (𝑡) = ℓ (𝑥) on𝛾 ; see Figure 3.3 (a). Each level in [ℓ (𝑦) +1, ℓ (𝑥)−1]
is intersected exactly once by each curve 𝛾1 ≔ 𝛾 [𝑠, 𝑥], 𝛾2 ≔ 𝛾 [𝑥, 𝑦], 𝛾3 ≔ 𝛾 [𝑦, 𝑡],
where 𝛾 [𝑎, 𝑏] denotes the subcurve of 𝛾 from 𝑎 to 𝑏 (inclusive). Correspondingly,
for each such level 𝑖 , the counterclockwise circular ordering of the vertices on that

Level Planarity with Fixed Embedding Section 3.4

27

level are partitioned into three linear orders 𝑂𝑖
𝑗 , 𝑗 = 1, 2, 3 such that 𝑂𝑖

𝑗 is the linear
order between 𝛾 𝑗 and 𝛾 𝑗+1 (where 𝛾4 = 𝛾1 for reasons of circularity), and the circular
ordering on level 𝑖 is the concatenation𝑂𝑖

1 ·𝑂𝑖
2 ·𝑂𝑖

3. Consider the drawing Γ′′ of𝐺 and𝛾
that is obtained by changing the vertex ordering on each level 𝑖 ∈ [ℓ (𝑦) + 1, ℓ (𝑥) − 1]
to the concatenation 𝑂𝑖

2 ·𝑂𝑖
1 ·𝑂𝑖

3. Let further 𝛾 ′′ be obtained from 𝛾 by replacing the
subcurve 𝛾 [𝑠, 𝑡] by inserting a straight-line segment from 𝑠 to 𝑦 , then following 𝛾
in reverse from 𝑦 to 𝑥 and then inserting a straight-line segment from 𝑥 to 𝑡 ; see
Figure 3.3 (b).

We show that Γ′′ is radial level planar using Lemma 3. Crossings could only be intro-
duced by edges that cross level ℓ (𝑠) = ℓ (𝑦) or level ℓ (𝑥) = ℓ (𝑡). The order 𝑂 ℓ (𝑠)=ℓ (𝑦)

2
is empty, so 𝑂 ℓ (𝑠)

1 · 𝑂 ℓ (𝑠)
2 · 𝑂 ℓ (𝑠)

3 = 𝑂
ℓ (𝑠)
2 · 𝑂 ℓ (𝑠)

3 = 𝑂
ℓ (𝑠)
2 · 𝑂 ℓ (𝑠)

1 · 𝑂 ℓ (𝑠)
3 . Likewise, the

order 𝑂 ℓ (𝑥)=ℓ (𝑡)
1 is empty, so 𝑂 ℓ (𝑡)

1 ·𝑂 ℓ (𝑡)
2 ·𝑂 ℓ (𝑡)

3 = 𝑂
ℓ (𝑡)
2 ·𝑂 ℓ (𝑡)

3 = 𝑂
ℓ (𝑡)
2 ·𝑂 ℓ (𝑡)

1 ·𝑂 ℓ (𝑡)
3 .

Therefore Γ′′ is radial level planar. A very similar argument shows that the upward
embeddings of Γ and Γ′′ are the same. Moreover 𝛾 ′′ has fewer turning points than 𝛾 .
Therefore the proof follows by induction. □

We can use Lemma 6 to insert edges into a graph while maintaining (radial) upward
planarity such that all faces end up having size at most 4.

Lemma 7. Let 𝐺 = (𝑉 , 𝐸) be a level graph together with a (radial) upward planar
embedding E . We can compute in linear time a level graph 𝐺 ′ with (radial) upward
planar embedding E ′ whose faces have size at most 4 so that 𝐺 has a (radial) level
planar drawing with embedding E if and only if𝐺 ′ has a (radial) level planar drawing
with embedding E ′.

Proof. Let 𝐺 be a level graph together with an upward planar embedding E . Recall
from Section 3.2 that we may assume without loss of generality that𝐺 is in star form.
Insert edges into𝐺 and E until all faces have size at most 4 while maintaining (radial)
level planarity as follows. Let 𝑓 be a face of E with at least five vertices incident
to 𝑓 . Suppose that there exist successive edges (𝑢, v), (v, 𝑤) or (v, 𝑤), (𝑢, v) on the
facial walk that bounds 𝑓 . If 𝐺 is level planar with upward planar embedding E ,
then by Lemma 6 the edge (𝑢, 𝑤) can be inserted into 𝐺 and E while maintaining
level planarity (other instances of the edge (𝑢, 𝑤) may already exist in 𝐺 , but this
is not a problem). In particular, the curve 𝛾 can be constructed by closely follow-
ing (𝑢, v), (v, 𝑤) or (v, 𝑤), (𝑢, v) within 𝑓 . If no such successive edges exist, then each
vertex incident to 𝑓 is a face source or a face sink of 𝑓 . Let (𝑤, v) be an edge incident
to 𝑓 that minimizes ℓ (v) − ℓ (𝑤). Because v and 𝑤 are face sources or face sinks the
edge (𝑢, v) and (𝑤, 𝑥) precede and succeed (𝑤, v) on the facial walk of 𝑓 , respectively.
Because (𝑤, v) minimizes ℓ (v) − ℓ (𝑤) and because𝐺 is in star form, i.e., every vertex
lies on its own level, it is ℓ (𝑢) ≤ ℓ (𝑤) < ℓ (v) ≤ ℓ (𝑥). See Figure 3.4. First, suppose

Chapter 3 Radial Level Planarity with Fixed Embedding

28

(a) (b) (c) (d) (e)
x

w

v

u

γ
f f ′′

f ′
x

w

v

u u

v

w

x

x

u = w

v

u = w

v

x

Figure 3.4: Inserting the edge (𝑢, 𝑥) by defining the red curve𝛾 (a) and using Lemma 6
to move the blue obstruction to the side (b). The upward embedding may be dif-
ferent (c), which requires moving a different obstruction. If 𝑤 is a cutvertex that
separates v from the rest of 𝐺 , insert the edge (v, 𝑥) instead (e, d).

that 𝑢 ≠ 𝑤 and v ≠ 𝑥 . Then, because 𝐺 is in star form, both inequalities are strict,
i.e., ℓ (𝑢) < ℓ (𝑤) < ℓ (v) < ℓ (𝑥). There is a curve 𝛾 from 𝑢 to 𝑥 that does not intersect
levels ℓ (𝑢), ℓ (𝑥) except in 𝑢 and 𝑥 . By Lemma 6 (𝑢, 𝑥) can be inserted into 𝐺 and E
while maintaining level planarity. In particular, (𝑢, 𝑥) is inserted just after (𝑢, v) in
the left-to-right order of outgoing edges incident to 𝑢 and just after (𝑤, 𝑥) in the
left-to-right order of incoming edges incident to 𝑥 . See Figure 3.4 (a–c). Now consider
the case 𝑢 = 𝑤, i.e., 𝑤 is a cutvertex that separates v from the rest of 𝐺 . Again, there
is a curve from 𝑢 to 𝑥 that does not intersect levels ℓ (𝑢), ℓ (𝑥) except in 𝑢 and 𝑥 . By
Lemma 6 (𝑢, 𝑥) could be inserted into 𝐺 and E while maintaining level planarity
(though we do not actually insert this edge). Then the edge (v, 𝑥) can also be inserted
into 𝐺 and E while maintaining level planarity. Insert (v, 𝑥) just after (𝑤, 𝑥) in the
left-to-right order of incoming edges incident to 𝑥 . See Figure 3.4 (d, e). The case v = 𝑥

is symmetric, in this case we insert the edge (𝑢, 𝑤). Finally, observe that it is 𝑢 ≠ 𝑤

or v ≠ 𝑥 because at least five vertices are incident to 𝑓 .
To reach the claimed running time, we proceed slightly differently. Process the

graph one face at a time. For each face 𝑓 , first shortcut successive edges (𝑢, v), (v, 𝑤)
or (v, 𝑤), (𝑢, v). This can be done in time linear in the size of 𝑓 . Afterwards, every
vertex incident to 𝑓 is a face source or a face sink. Consider a sequence 𝑢, v, 𝑤 of
vertices that are consecutive on the facial walk that bounds 𝑓 such that 𝑢, 𝑤 are face
sources and v is a face sink. Because 𝐺 is in star form all vertices have distinct levels.
If ℓ (𝑢) ≤ ℓ (𝑤), we process the face clockwise, otherwise, we go counterclockwise. We
describe the clockwise case, the counterclockwise case is symmetric. Create a stack 𝑆 ,
and push the edges (𝑢, v) and (𝑤, v) onto 𝑆 . We will maintain the invariant that the
stack contains a part of the facial walk of the current face such that, if edge (𝑎, 𝑏) lies
above edge (𝑐, 𝑑) on 𝑆 , then ℓ (𝑎) ≥ ℓ (𝑐) and ℓ (𝑏) ≤ ℓ (𝑑); see Figure 3.5. If the number
of elements on 𝑆 drops below two, we clear the stack and start the construction with
a new sequence 𝑢, v, 𝑤 of consecutive vertices.

While there are at least two elements on the stack, we proceed as follows. Let𝑢, v, 𝑤

Level Planarity with Fixed Embedding Section 3.4

29

(a)

v
x

u
w

f

x
v

u
w

f u = w

x

v

fu

v = x

w

(b) (c) (d)

f

Figure 3.5: Illustration of the processing algorithm in clockwise direction. The
edges on the stack 𝑆 are thin. The edge following the top edge on 𝑆 is bold. The
illustration assumes that 𝑤 is a source. If ℓ (v) > ℓ (𝑥) (a), then (𝑤, 𝑥) is pushed onto 𝑆 .
If ℓ (v) < ℓ (𝑥) (b), the red edge (𝑢, 𝑥) is inserted. In the depicted case, the following
iteration inserts the blue edge. If v = 𝑥 (c), the edge (𝑢, 𝑤) is inserted instead of (𝑢, 𝑥).
If 𝑢 = 𝑤 (d), the edge (v, 𝑥) is inserted instead of (𝑢, 𝑥).

denote the endpoints of the two edges on top of the stack in the order in which they
occur along the clockwise facial walk. Let 𝑥 denote the successor of 𝑤. We distinguish
cases based on whether 𝑤 is a source or a sink. First assume that 𝑤 is a source (the
case where 𝑤 is a sink is symmetric). If ℓ (𝑥) < ℓ (v), we push (𝑤, 𝑥) onto the stack,
which maintains the invariant; see Figure 3.5 (a). If ℓ (𝑥) = ℓ (v), then v = 𝑥 and𝑢 ≠ 𝑤,
i.e., ℓ (𝑢) < ℓ (𝑤), and we insert (𝑢, 𝑤) into the face; see Figure 3.5 (c). If ℓ (𝑥) > ℓ (v),
then either 𝑢 = 𝑤 and we insert (v, 𝑥) into the face, or ℓ (𝑢) < ℓ (𝑤), and Lemma 6
allows us to insert (𝑢, 𝑥) into the face. See Figure 3.5 (d) and (b), respectively.
If we insert the edge (𝑢, 𝑥), remove the top two edges from the stack. Otherwise,

if (𝑢, 𝑤) or (v, 𝑥) is inserted, remove the top edge from the stack. Then, we continue
with the next iteration. The removed edges are then incident to faces of size 4 or 3,
respectively. This means that every edge incident to 𝑓 is pushed onto 𝑆 at most once.
Moreover, since the edges on 𝑆 become shorter and shorter, the algorithm terminates.
It follows that the face can be augmented in time that is linear in its size. □

Note that we may insert edges that already existed in𝐺 , turning the initially simple
graph into a multigraph. To apply the upward planarity criterion due to Bertolazzi et
al., which is only formulated for simple graphs, we can subdivide edges that occur
multiple times. The subdivision vertices are neither (face) sources nor (face) sinks, so
the upward planar embeddings of this subdivided graph correspond bijectively to
the upward planar embeddings of our multigraph.

Theorem 2. Let 𝐺 = (𝑉 , 𝐸) be a level graph together with a (radial) upward planar
embedding E . It can be tested in linear time whether 𝐺 admits a (radial) level planar
drawing with (radial) upward planar embedding E .

Proof. Lemma 7 lets us assume that each face has size at most 4. No source/sink is

Chapter 3 Radial Level Planarity with Fixed Embedding

30

u v

w

x
v w

x

u
u

x w

vx

v

u
w

u

w
v

x

u
v

w

x(a) (b) (c) (d) (e) (f)

Figure 3.6: Inserting the red augmentation edges into inner faces (a–d), and the level
planarity criterion for the outer face (e, f).

assigned to faces of size at most 3, then nothing needs to be shown. Let 𝑓 be an
inner face of size 4 and let 𝑢, v, 𝑤, 𝑥 denote the facial walk that bounds 𝑓 . Without
loss of generality let 𝑢, 𝑤 be face sources and let v, 𝑥 be face sinks. See Figure 3.6 (a–
d). Exactly one of 𝑢, v, 𝑤, 𝑥 is assigned to 𝑓 . Bertolazzi et al. [BDLM94] show that
if 𝑢 is assigned to 𝑓 , then the edge (𝑤,𝑢) can be inserted into 𝑓 in any upward
planar drawing. For level planarity, this additionally requires ℓ (𝑤) < ℓ (𝑢); see
Figure 3.6 (a). Thus, if ℓ (𝑤) ≥ ℓ (𝑢), then 𝐺 is not (radial) level planar with (radial)
upward embedding E . The cases when v, 𝑤 or 𝑥 are assigned to 𝑓 are symmetric;
see Figure 3.6 (b–d). If the outer face ℎ has size 4, either two sources and one sink is
assigned to ℎ, or one source and two sinks are assigned to ℎ. Level planarity requires
that the lowest vertex 𝑢 and the highest vertex 𝑥 are assigned to the outer face. This
leaves two cases; see Figure 3.6 (e, f). If v is assigned to ℎ, then it must be ℓ (𝑢) < ℓ (𝑤),
otherwise 𝑤 is assigned to ℎ and it must be ℓ (v) < ℓ (𝑥). Inserting all of these edges
gives a level graph 𝐺 ′ with a single source 𝑢 and a single sink 𝑥 together with a
embedding E ′. As in the proof of 4, this means that 𝐺 ′ is (radial) upward planar
with upward embedding E ′. Because 𝐺 ′ has a single source and a single sink this
means that 𝐺 ′ is also (radial) level planar with upward embedding E ′. To see this,
consider a (radial) upward planar drawing Γ′ of𝐺 ′ with upward planar embedding E ′.
Assume without loss of generality that the 𝑦-coordinate of 𝑢 in Γ′ is ℓ (𝑢). Scale
up Γ′ so that for each vertex v ≠ 𝑢 its 𝑦-coordinate is at least ℓ (v). Next, process
each vertex v of 𝐺 ′ in topological order. If the 𝑦-coordinate of v is greater than ℓ (v),
move v down along its leftmost incoming edge until its 𝑦-coordinate is ℓ (v) while
maintaining (radial) upward planarity. Once all vertices are processed Γ′ is a (radial)
level planar drawing of𝐺 ′ with upward embedding E ′. Since𝐺 is a subgraph of𝐺 ′

and E is the restriction of E ′ to 𝐺 this means that 𝐺 is (radial) level planar with
upward embedding E . Reducing the faces to size 4 takes linear time (Lemma 7); the
remaining steps take 𝑂 (1) time per face. □

Finally, consider the least restricted version of level planarity testing with fixed
embedding. Namely, suppose that only a planar embedding E of 𝐺 is fixed. We
translate Lemma 7 to this setting as follows.

Level Planarity with Fixed Embedding Section 3.4

31

Lemma 8. Let 𝐺 be a level graph with a planar embedding E . We can compute in
linear time a level graph 𝐺 ′ with planar embedding E ′ whose faces have size at most 4
so that 𝐺 has a (radial) level planar drawing with embedding E if and only if 𝐺 ′ has a
(radial) level planar drawing with embedding E ′.

Proof. The only difference to the proof of Lemma 7 is that we do not insert the edges
into the upward embedding, i.e., into the linear lists of outgoing or incoming edges,
but rather into embedding, i.e., the cyclic order of edges. □

To test a planar embedding for (radial) level planarity in linear time, we need one
last ingredient. Recall that (radial) level planarity requires (radial) upward planarity,
which can be tested using the assignment network. We show that for a certain kind
of assignment network, testing (radial) upward planarity is feasible in linear time.

Lemma 9. Let 𝐺 = (𝐴 ∪ 𝐵, 𝐸) be a bipartite graph with 𝑛 vertices and𝑚 edges such
that every vertex in 𝐴 has degree at most 2. It can be decided 𝑂 (𝑛 +𝑚) time whether 𝐺
admits a perfect matching and, if so, one can be computed within the same running
time.

Proof. We proceed similar to the algorithm of Karp and Sipser [KS81]. We first
preprocess the graph𝐺 in linear time by iteratively matching a degree-1 vertex 𝑢 ∈ 𝐴

to its unique neighbor v ∈ 𝐵 and then removing both 𝑢 and v from the graph. The
resulting graph 𝐺 ′ = (𝐴′ ∪ 𝐵′, 𝐸 ′) has a perfect matching if and only if 𝐺 has one.
Next, we construct an auxiliary graph 𝐻 = (𝐵′, 𝐸 ′′) such that 𝐸 ′′ contains an

edge v, 𝑤 if there exists a𝑢 ∈ 𝐴′ that is incident to both v, 𝑤 ∈ 𝐵′. A perfect matching
of𝐺 ′ corresponds to an orientation of𝐻 such that each vertex has in-degree exactly 1.
For example, interpret the orientation (v, 𝑤) as {𝑢, v} ∈ 𝐸 ′ being matched and
interpret the orientation (𝑤, v) as {𝑢, 𝑤} ∈ 𝐸 ′ being matched. Such an orientation
of 𝐻 exists if and only if each connected component of𝐺 ′ is a pseudo-tree, that is, it
is a tree plus one edge. This can be tested in linear time. □

This lets us prove the following.

Theorem 3. Let 𝐺 be a level graph together with a planar embedding E . It can be
tested in linear time whether 𝐺 admits a (radial) level planar drawing with planar
embedding E .

Proof. Lemma 8 lets us assume that each face has size at most 4. We check whether
there exists an upward planar embedding with planar embedding E that is level planar
by computing an assignment of vertices to faces similar to Bertolazzi et al. [BDLM94].
Recall that no sources/sinks are assigned to faces of size 3, and exactly one source/sink
is assigned to each inner face of size 4. From the assignment of a source or sink to an

Chapter 3 Radial Level Planarity with Fixed Embedding

32

inner face 𝑓 , we know which edge must be inserted in the augmentation procedure
of Bertolazzi et al., and we can test beforehand, whether this augmentation respects
the given level assignment. If it does not, then we remove the possibility to assign the
corresponding source/sink to face 𝑓 by removing the corresponding edge from the
assignment network. If the remaining network does not allow to assign all sources
and sinks to the faces of the graph, then there is no level-planar embedding with
the given embedding. Otherwise, adding the augmentation edges yields a level 𝑠𝑡-
graph that is planar, and therefore level-planar. Note that in this case the assignment
network is bipartite because it connects face nodes with vertex nodes and each face
node has degree at most two. Lemma 9 shows that in such a network, an assignment
can be computed in linear time. □

3.5 Conclusion

In this chapter, we have studied the (radial) upward and (radial) level planarity testing
problems with fixed embedding for three notions of fixed embeddings, namely embed-
dings, upward embeddings and level embeddings. We provided a new combinatorial
characterization of radial upward planarity with fixed embedding, which can be
tested in 𝑂 (𝑛 log3 𝑛) time. Somewhat curiously, testing for radial upward planarity
is faster than testing for (non-radial) upward planarity, which takes 𝑂 (𝑛3/2) time. It
would be interesting to see whether these running times can be improved, possibly
down to linear time. For the level planar setting, we have shown that a well-known
characterization of radial level planar embeddings can be tested in linear time. For a
fixed (upward) planar embedding, we have shown how to insert edges into the graph
while maintaining (upward) planarity such that all faces have size at most 4. This
lets us test a level graph with a fixed ((radial) upward) planar embedding for (radial)
level planarity in linear time.

33

4 Level-Planarity:

Transitivity vs. Even Crossings

Recently, Fulek et al. [FPS17, FPS16, FPSŠ13] have presented Hanani-Tutte results for
(radial) level-planarity, i.e., a graph is (radial) level-planar if it admits a (radial) level
drawing where any two independent edges cross an even number of times. We show
that the 2-Sat formulation of level-planarity testing due to Randerath et al. [Ran+01]
is equivalent to the strong Hanani-Tutte theorem for level-planarity [FPSŠ13]. Further,
we show that this relationship carries over to radial level planarity, which yields a
novel polynomial-time algorithm for testing radial level-planarity in the spirit of
Randerath et al.

This chapter is based on joint work with Ignaz Rutter and Peter Stumpf [BRS18].

4.1 Introduction

Planarity of graphs is a fundamental concept for graph theory as a whole, and for
graph drawing in particular. Naturally, variants of planarity tailored specifically
to directed graphs have been explored. A planar drawing is upward planar if all
edges are drawn as monotone curves in the upward direction. A special case are
level-planar drawings of level graphs, where the input graph 𝐺 = (𝑉 , 𝐸) comes with
a level assignment ℓ : 𝑉 → {1, 2, . . . , 𝑘} for some 𝑘 ∈ N that satisfies ℓ (𝑢) < ℓ (v) for
all (𝑢, v) ∈ 𝐸. One then asks whether there is an upward planar drawing such that
each vertex v is mapped to a point on the horizontal line 𝑦 = ℓ (v) representing the
level of v . There are also radial variants of these concepts, where edges are drawn as

Chapter 4 Level-Planarity: Transitivity vs. Even Crossings

34

curves that are monotone in the outward direction in the sense that a curve and any
circle centered at the origin intersect in at most one point. Radial level-planarity is
derived from level-planarity by representing levels as concentric circles around the
origin.
Despite the similarity, the variants with and without levels differ significantly in

their complexity. Whereas testing upward planarity and radial planarity are NP-
complete [GT01], level-planarity and radial level-planarity can be tested in polynomial
time. In fact, linear-time algorithms are known for both problems [JLM98, BBF05].
However, both algorithms are quite complicated, and subsequent research has led
to slower but simpler algorithms for these problems [HH07, Ran+01]. Recently also
constrained variants of the level-planarity problem have been considered [BR17,
KR19].
One of the simpler algorithms is the one by Randerath et al. [Ran+01]. It only

considers proper level graphs, where each edge connects vertices on adjacent levels.
This is not a restriction, because each level graph can be subdivided to make it proper,
potentially at the cost of increasing its size by a factor of 𝑘 . It is not hard to see that in
this case a drawing is fully specified by the vertex ordering on each level. To represent
this ordering, define a set of variables V = {𝑢𝑤 | 𝑢, 𝑤 ∈ 𝑉 ,𝑢 ≠ 𝑤, ℓ (𝑢) = ℓ (𝑤)}
where 𝑢𝑤 being true means 𝑢 is left of 𝑤 on level ℓ (𝑤). Randerath et al. observe that
there is a trivial way of specifying the existence of a level-planar drawing by the
following consistency (4.1), transitivity (4.2) and planarity constraints (4.3):

∀𝑢𝑤 ∈ V : 𝑢𝑤 ⇔ ¬𝑤𝑢 (4.1)
∀𝑢𝑤, 𝑤𝑦 ∈ V : 𝑢𝑤 ∧ 𝑤𝑦 ⇒ 𝑢𝑦 (4.2)
∀𝑢𝑤, v𝑥 ∈ V with (𝑢, v), (𝑤, 𝑥) ∈ 𝐸 independent : 𝑢𝑤 ⇔ v𝑥 (4.3)

The surprising result due to Randerath et al. [Ran+01] is that the satisfiability of this
system of constraints (and thus the existence of a level-planar drawing) is equivalent
to the satisfiability of a reduced constraint system obtained by omitting the transitivity
constraints (4.2). That is, transitivity is irrelevant for the satisfiability. Note that a
satisfying assignment of the reduced system is not necessarily transitive. Rather
Randerath et al. prove that a solution can be made transitive without invalidating
the other constraints. Since the remaining conditions (4.1) and (4.3) can be easily
expressed in terms of 2-Sat, which can be solved efficiently, this yields a polynomial-
time algorithm for level-planarity.
A very recent trend in planarity research are Hanani-Tutte style results. The

(strong) Hanani-Tutte theorem [Cho34, Tut70] states that a graph is planar if and
only if it can be drawn so that any two independent edges (i.e., not sharing an
endpoint) cross an even number of times. One may wonder for which other drawing
styles such a statement is true. Pach and Tóth [PT04, PT11] showed that the weak

Preliminaries Section 4.2

35

Hanani-Tutte theorem (which requires even crossings for all pairs of edges) holds for
a special case of level-planarity and asked whether the result holds in general. This
was shown in the affirmative by Fulek et al. [FPSŠ13], who also established the strong
version for level-planarity. Most recently, both the weak and the strong Hanani-Tutte
theorem have been established for radial level-planarity [FPS17, FPS16].

Contribution. We show that the result of Randerath et al. [Ran+01] from 2001 is
equivalent to the strong Hanani-Tutte theorem for level-planarity.
A key difference is that Randerath et al. consider proper level graphs, whereas

Fulek et al. [FPSŠ13] work with graphs with only one vertex per level. For a graph 𝐺
we define two graphs 𝐺★, 𝐺+ that are equivalent to 𝐺 with respect to level-planarity.
The graph 𝐺★ has only vertex per level and the graph 𝐺+ is the proper subdivision
of 𝐺★. We show how to transform a Hanani-Tutte drawing of a graph 𝐺★ into a
satisfying assignment for the constraint system of 𝐺+ and vice versa. Since this
transformation does not make use of the Hanani-Tutte theorem nor of the result by
Randerath et al., this establishes the equivalence of the two results.
Moreover, we show that the transformation can be adapted to the case of radial

level-planarity. This results in a novel polynomial-time algorithm for testing radial
level-planarity by testing satisfiability of a system of constraints that, much like the
work of Randerath et al., is obtained from omitting all transitivity constraints from a
constraint system that trivially models radial level-planarity. Currently, we deduce
the correctness of the new algorithm from the strong Hanani-Tutte theorem for radial
level planarity [FPS16]. However, also this transformation works both ways, and
a new correctness proof of our algorithm in the style of the work of Randerath et
al. [Ran+01] may pave the way for a simpler proof of the Hanani-Tutte theorem for
radial level-planarity. We leave this as future work.

4.2 Preliminaries

For any level graph 𝐺 let 𝐺 denote its proper subdivision; see 𝐺+ in Figure 4.1. Two
independent edges (𝑢, v), (𝑤, 𝑥) are critical if ℓ (𝑢) ≤ ℓ (𝑥) and ℓ (v) ≥ ℓ (𝑤). Note that
any pair of independent edges that can cross in a level drawing of𝐺 is a pair of critical
edges. Throughout this chapter, we consider drawings that may be non-planar, but
we assume at all times that no two distinct vertices are drawn at the exact same point,
no edge passes through a vertex, and no three (or more) edges cross in a single point.
If any two independent edges cross an even number of times in a drawing Γ of 𝐺 , it
is called a Hanani-Tutte drawing of 𝐺 .
We now describe how to obtain a proper level graph for the constraint system

from one for Hanani-Tutte drawings and vice-versa. Note that a level graph that has

Chapter 4 Level-Planarity: Transitivity vs. Even Crossings

36

G?G G+

Figure 4.1: A level graph𝐺 (a) modified to a graph𝐺★ so as to have only one vertex
per level; stretch edges are bold (b) and its proper subdivision 𝐺+ (c).

only one vertex per level can be considered as an ordered graph (where the vertices
are ordered as their levels are ordered), and vice versa. For any 𝑘-level graph 𝐺 we
define a narrow form 𝐺★ that is an ordered graph. The construction is similar to the
one used by Fulek et al. [FPSŠ13]. Let 𝑛(𝑖) denote the number of vertices on level 𝑖
for 1 ≤ 𝑖 ≤ 𝑘 . Further, let v1, v2, . . . , v𝑛 (𝑖) denote the vertices on level 𝑖 . Subdivide every
level 𝑖 into 2𝑛(𝑖) sublevels (𝑖, 1), (𝑖, 2), . . . , (𝑖, 2𝑛(𝑖)) and order them all lexicograph-
ically. For 1 ≤ 𝑗 ≤ 𝑛(𝑖), replace vertex v𝑗 by two vertices v ′𝑗 , v ′′𝑗 with ℓ (v ′𝑗) = (𝑖, 𝑗)
and ℓ (v ′′𝑗) = (𝑖, 𝑗 + 𝑛(𝑖)) and connect them by an edge (v ′𝑗 , v ′′𝑗), referred to as the
stretch edge 𝑒 (v𝑗). Connect all incoming edges of v𝑗 to v ′𝑗 instead and connect all out-
going edges of v𝑗 to v ′′𝑗 instead. Let 𝑒 = (𝑢, v) be an edge of𝐺 . Then let 𝑒 ′ denote the
edge of𝐺★ that connects the endpoint of 𝑒 (𝑢) with the starting point of 𝑒 (v); see Fig-
ure 4.1. Note that a Hanani-Tutte drawing of𝐺 induces a Hanani-Tutte drawing of𝐺★.
Define 𝐺+ as the graph obtained by subdividing the edges of 𝐺★ so that the graph
becomes proper; again, see Figure 4.1. For any vertex𝑢 in𝐺 we say the vertices𝑢 ′, 𝑢 ′′

and all subdivision vertices of (𝑢 ′, 𝑢 ′′) originate from 𝑢. Let (𝑢, v), (𝑤, 𝑥) be critical
edges in 𝐺★. Define their limits in 𝐺+ as (𝑢 ′, v ′), (𝑤 ′, 𝑥 ′) where 𝑢 ′, v ′ are endpoints
or subdivision vertices of (𝑢, v), 𝑤 ′, 𝑥 ′ are endpoints or subdivision vertices of (𝑤, 𝑥)
and it is ℓ (𝑢 ′) = ℓ (𝑤 ′) = max(ℓ (𝑢), ℓ (𝑤)) and ℓ (v ′) = ℓ (𝑥 ′) = min(ℓ (v), ℓ (𝑥)). Note
that we have𝐺+

= 𝐺+ where for an edge 𝑒 in𝐺 we have subdivision vertices of 𝑒 in𝐺+

where in 𝐺+ we have subdivision vertices of stretch edges in 𝐺 that are subdivision
vertices of 𝑒 . Finally, we define the function 𝐿 that maps each level (𝑖, 𝑗) of 𝐺★ or 𝐺+

to the level 𝑖 of 𝐺 .

Lemma 10. Let 𝐺 be a level graph. Then
𝐺 is level-planar⇔ 𝐺★ is level-planar⇔ 𝐺+ is level-planar

Proof. The first equivalence is due to Fulek et al. [FPSŠ13]. The forward direction is
trivially true. For the reverse direction, the key insight is that for every level 𝑖 of 𝐺
there is a level 𝑖 ′ of 𝐺★ so that for each vertex v with ℓ (v) = 𝑖 its stretch edge 𝑒 (v)

Level-Planarity Section 4.3

37

crosses level 𝑖 ′ in 𝐺★. The second equivalence is obvious, because 𝐺+ is the proper
subdivision of 𝐺★. □

4.3 Level-Planarity

Recall from the introduction that Randerath et al. formulate level planarity of a
proper level graph 𝐺 as a Boolean satisfiability problem S ′(𝐺) on the set of vari-
ables V = {𝑢𝑤 | 𝑢 ≠ 𝑤, ℓ (𝑢) = ℓ (𝑤)} and the clauses given by Eq. (4.1)–(4.3).

It is readily observed that𝐺 is level-planar if and only if S ′(𝐺) is satisfiable. Now
let S (𝐺) denote the Sat instance obtained by removing the transitivity clauses (4.2)
from S ′(𝐺). Note that (𝑢𝑤 ⇒ ¬𝑤𝑢) ≡ (¬𝑢𝑤∨¬𝑤𝑢) and (𝑢𝑤 ⇒ v𝑥) ≡ (¬𝑢𝑤∨ v𝑥),
i.e., S (𝐺) is an instance of 2-Sat, which can be solved efficiently. The key claim of
Randerath et al. is that S ′(𝐺) is satisfiable if and only if S (𝐺) is satisfiable, i.e., drop-
ping the transitivity clauses does not change the satisfiability of S ′(𝐺). In this section,
we show that S (𝐺) is satisfiable if and only if𝐺★ has a Hanani-Tutte level drawing
(Theorem 4). Of course, we do not use the equivalence of both statements to level-
planarity of 𝐺 . Instead, we show that S (𝐺) and S (𝐺+) are equivalent (Lemma 13)
and then construct a satisfying truth assignment of S (𝐺+) from a given Hanani-Tutte
level drawing (Lemma 12), and vice versa (Lemma 14). This implies the equivalence
of the results of Randerath et al. and Fulek et al. (Corollary 1).

The common ground for our constructions is the constraint system S ′(𝐺+), where
a Hanani-Tutte drawing implies a variable assignment that does not necessarily sat-
isfy the planarity constraints (4.3), though in a controlled way, whereas a satisfying
assignment of S (𝐺) induces an assignment for S ′(𝐺+) that satisfies the planarity con-
straints but not the transitivity constraints (4.2). Thus, in a sense, our transformation
trades planarity for transitivity and vice versa.
A (not necessarily planar) drawing Γ of 𝐺 induces a truth assignment 𝜑 of V

by defining for all 𝑢𝑤 ∈ V that 𝜑 (𝑢𝑤) is true if and only if 𝑢 lies to the left of 𝑤
in Γ. Note that this truth assignment must satisfy the consistency clauses, but does
not necessarily satisfy the planarity constraints. The following lemma describes a
relationship between certain truth assignments of S (𝐺) and crossings in Γ that we
use to prove Lemmas 12 and 14.

Lemma 11. Let (𝑢, v), (𝑤, 𝑥) be two critical edges of 𝐺★ and let (𝑢 ′, v ′), (𝑤 ′, 𝑥 ′) be
their limits in 𝐺+. Further, let Γ★ be a drawing of 𝐺★, let Γ+ be the drawing of 𝐺+

induced by Γ★ and let 𝜑+ be the truth assignment of S (𝐺+) induced by Γ+. Then (𝑢, v)
and (𝑤, 𝑥) intersect an even number of times in Γ★ if and only if 𝜑+ (𝑢 ′𝑤 ′) = 𝜑+ (v ′𝑥 ′).

Proof. We may assume without loss of generality that any two edges cross at most

Chapter 4 Level-Planarity: Transitivity vs. Even Crossings

38

u w = w′

v = v′ x
x′

u′

u1 w1

u2w2

w3u3

ϕ+(u′w′) = true

ϕ+(u1w1) = true

ϕ+(u2w2) = true

ϕ+(u3w3) = true

ϕ+(v′x′) = true

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

a b c

ϕ(ab) = ϕ+(a1b2)

ϕ(ac) = ϕ+(a1c3)

ϕ(bc) = ϕ+(b1c2)

(a) (b) (c) (d)

Figure 4.2: A Hanani-Tutte drawing (a) induces a truth assignment 𝜑+ that sat-
isfies S (𝐺+) (b), the value where 𝜑+ differs from 𝜓+ is highlighted in red. Using
the subdivided stretch edges of 𝐺+ (c), translate 𝜑+ to a satisfying assignment 𝜑
of S (𝐺) (d).

once between consecutive levels by introducing sublevels if necessary. Let 𝑋 be
a crossing between (𝑢, v) and (𝑤, 𝑥) in 𝐺★; see Figure 4.2 (a). Further, let 𝑢1, 𝑤1
and 𝑢2, 𝑤2 be the subdivision vertices of (𝑢, v) and (𝑤, 𝑥) on the levels directly be-
low and above 𝑋 in 𝐺★, respectively. It is 𝜑+ (𝑢1𝑤1) = ¬𝜑+ (𝑢2𝑤2). In the reverse
direction, 𝜑+ (𝑢1𝑤1) = ¬𝜑+ (𝑢2𝑤2) implies that (𝑢, v) and (𝑤, 𝑥) cross between the
levels ℓ (𝑢1) and ℓ (𝑢2). Due to the definition of limits, any crossing between (𝑢, v)
and (𝑤, 𝑥) in 𝐺★ must occur between the levels ℓ (𝑢 ′) = ℓ (𝑤 ′) and ℓ (v ′) = ℓ (𝑥 ′).
Therefore, it is 𝜑+ (𝑢 ′𝑤 ′) = 𝜑+ (v ′𝑥 ′) if and only if (𝑢, v) and (𝑤, 𝑥) cross an even
number of times. □

We obtain that if Γ★ is a Hanani-Tutte drawing, then for critical edges (𝑢, v), (𝑤, 𝑥)
the limits 𝑢 ′, 𝑤 ′ are ordered the same way as the limits v ′, 𝑥 ′. To obtain a satisfying
assignment for 𝑆 (𝐺), we then choose on each level the same ordering for the corre-
sponding subdivision vertices. For any vertex v of 𝐺★ we use for every subdivision
vertex on level ℓ (v) the order induced by Γ★ with regards to v . Note that this orders
are only assigned for pairs of vertices and may be non-transitive on some layers.

Lemma 12. Let𝐺 be a proper level graph and let Γ★ be a Hanani-Tutte drawing of𝐺★.
Then S (𝐺+) is satisfiable.

Proof. We use Γ★ to define a truth assignment 𝜑+ that satisfies all clauses of S (𝐺+).
Let Γ+ be the drawing of𝐺+ induced by Γ★ and let𝜓+ denote the truth assignment in-
duced by Γ+. Note that𝜓+ does not necessarily satisfy the crossing clauses. Define 𝜑+

so that it satisfies all clauses of S (𝐺+) as follows. Let 𝑢 ′′, 𝑤 ′′ be two vertices of 𝐺+

with ℓ (𝑢 ′′) = ℓ (𝑤 ′′). If one of them is a vertex in 𝐺★, set 𝜑+ (𝑢 ′′, 𝑤 ′′) = 𝜓+ (𝑢 ′′, 𝑤 ′′).
Otherwise 𝑢 ′′, 𝑤 ′′ are subdivision vertices of two edges (𝑢, v), (𝑤, 𝑥) ∈ 𝐸 (𝐺★). If

Level-Planarity Section 4.3

39

they are independent, then they are critical. In that case their limits (𝑢 ′, v ′), (𝑤 ′, 𝑥 ′)
are already assigned consistently by Lemma 11. Then set 𝜑+ (𝑢 ′′𝑤 ′′) = 𝜓+ (𝑢 ′𝑤 ′).
If (𝑢, v), (𝑤, 𝑥) are adjacent, then we have 𝑢 = 𝑤 or v = 𝑥 . In the first case, we
set 𝜑+ (𝑢 ′′𝑤 ′′) = 𝜓+ (v ′𝑥 ′). In the second case, we set 𝜑+ (𝑢 ′′𝑤 ′′) = 𝜓+ (𝑢 ′𝑤 ′).
So for critical edges (𝑢 ′′, v ′′), (𝑤 ′′, 𝑥 ′′) ∈ 𝐸 (𝐺+) it is 𝜑+ (𝑢 ′′𝑤 ′′) = 𝜑+ (v ′′𝑥 ′′) and

also 𝜑+ (𝑢 ′′𝑤 ′′) = ¬𝜑+ (𝑤 ′′𝑢 ′′). Hence, assignment 𝜑+ satisfies S (𝐺+). See Figure 4.2
for a drawing Γ+ (a) and the satisfying assignment of S (𝐺+) derived from it (b). □

Lemma 13. Let 𝐺 be a level graph. Then S (𝐺) is satisfiable if and only if S (𝐺+) is
satisfiable.

Proof. First assume there is a satisfying assignment 𝜑 for S (𝐺). We define a map-
ping 𝑂 : 𝑉 (𝐺+) → 𝑉 (𝐺) that maps each vertex of 𝑉 (𝐺+) to a vertex in 𝐺 . Thereby
we can describe 𝜑+ in relation to 𝜑 . For each vertex v ∈ 𝑉 (𝐺+) that is part of a
stretch edge 𝑒 (𝑤) of 𝐺★ for some vertex 𝑤 of 𝐺 , we set 𝑂 (v) = 𝑤. Each other
vertex v ∈ 𝑉 (𝐺+) is a subdivision vertex of an edge 𝑥𝑥 ′ of 𝐺★ that is not a stretch
edge. We then map v to vertex 𝑤 ∈ {𝑥, 𝑥 ′} with 𝐿(ℓ (v)) = 𝐿(ℓ (𝑤)). Now for dis-
tinct𝑥, 𝑦 ∈ 𝑉 (𝐺+)with𝑂 (𝑥) ≠ 𝑂 (𝑦)we set𝜑+ (𝑥𝑦) = 𝜑 (𝑂 (𝑥)𝑂 (𝑦)). If𝑂 (𝑥) = 𝑂 (𝑦),
then 𝑥 and 𝑦 are subdivision vertices of non-stretch edges 𝑒𝑥 , 𝑒𝑦 in𝐺★. Then let v𝑥 , v𝑦
be the disjoint ends of 𝑒𝑥 , 𝑒𝑦 and we set 𝜑+ (𝑥𝑦) = 𝜑 (𝑂 (v𝑥),𝑂 (v𝑦)).
Because 𝜑 satisfies the consistency constraint, we obtain directly that 𝜑+ satis-

fies the consistency constraint as well. Finally, consider the planarity constraint.
Let (𝑢, v), (𝑤, 𝑥) ∈ 𝐸 (𝐺+) be independent edges with ℓ (𝑢) = ℓ (𝑤). If 𝐿(ℓ (𝑢))
equals 𝐿(ℓ (v)), then we have 𝑂 (𝑢) = 𝑂 (v) and further 𝑂 (𝑤) = 𝑂 (𝑥), and then it
follows directly that 𝜑+ (𝑢𝑤) = 𝜑 (𝑂 (𝑢)𝑂 (𝑤)) = 𝜑 (𝑂 (v)𝑂 (𝑥)) = 𝜑+ (v𝑥). Otherwise,
we have 𝐿(ℓ (𝑢)) ≠ 𝐿(ℓ (v)). Then (𝑢, v), (𝑤, 𝑥) are subdivision edges of non-stretch
edges 𝑒𝑢 , 𝑒𝑤 in 𝐺★. If 𝑒𝑢 , 𝑒𝑤 are not dependent, then 𝜑+ (𝑢𝑤) = 𝜑 (𝑦z) = 𝜑+ (v𝑥)
where 𝑦 , z are the distinct ends of 𝑒𝑢, 𝑒𝑤 . Otherwise, 𝑒𝑢 , 𝑒𝑤 are independent. Then
we have 𝜑+ (𝑢𝑤) = 𝜑 (𝑂 (𝑢)𝑂 (𝑤)) = 𝜑 (𝑂 (v)𝑂 (𝑥)) = 𝜑+ (v𝑥) since 𝜑 satisfies the
planarity constraint.

Next assume there is a satisfying assignment 𝜑+ of S (𝐺+). Let 𝑢, 𝑤 be two vertices
of 𝐺 with ℓ (𝑢) = ℓ (𝑤). Then the stretch edges 𝑒 (𝑢), 𝑒 (𝑤) in 𝐺★ are critical by
construction. Let (𝑢 ′, 𝑢 ′′), (𝑤 ′, 𝑤 ′′) be their limits in 𝐺+. Set 𝜑 (𝑢𝑤) = 𝜑+ (𝑢 ′𝑤 ′).
Because 𝜑+ is a satisfying assignment, all crossing clauses of S (𝐺+) are satisfied,
which implies 𝜑+ (𝑢 ′𝑤 ′) = 𝜑+ (𝑢 ′′𝑤 ′′). The same is true for all subdivision vertices
of 𝑒 (𝑢) and 𝑒 (𝑤) in𝐺+. Because𝜑+ also satisfies the consistency clauses ofS (𝐺+), this
means that 𝜑 satisfies the consistency clauses of S (𝐺). See Figure 4.2 for how S (𝐺+)
is translated from𝐺+ (c) to𝐺 (d). Note that the resulting assignment is not necessarily
transitive, e.g., it could be 𝜑 (𝑢v) = 𝜑 (v𝑤) = ¬𝜑 (𝑢𝑤).

Chapter 4 Level-Planarity: Transitivity vs. Even Crossings

40

(c)(b)(a)

Figure 4.3: A proper level graph 𝐺 together with a satisfying variable assignment 𝜑
(a) induces a drawing of 𝐺+ (b), which induces a Hanani-Tutte drawing of 𝐺★ (c).

Consider two edges (𝑢, v), (𝑤, 𝑥) in 𝐺 with ℓ (𝑢) = ℓ (𝑤). Because 𝐺 is proper,
we do not have to consider other pairs of edges. Let (𝑢 ′, 𝑢 ′′), (𝑤 ′, 𝑤 ′′) be the limits
of 𝑒 (𝑢), 𝑒 (𝑤) in 𝐺+. Further, let (v ′, v ′′), (𝑥 ′, 𝑥 ′′) be the limits of 𝑒 (v), 𝑒 (𝑥) in 𝐺+.
Because there are disjoint directed paths from 𝑢 ′ and 𝑤 ′ to v ′ and 𝑥 ′ and 𝜑+ is
a satisfying assignment, it is 𝜑+ (𝑢 ′𝑤 ′) = 𝜑+ (v ′𝑥 ′). Due to the construction of 𝜑
described in the previous paragraph, this means that it is𝜑 (𝑢𝑤) = 𝜑 (v𝑥). Therefore,𝜑
is a satisfying assignment of S (𝐺) □

Lemma 14. Let 𝐺 be a level graph together with a satisfying truth assignment 𝜑+

of S (𝐺+). Then there exists a Hanani-Tutte drawing Γ★ of 𝐺★.

Proof. We construct a drawing Γ+ of 𝐺+ from 𝜑+ as follows. Recall that by construc-
tion, every level of 𝐺+ contains exactly one non-subdivision vertex. Let 𝑢 denote
the non-subdivision vertex of level 𝑖 . Draw a subdivision vertex 𝑤 on level 𝑖 to
the right of 𝑢 if 𝜑+ (𝑢𝑤) is true and to the left of 𝑢 otherwise. The relative order
of subdivision vertices on either side of 𝑢 can be chosen arbitrarily. Let Γ★ be the
drawing of 𝐺★ induced by Γ+. To see that Γ★ is a Hanani-Tutte drawing, consider
two critical edges (𝑢, v), (𝑤, 𝑥) of 𝐺★. Let (𝑢 ′, v ′), (𝑤 ′, 𝑥 ′) denote their limits in 𝐺+.
One vertex of 𝑢 ′ and v ′ (𝑤 ′ and 𝑥 ′) is a subdivision vertex and the other one is
not. The planarity constraint gives 𝜑+ (𝑢 ′𝑤 ′) = 𝜑+ (v ′𝑥 ′) and by construction 𝑢 ′, 𝑤 ′

and v ′, 𝑥 ′ are placed consistently on their respective levels. Moreover, Lemma 11
yields that (𝑢, v) and (𝑤, 𝑥) cross an even number of times in Γ★. □

Theorem 4. Let 𝐺 be a level graph. Then

S (𝐺) is satisfiable
⇔ S (𝐺+) is satisfiable
⇔ 𝐺★ has a Hanani-Tutte level drawing

Radial Level-Planarity Section 4.4

41

With Lemma 10 we obtain the claimed equivalence of the result of Randerath et
al. [Ran+01] and the strong Hanani-Tutte Theorem. Namely, on the one hand, if
every level graph with a Hanani-Tutte level drawing is level-planar, then we obtain
for every level graph 𝐺 where S (𝐺) is satisfied that 𝐺★ has a Hanani-Tutte level
drawing and is thus level-planar. This implies that 𝐺 is level-planar. On the other
hand, if every level graph 𝐻 where S (𝐻) is satisfiable is level-planar, then for every
proper level-planar graph 𝐺 with a Hanani-Tutte level drawing we trivially obtain a
Hanani-Tutte level drawing for 𝐺★ which means S (𝐺) is satisfiable. This implies 𝐺
is level-planar and thus 𝐺 is also level-planar.

Corollary 1. The level-planar graphs are exactly the level graphs with a Hanani-Tutte
level drawing if and only if they are exactly the level graphs𝐺 where S (𝐺) is satisfiable.

4.4 Radial Level-Planarity

In this section we present an analogous construction for radial level planarity. In
contrast to level-planarity, we now have to consider cyclic orders on the levels, and
even those may still leave some freedom for drawing the edges between adjacent
levels. In the following we first construct a constraint system of radial level planarity
for a proper level graph 𝐺 , which is inspired by the one of Randerath et al. (Sec-
tion 4.4.1). Afterwards, we slightly modify the construction of 𝐺★ (Section 4.4.2).
Finally, in analogy to the level-planar case, we show that a satisfying assignment
of our constraint system defines a satisfying assignment of the constraint system
of 𝐺+ (Section 4.4.3), and that this in turn corresponds to a Hanani-Tutte radial level
drawing of 𝐺★ (Section 4.4.4) and vice versa (Section 4.4.5).

4.4.1 A Constraint System for Radial Level-Planarity

To deal with the increased complexity in the radial case, we state the constraints
aiming for a linear equation system over F2. First observe, that we can formu-
late the constraints for the linear case as follows. We again use the set of vari-
ables V = {𝑢𝑤 | 𝑢, 𝑤 ∈ 𝑉 ,𝑢 ≠ 𝑤, ℓ (𝑢) = ℓ (𝑤)} where now 𝑢𝑤 ≡ 0 means 𝑢 is left
of 𝑤 on level ℓ (𝑤).

∀𝑢𝑤 ∈ V : 𝑢𝑤 ≡ 𝑤𝑢 + 1
∀𝑢𝑤, 𝑤𝑦 ∈ V : 𝑢𝑤 ≡ 0 ∧ 𝑤𝑦 ≡ 0 ⇒ 𝑢𝑦 ≡ 0
∀𝑢𝑤, v𝑥 ∈ V with (𝑢, v), (𝑤, 𝑥) ∈ 𝐸 ind. : 𝑢𝑤 ≡ v𝑥

Chapter 4 Level-Planarity: Transitivity vs. Even Crossings

42

To obtain a constraint system for the radial case, we start with a special case
that bears a strong similarity with the level-planar case. Namely, assume that 𝐺 is
a proper level graph that contains a directed path 𝑃 = 𝛼1, . . . , 𝛼𝑘 that has exactly
one vertex 𝛼𝑖 on each level 𝑖 . We now express the cyclic ordering on each level as
linear orders whose first vertex is 𝛼𝑖 . To this end, we introduce for each level the
variables V𝑖 = {𝛼𝑖𝑢v | 𝑢, v ∈ 𝑉𝑖 \ {𝛼𝑖 }}, where 𝛼𝑖𝑢v ≡ 0 means 𝛼𝑖 , 𝑢, v are arranged
clockwise on the circle representing level 𝑖 . We further impose the following necessary
and sufficient linear ordering constraints L𝐺 (𝛼𝑖).

∀ distinct 𝑢, v ∈ 𝑉 \ {𝛼𝑖 } : 𝛼𝑖𝑢v ≡ 𝛼𝑖v𝑢 + 1 (4.4)
∀ pw. distinct 𝑢, v, 𝑤 ∈ 𝑉 \ {𝛼𝑖 } : 𝛼𝑖𝑢v ≡ 0 ∧ 𝛼𝑖v𝑤 ≡ 0 ⇒ 𝛼𝑖𝑢𝑤 ≡ 0 (4.5)

It remains to constrain the cyclic orderings of vertices on adjacent levels so that
the edges between them can be drawn without crossings. For two adjacent levels 𝑖
and 𝑖 + 1, let Y𝑖 = (𝛼𝑖 , 𝛼𝑖+1) be the reference edge. Let 𝐸𝑖 be the set of edges (𝑢, v) of𝐺
with ℓ (𝑢) = 𝑖 that are not adjacent to an endpoint of Y𝑖 . Let 𝐸+𝑖 = {(𝛼𝑖 , v) ∈ 𝐸 \ {Y𝑖 }}
and 𝐸−𝑖 = {(𝑢, 𝛼𝑖+1) ∈ 𝐸 \ {Y𝑖 }} denote the edges between levels 𝑖 and 𝑖 + 1 adjacent
to the reference edge Y𝑖 .
In the context of the constraint formulation, we only consider drawings of the

edges between levels 𝑖 and 𝑖 + 1 where any pair of edges crosses at most once and,
moreover, Y𝑖 is not crossed. Note that this can always be achieved, independently of
the orderings chosen for levels 𝑖 and 𝑖 + 1. Then, the cyclic orderings of the vertices
on the levels 𝑖 and 𝑖 + 1 determine the drawings of all edges in 𝐸𝑖 . In particular,
two edges (𝑢, v), (𝑢 ′, v ′) ∈ 𝐸𝑖 do not intersect if and only if 𝛼𝑖𝑢𝑢 ′ ≡ 𝛼𝑖+1vv ′; see
Figure 4.4 (a). Therefore, we introduce constraint (4.6). For each edge 𝑒 ∈ 𝐸+𝑖 ∪ 𝐸−𝑖 it
remains to decide whether it is embedded locally to the left or to the right of Y𝑖 . We in-
troduce for each such edge 𝑒 a variable 𝑙 (𝑒) where 𝑙 (𝑒) ≡ 0 represents the former case.
Two edges 𝑒 ∈ 𝐸−𝑖 , 𝑓 ∈ 𝐸+𝑖 do not cross if and only if 𝑙 (𝑒) ≡ 𝑙 (𝑓) + 1; see Figure 4.4 (b).
This gives us constraint (4.7). It remains to forbid crossings between edges in 𝐸𝑖 and
edges in 𝐸+𝑖 ∪ 𝐸−𝑖 . An edge 𝑒 = (𝛼𝑖 , v ′′) ∈ 𝐸+𝑖 and an edge (𝑢 ′, v ′) ∈ 𝐸𝑖 do not cross
if and only if 𝑙 (𝑒) ≡ 𝛼𝑖+1v ′v ′′; see Figure 4.4 (c). Crossings with edges (v, 𝛼𝑖+1) ∈ 𝐸−𝑖
can be treated analogously. This yields constraints (4.8) and (4.9). We denote the
planarity constraints (4.6)–(4.9) by P𝐺 (Y𝑖), where Y𝑖 = (𝛼𝑖 , 𝛼𝑖+1).

∀ independent (𝑢, v), (𝑢 ′, v ′) ∈ 𝐸𝑖 : 𝛼𝑖𝑢𝑢
′ ≡ 𝛼𝑖+1vv ′ (4.6)

∀𝑒 ∈ 𝐸+𝑖 , 𝑓 ∈ 𝐸−𝑖 : 𝑙 (𝑒) ≡ 𝑙 (𝑓) + 1 (4.7)
∀ independent (𝛼𝑖 , v ′′) ∈ 𝐸+𝑖 , (𝑢, v) ∈ 𝐸𝑖 : 𝑙 (𝛼𝑖 , v ′′) ≡ 𝛼𝑖+1vv ′′ (4.8)
∀ independent (𝑢 ′′, 𝛼𝑖+1) ∈ 𝐸−𝑖 , (𝑢, v) ∈ 𝐸𝑖 : 𝑙 (𝑢 ′′, 𝛼𝑖+1) ≡ 𝛼𝑖𝑢𝑢

′′ (4.9)

It is not difficult to see that the transformation between Hanani-Tutte drawings and

Radial Level-Planarity Section 4.4

43

α+
i u u′

α−i+1 v v′

εi

i

i+ 1

α+
i u′

α−i+1 v′v′′

εi

i

i+ 1

α+
i

α−i+1

εi

i

i+ 1e f

(a) (c)(b)

e

Figure 4.4: Illustration of the planarity constraints for radial planarity for the case of
two edges in 𝐸𝑖 (a), constraint (4.6); the case of an edge in 𝑒 ∈ 𝐸−𝑖 and an edge 𝑓 ∈ 𝐸+𝑖
(b), constraint (4.7); and the case of an edge in 𝐸𝑖 and an edge 𝑒 ∈ 𝐸+𝑖 (c), con-
straint (4.8).

solutions of the constraint system without the transitivity constraints (4.5) can be
performed as in the previous section. The only difference is that one has to deal with
edges that share an endpoint with a reference Y𝑖 .
In general, however, such a path 𝑃 from level 1 to level 𝑘 does not necessarily

exist. Instead, we use an arbitrary reference edge between any two consecutive levels.
More formally, we call a pair of sets 𝐴+ = {𝛼+

1 , . . . , 𝛼
+
𝑘
}, 𝐴− = {𝛼−

1 , . . . , 𝛼
−
𝑘
} reference

sets for 𝐺 if we have 𝛼−
1 = 𝛼+

1 and 𝛼+
𝑘
= 𝛼−

𝑘
and for 1 ≤ 𝑖 ≤ 𝑘 the reference vertices 𝛼+

𝑖 ,
𝛼−
𝑖 lie on level 𝑖 and for 1 ≤ 𝑖 < 𝑘 graph 𝐺 contains the reference edge Y𝑖 = (𝛼+

𝑖 , 𝛼
−
𝑖+1)

unless there is no edge between level 𝑖 and level 𝑖 + 1 at all. In that case, we can insert
into every radial drawing of 𝐺 the edge (𝛼+

𝑖 , 𝛼
−
𝑖+1) without creating new crossings.

We therefore assume from now on that this case does not occur.
To express radial level-planarity, we express the cyclic orderings on each level

twice, once with respect to the reference vertex 𝛼+
𝑖 and once with respect to the

reference vertex 𝛼−
𝑖 . To express planarity between adjacent levels 𝑖 and 𝑖 + 1, we use

the planarity constraints with respect to the reference edge Y𝑖 . It only remains to
specify that, if 𝛼+

𝑖 ≠ 𝛼−
𝑖 , the linear ordering with respect to these reference vertices

must be linearizations of the same cyclic ordering. This is expressed by the following
cyclic ordering constraints C𝐺 (𝛼+

𝑖 , 𝛼
−
𝑖); see Figure 4.5.

∀ distinct 𝑢, v ∈ 𝑉𝑖 \ {𝛼−
𝑖 , 𝛼

+
𝑖 } : 𝛼−

𝑖 𝑢v + 𝛼+
𝑖 𝑢v + 𝛼−

𝑖 𝑢𝛼
+
𝑖 + 𝛼−

𝑖 v𝛼
+
𝑖 ≡ 0 (4.10)

∀ v ∈ 𝑉𝑖 \ {𝛼−
𝑖 , 𝛼

+
𝑖 } : 𝛼−

𝑖 v𝛼
+
𝑖 + 𝛼+

𝑖 𝛼
−
𝑖 v ≡ 0 (4.11)

The constraint set S ′(𝐺,𝐴+, 𝐴−) consists of the linearization constraints L𝐺 (𝛼+
𝑖)

and L𝐺 (𝛼−
𝑖), the cyclic ordering constraints C𝐺 (𝛼+

𝑖 , 𝛼
−
𝑖) for 𝑖 = 1, 2, . . . , 𝑘 if 𝛼+

𝑖 ≠ 𝛼−
𝑖 ,

plus the planarity constraints P𝐺 (Y𝑖) for 𝑖 = 1, 2, . . . , 𝑘 − 1. This completes the
definition of our constraint system.

Theorem 5. Let 𝐺 be a proper level graph with reference sets 𝐴+, 𝐴−. Then the
constraint system S ′(𝐺,𝐴+, 𝐴−) is satisfiable if and only if 𝐺 is radial level-planar.

Chapter 4 Level-Planarity: Transitivity vs. Even Crossings

44

α−2 v2u2

ε1

2

3

α+
2

α+
3u3 v3α−3

Figure 4.5: Illustration of the cyclic ordering constraints with 𝛼−
2𝑢2v2 ≡ 𝛼+

2𝑢2v2 in
level 2 and with 𝛼−

3𝑢3v3 ≢ 𝛼+
3𝑢3v3 in level 3. Regarding Constraint (4.11), we have for

example 𝛼−
3𝑢3𝛼

+
3 and 𝛼+

3𝛼
−
3𝑢3.

Moreover, the radial level planar drawings of 𝐺 correspond bijectively to the satisfying
assignments of S ′(𝐺,𝐴+, 𝐴−).

Proof. Clearly, the radial level-planar drawings of 𝐺 correspond injectively to the
satisfying assignments of S ′(𝐺,𝐴+, 𝐴−). For the reverse direction, consider a satis-
fying assignment 𝜑 of S ′(𝐺,𝐴+, 𝐴−). Start by observing that the constraints (4.4)
and (4.5) ensure that the orders defined for all 𝑢, v ∈ 𝑉𝑖 \ {𝛼−

𝑖 , 𝛼
+
𝑖 } by the vari-

ables 𝛼−
𝑖 𝑢v and 𝛼+

𝑖 𝑢v are indeed linear. Define A = {v ∈ 𝑉𝑖 \ {𝛼−
𝑖 , 𝛼

+
𝑖 } | 𝛼−

𝑖 v𝛼
+
𝑖 }

and B = {v ∈ 𝑉𝑖 \ {𝛼−
𝑖 , 𝛼

+
𝑖 } | 𝛼−

𝑖 𝛼
+
𝑖 v}. Let 𝜎−

𝑖 , 𝜎
+
𝑖 denote the cyclic orders of the

vertices on level 𝑖 induced by the assignments for variables starting with a reference
vertex in 𝐴− and 𝐴+, respectively. We have to show 𝜎−

𝑖 = 𝜎+
𝑖 . To do so, consider pair-

wise distinct 𝑢, v, 𝑤 ∈ 𝑉𝑖 and show (𝑢, v, 𝑤) ∈ 𝜎−
𝑖 ⇒ (𝑢, v, 𝑤) ∈ 𝜎+

𝑖 . We distinguish
four cases.

1. 𝑢, v, 𝑤 ∉ {𝛼−
𝑖 , 𝛼

+
𝑖 }. Assume 𝛼−

𝑖 𝑢v ≡ 𝛼−
𝑖 v𝑤 ≡ 𝛼−

𝑖 𝑢𝑤 ≡ 0 without loss of
generality, i.e., (𝑢, v, 𝑤) ∈ 𝜎−

𝑖 . We distinguish four cases based on how the
vertices 𝑢, v and 𝑤 are distributed over the sets A and B.
a) 𝑢, v, 𝑤 ∈ A. It is 𝛼−

𝑖 𝑢𝛼
+
𝑖 ≡ 𝛼−

𝑖 v𝛼
+
𝑖 ≡ 𝛼−

𝑖 𝑤𝛼
+
𝑖 ≡ 0. With constraint (4.10)

we conclude 𝛼+
𝑖 𝑢v ≡ 𝛼+

𝑖 v𝑤 ≡ 𝛼+
𝑖 𝑢𝑤 ≡ 0, which gives (𝑢, v, 𝑤) ∈ 𝜎+

𝑖 .
b) 𝑢, v, ∈ A, 𝑤 ∈ B. It is 𝛼−

𝑖 𝑢𝛼
+
𝑖 ≡ 𝛼−

𝑖 v𝛼
+
𝑖 ≡ 𝛼−

𝑖 𝑤𝛼
+
𝑖 + 1 ≡ 0. Using

constraint (4.10) we conclude 𝛼+
𝑖 𝑢v ≡ 𝛼+

𝑖 v𝑤 + 1 ≡ 𝛼+
𝑖 𝑢𝑤 + 1, which

gives (𝑢, v, 𝑤) ∈ 𝜎+
𝑖 .

c) 𝑢, ∈ A, v, 𝑤 ∈ B; similar to case 1a.
d) 𝑢, v, 𝑤 ∈ B; similar to case 1b.

2. 𝑢, v ∉ {𝛼−
𝑖 , 𝛼

+
𝑖 }, 𝑤 = 𝛼−

𝑖 . We distinguish three cases based on how the vertices𝑢
and v are distributed over the sets A and B.
a) 𝑢, v ∈ A. I.e., it is 𝛼−

𝑖 𝑢𝛼
+
𝑖 ≡ 𝛼−

𝑖 v𝛼
+
𝑖 ≡ 0. Constraint (4.10) gives 𝛼+

𝑖 𝑢v ≡ 0.
Constraint (4.11) gives 𝛼+

𝑖 v𝛼
−
𝑖 ≡ 𝛼+

𝑖 𝑢𝛼
−
𝑖 ≡ 0. Hence, (𝑢, v, 𝛼−

𝑖 = 𝑤) ∈ 𝜎+
𝑖 .

Radial Level-Planarity Section 4.4

45

b) 𝑢 ∈ A, v ∈ B. I.e., it is 𝛼−
𝑖 𝑢𝛼

+
𝑖 ≡ 𝛼−

𝑖 𝛼
+
𝑖 v ≡ 𝛼−

𝑖 𝑢v ≡ 0. Using con-
straints (4.4) and (4.11) we obtain 𝛼+

𝑖 v𝛼
−
𝑖 ≡ 0 from 𝛼−

𝑖 𝛼
+
𝑖 v ≡ 0. Using

constraint (4.11) we get 𝛼+
𝑖 𝛼

−
𝑖 𝑢 ≡ 0 from 𝛼−

𝑖 𝑢𝛼
+
𝑖 ≡ 0. Finally, we use

constraint (4.10) to obtain 𝛼+
𝑖 𝑢v ≡ 0. This means (𝑢, v, 𝛼−

𝑖 = 𝑤) ∈ 𝜎+
𝑖 .

c) 𝑢, v ∈ B. Use constraint (4.11) to obtain 𝛼+
𝑖 𝑢𝛼

−
𝑖 ≡ 𝛼+

𝑖 v𝛼
−
𝑖 from 𝛼−

𝑖 𝛼
+
𝑖 𝑢 ≡ 0

and𝛼−
𝑖 𝛼

+
𝑖 v ≡ 0, respectively. Then use constraint (4.10) to obtain𝛼+

𝑖 𝑢v ≡ 0,
which means (𝑢, v, 𝛼−

𝑖 = 𝑤) ∈ 𝜎+
𝑖 .

3. 𝑢, v ∉ {𝛼−
𝑖 , 𝛼

+
𝑖 }, 𝑤 = 𝛼+

𝑖 . We distinguish three cases based on how the vertices𝑢
and v are distributed over the sets A and B.
a) 𝑢, v ∈ A. Constraint (4.11) gives 𝛼+

𝑖 𝛼
−
𝑖 v ≡ 𝛼+

𝑖 𝛼
−
𝑖 𝑢 ≡ 0 from 𝛼−

𝑖 𝛼
+
𝑖 v ≡ 0

and𝛼−
𝑖 𝛼

+
𝑖 𝑢 ≡ 0, respectively. Then use constraint (4.10) to obtain𝛼+

𝑖 𝑢v ≡ 0,
which means (𝑢, v, 𝛼+

𝑖 = 𝑤) ∈ 𝜎+
𝑖 .

b) 𝑢 ∈ B, v ∈ A. Use constraint (4.11) to obtain 𝛼+
𝑖 𝛼

−
𝑖 v ≡ 𝛼+

𝑖 𝑢𝛼
−
𝑖 ≡ 0

from 𝛼−
𝑖 v𝛼

+
𝑖 ≡ 0 and 𝛼−

𝑖 𝛼
+
𝑖 𝑢 ≡ 0, respectively. Then use constraint (4.10)

to obtain 𝛼+
𝑖 𝑢v ≡ 0, which means (𝑢, v, 𝛼+

𝑖 = 𝑤) ∈ 𝜎+
𝑖 .

c) 𝑢, v ∈ B. Use constraints (4.4) and (4.11) to obtain 𝛼+
𝑖 𝑢𝛼

−
𝑖 ≡ 𝛼+

𝑖 v𝛼
−
𝑖 ≡ 0

from 𝛼−
𝑖 𝛼

+
𝑖 𝑢 ≡ 0 and 𝛼−

𝑖 𝛼
+
𝑖 v ≡ 0, respectively. Then use constraint (4.10)

to obtain 𝛼+
𝑖 𝑢v ≡ 0, which means (𝑢, v, 𝛼+

𝑖 = 𝑤) ∈ 𝜎+
𝑖 .

4. v ∉ {𝛼−
𝑖 , 𝛼

+
𝑖 }, 𝑢, 𝑤 ∈ {𝛼−

𝑖 , 𝛼
+
𝑖 }. We may assume 𝑢 = 𝛼−

𝑖 and 𝑤 = 𝛼+
𝑖 without

loss of generality. Then (𝑢, v, 𝑤) ∈ 𝜎−
𝑖 gives 𝛼−

𝑖 v𝛼
+
𝑖 ≡ 0 and constraint (4.11)

yields 𝛼+
𝑖 𝛼

−
𝑖 v ≡ 0, which means (𝛼−

𝑖 = 𝑢, v, 𝛼+
𝑖 = 𝑤) ∈ 𝜎+

𝑖 .

Therefore, 𝜑 induces well-defined cyclic orders of the vertices on all levels. It remains
to be shown that no two edges cross. Recalling that𝐺 is proper, it is sufficient to show
that no two edges 𝑒, 𝑓 ∈ (𝐸𝑖 ∪ 𝐸−𝑖 ∪ 𝐸+𝑖) cross for 𝑖 = 1, 2, . . . , 𝑘 . We distinguish five
cases based on how the edges 𝑒 and 𝑓 are distributed across the sets 𝐸𝑖 , 𝐸−𝑖 and 𝐸+𝑖 .

1. 𝑒, 𝑓 ∈ 𝐸𝑖 . Then constraint (4.6) together with the fact that no edge may cross Y𝑖
implies that 𝑒 and 𝑓 do not cross.

2. 𝑒 ∈ 𝐸𝑖 , 𝑓 ∈ 𝐸−𝑖 . Let 𝑒 = (𝑢, v) and 𝑓 = (𝑢 ′′, 𝛼−
𝑖+1) and suppose 𝑙 (𝑓) ≡ 0 (the

case 𝑙 (𝑓) ≡ 1 works symmetrically). Then constraint (4.9) ensures that 𝑒 and 𝑓

do not cross.

3. 𝑒 ∈ 𝐸𝑖 , 𝑓 ∈ 𝐸+𝑖 ; works symmetrically to case 2 with constraint (4.8).

4. 𝑒 ∈ 𝐸−𝑖 , 𝑓 ∈ 𝐸+𝑖 . Then constraint (4.7) ensures that 𝑒 and 𝑓 are embedded locally
to the left and right of Y𝑖 , respectively, or vice versa. Together with the fact
that no edge may cross Y𝑖 , this means that 𝑒 and 𝑓 do not cross.

Chapter 4 Level-Planarity: Transitivity vs. Even Crossings

46

top(α+
i)

bot(α+
i)

top(α+
i+1)

bot(α+
i+1)

top(α−
i+1)

bot(α−
i+1)

mimi+1

(c)(b)
α−
i+1 α+

i+1

α+
i = α−

i

(a)

Figure 4.6: Illustration of the modified construction of the stretch edges for 𝐺★ for
the graph 𝐺 in (a). The stretch edges for level 𝑖 + 1 where 𝛼+

𝑖+1 ≠ 𝛼−
𝑖+1 (b) and for

level 𝑖 where 𝛼+
𝑖 = 𝛼−

𝑖 (c).

5. 𝑒, 𝑓 ∈ 𝐸−𝑖 or 𝑒, 𝑓 ∈ 𝐸+𝑖 . Because 𝑒 and 𝑓 share an endpoint they do not cross.

Therefore, no two edges cross, which means that 𝜑 induces a radial level-planar
drawing. □

Similar to Section 4.3, we define a reduced constraints system S (𝐺,𝐴+, 𝐴−) obtained
from S ′(𝐺,𝐴+, 𝐴−) by dropping constraint (4.5). Our main result is that 𝑆 (𝐺,𝐴+, 𝐴−)
is satisfiable if and only if 𝐺 is radial level-planar. The proof works by showing
equivalence to the existence of a Hanani-Tutte Drawing of 𝐺★.

4.4.2 Modified Star Form

We slightly modify the splitting and perturbation operation in the construction of the
star form𝐺★ of𝐺 for each level 𝑖 . This is necessary since we need a special treatment
of the reference vertices 𝛼+

𝑖 and 𝛼−
𝑖 on each level 𝑖 . Namely, we want the stretch edge

of 𝛼+
𝑖 to end at the highest level and the stretch edge of 𝛼−

𝑖 to end at the lowest level.
Further, for 𝛼−

𝑖 ≠ 𝛼+
𝑖 we want the other ends of those two stretch edges to lie on the

same level𝑚𝑖 . In each case, we want level𝑚𝑖 to intersect all stretch edges.
Consider the level 𝑖 containing the 𝑛𝑖 vertices v1, . . . , v𝑛𝑖 . If 𝛼+

𝑖 ≠ 𝛼−
𝑖 , then we

choose the numbering of the vertices such that v1 = 𝛼−
𝑖 and v𝑛𝑖 = 𝛼+

𝑖 . We replace 𝑖
by 2𝑛𝑖 − 1 levels (𝑖, 1), (𝑖, 2), . . . , (𝑖, 2𝑛𝑖 − 1), which is one level less than previously.
Similar to before, we replace each vertex v𝑗 by two vertices bot(v𝑗) and top(v𝑗)
with ℓ (bot(v𝑗)) = (𝑖, 𝑗) and ℓ (top(v𝑗)) = (𝑖, 𝑛𝑖 − 1 + 𝑗) and the corresponding stretch
edge (bot(v𝑗), top(v𝑗)); see Figure 4.6 (b). This ensures that the construction works
as before, except that the middle level𝑚𝑖 = (𝑖, 𝑛𝑖) contains two vertices, namely 𝛼+

𝑖
′′

and 𝛼−
𝑖
′.

If, on the other hand, 𝛼+
𝑖 = 𝛼−

𝑖 , then we choose v1 = 𝛼+
𝑖 . But now we replace

level 𝑖 by 2𝑛𝑖 + 1 levels (𝑖, 1), . . . , (𝑖, 2𝑛𝑖 + 1). Replace v1 by vertices bot(v1), top(v1)
with ℓ (bot(v1)) = (𝑖, 1) and ℓ (top(v1)) = (𝑖, 2𝑛𝑖 + 1). Replace all other v𝑗 with
vertices bot(v𝑗), top(v𝑗) with ℓ (bot(v𝑗)) = (𝑖, 𝑗) and ℓ (top(v𝑗)) = (𝑖, 𝑛𝑖 + 1 + 𝑗). For

Radial Level-Planarity Section 4.4

47

β+
(i,7) = β−

(i,7)

β+
(i,1) = β−

(i,1)

β+
(i+1,5) = β−

(i+1,5)

β+
mi+1

β−
mi+1

β+
(i+1,1) = β−

(i+1,1)

mi mi+1

(b) (c)
α−
i+1 α+

i+1

α+
i = α−

i

(a)

Figure 4.7: Definition of 𝛽+, 𝛽− in the assignment for 𝐺+ for the same graph as in
Figure 4.6 (a). Vertices 𝛽+ (𝛽−) are drawn in green (red), or in blue if they coincide.

all 𝑗 , we add the stretch edge (bot(v𝑗), top(v𝑗)) as before; see Figure 4.6 (c). This
construction ensures that the stretch edge of 𝛼+

𝑖 = 𝛼−
𝑖 starts in the first new level (𝑖, 1)

and ends in the last new level (𝑖, 2𝑛𝑖 +1), and the middle level𝑚𝑖 = (𝑖, 𝑛𝑖 + 1) contains
no vertex.
As before, we replace each original edge (𝑢, v) of the input graph 𝐺 by the

edge (top(𝑢), bot(v)) connecting the upper endpoint of the stretch edge of 𝑢 to
the lower endpoint of the stretch edge of v . Observe that the construction preserves
the properties that for each level 𝑖 the middle level𝑚𝑖 of the levels that replace 𝑖
intersects all stretch edges of vertices on level 𝑖 . Therefore, Lemma 10 also holds for
this modified version of 𝐺★ and its proper subdivision 𝐺+. For each vertex v of 𝐺 we
use 𝑒 (v) = (bot(v), top(v)) to denote its stretch edge.
Again, we use the function 𝐿 that maps each level (𝑖, 𝑗) of 𝐺★ or 𝐺+ to the level 𝑖

of 𝐺 . As suitable, we treat the tuples of levels as natural numbers. For an edge 𝑒
of 𝐺★ and a level 𝑖 that intersects 𝑒 , we denote by 𝑒𝑖 the subdivision vertex of 𝑒 at
level 𝑖 in 𝐺+. For two levels 𝑖 and 𝑗 that both intersect an edge 𝑒 of 𝐺★, we denote
by 𝑒 𝑗

𝑖
the path from 𝑒𝑖 to 𝑒 𝑗 in 𝐺+.

4.4.3 Constraint System and Assignment for 𝑮+

Let 𝐺 be a proper level graph with reference sets 𝐴+, 𝐴−. We now choose reference
sets 𝐵+, 𝐵− for 𝐺+ that are based on the reference sets 𝐴+, 𝐴−. Let 𝑗 be any level
of 𝐺★ and let 𝐿(𝑗) = 𝑖 be the corresponding level of 𝐺 . Define two vertices 𝛽+𝑗 , 𝛽−𝑗 as
follows. If 𝛼−

𝑖 = 𝛼+
𝑖 , set 𝛽−𝑗 = 𝛽+𝑗 = 𝑒 (𝛼−

𝑖) 𝑗 ; see Figure 4.7 (b). Otherwise, the choice is
based on whether 𝑗 is the middle level𝑚 =𝑚𝑖 of the levels 𝐿−1 (𝑖) that replace level 𝑖
of 𝐺 , or whether 𝑗 lies above or below𝑚. Choose 𝛽−𝑚 = top(𝛼+

𝑖) and 𝛽+𝑚 = bot(𝛼−
𝑖+1).

For 𝑗 < 𝑚, choose 𝛽−𝑗 = 𝛽+𝑗 = 𝑒 (𝛼−
𝑖) 𝑗 and for 𝑗 > 𝑚, choose 𝛽−𝑗 = 𝛽+𝑗 = 𝑒 (𝛼+

𝑖) 𝑗 ; see
Figure 4.7 (c).
We set 𝐵+ to be the set containing all 𝛽+𝑗 and likewise for 𝐵−. Our next step is to

construct from a satisfying assignment 𝜑 of S (𝐺,𝐴+, 𝐴−) a corresponding satisfy-
ing assignment 𝜑+ of S (𝐺+, 𝐵+, 𝐵−). The construction follows the approach from

Chapter 4 Level-Planarity: Transitivity vs. Even Crossings

48

Lemma 14 and makes use of the fact that 𝐺+ is essentially a stretched and perturbed
version of 𝐺 .

Lemma 15. If S (𝐺,𝐴+, 𝐴−) is satisfiable, then S (𝐺+, 𝐵+, 𝐵−) is satisfiable.
For the proof of this result, we consider a satisfying assignment 𝜑 for S (𝐺,𝐴+, 𝐴−).

We now derive an assignment 𝜑+ for S (𝐺+, 𝐵+, 𝐵−) from 𝜑 . Afterwards, we show
that 𝜑+ satisfies S (𝐺+, 𝐵+, 𝐵−).

Construction of 𝝋+
. Let 𝑒 = 𝑢𝑢 ′, 𝑓 = vv ′ be two edges between level 𝑖 and level 𝑖 +1

of 𝐺 and let Y𝑖 = (𝛼+
𝑖 , 𝛼

−
𝑖+1) denote the reference edge between these levels. We

introduce a function𝜓 (Y𝑖 , 𝑒, 𝑓) to deduce the order of the edges Y𝑖 , 𝑒, 𝑓 in a drawing
that corresponds to 𝜑 .

𝜓 (Y𝑖 , 𝑒, 𝑓) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜑 (𝛼+

𝑖 𝑢v) , if 𝛼+
𝑖 , 𝑢, v are pairwise distinct

𝜑 (𝛼−
𝑖+1𝑢

′v ′) , if 𝛼−
𝑖+1, 𝑢

′, v ′ are pairwise distinct
𝜑 (𝑙 (𝑓)) , if 𝛼+

𝑖 = v ≠ 𝑢 or 𝛼−
𝑖+1 = v ′ ≠ 𝑢 ′

𝜑 (𝑙 (𝑒)) + 1 , if 𝛼+
𝑖 = 𝑢 ≠ v or 𝛼−

𝑖+1 = 𝑢 ′ ≠ v ′

Note that if 𝛼+
𝑖 , 𝑢, v and 𝛼−

𝑖+1, 𝑢
′, v ′ are pairwise distinct, then by Eq. (4.6) we have

that 𝜑 (𝛼+
𝑖 𝑢v) ≡ 𝜑 (𝛼−

𝑖+1𝑢v). Similarly, if 𝛼+
𝑖 = v and 𝛼−

𝑖+1 = 𝑢 ′ (or 𝛼+
𝑖 = 𝑢 and 𝛼−

𝑖+1 = v ′),
then by Eq. (4.7) it is 𝜑 (𝑙 (𝑓)) ≡ 𝜑 (𝑙 (𝑒) + 1. Therefore𝜓 is well-defined.
Based on this, we can now define the orderings of triples of subdivision vertices

of 𝐺+, which leads to an assignment 𝜑+ for S (𝐺+, 𝐵+, 𝐵−). To this end, we define
a mapping 𝑂 : 𝑉 (𝐺+) → 𝑉 that maps each vertex of 𝑉 (𝐺+) to a vertex in 𝐺 . For
each vertex v of 𝐺+ that is part of a stretch edge 𝑒 (𝑤) of 𝐺★ for some vertex 𝑤

of 𝐺 , we set 𝑂 (v) = 𝑤. For an example, see the orange vertex 𝑤 of 𝐺 in Figure 4.8.
The encircled orange vertices in 𝐺+ are mapped to 𝑤. It remains to define 𝑂 (v)
for vertices v ∈ 𝑉 (𝐺+) that are subdivision vertices of an edge 𝑥𝑥 ′ of 𝐺★ that its
not a stretch edge. Then the original levels satisfy 𝐿(ℓ (𝑥 ′)) = 𝐿(ℓ (𝑥)) + 1, and we
map v to the vertex 𝑤 with 𝑥 = top(𝑤) if 𝐿(ℓ (v)) = 𝐿(ℓ (𝑥)) and to the vertex 𝑤 ′

with 𝑥 ′ = bot(𝑤 ′), otherwise. For an example, see the edge (𝑥, 𝑥 ′) of 𝐺 in Figure 4.8.
The encircled purple (green) subdivision vertices in 𝐺+ are mapped to 𝑥 (to 𝑥 ′).

We are now ready to define the assignment 𝜑+ for S (𝐺+, 𝐵+, 𝐵−) for a satisfy-
ing assignment 𝜑 of S (𝐺,𝐴+, 𝐴−). Let 𝑥, 𝑦, z ∈ 𝑉𝑗 be three distinct vertices on
level (𝑖, 𝑗) and such that 𝑥 ∈ {𝛽−𝑗 , 𝛽+𝑗 }. Observe that 𝑂 (𝑥) ∈ {𝛼+

𝑖 , 𝛼
−
𝑖+1}. If the ver-

tices 𝑂 (𝑥), 𝑂 (𝑦), 𝑂 (z) are pairwise distinct, we set

𝜑+ (𝑥𝑦z) = 𝜑 (𝑂 (𝑥)𝑂 (𝑦)𝑂 (z)) .

Otherwise, two of the corresponding vertices are the same. Hence, two vertices
of 𝑥, 𝑦, z are subdivision vertices of original edges in𝐺 . Note that 𝑥 can by definition

Radial Level-Planarity Section 4.4

49

u′ x′w′

u xw

G+G

Figure 4.8: Definition of the mapping𝑂 : 𝑉 (𝐺+) → 𝑉 . Vertices of𝐺+ are mapped to
the vertex of 𝐺 with the matching color.

of 𝐺★ not be such a subdivision vertex. Hence, vertex 𝑦 is a subdivision vertex of
an edge 𝑒 ∈ 𝐺 and vertex z is a subdivision vertex of an edge 𝑓 ∈ 𝐺 , both of which
connect a vertex of level 𝑖 to a vertex on level 𝑖 + 1. Then we set

𝜑+ (𝑥𝑦z) ≡ 𝜓 (Y𝑖 , 𝑒, 𝑓) ,

where Y𝑖 = (𝛼+
𝑖 , 𝛼

−
𝑖+1) is the reference edge between these levels. Moreover, we

set𝜑+ (𝑙 (𝑒)) ≡ 𝜑 (𝑙 (𝑂 (𝑢),𝑂 (v))) for each edge 𝑒 = (𝑢, v) of𝐺+ with𝑢 = 𝛽+𝑗 or v = 𝛽−𝑗+1
but not both for some level 𝑗 of 𝐺+.

Lemma 16. The assignment 𝜑+ satisfies S (𝐺+, 𝐵+, 𝐵−).

Proof. We check that 𝜑+ satisfies each part of the constraint system. We denote by𝑉𝑗

the vertices of 𝐺+ on level 𝑗 .

𝝋+
satisfies L′

𝑮+ (𝜷+
𝒋). Let 𝛽+𝑗 ∈ 𝐵+. We aim to show that 𝜑+ satisfies L′

𝐺+ (𝛽+𝑗).
Let 𝑦, z ∈ 𝑉𝑗 \ {𝛽+𝑗 } be distinct. If 𝑂 (𝛽+𝑗),𝑂 (𝑦),𝑂 (z) are distinct, then we obtain
that 𝜑+ (𝛽+𝑗 𝑦z) ≡ 𝜑 (𝑂 (𝛽+𝑗)𝑂 (𝑦)𝑂 (z)) as well as 𝜑+ (𝛽+𝑗 z𝑦) ≡ 𝜑 (𝑂 (𝛽+𝑗)𝑂 (z)𝑂 (𝑦)).
Note that 𝑂 (𝛽+𝑗) ∈ {𝛼+

𝐿 (𝑗) , 𝛼
−
𝐿 (𝑗) }. Since 𝜑 satisfies L′

𝐺
(𝛼+

𝐿 (𝑗)) and L′
𝐺
(𝛼−

𝐿 (𝑗)), we
obtain 𝜑+ (𝛽+𝑗 𝑦z) ≡ 𝜑+ (𝛽+𝑗 z𝑦) + 1.

If𝑂 (𝛽+𝑗),𝑂 (𝑦),𝑂 (z) are not distinct, thenwemust have𝑂 (𝑦) = 𝑂 (z), since 𝛽−𝑗 can-
not be a subdivision vertex of an edge that is not a stretch edge. Hence, the vertices 𝑦, z
are subdivision vertices of edges 𝑒, 𝑓 of 𝐺★ connecting vertices on levels 𝑖 and 𝑖 + 1.
Note that this also implies 𝑂 (𝛽+𝑗) ≠ 𝑂 (𝑦). We obtain 𝜑+ (𝛽−𝑗 , 𝑦, z) ≡ 𝜓 (Y𝑖 , 𝑒, 𝑓)
and 𝜑+ (𝛽−𝑗 , z , 𝑦) ≡ 𝜓 (Y𝑖 , 𝑓 , 𝑒). Since 𝑂 (𝑦) = 𝑂 (z) ≠ 𝑂 (𝛽−𝑗), we have with the defini-
tion of𝜓 that𝜓 (Y𝑖 , 𝑒, 𝑓) ≡ 𝜓 (Y𝑖 , 𝑓 , 𝑒) + 1. This yields 𝜑+ (𝛽−𝑗 , 𝑦, z) ≡ 𝜑+ (𝛽−𝑗 , z , 𝑦) + 1.

𝝋+
satisfies L′

𝑮+ (𝜷−
𝒋). This can be argued analogously to L′

𝐺+ (𝛽+𝑗).

Chapter 4 Level-Planarity: Transitivity vs. Even Crossings

50

𝝋+
satisfies C𝑮+ (𝜷+

𝒋 , 𝜷
−
𝒋). We next show that𝜑+ satisfies the constraints C𝐺+ (𝛽+𝑗 , 𝛽−𝑗)

for all 𝑗 with 𝛽−𝑗 ≠ 𝛽+𝑗 . By definition of𝐺★ and 𝐵+, 𝐵−, these constraints are non-trivial
only for levels 𝑗 =𝑚𝑖 for a level 𝑖 of 𝐺 with 𝛼+

𝑖 ≠ 𝛼−
𝑖 .

Note that due to the construction of 𝐺★, level𝑚𝑖 is only crossed by stretch edges,
which implies that the restriction of 𝑂 to the vertices of 𝐺+ on level𝑚𝑖 is injective.
Moreover, 𝑂 (𝛽+𝑗) = 𝛼+

𝑖 and 𝑂 (𝛽−𝑗) = 𝛼−
𝑖 . Hence, the triple (𝑥, 𝑦, z) ∈ 𝑉𝑗 of distinct

vertices map injectively to triples of distinct vertices of 𝐺 on level 𝑖 . Since the value
of 𝜑+ (𝑥𝑦z) is defined in terms of 𝜑 (𝑂 (𝑥)𝑂 (𝑦)𝑂 (z)), it follows that 𝜑+ satisfies
Eq. (4.10) and (4.11) if 𝜑 does.

𝝋+
satisfiesP𝑮+ (𝜷+

𝒋 , 𝜷
−
𝒋+1). Wefinally show that𝜑+ satisfies the constraintsP𝐺+ (𝛿 𝑗)

for any two consecutive levels 𝑗 and 𝑗 + 1 of 𝐺+. We distinguish two cases, based on
whether 𝐿(𝑗) = 𝐿(𝑗 + 1) or 𝐿(𝑗 + 1) = 𝐿(𝑗) + 1.

1. 𝐿(𝑗) = 𝐿(𝑗 + 1) = 𝑖 . First observe that, except for (𝛽+𝑗 , 𝛽−𝑗+1), the reference
vertex 𝛽+𝑗 has no outgoing edges and 𝛽−𝑗+1 has no incoming edges. Namely, ver-
tex 𝛽+𝑗 can only have more outgoing edges, if 𝛽+𝑗 = top(𝛼+

𝑖), and vertex 𝛽−𝑗+1 can
only have more incoming edges, if 𝛽−𝑗+1 = bot(𝛼−

𝑖). But bot(𝛼−
𝑖) and top(𝛼+

𝑖)
occupy the first and the last level of 𝐺+ corresponding to level 𝑖 of 𝐺 . Hence
this is not possible since 𝐿(𝑗) = 𝐿(𝑗 + 1). Therefore the equations (4.7)–(4.9)
are trivially satisfied.
Now consider two independent edges (𝑦, 𝑦 ′), (z , z ′) between levels 𝑗 and 𝑗 + 1
that are different from (𝛽+𝑗 , 𝛽−𝑗+1).
Since the vertices 𝑦 , 𝑦 ′ are adjacent in 𝐺+, they either both subdivide the
same edge of 𝐺★, or one of them is a vertex of 𝐺★ and the other one sub-
divides an incident edge. As 𝐿(𝑗) = 𝐿(𝑗 + 1), we obtain 𝑂 (𝑦) = 𝑂 (𝑦 ′)
in both cases. Similarly, we obtain 𝑂 (z) = 𝑂 (z ′). If 𝑗 ≥ 𝑚𝑖 , then we
have 𝑂 (𝛽+𝑗) = 𝑂 (𝛽−𝑗+1) = 𝛼+

𝑖 . If 𝑗 < 𝑚𝑖 , then we have 𝑂 (𝛽+𝑗) = 𝑂 (𝛽−𝑗+1) = 𝛼−
𝑖 .

In both cases we have 𝑂 (𝛽+𝑗) = 𝑂 (𝛽−𝑗+1).
Observe that 𝑂 (𝑦) = 𝑂 (𝛽+𝑗) = 𝛼−

𝑖 implies that 𝑗 < 𝑚𝑖 , and hence 𝑦 is a
subdivision vertex of an outgoing edge of bot(𝛼−

𝑖) in 𝐺★. This is, however,
impossible since the only outgoing edge of bot(𝛼−

𝑖) is the stretch edge of 𝛼−
𝑖 .

Symmetrically, 𝑂 (𝑦) = 𝑂 (𝛽+𝑗) = 𝛼+
𝑖 implies 𝑗 ≥ 𝑚𝑖 , and hence that 𝑦 is a

subdivision vertex of an incoming edge of top(𝛼+
𝑖), which is again impossible.

Thus we find that 𝑂 (𝛽+𝑗) ≠ 𝑂 (𝑦). Likewise, it is 𝑂 (𝛽+𝑗) ≠ 𝑂 (z).
If 𝑂 (𝑦) ≠ 𝑂 (z), then the three vertices 𝑂 (𝛽+𝑗) = 𝑂 (𝛽−𝑗), 𝑂 (𝑦) = 𝑂 (𝑦 ′)
and 𝑂 (z) = 𝑂 (z ′) are pairwise distinct. Thus 𝑂 maps the triples 𝑡1 = 𝛽+𝑗 𝑦z
and 𝑡2 = 𝛽−𝑗+1𝑦

′z ′ to the same triple 𝑡 . Since 𝜑+ (𝑡𝑖) ≡ 𝜑 (𝑡) for 𝑖 = 1, 2, it follows
that 𝜑+ (𝑡1) ≡ 𝜑+ (𝑡2), i.e., 𝜑+ satisfies Eq. (4.6).

Radial Level-Planarity Section 4.4

51

If 𝑂 (𝑦) = 𝑂 (z), then 𝑂 (𝑦 ′) = 𝑂 (z ′), and (𝑦, 𝑦 ′), (z , z ′) originate from two
edges 𝑒, 𝑓 of 𝐺 . Now, if 𝑗 < 𝑚𝑖 , then 𝑒 and 𝑓 connect vertices on level 𝑖 − 1
to vertices on level 𝑖 . In this case, 𝜑+ (𝛽+𝑗 𝑒 𝑓) and 𝜑+ (𝛽−𝑗 𝑒 𝑓) are both defined
in terms of 𝜓 (Y, 𝑒, 𝑓), where Y = (𝛼+

𝑖−1, 𝛼
−
𝑖). If 𝑗 ≥ 𝑚𝑖 , then 𝑒 and 𝑓 connect

vertices on levels 𝑖 and 𝑖 + 1. Then 𝜑+ of both triples is defined as 𝜓 (Y, 𝑒, 𝑓)
for Y = (𝛼+

𝑖 , 𝛼
−
𝑖+1). In both case Eq. (4.6) is satisfied.

2. 𝑖 = 𝐿(𝑗) < 𝐿(𝑗 + 1) = 𝑖 + 1. In this case 𝛽+𝑗 = top(𝛼+
𝑖) and 𝛽−𝑗+1 = bot(𝛼−

𝑖+1).
Let 𝑥𝑥 ′ ∈ 𝐺+ be any edge between level 𝑗 and level 𝑗 + 1. Since 𝐿(𝑗) ≠ 𝐿(𝑗 + 1),
we have that 𝑒 = (𝑂 (𝑥),𝑂 (𝑥 ′)) is an edge of 𝐺 . Further, we obtain

(𝑥, 𝑥 ′) ∈ 𝐸𝑖 (𝐺+) ⇔ 𝑒 ∈ 𝐸𝑖

(𝑥, 𝑥 ′) ∈ 𝐸+𝑖 (𝐺+) ⇔ 𝑥 = 𝛽+𝑗 ⇔ v (𝑥) = 𝛼+
𝑖 ⇔ 𝑒 ∈ 𝐸+𝑖

(𝑥, 𝑥 ′) ∈ 𝐸−𝑖 (𝐺+) ⇔ 𝑥 ′ = 𝛽−𝑗+1 ⇔ v (𝑥 ′) = 𝛼−
𝑖+1 ⇔ 𝑒 ∈ 𝐸−𝑖 .

Let 𝑦𝑦 ′, zz ′ be distinct edges between levels 𝑗 and 𝑗 + 1 in 𝐺+ that are differ-
ent from (𝛽+𝑗 , 𝛽−𝑗+1). We have that 𝑒 = (𝑂 (𝑦),𝑂 (𝑦 ′)) and 𝑓 = (𝑂 (z),𝑂 (z ′))
are edges of 𝐺 . We further distinguish cases based on whether 𝑒 and 𝑓 are
independent.
a) 𝑒 and 𝑓 are independent. If 𝑒, 𝑓 ∈ 𝐸𝑖 , thenwe have (𝑦, 𝑦 ′), (z , z ′) ∈ 𝐸𝑖 (𝐺+)

and by definition of 𝜑+ it is 𝜑+ (𝛽+𝑗 𝑦z) ≡ 𝜑 (𝛼+
𝑖 𝑂 (𝑦)𝑂 (z)) and further-

more 𝜑+ (𝛽−𝑗+1𝑦
′z ′) ≡ 𝜑 (𝛼−

𝑖+1𝑂 (𝑦 ′)𝑂 (z ′)). Since 𝜑 satisfies P𝐺 (𝛼+
𝑖 , 𝛼

−
𝑖+1),

it follows that 𝜑+ satisfies Eq. (4.6) for 𝐺+ and edges (𝑦, 𝑦 ′), (z , z ′).
If 𝑒 ∈ 𝐸+𝑖 and 𝑓 ∈ 𝐸−𝑖 , then (𝑦, 𝑦 ′) ∈ 𝐸+𝑗 (𝐺+) and (z , z ′) ∈ 𝐸−𝑖 (𝐺+).
Then, by definition of 𝜑+, we have 𝜑+ (𝑙 (𝑦, 𝑦 ′)) ≡ 𝜑 (𝑙 (𝛼+

𝑖 𝑂 (𝑦 ′)) and
also 𝜑+ (𝑙 (z , z ′)) ≡ 𝜑 (𝑙 (𝑂 (z)𝛼−

𝑖+1)). Since 𝜑 satisfies P𝐺 (Y𝑖), it follows
that 𝜑+ satisfies Eq. (4.7) for 𝐺+ and edges (𝑦, 𝑦 ′), (z , z ′).
If 𝑒 ∈ 𝐸+𝑖 and 𝑓 ∈ 𝐸𝑖 , then (𝑦, 𝑦 ′) ∈ 𝐸+𝑖 (𝐺+) and (z , z ′) ∈ 𝐸𝑖 (𝐺+). It then
follows from the definition of 𝜑+ that 𝜑+ (𝑙 (𝛽+𝑗 , 𝑦 ′)) ≡ 𝜑 (𝑙 (𝛼+

𝑖 ,𝑂 (𝑦 ′)))
and 𝜑+ (𝛽−𝑗+1z

′𝑦 ′) ≡ 𝜑 (𝛼−
𝑖+1𝑂 (z ′)𝑂 (𝑦 ′)). Since 𝜑 satisfies P𝐺 (Y𝑖), it fol-

lows that 𝜑+ satisfies Eq. (4.8) for 𝐺+ and edges (𝑦, 𝑦 ′), (z , z ′). The
case 𝑒 ∈ 𝐸−𝑖 and 𝑓 ∈ 𝐸𝑖 can be argued analogously.

b) 𝑒, 𝑓 are dependent. If 𝑂 (𝑦) = 𝑂 (z), then 𝑦 and z are subdivision vertices
of two edges 𝑒 ′, 𝑓 ′ in 𝐺★ that share their source, which hence lies on a
level strictly below 𝑗 . In particular, it is 𝑦, z ≠ top(𝛼+

𝑖) = 𝛽+𝑗 . Moreover,
it is 𝑂 (𝑦 ′) ≠ 𝑂 (z ′). Then 𝜑+ (𝛽+𝑗 𝑦z) ≡ 𝜑+ (𝛽−𝑗+1𝑦

′z ′) ≡ 𝜓 (Y𝑖 , 𝑒, 𝑓) by
definition, where Y𝑖 = (𝛼+

𝑖 , 𝛼
−
𝑖+1).

If the vertices 𝑂 (𝛽+𝑗) = 𝛼−
𝑖+1, 𝑂 (𝑦 ′), 𝑂 (z ′) are pairwise distinct, then

we have (𝑦, 𝑦 ′), (z , z ′) ∈ 𝐸𝑖 (𝐺+). Then 𝜑+ (𝛽+𝑗 𝑦z) ≡ 𝜑 (𝛼−
𝑖+1𝑂 (𝑦 ′)𝑂 (z ′))

Chapter 4 Level-Planarity: Transitivity vs. Even Crossings

52

and 𝜑+ (𝛽−𝑗+1𝑦
′z ′) ≡ 𝜑 (𝛼−

𝑖+1𝑂 (𝑦 ′)𝑂 (z ′)). Therefore 𝜑+ satisfies Eq. (4.6)
for 𝐺+ and edges (𝑦, 𝑦 ′) and (z , z ′).
If 𝛼−

𝑖+1 = 𝑂 (𝑦 ′) ≠ 𝑂 (z ′), then (𝑦, 𝑦 ′) ∈ 𝐸+𝑖 (𝐺+) and (z , z ′) ∈ 𝐸𝑖 (𝐺+).
Then 𝜑+ (𝛽+𝑗 𝑦z) ≡ 𝜑 (𝑙 (𝑒)) and 𝜑+ (𝛽−𝑗+1𝑦

′z ′) ≡ 𝜑 (𝑙 (𝑒)). Therefore 𝜑+

satisfies Eq. (4.8) for 𝐺+ and edges (𝑦, 𝑦) ′, (z , z ′).
Analogously, we obtain for 𝛼−

𝑖+1 = 𝑂 (z ′) ≠ 𝑂 (𝑦 ′) that𝜑+ satisfies Eq. (4.8)
for 𝐺+ and edges (𝑦, 𝑦 ′) and (z , z ′).
Finally, the case 𝑂 (𝑦 ′) = 𝑂 (z ′) can be handled analogously to the
case 𝑂 (𝑦) = 𝑂 (z).

This concludes the proof that 𝜑+ satisfies S (𝐺+, 𝐵+, 𝐵−). □

4.4.4 From a Satisfying Assignment to a Hanani-Tutte Drawing

Let 𝐺 be a level graph with reference sets 𝐴+, 𝐴− and let 𝐵+, 𝐵− be corresponding
reference sets for𝐺+. Finally, let 𝜑+ be a satisfying assignment for S (𝐺+, 𝐵+, 𝐵−). We
construct a radial drawing Γ+ of 𝐺+, from which we obtain the drawing Γ★ of 𝐺★ by
smoothing the subdivision vertices. Afterwards we show that Γ★ is a Hanani-Tutte
drawing.

We construct Γ+ as follows. Consider a level 𝑗 of𝐺+ and let 𝑖 = 𝐿(𝑗) be the original
level of 𝐺 . First assume 𝑗 = 𝑚𝑖 . If 𝛽−𝑗 = 𝛽+𝑗 , then we place all vertices of 𝑉𝑗 (𝐺+) in
arbitrary order. Otherwise, we place 𝛽−𝑗 and 𝛽+𝑗 arbitrarily on the circle representing
the level𝑚𝑖 . We then place each vertex v ∈ 𝑉𝑗 (𝐺+) \ {𝛽−𝑗 , 𝛽+𝑗 } such that 𝛽−𝑗 , v, 𝛽+𝑗 are
ordered clockwise if and only if 𝜑 (𝛽−𝑗 v𝛽+𝑗) ≡ 0 (i.e., we place v on the correct side
of 𝛽−𝑗 and 𝛽+𝑗 and arrange the vertices on both sides of 𝛽−𝑗 and 𝛽+𝑗 arbitrarily).
Next assume 𝑗 ≠ 𝑚𝑖 . Then there is exactly one vertex b ∈ 𝑉𝑗 (𝐺+) ∩ 𝑉 (𝐺★).

If b ∈ 𝐵−, then we place all vertices of 𝑉𝑗 (𝐺+) in arbitrary order on the circle
representing the level 𝑗 . Otherwise, we place 𝛽−𝑗 and b arbitrarily. We then place
any vertex v ∈ 𝑉𝑗 (𝐺+) \ {𝛽−𝑗 , b} such that 𝛽−𝑗 , b, v are ordered clockwise if and only
if 𝜑+ (𝛽−𝑗 bv) ≡ 0. Again, we arrange the vertices on either side of 𝛽−𝑗 and b arbitrarily.
We have now fixed the positions of all vertices and it remains to draw the edges.

Consider two consecutive levels 𝑗 and 𝑗 + 1 of 𝐺+. We draw the edges in 𝐸 𝑗 (𝐺+)
such that they do not cross the reference edges in 𝐸 (𝐺+) ∩ (𝐵+ × 𝐵−). We draw
an edge 𝑒 = (𝛽+𝑗 , 𝑥 ′) ∈ 𝐸+𝑗 (𝐺+) such that it is locally left of (𝛽+𝑗 , 𝛽−𝑗) if and only
if 𝜑+ (𝑙 (𝑒)) ≡ 0. By reversing the subdivisions of the edges in 𝐺+ we obtain 𝐺★ and
along with that we obtain a drawing Γ★ of 𝐺★ from Γ+.

Let 𝑎, 𝑏, 𝑐 be curves or corresponding edges. Then we write cr(𝑎, 𝑏) for the number
of crossings between 𝑎, 𝑏 and set cr(𝑎, 𝑏, 𝑐) = cr(𝑎, 𝑏) + cr(𝑎, 𝑐) + cr(𝑏, 𝑐). We consider
any number of crossings only modulo 2. The following lemma is the radial equivalent

Radial Level-Planarity Section 4.4

53

to Lemma 11 and constitutes our main tool for showing that edges in our drawing
cross evenly.

Lemma 17. Let 𝐶1 and 𝐶2 be distinct concentric circles and let 𝑎, 𝑏, 𝑐 be radially
monotone curves from 𝐶1 to 𝐶2 with pairwise distinct start- and endpoints that only
intersect at a finite number of points. Then the start- and endpoints of 𝑎, 𝑏, 𝑐 have the
same order on 𝐶1 and 𝐶2 if and only if cr(𝑎, 𝑏, 𝑐) ≡ 0.

Proof. If there are no crossings, then both sides hold. Hence, assume there is at least
one crossing. By perturbations we achieve that every crossing has a unique distance
to the center 𝑚. We order the crossings by distance to 𝑚. We add a concentric
circle 𝐶𝑌

𝑋
between any two consecutive crossings 𝑋,𝑌 such that 𝐶𝑌

𝑋
intersects 𝑎, 𝑏, 𝑐

each once.
Then, the order of the intersection points of 𝑎, 𝑏, 𝑐 must change between every two

consecutive circles. Thus, that order is the same in𝐶1 and𝐶2, if and only if we added
an odd number of circles. This in turn holds if and only if we have an even number
of crossings. □

Lemma 18. The drawing Γ★ is a Hanani-Tutte drawing of 𝐺★.

Proof. We show that each pair of independent edges of 𝐺★ crosses evenly in Γ★. Of
course it suffices to consider critical pairs of edges, since our drawing is radial by
construction, and therefore non-critical independent edge pairs cannot cross. Every
edge (𝛼+

𝑖 , 𝛼
−
𝑖+1) is subdivided into edges of the form (𝛽+𝑗 , 𝛽−𝑗+1) and therefore it is not

crossed.
Let 𝑒, 𝑓 be two independent edges in 𝐸 (𝐺★) \ (𝐴+×𝐴−) that are critical. Let 𝑎 and 𝑏

be the innermost and outermost level shared by 𝑒 and 𝑓 . We seek to use Lemma 17
to analyze the parity of the crossings between 𝑒 and 𝑓 . To this end, we construct a
curve 𝛾 along the edges of the form (𝛽+𝑗 , 𝛽−𝑗+1) as follows. For every level 𝑗 we add a
curve 𝑐 𝑗 between 𝛽−𝑗 and 𝛽+𝑗 on the circle representing the level 𝑗 (a point for 𝛽−𝑗 = 𝛽+𝑗 ;
chosen arbitrarily otherwise). The curve 𝛾 is the union of these curves 𝑐 𝑗 and the
curves for the edges of the form (𝛽+𝑗 , 𝛽−𝑗+1). Note that 𝛾 spans from the innermost
level 1 to the outermost level (𝑘, 2𝑛𝑘 + 1) with endpoints bot(𝛼+

1) and top(𝛼−
𝑘
).

For any edge 𝑔 ∈ 𝐺★, we denote its curve in Γ★ by 𝑐 (𝑔). For any radial monotone
curve 𝑐 we denote its subcurve between level 𝑖 and level 𝑗 by 𝑐 𝑗

𝑖
(using only one point

on circle 𝑖 and circle 𝑗 each). We consider three curves 𝑔′ = 𝛾𝑏𝑎 , 𝑒
′ = 𝑐 (𝑒)𝑏𝑎 , 𝑓 ′ = 𝑐 (𝑓)𝑏𝑎 .

Distinguish cases based on whether one of the edges 𝑒, 𝑓 starts at the bottom end or
ends at the top end of the reference edges on level 𝑎 or 𝑏.

Chapter 4 Level-Planarity: Transitivity vs. Even Crossings

54

1. We have 𝑒𝑎, 𝑓𝑎 ≠ 𝛽+𝑎 and 𝑒𝑏, 𝑓𝑏 ≠ 𝛽−
𝑏
. Then for 𝑎 ≤ 𝑗 ≤ 𝑏 − 1 we have:

𝜑+ (𝛽+𝑗+1𝑒 𝑗+1 𝑓𝑗+1)
C≡ 𝜑+ (𝛽−𝑗+1𝑒 𝑗+1 𝑓𝑗+1) + 𝜑+ (𝛽−𝑗+1𝑒 𝑗+1𝛽

+
𝑗+1) + 𝜑+ (𝛽−𝑗+1 𝑓𝑗𝛽

+
𝑗+1)

≡ 𝜑+ (𝛽−𝑗+1𝑒 𝑗+1 𝑓𝑗+1) + cr(𝑒, 𝑐 𝑗+1) + cr(𝑓 , 𝑐 𝑗+1)
P≡ 𝜑+ (𝛽+𝑗 𝑒 𝑗 𝑓𝑗) + cr(𝑒, 𝑐 𝑗+1) + cr(𝑓 , 𝑐 𝑗+1)

This implies

𝜑+ (𝛽+𝑎𝑒𝑎 𝑓𝑎) + 𝜑+ (𝛽−
𝑏
𝑒𝑏 𝑓𝑏) ≡

𝑏−1∑︁
𝑗=𝑎

cr(𝑐 𝑗+1, 𝑒) + cr(𝑐 𝑗+1, 𝑓) ≡ cr(𝑒,𝛾) + cr(𝑓 , 𝛾) ,

where the third equation holds since edges of the form (𝛽+𝑗 , 𝛽−𝑗+1) are not crossed.
With Lemma 17 we conclude:

cr(𝑒, 𝑓) ≡ cr(𝑒, 𝑓 , 𝛾) + cr(𝑒,𝛾) + cr(𝑓 , 𝛾)
≡ 𝜑+ (𝛽+𝑎𝑒𝑎 𝑓𝑎) + 𝜑+ (𝛽−

𝑏
𝑒𝑏 𝑓𝑏) + cr(𝑒,𝛾) + cr(𝑓 , 𝛾) ≡ 0

2. We do not have 𝑒𝑎, 𝑓𝑎 ≠ 𝛽+𝑎 and 𝑒𝑏, 𝑓𝑏 ≠ 𝛽−
𝑏
. For example, assume 𝑒𝑎 = 𝛽+𝑎 ;

the other cases work analogously. We then have 𝛽+𝑎 = top(𝛼+
𝑖). This means 𝑒

originates from an edge in𝐺 . Since such edges do not cross middle levels, 𝑔′ is
a subcurve of an original edge Y𝑖 . In particular, we have only three vertices per
level between 𝑎 and 𝑏 that correspond to 𝛾, 𝑒, 𝑓 .
Let 𝐻 ⊆ 𝐺+ be the subgraph induced by the vertices of (Y𝑖)𝑏𝑎 , 𝑒𝑏𝑎 , 𝑓 𝑏𝑎 . Then 𝜑+

satisfies all the constraints of S (𝐻,𝑉 ((Y𝑖)𝑏𝑎),𝑉 ((Y𝑖)𝑏𝑎)). However, each level
of 𝐻 contains only three vertices, and therefore the transitivity constraints are
trivially satisfied, i.e.,𝜑+ satisfies all the constraints ofS ′(𝐻,𝑉 ((Y𝑖)𝑏𝑎),𝑉 ((Y𝑖)𝑏𝑎)).
Thus, by Theorem 5, a drawing Γ𝐻 of 𝐻 according to 𝜑+ is planar. I.e., we
have cr((Y𝑖)𝑏𝑎 , 𝑒𝑏𝑎 , 𝑓 𝑏𝑎) = 0 with regards to Γ𝐻 . Let 𝐶𝑎,𝐶𝑏 be Y-close circles to
levels 𝑎 and 𝑏, respectively, that lie between levels 𝑎 and 𝑏. With Lemma 17 we
obtain that Y𝑖 , 𝑒, 𝑓 intersect 𝐶𝑎 and 𝐶𝑏 in the same order.
Note that Γ+ is drawn according to 𝜑+ in level 𝑎 and in level 𝑏. We obtain
that the curves for Y𝑖 , 𝑒, 𝑓 intersect 𝐶𝑎 in the same order in Γ+ and in Γ𝐻 . The
same holds for 𝐶𝑏 . Hence, the curves intersect 𝐶𝑎 and 𝐶𝑏 in the same order
in Γ+. With Lemma 17 we have cr((Y𝑖)𝑏𝑎 , 𝑒𝑏𝑎 , 𝑓 𝑏𝑎) ≡ 0 with regards to Γ+. Since 𝛾
is a subcurve of Y𝑖 and thus not crossed in Γ+, this yields cr(𝑒𝑏𝑎 , 𝑓 𝑏𝑎) ≡ 0 with
regards to Γ+.

Thus any two independent edges have an even number of crossings. □

Radial Level-Planarity Section 4.4

55

4.4.5 From a Hanani-Tutte Drawing to a Satisfying Assignment

As in the level-planar case the converse also holds.

Lemma 19. Let 𝐺★ be a level graph with reference sets 𝐴+, 𝐴− for 𝐺+. If 𝐺★ admits a
Hanani-Tutte drawing, then there exists a satisfying assignment 𝜑 of S (𝐺+, 𝐴+, 𝐴−).

For the proof of the lemma we first construct the assignment 𝜑 and then show that
it satisfies S (𝐺+, 𝐴+, 𝐴−). Let 𝐺★ = (𝑉 , 𝐸) have 𝑘 levels and a radial Hanani-Tutte
drawing Γ. Let 𝐺+ be the level graph obtained by subdividing all edges such that 𝐺+

is proper. For three distinct vertices 𝑥 , 𝑦 , z on level 𝑗 with 𝑥 = 𝛼−
𝑗 or 𝑥 = 𝛼+

𝑗 , we
set 𝜓 (𝑥𝑦z) = 0 if and only if 𝑥 , 𝑦 , z appear clockwise on the circle representing
level 𝑗 . If two edges 𝑒 , 𝑓 are adjacent in a vertex v with cr(𝑒, 𝑓) ≡ 1, then we
say they have a phantom crossing at v . We denote by cr★ the function counting
crossings and additionally adding 1 if there is a phantom crossing. With the phantom
crossings, any two edges in 𝐺 cross an even number of times, even if they are not
independent. For any edge 𝑒 = 𝑢v in 𝐺+ between level 𝑗 and 𝑗 + 1 with 𝑢 = 𝛼+

𝑗

or v = 𝛼−
𝑗+1 we set 𝜓 (𝑙 (𝑒)) = 0 if and only if 𝑒 is locally left of Y 𝑗 . We further

set 𝜑 (𝑙 (𝑒)) ≡ 𝜓 (𝑙 (𝑒)) + cr(𝑒, Y 𝑗) to switch that value in case of a phantom crossing.
Let v ∈ 𝑉 (𝐺+) be a vertex. If v is a subdivision vertex of an edge 𝑒 , then we

set 𝑒 (v) = 𝑒 . Otherwise we set 𝑒 (v) = ∅. We say ∅ has no crossings with anything but
stretches over all levels. This helps to avoid case distinctions. For an edge 𝑒 = (𝑢, v)
of 𝐺 we write 𝑒 𝑗 for the subdivision path of 𝑒 that starts at 𝑢 and ends in level 𝑗 . We
set ∅ 𝑗 = ∅. Let 𝑥, 𝑦, z ∈ 𝑉𝑗 (𝐺+) be disjoint with 𝑥 = 𝛼−

𝑗 or 𝑥 = 𝛼+
𝑗 . We set

𝜑 (𝑥𝑦z) ≡ 𝜓 (𝑥𝑦z) + cr★(𝑒 (𝑥) 𝑗 , 𝑒 (𝑦) 𝑗 , 𝑒 (z) 𝑗) .

We thereby switch the order of 𝑥 , 𝑦 , z if and only if at least two of them are subdivision
vertices and the corresponding edges cross an odd number of times up to level 𝑗 .
This finishes the construction of 𝜑 .

Lemma 20. The assignment 𝜑 satisfies S (𝐺+, 𝐴+, 𝐴−).

Proof. First note that𝜓 satisfies L(𝛼+
𝑗),L(𝛼−

𝑗) and C (𝛼+
𝑗 , 𝛼

−
𝑗) for 1 ≤ 𝑗 ≤ 𝑘 .

𝝋 satisfies L(𝜶 +
𝒋),L(𝜶−

𝒋). For three distinct vertices 𝑥, 𝑦, z ∈ 𝑉𝑗 (𝐺+) we have by
definition of 𝜑 that 𝜑 (𝑥𝑦z) + 𝜑 (𝑥z𝑦) ≡ 𝜓 (𝑥𝑦z) +𝜓 (𝑥z𝑦). Since𝜓 satisfies Eq. (4.4),
so does 𝜑 .

Chapter 4 Level-Planarity: Transitivity vs. Even Crossings

56

𝝋 satisfies C(𝜶 +
𝒋 , 𝜶

−
𝒋). For Eq. (4.10) let 1 ≤ 𝑗 ≤ 𝑘 such that 𝛼−

𝑗 ≠ 𝛼+
𝑗 . Let 𝑢, v be

distinct vertices in 𝑉𝑗 (𝐺+) \ {𝛼−
𝑗 , 𝛼

+
𝑗 } By definition of 𝜑 we have that

(𝜑 (𝛼−
𝑗 𝑢v) + 𝜑 (𝛼+

𝑗 𝑢v)) + (𝜑 (𝛼−
𝑗 𝑢𝛼

+
𝑗) + 𝜑 (𝛼−

𝑗 v𝛼
+
𝑗))

≡ (𝜓 (𝛼−
𝑗 𝑢v) +𝜓 (𝛼+

𝑗 𝑢v)) + (𝜓 (𝛼−
𝑗 𝑢𝛼

+
𝑗) +𝜓 (𝛼−

𝑗 v𝛼
+
𝑗))

+ 2
(︁
cr★(𝑒 (𝛼−

𝑗), 𝑢) + cr★(𝑒 (𝛼−
𝑗), v) + cr★(𝑒 (𝛼+

𝑗), 𝑢) + cr★(𝑒 (𝛼+
𝑗), v)

+ cr★(𝑢, v) + cr★(𝑒 (𝛼−
𝑗), 𝑒 (𝛼+

𝑗))
)︁

≡ (𝜓 (𝛼−
𝑗 𝑢v) +𝜓 (𝛼+

𝑗 𝑢v)) + (𝜓 (𝛼−
𝑗 𝑢𝛼

+
𝑗) +𝜓 (𝛼−

𝑗 v𝛼
+
𝑗))

Therefore, Eq. (4.10) holds.
For Eq. (4.11) let 𝑢 ∈ 𝑉𝑗 (𝐺+) \ {𝛼+

𝑗 , 𝛼
−
𝑗 }. With the definition of 𝜑 we obtain

𝜑 (𝛼−
𝑗 𝑢𝛼

+
𝑗) + 𝜑 (𝛼+

𝑗 𝛼
−
𝑗 𝑢) ≡ 𝜓 (𝛼−

𝑗 𝑢𝛼
+
𝑗) +𝜓 (𝛼+

𝑗 𝛼
−
𝑗 𝑢) .

Thereby Eq. (4.11) holds.
It remains to argue that 𝜑 satisfies P (Y 𝑗) for all levels.

𝝋 satisfies Eq. (4.6) of P (𝜺𝒋). Let 1 ≤ 𝑗 ≤ 𝑘 − 1 and let (𝑢,𝑢 ′), (v, v ′) ∈ 𝐸 𝑗 (𝐺+) be
independent. Then we argue that

𝜑 (𝛼+
𝑗 𝑢v) + 𝜑 (𝛼−

𝑗+1𝑢
′v ′)

≡ 𝜓 (𝛼+
𝑗 𝑢v) +𝜓 (𝛼−

𝑗+1𝑢
′v ′) + cr★((𝑢,𝑢 ′), (v, v ′), Y 𝑗)

(4.12)

This means we change the order of the ends of (𝑢,𝑢 ′), (v, v ′), Y 𝑗 on exactly one of the
levels 𝑗 and 𝑗 + 1 if and only if they cross an odd number of times. With Lemma 17
we then obtain that Eq. (4.6) holds for (𝑢,𝑢 ′), (v, v ′).

With the definition of 𝜑 it suffices to show the following three equations

cr★(𝑒 (𝛼−
𝑗+1) 𝑗+1, 𝑒 (𝑢 ′) 𝑗+1) + cr★(𝑒 (𝛼+

𝑗) 𝑗 , 𝑒 (𝑢) 𝑗) ≡ cr★(Y 𝑗 , (𝑢,𝑢 ′)) (4.13)
cr★(𝑒 (𝛼−

𝑗+1) 𝑗+1, 𝑒 (v ′) 𝑗+1) + cr★(𝑒 (𝛼+
𝑗) 𝑗 , 𝑒 (v) 𝑗) ≡ cr★(Y 𝑗 , (v, v ′)) (4.14)

cr★(𝑒 (𝑢 ′) 𝑗+1, 𝑒 (v ′) 𝑗+1) + cr★(𝑒 (𝑢) 𝑗 , 𝑒 (v) 𝑗) ≡ cr★((𝑢,𝑢 ′), (v, v ′)) (4.15)

Eq. (4.15), (4.13) and (4.14) can be shown analogously, noting that Y 𝑗 = (𝛼+
𝑗 , 𝛼

−
𝑗+1)

is independent from (𝑢,𝑢 ′), (v, v ′). We distinguish cases where 𝑢,𝑢 ′, v, v ′ are vertices
of different kinds.

1. 𝑢, 𝑢 ′ or v , v ′ are original vertices. Then 𝑒 (𝑢) = 𝑒 (𝑢 ′) = ∅ or 𝑒 (v) = 𝑒 (v ′) = ∅.
Then the left side equals 0. The right side also equals 0, since 𝑢𝑢 ′ or vv ′ is an
edge of 𝐺★.

Radial Level-Planarity Section 4.4

57

2. 𝑢, 𝑢 ′ or v , v ′ are subdivision vertices. Without loss of generality assume 𝑢, 𝑢 ′

are subdivision vertices. Then we obtain 𝑒 (𝑢) = 𝑒 (𝑢 ′) and the left side reduces
to cr★(𝑒 (𝑢) 𝑗+1, 𝑒 (v ′) 𝑗+1) + cr★(𝑒 (𝑢) 𝑗 , 𝑒 (v) 𝑗).
a) The case where v , v ′ are original vertices is already covered.
b) If v , v ′ are subdivision vertices, we continue with

p𝑐𝑟 (𝑒 (𝑢) 𝑗+1, 𝑒 (v ′) 𝑗+1) + cr★(𝑒 (𝑢) 𝑗 , 𝑒 (v) 𝑗)
≡ p𝑐𝑟 (𝑒 (𝑢) 𝑗+1, 𝑒 (v) 𝑗+1) + cr★(𝑒 (𝑢) 𝑗 , 𝑒 (v) 𝑗)
≡ p𝑐𝑟 (𝑒 (𝑢) 𝑗+1𝑗 , 𝑒 (v) 𝑗+1

𝑗
)

≡ p𝑐𝑟 ((𝑢,𝑢 ′), (v, v ′))

c) If v is an original vertex an v ′ is a subdivision vertex, we get

cr★(𝑒 (𝑢) 𝑗+1, 𝑒 (v ′) 𝑗+1) + cr★(𝑒 (𝑢) 𝑗 , 𝑒 (v) 𝑗)
≡ cr★(𝑒 (𝑢) 𝑗+1, vv ′) + 0
≡ cr★(𝑢𝑢 ′, vv ′)

d) If v is a subdivision vertex and v ′ is an original vertex, we get

cr★(𝑒 (𝑢) 𝑗+1, 𝑒 (v ′) 𝑗+1) + cr★(𝑒 (𝑢) 𝑗 , 𝑒 (v) 𝑗)
≡ 0 + cr★(𝑒 (𝑢) 𝑗 , 𝑒 (v) 𝑗)
≡ cr★(𝑒 (𝑢), 𝑒 (v))
≡ 0

3. 𝑢, v are original vertices and 𝑢 ′, v ′ are subdivision vertices. Then we have
that 𝑒 (𝑢) = 𝑒 (v) = ∅ and 𝑒 (𝑢 ′) 𝑗+1 = 𝑢𝑢 ′ and 𝑒 (v ′) 𝑗+1 = vv ′ and the equivalence
holds.

4. 𝑢 ′, v ′ are original vertices and 𝑢, v are subdivision vertices. Noting

cr★(𝑒 (𝑢) 𝑗 , 𝑒 (v) 𝑗) + cr★(𝑒 (𝑢)𝑘𝑗 , 𝑒 (v)𝑘𝑗) = cr★(𝑒 (𝑢), 𝑒 (v)) ≡ 0,

we can argue analogously.

5. 𝑢, v ′ are original vertices and 𝑢 ′, v are subdivision vertices. Then we have
that 𝑒 (𝑢) = 𝑒 (v ′) = ∅, and the left side equals 0. Furthermore, observe that it
is cr★((𝑢,𝑢 ′), (v, v ′)) = cr★(𝑒 (𝑢 ′), 𝑒 (v)) ≡ 0, i.e., both sides are even.

6. 𝑢 ′, v are original vertices and 𝑢, v ′ are subdivision vertices. Then we can argue
analogously to the previous case.

Hence, we have that 𝜑 satisfies Eq. (4.6).

Chapter 4 Level-Planarity: Transitivity vs. Even Crossings

58

𝝋 satisfies Eq. (4.7) of P (𝜺𝒋). Let 𝑒 = (𝑢,𝑢 ′) ∈ 𝐸+𝑗 (𝐺+) and let 𝑓 = (v, v ′) ∈ 𝐸−𝑗 (𝐺+).
Then we adjust the drawing by perturbing possible phantom crossings of 𝑒, 𝑓 with Y 𝑗
in 𝛼+

𝑗 and 𝛼−
𝑗+1 to the space between circle 𝑗 and circle 𝑗 + 1. Thereby, the states of 𝑒, 𝑓

being locally left of Y 𝑗 change if and only if they have a phantom crossing. This is
the case if and only if 𝜓 and 𝜑 differ for 𝑙 of the corresponding edge. I.e., 𝜑 (𝑙 (𝑒))
and 𝜑 (𝑙 (𝑓)) describe, whether 𝑒, 𝑓 are locally left of Y 𝑗 . Consider the closed curve 𝑐
that is the union of 𝑐 (𝑒), 𝑐 (Y 𝑗) and the part 𝑑 of circle 𝑗 + 1 between 𝑢 ′ and 𝛼−

𝑗+1, such
that circle 𝑗 is on the outside of 𝑐 . Then the edge 𝑓 is outside of 𝑐 at circle 𝑗 . Note
that Y 𝑗 has to be an original edge. Since 𝑓 crosses 𝑒, Y 𝑗 an even number of times each
(as their corresponding original edges cross only between level 𝑗 and 𝑗 + 1), and it
does not cross 𝑑 , edge 𝑓 has to be outside of 𝑐 at Y-close distance to circle 𝑗 + 1. We
thereby obtain 𝜑 (𝑙 (𝑒)) ≡ 𝜑 (𝑙 (𝑓)) + 1.

𝝋 satisfies Eq. (4.8) of P (𝜺𝒋). Let (𝑢,𝑢 ′) ∈ 𝐸+𝑗 and let (v, v ′) ∈ 𝐸 𝑗 be independent.
Note that 𝑒 (𝛼−

𝑗+1) 𝑗+1 = Y 𝑗 and that 𝑒 (𝑢 ′) 𝑗+1 = (𝑢,𝑢 ′) and likewise for v ′ since 𝛼−
𝑗+1 = 𝑢 ′

must be an original vertex. Let circle 𝑎 be a circle that is Y-close outside of circle 𝑗 .
Then we have

𝜑 (𝛼−
𝑗+1v

′𝑢 ′) −𝜓 (𝛼−
𝑗+1v

′𝑢 ′)
≡ cr★(𝑒 (v ′) 𝑗+1, 𝑒 (𝑢 ′) 𝑗+1) + cr★(𝑒 (𝛼−

𝑗+1) 𝑗+1, 𝑒 (v ′)) + cr★(𝑒 (𝛼−
𝑗+1) 𝑗+1, 𝑒 (𝑢 ′))

≡ cr★((v, v ′), (𝑢,𝑢 ′)) + cr★(Y 𝑗 , (v, v ′)) + cr★(Y 𝑗 , (𝑢,𝑢 ′))
≡ cr★(Y 𝑗 , (v, v ′), (𝑢,𝑢 ′))
≡ cr(Y 𝑗 , (v, v ′), (𝑢,𝑢 ′)) + cr★((𝑢,𝑢 ′)𝑎, (v, v ′)𝑎, Y𝑎𝑗)
≡ (𝜓 (𝑙 (𝑢,𝑢 ′)) −𝜓 (𝛼−

𝑗+1v
′𝑢 ′)) + cr★((𝑢,𝑢 ′)𝑎, (v, v ′)𝑎, Y𝑎𝑗)

≡ 𝜑 (𝑙 (𝑢,𝑢 ′)) −𝜓 (𝛼−
𝑗+1v

′𝑢 ′) .

We obtain 𝜑 (𝑙 (𝑢,𝑢 ′)) = 𝜑 (𝛼−
𝑗+1v

′𝑢 ′).

𝝋 satisfies Eq. (4.9) of P (𝜺𝒋). Can be argued similarly to the previous case. □

With the Lemmas 18, 19 we obtain the following equivalence.

Theorem 6. Let 𝐺 be a level graph with reference sets 𝐴+, 𝐴−. Let 𝐵+, 𝐵− be corre-
sponding reference sets of 𝐺+. Then

This yields the equivalence of the two radial level-planarity characterizations as
follows. Let𝐺 be a proper level graph with reference sets 𝐴+, 𝐴−. Assume all level
graphs with a Hanani-Tutte radial level drawing are radial level-planar. Then for

Conclusion Section 4.5

59

every level graph 𝐺 with reference sets 𝐴+, 𝐴− where S (𝐺,𝐴+, 𝐴−) is satisfiable,
constraint system S (𝐺+, 𝐵+, 𝐵−) is satisfiable by Lemma 15. Then by Theorem 6
there is a Hanani-Tutte drawing of 𝐺★ and thus 𝐺★ is radial level-planar. Since 𝐺★ is
radial level-planarity equivalent to𝐺 ,𝐺 is also radial level-planar. On the other hand,
Assume each proper level graph 𝐺 with reference sets 𝐴+, 𝐴− where S (𝐺,𝐴+, 𝐴−)
is satisfiable is radial level-planar. Then for every level graph 𝐺 with reference
sets 𝐴+, 𝐴− for 𝐺+ and a Hanani-Tutte radial level drawing, we trivially obtain
a Hanani-Tutte radial level drawing of 𝐺★. Then by Theorem 6 S (𝐺+, 𝐵+, 𝐵−) is
satisfiable. Hence, 𝐺+ is radial level-planar, and since 𝐺+ and 𝐺 are radial level-
planarity equivalent, 𝐺 is also radial level-planar. Note that we did not actually use
the Hanani-Tutte result for the radial case [FPS16].

Corollary 2. The radial level-planar graphs are exactly the level graphs with a Hanani-
Tutte radial level drawing if and only if they are exactly level graphs 𝐺 where S (𝐺) is
satisfiable.

With the known Hanani-Tutte result for the radial case [FPS16], we conclude that
radial level-planarity can be characterized in the spirit of Randerath et al. [Ran+01].

Corollary 3. Let 𝐺 be a proper level graph with reference sets 𝐴+, 𝐴−. Then

4.5 Conclusion

We have established an equivalence of two results on level-planarity that have so
far been considered as independent. The novel connection has further led us to a
new testing algorithm for radial level planarity. Can similar results be achieved for
level-planarity on a rolling cylinder or on a torus [Ang+20]?

61

5 Level Planarity Testing:

A Unified Approach

The problems of testing graphs for the (radial) level planarity and, if possible, finding
a corresponding drawing, were studied in a number of papers across many years, re-
sulting in linear-time algorithms. However, these algorithms are notoriously complex
to understand. Moreover, we believe that the algorithm that treats the radial setting
is incomplete. In this chapter, we describe a self-contained linear-time algorithm that
tests a graph for radial level planarity, and, if the result is positive, outputs a radial
level planar embedding of it.

This chapter is based on unpublished joint work with Ignaz Rutter.

5.1 Introduction

Planarity is central topic in topological and algorithmic graph theory. Algorithmically,
the problem has been settled by Hopcroft and Tarjan [HT74] who gave the first
planarity testing algorithm that runs in optimal linear time. Nowadays several
different planarity testing algorithms are known [Pat13], and various implementations
are available in software packages such as OGDF [Chi+13]. By contrast, the concept
of (radial) level planarity for directed graphs is much less well-understood. A level
graph is a graph where each vertex v is assigned an integer level ℓ (v) and for each
(directed) edge𝑢v it is ℓ (𝑢) < ℓ (v). A (radial) level-planar drawing is a planar drawing
where each vertex v lies on the horizontal line 𝑦 = ℓ (v) (on the circle with radius ℓ (v)
centered at the origin) and each edge 𝑢v is represented by a curve that is y-monotone

Chapter 5 Level Planarity Testing: A Unified Approach

62

(radially monotone). Alternatively (but equivalently), radial level-planar drawings
can be defined on the standing cylinder.

Jünger and Leipert [JLM98, JL02] give linear-time algorithms to test the existence
of and compute level-planar drawings. Bachmaier, Brandenburg and Forster extend
these algorithms to the radial case [BBF05]. The core of the approach lies in the fact
that the possible orders of vertices on each level can be represented by (some variant
of) a PQ-tree; a data structure that also features prominently in other planarity
algorithms.
The idea of using PQ-trees for this task dates back to Di Battista and Nardelli

who employed them to solve the case of single-source level graphs [DN88]. The
generate the corresponding PQ-tree by an incremental algorithm that constructs
the graph level by level and use induction to prove that in each step the possible
vertex orders can be represented by a PQ-tree. It is straightforward to extend their
approach to radial level-planar graphs with a single source. The difficulty starts
when considering graphs with multiple sources. In this case, we grow one PQ-tree
per source of the graph; however subgraphs that have been disjoint on the upper
levels may join into one connected component in later levels, making it necessary
to merge multiple PQ-trees into one. This approach was pioneered by Heath and
Pemmaraju [HP95], who used it to design an 𝑂 (𝑛2)-time algorithm for testing level
planarity; and 𝑂 (𝑛3) time for computing a corresponding drawing. However, Jünger,
Leipert and Mutzel [JLM97] point out several flaws in their algorithm that leads
their algorithm to reject graphs even though they are level-planar. Following up
on this, Jünger, Mutzel and Leipert [JLM98] correct these mistakes and describe a
linear-time algorithm for testing level planarity. Jünger and Leipert [JL02] extend
the algorithm to also produce a level-planar embedding in the same running time,
if it exists. Bachmaier, Brandenburg and Forster then further extend this algorithm
to the radial level-planar case [BBF05]. This is, however, not the end of the story.
The level-planarity testing algorithm [JLM98] refers to a full version for several parts
of the proof. However, such a full version has, to the best of our knowledge never
appeared. A journal version of the linear-time embedding algorithm for level graphs is
available [JL02], however the algorithm is long and complicated, and the correctness
proof is on an entirely technical level along the steps of the algorithm that gives little
structural insight. Even the overall proof strategy remains opaque. The extensions of
Bachmaier and Brandenburg [BBF05] defer large parts of their correctness arguments
as being analogous to the level-planar case. Altogether this makes for more than 150
pages of literature towards such linear-time algorithms, however a convincing proof
of correctness is, in our opinion, currently not available. Though Leipert [Lei98] and
Bachmaier [Bac04] describe prototypical implementations of their algorithms in their
dissertations, none of these has been experimentally evaluated in any way. We are
also not aware of any publicly available implementations.

Preliminaries Section 5.2

63

For these reasons, simpler but slower algorithms have been proposed even long
after the publication of the linear-time algorithm. Randerath et al. [Ran+01] show
how tomodel level planarity as a 2-SAT formula of quadratic size, Fulek et al. [FPSŠ13]
give a Hanani-Tutte characterization, which also leads to an 𝑂 (𝑛2)-time algorithm.
Both of these approaches have also been generalized to the radial case [FPS17, FPS16,
BRS18], again implying running time 𝑂 (𝑛2).

Contribution. In this chapter, we give a new algorithm for radial level planarity
testing that runs in linear time. Similar to the previous approaches, it is based on
based (augmented) PQ-trees. Our algorithm combines a preprocessing that reduces
the number of special cases to consider with a small number of simple key steps.
In contrast to Jünger and Leipert [JL02] and Bachmaier et al. [BBF05] extending
our algorithm to also compute a corresponding (radial) level-planar embedding is
relatively simple and does not require a large extra effort. The main reason for this
is that, instead of eliminating sinks by adding additional edges, we focus on the
elimination of sources.

5.2 Preliminaries

Wedefine a couple of basic operations for level-planar drawings. Let𝐺 be a level graph
and let Γ be a level-planar drawing of𝐺 . Let 𝑢 and 𝑤 denote (not necessarily distinct)
vertices on the same level of𝐺 and let 𝜑 (𝑢) and 𝜑 (v) denote their angular coordinates
in Γ, respectively. Define the (counter-clockwise) angular distance Δ(𝑢, v) from 𝑢 to v
as the smallest value in (0, 2𝜋] so that𝜑 (𝑢)+Δ(𝑢, v) = 𝜑 (v) mod 2𝜋 . Note that𝑢 = v
gives Δ(𝑢, v) = 2𝜋 and that for 𝑢 ≠ v it is generally Δ(𝑢, v) ≠ Δ(v, 𝑢). A new vertex v
can be interspersed between 𝑢 and 𝑤 by assigning the radial coordinate ℓ (𝑢) = ℓ (v)
and the angular coordinate (𝜑 (𝑢) + Δ(𝑢, v)/2) mod 2𝜋 to it.
Similarly, an edge can be interspersed. Let 𝑒 = (𝑢,𝑢 ′) and 𝑔 = (𝑤, 𝑤 ′) de-

note (not necessarily distinct) edges of 𝐺 between levels 𝑟1 ≔ max(ℓ (𝑢), ℓ (𝑤))
and 𝑟2 ≔ min(ℓ (𝑢 ′), ℓ (𝑤 ′)). Let 𝜑𝑒 and 𝜑𝑔 denote the drawings of 𝑒 and 𝑔 in Γ, respec-
tively. For 𝑟 ∈ (𝑟1, 𝑟2) define the (counter-clockwise) angular distance Δ(𝑒, 𝑔, 𝑟) from 𝑒

to 𝑔 as the smallest value in (0, 2𝜋] so that 𝜑𝑒 (𝑟) + Δ(𝑒, 𝑔, 𝑟) = 𝜑𝑔 (𝑟) mod 2𝜋 . Fur-
ther, define Δ(𝑒, 𝑔, 𝑟1) = lim𝑟↘𝑟1 Δ(𝑒, 𝑔, 𝑟) and Δ(𝑒, 𝑔, 𝑟2) = lim𝑟↗𝑟2 Δ(𝑒, 𝑔, 𝑟). These
limits are well-defined because 𝜑𝑒 and 𝜑 𝑓 are continuous on the interval [𝑟1, 𝑟2].
Then Δ(𝑒, 𝑔) : 𝑟 ↦→ Δ(𝑒, 𝑔, 𝑟) is continuous on the interval [𝑟1, 𝑟2], too. Choose _(𝑟1)
from the interval [0, 1] with 𝜑 (𝑢) + _(𝑟1)Δ(𝑒, 𝑔, 𝑟1) = 𝜑 (v) mod 2𝜋 . This choice
is unique unless 𝜑 (𝑢) = 𝜑 (v) = 𝜑 (𝑤), i.e., 𝑢 = v = 𝑤. In that case let _(𝑟1) ≔ 0.
Similarly, choose _(𝑟2) ∈ [0, 1] with 𝜑 (𝑢 ′) + _(𝑟2)Δ(𝑒, 𝑔, 𝑟2) = 𝜑 (v ′) mod 2𝜋 . Again,
that choice is unique unless 𝑢 ′ = v ′ = 𝑤 ′, in which case we choose _(𝑟2) ≔ 0.

Chapter 5 Level Planarity Testing: A Unified Approach

64

c

(a)

b

a

c

(b)

b

a

Figure 5.1: The drawings in (a) and (b) induce the same combinatorial embedding
and the same cyclic vertex order on both levels, but their level-planar embedding
differs: the linearized order of the edges around 𝑐 is (𝑐, 𝑎), (𝑐, 𝑏) in (a), and (𝑐, 𝑏), (𝑐, 𝑎)
in (b). We will require our PC-trees to have a C-node as their root, which helps us
distinguish these embeddings.

For 𝑟 ∈ (𝑟1, 𝑟2), let _(𝑟) be the linear interpolation between _(𝑟1) and _(𝑟2). Hence, _
is continuous on the interval [𝑟1, 𝑟2]. Intersperse 𝑓 = (v, v ′) between 𝑒 and 𝑔 by
drawing 𝑓 as 𝜑 𝑓 (𝑟) ≔ 𝜑𝑢 (𝑟) + _(𝑟)Δ(𝑒, 𝑔, 𝑟) mod 2𝜋 , which is radially continuous.
Consider a vertex v of 𝐺 . There exists a cyclic order 𝜎 = (𝑒1, 𝑒2, . . . , 𝑒𝑛, 𝑒𝑛+1 = 𝑒1) of
the 𝑛 child edges of v so that in Γ, each circle with radius 𝑟 ∈ (ℓ (v), ℓ (v) +1) intersects
the child edges of v in (counter-clockwise) order 𝜎 . It is

∑︁𝑛
𝑖=1 Δ(𝑒𝑖 , 𝑒𝑖+1, 𝑟) = 2𝜋 and

because Jordan arcs are (radially) continuous, there exists for each Y > 0 a value 𝛿 > 0
such that for all 𝑟 with 𝑟 < ℓ (v) + 𝛿 it is 𝜑 (v) − Y < 𝜑 (𝑒𝑖) < 𝜑 (v) + Y mod 2𝜋 for
each child edge 𝑒𝑖 of v . This means that there exists one pair 𝑒𝑖 , 𝑒𝑖+1 of edges so
that Δ(𝑒𝑖 , 𝑒𝑖+1, ℓ (v)) = 2𝜋 whereas for every other pair of edges 𝑒 𝑗 , 𝑒 𝑗+1 with 𝑗 ≠ 𝑖 it
is Δ(𝑒 𝑗 , 𝑒 𝑗+1, ℓ (v)) = 0. The linearized order of child edges of v in Γ is obtained by
splitting 𝜎 between 𝑒𝑖 and 𝑒𝑖+1 so that 𝑒𝑖+1 is the first edge and 𝑒𝑖 is the last edge. The
linearized order of parent edges of v in Γ is defined similarly.

Recall that a level-planar (combinatorial) embedding of𝐺 associates with each vertex
of 𝐺 a linearized order of its child edges and a linearized order of its parent edges,
and that this notion is different from that of planar combinatorial embeddings. For an
example, see Figure 5.1, where the two level-planar drawings induce different level-
planar (combinatorial) embeddings, but the same planar combinatorial embedding.
Also, recall that a level-planar embedding E of a single-source 𝑘-level graph induces
counter-clockwise cyclic orders of the vertices on each level. Call the counter-
clockwise order of level-𝑘 vertices the frontier of E .

Regularization Section 5.3

65

5.3 Regularization

In this section, we preprocess the input graph𝐺 and simplify its structure. This helps
to reduce the number of case distinctions that we will have to make in Section 5.11.
We start out by defining a so-called star form 𝐺★ of 𝐺 , which has the property that
it only changes in small deltas when processing it level by level. We then go on to
define 𝐺×, which simplifies how components that are disjoint on previous levels
grow together as the graph is processed level by level.

5.3.1 Star Form

Let 𝐺 = (𝑉 , 𝐸) together with ℓ be a 𝑘-level graph on 𝑛 vertices. Assume without
loss of generality that there exists exactly one vertex 𝜍 ∈ 𝑉 with ℓ (𝜍) = 1. Define
a 4𝑛-level graph 𝐺★ on 2𝑛 vertices, called the star form of 𝐺 , as follows. Consider
each level 𝑖 of 𝐺 with 1 ≤ 𝑖 ≤ 𝑘 in this order and let v1, v2, . . . , v𝑛 denote the
vertices on level 𝑖 . In 𝐺★, append 4𝑛 levels 𝑖1, 𝑖2, . . . , 𝑖4𝑛 . For 1 ≤ 𝑗 ≤ 𝑛 create two
vertices v ′𝑗 , v ′′𝑗 with ℓ (v ′𝑗) = 𝑖2𝑗−1 and ℓ (v ′′𝑗) = 𝑖2(𝑗+𝑛)−1 connected by an edge (v ′𝑗 , v ′′𝑗).
Refer to (v ′𝑗 , v ′′𝑗) as the stretch edge of v𝑗 . For each edge (𝑢, v) of𝐺 add the edge (𝑢 ′′, v ′)
to 𝐺★. Define 𝐺+ as the graph obtained from 𝐺★ by subdividing each edge until all
edges are proper and refer to it as the plus form. The size of 𝐺★ is linear in the size
of 𝐺 , the size of 𝐺+ may be quadratic in the size of 𝐺 . We will use the plus form in
our proofs, but our algorithm operates on the star form.
Now let 𝐺 be a 𝑘-level graph in plus form. For 1 ≤ 𝑖 ≤ 𝑘 let 𝐺 [𝑖] denote the

restriction of 𝐺 to the levels {1, . . . , 𝑖}. Consider 𝐺 [𝑖]. Call a vertex on level 𝑖 − 1
unpaired if it does not have exactly one neighbor on level 𝑖 . Likewise, call a vertex
on level 𝑖 unpaired if it does not have exactly one neighbor on level 𝑖 − 1. Because 𝐺
is in plus form 𝐺 [𝑖] has at most one unpaired vertex. If there is an unpaired vertex
there are four cases of how 𝐺 [𝑖] arises from 𝐺 [𝑖 − 1].

1. The unpaired vertex has no neighbor.
a) The unpaired vertex 𝑢 lies on level 𝑖 − 1. Then 𝐺 [𝑖] arises from 𝐺 [𝑖 − 1]

by pruning 𝑢.
b) The unpaired vertex v lies on level 𝑖 . Then 𝐺 [𝑖] arises from 𝐺 [𝑖 − 1] by

introducing v .

2. Otherwise the unpaired vertex has at least two neighbors.
a) The unpaired vertex 𝑢 lies on level 𝑖 − 1. Then 𝐺 [𝑖] arises from 𝐺 [𝑖 − 1]

by growing 𝑢 with its children v1, v2, . . . , v𝑛 on level 𝑖 .
b) The unpaired vertex v lies on level 𝑖 . Then 𝐺 [𝑖] arises from 𝐺 [𝑖 − 1] by

bundling the ancestors 𝑢1, 𝑢2, . . . , 𝑢𝑛 of v .

Chapter 5 Level Planarity Testing: A Unified Approach

66

Call the unpaired vertex and its neighbors on levels 𝑖−1 or 𝑖 pertinent. In the following
we restrict ourselves to graphs obtained by a sequence of these four basic operations.
If 𝐺 is a single-source level graph each 𝐺 [𝑖] is connected and hence, when 𝐺 [𝑖] is
obtained from 𝐺 [𝑖 − 1] by bundling, the ancestors belong to the same connected
component.

5.3.2 Redrawing

In this section we further restrict the star form 𝐺★. For convenience we rather
work with the plus-form 𝐺+. Let v be a vertex of 𝐺+ so that 𝐺+ [ℓ (v) − 1] has more
connected components than𝐺+ [ℓ (v)]. Let 𝐻1, . . . , 𝐻𝑘 be the connected components
of 𝐺+ [ℓ (v) − 1] that have v as a neighbor. We say that v joins 𝐻1, . . . , 𝐻𝑘 . The
component 𝐻𝑖 is v-singular, if v is the only vertex adjacent to 𝐻𝑖 that lies on level 𝑖;
otherwise 𝐻𝑖 is called non-singular.
We aim to further modify 𝐺★ in such a way that for each vertex v joining com-

ponents 𝐻1, . . . , 𝐻𝑘 we have that if 𝑘 ≥ 3, then they are all v-singular. That is, each
vertex either joins only two components, or all the joined components are v-singular.
The key observation is the following technical lemma, which allows us to make
further assumptions about the linearized edge orders of the level-planar embeddings
of 𝐺★.

Lemma 21. Let v be a vertex of𝐺+ that joins more than two connected components and
let 𝐻 be the non-singular connected component joined by v that maximizes ℓ (𝐻). Let 𝐼
denote the incoming edges of v and let 𝐼 ′ ⊆ 𝐼 be the subset of edges that are incident
to 𝐻 . If 𝐺+ admits a level-planar embedding E , then there also exists a level-planar
embedding E ′ of 𝐺+ that differs from E at most in the linearized order of the incoming
edges of v so that 𝐼 \ 𝐼 ′ is consecutive in E ′.

Proof. Note that in this situation, v is a cut-vertex of𝐺+ [ℓ (v)], and each split compo-
nent of v corresponds to a component that is joined by v . Let𝐶 be such a component.
Consider the level-planar embedding of 𝐶 induced by E . Let 𝐷 be the disk with
radius 𝑖 centered at the origin. Removing the drawing of 𝐶 from 𝐷 yields several
connected regions, which we call the faces of 𝐶 . A face of 𝐶 is a boundary face if it
contains a point of the boundary of 𝐷 ; the other faces are called internal. The unique
face that contains the origin is called central face. The component 𝐶 is a ring if its
central face is not a boundary face, and it is a non-ring otherwise.

The level-planarity of E gives the following properties.

1. If𝐶,𝐶 ′ are both rings and ℓ (𝐶) < ℓ (𝐶 ′), then𝐶 is embedded in the central face
of 𝐶 ′.

2. If 𝐶 is contained in a non-boundary face of 𝐶 ′, then 𝐶 is v-singular.

Regularization Section 5.3

67

3. If 𝐶 is a non-singular component and 𝐶 ′ is not contained in the central face
of 𝐶 , then 𝐶 ′ is a non-ring.

4. For each component 𝐶 there is a vertex p of 𝐶 incident to the central face
with ℓ (p) = ℓ (𝐶).

5. If𝐶 ′ is embedded inside a non-central face 𝑓 of a component𝐶 , then there exists
a vertex p of 𝐶 incident to 𝑓 with ℓ (p) < ℓ (𝐶 ′); in particular ℓ (𝐶) < ℓ (𝐶 ′).

To modify the embedding so that 𝐼 \𝐼 ′ becomes consecutive, we apply the following
redrawing operation. Let 𝑆 be a v-singular component incident joined by v that is not
a ring. Since 𝑆 is v-singular, it has a single boundary face, which is also central. By
Property (iv) the unique vertex min 𝑆 is incident to this face. Since 𝑆 is v-singular, v
is the only vertex of 𝑆 on its level. Therefore, we can draw a left curve 𝛾ℓ and a right
curve 𝛾𝑟 from min𝑉 to v so that each of them visits the levels of v and ℓ (𝑆) only at its
endpoints. Using Lemma 6 from Chapter 3, this implies that there exists a drawing
of 𝐺+ with the same embedding where we can additionally insert edges 𝑒ℓ and 𝑒𝑟
from min 𝑆 to v that are embedded to the left and right of the leftmost and rightmost
outgoing edge of min 𝑆 , respectively. This allows us to redraw 𝑆 and everything
embedded in its inner faces inside an arbitrary face 𝑓 incident to v , whenever it is
possibly to embed a single edge (p, v) with level ℓ (p) < ℓ (𝑆) in 𝑓 . Again using
the result of Da Lozzo et al., to embed such an edge, it suffices to have a vertex p
with ℓ (p) < ℓ (𝑆) incident to 𝑓 .

We are now ready to modify embedding E . Recall that 𝐻 is the non-singular
component that maximizes ℓ (𝐻). We distinguish cases based on whether 𝐻 is a ring
or not. If it is not, we further dinstinguish cases based on whether v is incident to
the central face of 𝐻 or not.

First consider the case that𝐻 is a ring. Let𝐶 be another component joined by v . If𝐶
is non-singular, Property (ii) gives that it is embedded in a boundary face of 𝐻 , and
hence not in the central face of𝐻 . Then Property (v) gives ℓ (𝐶) > ℓ (𝐻), contradicting
the choice of 𝐻 . Thus all other components joined by v must be v-singular. If none
of these v-singular components is a ring, let 𝑆 be the v-singular component that
minimizes ℓ (𝑉) and let 𝑓 be the face of 𝐻 that contains ℓ (𝑉). Using the above
redrawing technique, we can then redraw all v-singular components embedded in
other faces next to 𝑆 . Hence assume that there exists a v-singular ring and let 𝑅
be v-singular ring that maximizes ℓ (𝑅). By Property (i), 𝑅 is embedded inside the
central face 𝑓 of𝐻 . Moreover all other rings are embedded in the central face of 𝑅, and
thus also inside 𝑓 . Let 𝑆 be a v-singular connected component that is not embedded
inside 𝑓 , which hence cannot be a ring. Then 𝑆 lies in the (unique) boundary face
of 𝑅, and thus not in its central face. By Property (v) 𝑅 has a vertex p incident to its
boundary with ℓ (p) < ℓ (𝑆). This allows us to redraw 𝑆 inside inside 𝑓 . By treating

Chapter 5 Level Planarity Testing: A Unified Approach

68

all v-singular components embedded outside 𝑓 in this way, we eventually arrive at
an embedding where all other components joined by v are embedded inside 𝑓 .

Second, consider the case that𝐻 is not a ring and that v is not incident to the central
face of 𝐻 . If 𝐶 is another component joined by v , then it cannot be embedded inside
the central face of 𝐻 (as v is not incident to it), and Property (v) gives that ℓ (𝐶) < ℓ (𝐻).
By the choice of𝐻 , it follows that𝐶 is v-singular. Moreover, Property (iii) gives that𝐶
is not a ring. Thus all remaining components are v-singular non-rings. Let 𝑆 be the
one that minimizes ℓ (𝑆) and let 𝑓 be the face of 𝐻 that contains 𝑆 . Using the above
redrawing technique, we can redraw all v-singular non-rings embedded outside 𝑓

inside 𝑓 .
Third, consider the case that𝐻 is not a ring but v is incident to the central face of𝐻 .

Observe that v is incident to two boundary faces 𝑓 and 𝑓 ′, one of which, say 𝑓 is also
the central face of 𝐻 . Let 𝐶 be another component joined by v that is not embedded
inside 𝑓 . Property (v) gives ℓ (𝐻) < ℓ (𝐶). By the choice of 𝐻 , this implies that 𝐶
is v-singular. Property (iii) further gives that 𝐶 is not a ring. Finally, Property (iv)
gives that 𝐻 contains a vertex p incident to 𝑓 with ℓ (p) = ℓ (𝐻) < ℓ (𝐶). We can thus
redraw 𝐶 inside 𝑓 .
In all cases, we manage to redraw the graph changing only the order of the

incoming edges of v so that all components joined by v lie in the same face of 𝐻 ,
i.e., 𝐼 \ 𝐼 ′ is consecutive. □

Observe that embeddings of 𝐺★ correspond bijectively to embeddings of 𝐺+, and
therefore Lemma 21 also applies to𝐺★. Consider now a vertex v of𝐺★ that joins 𝑘 ≥ 3
components of which at least one is not v-singular and let 𝐻 be the non-singular
component joined by v that maximizes ℓ (𝐻). Consider the graph obtained by in-
troducing an additional level just below ℓ (v), introducing a vertex v ′ on that level
along with the edge (v, v ′), and finally reconnecting all edges of 𝐻 incident to v to v ′.
Lemma 21 gives that the modified graph is level-planar if and only if𝐺★ is level-planar.
Observe that by construction v ′ joins only two connected components, namely𝐻 and
one v ′-singular component. If 𝐻1, . . . , 𝐻𝑘 are the non-singular components joined
by v ordered such that ℓ (𝐻𝑖) < ℓ (𝐻 𝑗) whenever 𝑖 < 𝑗 , then repeatedly applying this
construction to v , we split v into a path v, v1, . . . , v𝑘 such that the original vertex v
joins only v-singular components, and v𝑖 joins the non-v-singular component 𝐻𝑖

with a v-singular component. Lemma 21 guarantees that the resulting graph 𝐺 ′ is
level-planar if and only if 𝐺★ is level-planar. Moreover, Observe that the resulting
graph still satisfies the property that each level contains exactly one vertex, which
has either in- or outdegree 1. We can thus apply the same construction independently
to all vertices of 𝐺★ that join several components. We call the resulting graph 𝐺×.
Theorem7. Given a graph level graph𝐺 we can compute in linear time a level graph𝐺×

that is level-planar if and only if 𝐺 is level-planar such that 𝐺× has the property that it

PC-Trees Section 5.4

69

is both in star-form and each vertex v that joins more than two connected components
joins only v-singular connected components.

Proof. We have already shown the existence of 𝐺× and the fact that is level-planar if
and only if 𝐺 is. It remains to show that 𝐺× can be constructed in linear time. First,
compute the star form of𝐺 , which takes linear time. For brevity, let𝐺 denote this star
form from now on. Then, process𝐺 level by level from the bottom up. At each level 𝑖
for 1 ≤ 𝑖 ≤ 𝑘 , where 𝑘 is the number of levels of𝐺 , we want to know for each vertex
on level 𝑖 and its incoming edges to which connected component of 𝐺 [𝑖] it belongs.
To this end, we can use a union find data structure. When going from level 𝑖 − 1
to level 𝑖 , consider each vertex v on level 𝑖 and unify the sets belonging to all of its
ancestors in 𝐺 [𝑖]. Of course, all incoming edges of v belong to the same connected
component as v itself. The source of an edge (𝑢, v) is the source of the component
of 𝐺 [ℓ (v)] on the smallest level (which is unique because 𝐺 is in star form). Because
the structure of union and find operations is completely determined by the fixed
structure of 𝐺 , we can use the linear-time algorithm of Gabow and Tarjan [GT85]
to efficiently compute the source for every edge of 𝐺 . In this way it is also easy to
determine for each component whether it is v-singular or non-singular. Next, sort
the edges of𝐺 with respect to the level of their sources. Because |𝐸 |, 𝑘 ∈ 𝑂 (|𝑉 |), this
can be achieved in linear time using counting sort. Sweep through the sorted list
once and append each edge (𝑢, v) that is encountered to a per-vertex list maintained
at v . This produces at v a list of its incoming edges that is sorted with respect to
the level of their sources. At this point, we have all the information we need to
efficiently execute the procedure that splits vertices into paths described above to
compute 𝐺×. □

5.4 PC-Trees

We start by altering our definition of PC-trees from Chapter 2 in requiring that the
root of a PC-tree must be a C-node. Let 𝐺 = (𝑉 , 𝐸) be a 𝑘-level graph. Next, we
annotate PC-trees with vertices of𝐺 as follows. Each P-node ` of𝑇 is associated with
some vertex v of 𝐺 . For each pair of arcs 𝛼 ⊲ 𝛽 around ` call v the apex between 𝛼

and 𝛽 , and call ℓ (v) the space between 𝛼 and 𝛽 . If ` is a C-node, annotate each pair
of child arcs 𝛼 ⊲ 𝛽 around ` with a vertex of 𝐺 or with 𝜍 , called the apex between 𝛼

and 𝛽 , and refer to ℓ (v) as the space between 𝛼 and 𝛽 . Expand the notion of apices
and spaces to pairs of leaves 𝑥 ⊲ 𝑦 of 𝑇 . If the root of 𝑇 is a C-node ` with exactly
one child 𝜈 and 𝑥 and 𝑦 are the rightmost and leftmost leaves of the subtree of 𝑇
rooted at 𝜈, respectively, define the apex (space) between 𝑥 and 𝑦 as the apex (space)
between (`, 𝜈) and (`, 𝜈) around `. Otherwise, the lowest common ancestor ` of 𝑥 ≠ 𝑦

in 𝑇 has child nodes 𝜈 ≠ 𝜈′ so that 𝑥 is the rightmost leaf in the subtree of 𝑇 rooted

Chapter 5 Level Planarity Testing: A Unified Approach

70

at 𝜈, 𝑦 is the leftmost leaf in the subtree of 𝑇 rooted at 𝜈′ and (`, 𝜈) ⊲ (`, 𝜈′) around `.
Define the apex (space) between 𝑥 and 𝑦 as the attachment (space) between (`, 𝜈)
and (`, 𝜈′) around `.

Reference Network. At this point, the only pairs of arcs 𝛼 ⊲ 𝛽 around a node `
between which we have not defined an apex and a space yet, are those where ` is a
C-node and 𝛼 or 𝛽 is its parent edge. For our algorithm it will be important to have
access to this information, so it needs to be kept up to date across manipulations of
the PC-tree performed by our algorithm. To this end, we introduce references that
resolve to the apices we need and maintain them in what we call a reference network,
which is a rooted forest 𝑃𝑇 . Each vertex p of 𝑃𝑇 is called a reference. It may optionally
be annotated with a vertex v of 𝐺 . Moreover, p may have a parent 𝑞 in 𝑃𝑇 , i.e., 𝑃𝑇
contains the directed edge (p, 𝑞). Each edge of 𝑃𝑇 has a timestamp 𝑡 (𝑒) ∈ {1, 2, . . . , 𝑘}.
The reference p can be resolved at time 𝑖 ∈ {1, 2, . . . , 𝑘} as follows. First, walk up
from p in 𝑃𝑇 as far as possible, only using edges whose timestamp is at most 𝑖 . Let 𝑟
denote the reference of 𝑃𝑇 that is reached in this way. We will guarantee that 𝑟 is
annotated with some vertex 𝑢 of 𝐺 . We then say that p resolves to 𝑢 at time 𝑖 and
write 𝐴(𝑃𝑇 , 𝑖, p) = 𝑢.

Now let ` be a C-node of 𝑇 and let 𝛼 ⊲ 𝛽 be arcs around ` such that 𝛼 or 𝛽 is the
parent edge of `. Our construction ensures that there is a reference p of 𝑃𝑇 between 𝛼
and 𝛽 . Let 𝑢 denote the vertex of 𝐺 that p resolves to at time 𝑘 . Call 𝑢 the apex
between 𝛼 and 𝛽 , and call ℓ (𝑢) the space between 𝛼 and 𝛽 .

Later, we will augment a multi-source graph to a single-source graph by inserting
for each source v except for one an edge from an apex 𝑎 to v . We use the reference
network to determine these apices. To do so efficiently, we use a reference p as
a placeholder for 𝑎. Each vertex p of the reference network is annotated with a
set 𝑍 (p) of elements of the form ⟨v, 𝑡⟩ where v is a vertex of 𝐺 and 𝑡 is a level of 𝐺 ,
i.e., 1 ≤ 𝑡 ≤ 𝑘 . For each ⟨v, 𝑡⟩ ∈ 𝑍 (p) define the edge

𝑒 (𝑃𝑇 , ⟨v, 𝑡⟩) =
{︄
(𝐴(𝑃𝑇 , 𝑡, p), v) if 𝐴(𝑃𝑇 , 𝑡, p) ≠ 𝜍

(min𝑉 (𝐺), v) if 𝐴(𝑃𝑇 , 𝑡, p) = 𝜍

Define 𝐸𝑇 = {𝑒 (𝑃𝑇 , ⟨v, 𝑡⟩) | ⟨v, 𝑡⟩ ∈ 𝑍 (p) for all p ∈ 𝑉 (𝑃𝑇)} and observe 𝐸𝑇 ⊂ 𝑉 ×𝑉 .
This is the set of edges that we use to augment the multi-source graph to a single-
source graph.

Equivalence Transformations. There are two equivalence transformations for
PC-trees. Namely, the order of arcs around P-nodes may be arbitrarily permuted and
the order of arcs around C-nodes may be reversed. In the former case nothing further
needs to be done. In the latter case, we need to update the reference network.

Invariant Properties Section 5.5

71

yx

a b

s

u v wx y u vwx y

a b
a b

u v

w

yx

c

d d

c

a b

c

d

c c

ba

c
w

c

u v

d

c

a b

〈r〉

〈s〉〈s〉

〈r〉

s

rr
flip the red
component

flip the red
C-node

Figure 5.2: Flipping the red C-node in the PC-tree shown on top corresponds to flip-
ping the red component in the graph shown below. This affects which augmentation
edges need to be inserted in order to remove the sources 𝑠, 𝑟 of the red and green
component, respectively. The reference network, shown as colored annotations in the
PC-tree, keeps track of the apices from which these augmentation edges originate.

Let ` be a C-node that has a parent _, and let p and𝑞 denote the reference before and
after (_, `) around `. A reference flip of ` exchanges the parent edges and annotated
vertices (including no parent edge and no annotated vertex) of p and 𝑞 in 𝑃𝑇 . Suppose
that 𝑇 arises from 𝑇 ′ by reversing a C-node `. The reference network 𝑃𝑇 is obtained
from 𝑃𝑇 ′ by performing a reference flip on ` and all of its C-node children.

A PC-tree 𝑆 obtained from𝑇 by a sequence of such equivalence transformations is
equivalent to𝑇 , we write 𝑆 ≡ 𝑇 . Such a PC-tree 𝑆 also defines a reference network 𝑃𝑆 .
See Figure 5.2 for an example of a PC-tree and the reference network.

5.5 Invariant Properties

To prove the correctness of our algorithm, we define two properties and show that if
they hold, then they also hold after performing one more basic step of our algorithm.
In order to formulate these properties we need some further definitions. Let (`, 𝜈) be
an arc of 𝑇 where 𝜈 is an inner node of 𝑇 . Define 𝐻𝑇 ((`, 𝜈)) as the spaces incident
to (`, 𝜈) around ` and 𝜈, and define 𝐻𝑇 (𝜈) as the set of spaces between pairs of

Chapter 5 Level Planarity Testing: A Unified Approach

72

leaves 𝑥 ⊲ 𝑦 in the subtree of 𝑇 rooted at 𝜈. For each 𝑆 ≡ 𝑇 , define 𝐺𝑆 = 𝐺 + 𝐸𝑆 .

Property 1. For each 𝑆 ≡ 𝑇 the following statements are true.

1. The graph 𝐺𝑆 has the single source min𝑉 (𝐺).

2. There is at most one pair of child arcs 𝛼 ⊲ 𝛽 in 𝑆 so that the apex between 𝛼 and 𝛽
is 𝜍 .

3. For each arc (`, 𝜈) of 𝑆 where 𝜈 is an inner node, it is max𝐻𝑆 ((`, 𝜈)) ≤ min𝐻𝑆 (𝜈).

4. For each arc (`, 𝜈) of 𝑆 where 𝜈 is a C-node let 𝑜, 𝑟 denote the references before
and after (`, 𝜈) around 𝜈, respectively.
a) If ` is a P-node annotated with a vertex v of 𝐺 , then 𝑜 and 𝑟 are annotated

with v and have no outgoing edge in 𝑃𝑆 .

b) If ` is a C-node let p, 𝑞 denote the references or apices before and after (`, 𝜈)
around `, respectively. If p is a reference, then there exists a directed path
from 𝑟 to p in 𝑃𝑆 . Otherwise, 𝑟 is annotated with p and has no outgoing
edge in 𝑃𝑆 . Symmetrically, if 𝑞 is a reference, then there exists a directed
path from 𝑜 to 𝑞 in 𝑃𝑆 . Otherwise, 𝑜 is annotated with 𝑞 and has no outgoing
edge in 𝑃𝑆 .

Let 𝑆 ≡ 𝑇 . Obtain the graph �̄�𝑆 from 𝐺𝑆 as follows. If 𝜍 occurs as an apex in 𝑆 ,
add the vertex 𝜍 and the edge (𝜍,min𝑉 (𝐺)) to �̄�𝑆 . Consider each pair of leaves 𝑥 ⊲ 𝑦

in 𝑆 . Let 𝑥 = `1, `2, . . . , `𝑛 = 𝑦 denote the nodes on the unique path from 𝑥 to 𝑦 in 𝑆 .
For 1 < 𝑖 < 𝑛 it is {`𝑖−1, `𝑖 }⊲{`𝑖 , `𝑖+1} around `𝑖 . Let 𝑎𝑖 denote the apex between these
two arcs around `𝑖 . Define A𝑆 (𝑥, 𝑦) as the sequence obtained from (𝑎2, 𝑎3, . . . , 𝑎𝑛−1)
by removing consecutive duplicates of the same apex. For each 𝑎 in A𝑆 (𝑥, 𝑦) create
a level-𝑘 vertex �̄� and add it to �̄�𝑆 together with the edge (𝑎, �̄�). Subdivide (𝑎, �̄�) so
that �̄�𝑆 becomes proper, creating an attachment path originating from 𝑎 and ending
in �̄�. Observe that if 𝐺𝑆 is a single-source graph (cf. Property 1 Statement 1), then so
is �̄�𝑆 .

Let𝐺 be a connected 𝑘-level graph and let𝑇 be a PC-tree so that the level-𝑘 vertices
of 𝐺 are the leaves of 𝑇 . Let 𝑆 ≡ 𝑇 , and let E be a level-planar embedding of 𝐺 . We
say that 𝑆 matches E and vice versa if the frontier of 𝑆 equals the frontier of E . Let𝑈
be some subset of the level-𝑘 vertices of 𝐺 , that is, a subset of the leaves of 𝑆 .

Property 2. For each 𝑆 ≡ 𝑇 there exists a level-planar embedding Ḡ𝑆 of �̄�𝑆 so that the
following statements hold true, where G𝑆 denotes the restriction of Ḡ𝑆 to 𝐺𝑆 .

1. The level-planar embedding G𝑆 matches 𝑆 .

2. The vertices in𝑈 are consecutive in G𝑆 .

Grow Section 5.6

73

3. For leaves 𝑥 ⊲ 𝑦 in 𝑆 the endpoints of the attachment paths originating from the
apices in A𝑆 (𝑥, 𝑦) appear between 𝑥 and 𝑦 in Ḡ𝑆 in this order.

4. For vertices 𝑥 ⊲ 𝑦 in G𝑆 the graph 𝐼 (𝑗, 𝑘) can be merged into G𝑆 between 𝑥 and 𝑦

if and only if the space ℎ between 𝑥 and 𝑦 in 𝑆 satisfies ℎ < 𝑗 .

5. For every level-planar embedding E of𝐺 in which the vertices in𝑈 are consecutive
there exists an 𝑅 ≡ 𝑇 such that 𝑅 matches E and for vertices 𝑥 ⊲ 𝑦 in E if 𝐼 (𝑗, 𝑘)
can be merged into E between 𝑥 and 𝑦 , then the space ℎ between 𝑥 and 𝑦 in 𝑅

satisfies ℎ < 𝑗 .

We say that 𝑇 𝑈 -represents 𝐺 if Properties 1 and 2 hold true for it. Note that
if 𝑇 𝑈 -represents 𝐺 , then each 𝑆 ≡ 𝑇 𝑈 -represents 𝐺 . We say that 𝑇 represents 𝐺
if 𝑇 ∅-represents 𝐺 . Our approach is to show that if 𝐺 is level planar, then we our
algorithm computes a non-null tree𝑇 that represents𝐺 . To this end we consider each
basic operation one by one, showing Properties 1 and 2 by induction. Therefore, our
algorithm tests for level planarity. Moreover, using our final PC-tree 𝑇 we find that
augmenting 𝐺 by the edge set 𝐸𝑇 gives a single-source level-planar graph 𝐺𝑇 . We
can then either use the algorithm due to Di Battista and Nardelli to compute a level-
planar embedding of𝐺𝑇 [], or vertically flip𝐺𝑇 and run our algorithm a second-time,
producing a single-source single-sink level-planar graph. For these graphs, level
planarity and planarity coincide, so we can use any planar embedding algorithm to
compute a level planar embedding. In either case, omitting the augmentation edges
gives a level-planar embedding of 𝐺 . The latter idea was proposed by Jünger and
Leipert, although they eliminate sinks rather than sources [].
We start with the introduce operation, which serves as the base case for our

inductive correctness proof. In this case 𝐺 consists of a single vertex v . Define 𝑇
as the PC-tree that consists of a root C-node ` and a single leaf v connected by the
arc (`, v). Define the apex between (`, v) and (`, v) around ` as 𝜍 . The reference
network 𝑃𝑇 consists of the vertex 𝜍 with 𝑍 (𝜍) = ∅ (we do not need any augmentation
edges yet). The following serves as the base case for our inductive correctness proof.

Corollary 4. Let 𝐺 be a 𝑘-level graph that consists of a single level-𝑘 vertex, and let 𝑇
be defined as above. Then 𝑇 represents 𝐺 .

5.6 Grow

Let 𝐺 be a unary 𝑘-level graph that arises from 𝐺 ′ = 𝐺 [𝑘 − 1] by growing 𝑢

with v1, v2, . . . , v𝑛 . Let 𝑇 ′ be a PC-tree that represents 𝐺 ′. Obtain 𝑇 from 𝑇 ′ as
follows. First, replace all non-pertinent leaves with their unique child in𝐺 . Replace 𝑢
with a newly created P-node ` whose children are the leaves v1, v2, . . . , v𝑛 . Annotate `

Chapter 5 Level Planarity Testing: A Unified Approach

74

u
v1 v3v2

v1 v2

u = x′
µ

k

k − 1
y′

v3 = x y

︸︷︷︸
AS′ (x′,y′)

(a) (b)

S′
S

Figure 5.3: Growing a PC-tree (a) and the corresponding embedding (b). Edges of
the graph are black and thick, whereas gray thin edges belong only to Ḡ𝑆 .

with the vertex 𝑢. Refer to the resulting tree as 𝑇 and say that 𝑇 arises from 𝑇 ′ by
growing 𝑢 with v1, . . . , v𝑛 .

Lemma 22. Let𝐺 be a unary 𝑘-level graph that arises from𝐺 ′ = 𝐺 [𝑘 − 1] by growing
a vertex 𝑢 with v1, v2, . . . , v𝑛 . Let 𝑇 ′ be a PC-tree that represents 𝐺 ′ and let 𝑇 be the
PC-tree obtained from 𝑇 ′ by growing 𝑢 with v1, . . . , v𝑛 . Then 𝑇 represents 𝐺 .

Proof. Let 𝑆 ≡ 𝑇 . There exists a unique 𝑆 ′ ≡ 𝑇 ′ so that 𝑆 arises from 𝑆 ′ without
reordering.

We first show that Property 1 holds. For Statement 1, let 𝑆 ≡ 𝑇 . Observe that there
exists a unique 𝑆 ′ ≡ 𝑇 ′ so that 𝑆 arises from 𝑆 ′ without reordering. Then 𝐸𝑆 = 𝐸𝑆′ .
By assumption for 𝑆 ′, the graph 𝐺 ′

𝑆′ has the single source min𝑉 (𝐺). Every level-
𝑘 vertex of 𝐺𝑆 has a parent in 𝐺𝑆 [𝑘 − 1] and it is 𝐺𝑆 [𝑘 − 1] = 𝐺 ′

𝑆′ . So 𝐺𝑆 is a
level graph with the single source min𝑉 (𝐺), i.e., Statement 1 holds. For State-
ment 2, observe that the only apex in 𝑆 that is not an apex in 𝑆 ′ is 𝑢 ≠ 𝜍 , so
Statement 2 follows by assumption for 𝑆 ′. For Statement 3, consider an arc (], ^)
of 𝑆 such that ^ is an inner node. If (], ^) ≠ (_, `), then 𝐻𝑆 ((], ^)) = 𝐻𝑆′ ((], ^))
and 𝐻𝑆 (^) ⊂ (𝐻𝑆′ (^) ∪ {ℓ (𝑢) = 𝑘 − 1}). All spaces in 𝐻𝑆′ (^) correspond to vertices
of𝐺 [𝑘−2]. In particular, the only apex that does not correspond to a vertex of𝐺 [𝑘−2]
is 𝜍 , which cannot occur in the subtree of 𝑆 ′ rooted at ^ by assumption. There-
fore min𝐻𝑆 (^) = min𝐻𝑆′ (^). It is further max𝐻𝑆′ ((], ^)) ≤ min𝐻𝑆′ (^) by assump-
tion for 𝑆 ′, and then max𝐻𝑆 ((], ^)) ≤ min𝐻𝑆 (^) follows. Otherwise (], ^) = (_, `).
It is max𝐻𝑆 ((_, `)) ≤ 𝑘 − 2 and 𝐻𝑆 (`) = {ℓ (𝑢) = 𝑘 − 1}. This shows Statement 3.
Statement 4 holds because each arc (`, 𝜈) of 𝑆 where 𝜈 is a C-node is also an arc of 𝑆 ′,
where the statement holds by assumption.

We now turn to Property 2. Let 𝜋 be a permutation so that v𝜋 (1) , v𝜋 (2) , . . . , v𝜋 (𝑛) is
the linearized order of children of ` in 𝑆 . Obtain Ḡ𝑆 from G ′¯

𝑆′ by extending an edge
from each non-pertinent vertex and from the endpoint of each attachment path, and
by adding �̄�0, v𝜋 (1) , �̄�1, v𝜋 (2) , . . . , v𝜋 (𝑛) , �̄�𝑛 as children of 𝑢 so that they appear in that
linearized order around 𝑢 in Ḡ𝑆 . See Figure 5.3.
Statement 1 holds by construction of Ḡ𝑆 . Statement 2 holds vacuously for 𝑈 = ∅.

Tree Operation Contract Section 5.7

75

For Statement 3, consider leaves 𝑥 ⊲ 𝑦 around 𝑆 . If 𝑥 = v𝜋 (𝑖) and 𝑦 = v𝜋 (𝑖+1) , then �̄�𝑖
appears between v𝜋 (𝑖) and v𝜋 (𝑖+1) in Ḡ𝑆 by construction. Otherwise, let 𝑥 ′ and 𝑦 ′

denote the unique parents of 𝑥 and 𝑦 in 𝐺𝑆 . Then A𝑆 (𝑥, 𝑦) arises from A𝑆′ (𝑥 ′, 𝑦 ′)
by renaming non-pertinent vertices, plus, if 𝑥 ′ = 𝑢, prepending 𝑢 and, if 𝑦 ′ = 𝑢,
appending 𝑢. Then Statement 3 holds by construction of Ḡ𝑆 .

For Statement 4, consider leaves 𝑥 ⊲𝑦 around 𝑆 . If 𝑥 = v𝜋 (𝑖) and 𝑦 = v𝜋 (𝑖+1) , then the
apex between 𝑥 and 𝑦 in 𝑆 is𝑢 and the space between 𝑥 and 𝑦 in 𝑆 is ℓ (𝑢) = 𝑘−1. Then
for 𝑗 ≤ 𝑘 − 1 the graph 𝐼 (𝑗, 𝑘) cannot be merged into Ḡ𝑆 between 𝑥 and 𝑦 , whereas
the graph 𝐼 (𝑘, 𝑘) can be trivially merged into Ḡ𝑆 between 𝑥 and 𝑦 by interspersing a
vertex after 𝑥 . Otherwise, let 𝑥 ′ and 𝑦 ′ denote the unique parents of 𝑥 and 𝑦 in 𝐺𝑆 .
The graph 𝐼 (𝑘, 𝑘) can be merged into Ḡ𝑆 by interspersing a vertex after 𝑥 . For 𝑗 < 𝑘

the graph 𝐼 (𝑗, 𝑘) can be merged into Ḡ𝑆 between 𝑥 and 𝑦 if and only if 𝐼 (𝑗, 𝑘 − 1) can
be merged into G ′¯

𝑆′ between 𝑥 ′ and 𝑦 ′. Because 𝑆 arises from 𝑆 ′ without reordering,
the space between 𝑥 and 𝑦 in 𝑆 is the space between 𝑥 ′ and 𝑦 ′ in 𝑆 ′. Then Statement 4
holds for 𝑆 because it holds for 𝑆 ′.

For Statement 5 consider a level-planar embedding E of𝐺 . Let 𝜌 be the permutation
so that v𝜌 (1) , v𝜌 (2) , . . . , v𝜌 (𝑛) is the linearized order of children of 𝑢 in E . Let E ′ denote
the restriction of E to 𝐺 ′. By assumption there exists an 𝑅′ ≡ 𝑇 ′ such that 𝑅′

matches E ′ and for each pair 𝑥 ′, 𝑦 ′ of consecutive vertices in E ′ if 𝐼 (𝑗, 𝑘 − 1) can
be merged into E ′ between 𝑥 ′ and 𝑦 ′, then the space ℎ′ between 𝑥 ′ and 𝑦 ′ in 𝑅′

satisfiesℎ′ < 𝑗 . Obtain 𝑅 from 𝑅′ by growing𝑢 with v1, . . . , v𝑛 and then permuting the
children of the newly-created P-node ` so that their linearized order is v𝜌 (1) , . . . , v𝜌 (𝑛) .
Consider two vertices 𝑥 ⊲ 𝑦 in E . If 𝑥 = v𝜌 (𝑖) and 𝑦 = v𝜌 (𝑖+1) use the same argument
as in the previous paragraph to argue that if 𝐼 (𝑗, 𝑘) can be merged into E between 𝑥

and 𝑦 , then 𝑗 = 𝑘 and note that the space between 𝑥 and 𝑦 in 𝑅 is ℓ (𝑢) = 𝑘 − 1
by construction of 𝑅. Otherwise, if 𝐼 (𝑗, 𝑘) can be merged into E between 𝑥 and 𝑦 ,
then 𝐼 (𝑗, 𝑘 − 1) can be merged into E ′ between 𝑥 ′ and 𝑦 ′, i.e., the space ℎ′ between 𝑥 ′

and 𝑦 ′ in 𝑅′ satisfies ℎ′ < 𝑗 . By construction of 𝑅, the space ℎ between 𝑥 and 𝑦 in 𝑅

equals the space ℎ′ between 𝑥 ′ and 𝑦 ′ in 𝑅′. So ℎ = ℎ′ < 𝑗 and Statement 5 holds. □

5.7 Tree Operation Contract

Inner nodes with exactly one child do not offer any additional freedom in choosing the
frontier of a PC-tree, so they are candidates for contracting. However, our definition
of PC-trees requires the root to be a C-node. Therefore, we disallow contracting a
C-node when it is the root and its unique child is a P-node. Hence, a node ` of 𝑇 is
contractible if it has exactly one child 𝜈 and

(A) it is the root node and 𝜈 is a C-node, or

Chapter 5 Level Planarity Testing: A Unified Approach

76

(B) it has a parent node.

In case (A) let 𝑎 denote the apex between (`, 𝜈) and (`, 𝜈) around `. Let 𝛼 and 𝛽

denote the arcs that precede and succeed (`, 𝜈) around𝜈, respectively. Let p denote the
reference between 𝛼 and (`, 𝜈) around 𝜈, and let 𝑞 denote the reference between (`, 𝜈)
and 𝛽 around 𝜈. Delete the node ` and the arc (`, 𝜈). Define the apex between 𝛼 and 𝛽
around 𝜈 as 𝑎. If the endpoint of 𝛼 is a C-node, change the reference before 𝛼 to p .
Symmetrically, if the endpoint of 𝛽 is a C-node, change the reference after 𝛽 to 𝑞. In
case (B) let _ denote the parent node of `. There are four (sub)cases; see Figure 5.4.

1. 𝜈 is a P-node. Replace the arc (_, `) with the arc (_, 𝜈) around _, and replace
the arc (`, 𝜈) with the arc (_, 𝜈) around 𝜈. Finally, delete `. The reference
network remains unchanged.

2. 𝜈 is a C-node.
a) ` is a C-node. Let p denote the reference between (`, 𝜈) and (_, `), and

let 𝑞 denote the reference between (_, `) and (`, 𝜈). Contract ` as in
the previous case. Then, replace the references before and after (_, 𝜈)
around 𝜈 with p and 𝑞, respectively. The reference network remains
unchanged.

b) ` is a P-node.
i. _ is a C-node. Contract ` as in the first case. Insert an edge with

timestamp𝑘 from the reference before (_, 𝜈) around𝜈 to the reference
after (_, 𝜈) around _. Symmetrically, insert an edge with timestamp 𝑘
from the reference after (_, 𝜈) around 𝜈 to the reference before (_, 𝜈)
around _.

ii. _ is a P-node. Let p, 𝑞 denote the references before and after (`, 𝜈)
around 𝜈. Contract ` as in the first case. Create new references p ′, 𝑞′

and annotate them with the vertex with which _ is annotated. Add
edges (p, p ′), (𝑞, 𝑞′) with timestamp 𝑘 to the reference network. Fi-
nally, set the references before and after (_, 𝜈) around 𝜈 as p ′ and 𝑞′,
respectively.

Lemma 23. Let 𝐺 be a level graph and let 𝑇 ′ be a PC-tree that 𝑈 -represents 𝐺 . If 𝑇
arises from 𝑇 ′ by contracting a node, then 𝑇 𝑈 -represents 𝐺 .

Proof. Let 𝑆 ≡ 𝑇 . There exists an 𝑆 ′ ≡ 𝑇 ′ so that 𝑆 arises from 𝑆 ′ by contracting ` such
that 𝐸𝑆 = 𝐸𝑆′ . This immediately follows in the cases where the reference network
remains unchanged. In the remaining cases, i.e., when 𝜈 is a C-node and ` is a P-node,

Tree Operation Contract Section 5.8

77

µ

ν

a

αβ

νa

αβ

(A)

µ

ν

λ

ν

λ

(B) 1.

ν

λ λ

(B) 2. a)

ν ν

λ

µ

ν

λ

kk

(B) 2. b) i.

ν

λ

µv

u

vv

ν

λ
u

vv

vu
kk

(B) 2. b) ii.

Figure 5.4: The different cases of the contract operation.

the only changes are that we add edges with timestamp 𝑘 to the reference network,
so all previous references are resolved to the same vertices of 𝐺 .
We first show that Property 1 holds. For Statement 1, let 𝑆 ≡ 𝑇 . There exists

an 𝑆 ′ ≡ 𝑇 ′ so that 𝑆 arises from 𝑆 ′ by contracting ` and 𝐸𝑆 = 𝐸𝑆′ . Then 𝐺𝑆 = 𝐺𝑆′

has the single source min𝑉 (𝐺) by assumption for 𝑆 ′. For Statement 2, observe that
the apices in 𝑆 are a sub(multi)set of the apices in 𝑆 ′. For Statement 3, consider
an arc (], ^) of 𝑆 . If (], ^) also exists in 𝑆 ′, then max𝐻𝑆 ((], ^)) ≤ max𝐻𝑆′ ((], ^)).
and 𝐻𝑆 (^) = 𝐻𝑆′ (^) by construction of 𝑇 . It is max𝐻𝑆′ ((], ^)) ≤ min𝐻𝑆′ (^) by
assumption for 𝑆 ′, so it follows that max𝐻𝑆 ((], ^)) ≤ min𝐻𝑆 (^). Otherwise, if (], ^)
does not exist in 𝑆 ′, it is (], ^) = (_, 𝜈). Then max𝐻𝑆 ((_, 𝜈)) = max𝐻𝑆′ ((`, 𝜈))
and min𝐻𝑆 (𝜈) = min𝐻𝑆′ (𝜈) by construction of 𝑇 . By assumption for 𝑆 ′, it holds
that max𝐻𝑆′ ((`, 𝜈)) ≤ min𝐻𝑆′ (𝜈). So, max𝐻𝑆 ((_, 𝜈)) ≤ min𝐻𝑆 (𝜈). This shows
Statement 3. The contract operation is designed so that Statement 4 holds for (_, 𝜈).
All remaining arcs of 𝑆 are also arcs in 𝑆 ′, where the statement holds by assumption.

We now turn to Property 2. If ` is a C-node, define Ḡ𝑆 = Ḡ𝑆′ . Otherwise, if ` is a
P-node, let v denote the vertex associated with `. Obtain Ḡ𝑆 from Ḡ𝑆′ by removing the
two attachment paths starting at v that originate from `. Statement 1, Statement 2 and
Statement 3 then immediately follow. For Statement 4 and Statement 5 observe that
for any leaves 𝑥 ⊲ 𝑦 of 𝑆 the space between 𝑥 and 𝑦 in 𝑆 equals the space between 𝑥

and 𝑦 in 𝑆 ′. □

Chapter 5 Level Planarity Testing: A Unified Approach

78

p q

uµ

α

u

µ

α

k

p q pq
k

µµ

(a) (c)(b)

Figure 5.5: Two cases of pruning a vertex 𝑢 (a,b). The reference network keeps
track of the correct apices over time. Case (b) roughly corresponds to the situation
shown in (c). The information that the source of the red component is removed
by augmenting with an edge originating from 𝑞 must not be overwritten by the
information that the source of the green component is removed by an edge starting
in p . Timestamped edges prevent such overwrites.

5.8 Prune

Let 𝐺 be a unary 𝑘-level graph that arises from 𝐺 ′ = 𝐺 [𝑘 − 1] by pruning 𝑢. Let 𝑇 ′

be a PC-tree that represents𝐺 ′. Note that𝑇 ′ has at least two leaves. Let ` denote the
parent of 𝑢 in 𝑇 ′. Lemma 23 lets us assume without loss of generality that 𝑇 ′ does
not contain any contractible nodes, i.e., ` has at least two children.
See Figure 5.5. If ` is a P-node, delete 𝑢 and its parent arc. If ` is a C-node, let 𝛼

and 𝛽 denote the arcs before and after (`,𝑢) around `. Let p denote the apex or
reference between 𝛼 and (`,𝑢) and let 𝑞 denote the apex or reference between (`,𝑢)
and 𝛽 . Delete 𝑢 and its parent arc. Consider the case that 𝛼 is the parent arc; see
Figure 5.5 (a). Then p is a reference and we define the reference between 𝛼 and 𝛽

as p . Moreover, if the endpoint of 𝛽 = (`, 𝜈) is a C-node, let 𝑟 denote the reference
after (`, 𝜈) around 𝜈. Then insert the edge (𝑟, 𝑞) with timestamp 𝑘 into the reference
network. If 𝛽 is the parent arc, then 𝑞 is a reference and we define the reference
between 𝛼 and 𝛽 as 𝑞. Moreover, if the endpoint of 𝛼 = (`, 𝜈) is a C-node, let 𝑟 denote
the reference before (`, 𝜈) around 𝜈. Then insert the edge (𝑟, p) with timestamp 𝑘

into the reference network. Finally, consider the remaining case, i.e., 𝛼 and 𝛽 are child
arcs; see Figure 5.5 (b). Then p and 𝑞 are apices. Then define the apex between 𝛼

and 𝛽 as the vertex 𝑎 ∈ {p, 𝑞} with ℓ (𝑎) = min{ℓ (p), ℓ (𝑞)}. Assume 𝑎 = p , the
case 𝑎 = 𝑞 is symmetric. If the endpoint of 𝛽 = (`, 𝜈) is a C-node, let 𝑟 denote the
reference after (`, 𝜈) around 𝜈. Replace 𝑟 with a new reference 𝑟 ′ annotated with p
in the PC-tree, and add the edge (𝑟, 𝑟 ′) with timestamp 𝑘 into the reference network.
Denote the result by 𝑇 .

Lemma 24. Let𝐺 be 𝑘-level graph that arises from𝐺 ′ = 𝐺 [𝑘 −1] by pruning 𝑢. Let𝑇 ′

Prune Section 5.8

79

be an incontractible PC-tree that represents𝐺 ′ and let𝑇 be the PC-tree obtained from𝑇 ′

by pruning 𝑢. Then 𝑇 represents 𝐺 .

Proof. Let 𝑆 ≡ 𝑇 . Then there exists an 𝑆 ′ ≡ 𝑇 ′ so that 𝑆 arises from 𝑆 ′ by pruning 𝑢
without reordering. Note that 𝑃𝑆 ≠ 𝑃𝑆′ , but because all edges present in 𝑃𝑆 but not
present in 𝑃𝑆′ have timestamp 𝑘 and hence it is 𝐸𝑆 = 𝐸𝑆′ .
We first show that Property 1 holds. For Statement 1 note that because 𝐸𝑆 = 𝐸𝑆′

it follows that 𝐺𝑆 [𝑘 − 1] = 𝐺 ′
𝑆′ . Further, every level-𝑘 vertex of 𝐺𝑆 has a parent

in 𝐺𝑆 [𝑘 − 1] = 𝐺 ′
𝑆′ , so 𝐺𝑆 is a level graph with the single source min𝑉 (𝐺). For

Statement 2 observe that the apices in 𝑆 are a sub(multi)set of the apices in 𝑆 ′.
For Statement 3 consider an arc (], ^) of 𝑆 . Then (], ^) is an arc in 𝑆 ′ as well. By
assumption it is max𝐻𝑆′ ((], ^)) ≤ min𝐻𝑆′ (^). If (], ^) is not adjacent to (`,𝑢) in 𝑆 ′,
then 𝐻𝑆 ((], ^)) = 𝐻𝑆′ ((], ^)). Otherwise it is max𝐻𝑆 ((], ^)) ≤ max𝐻𝑆′ ((], ^)) by
construction of 𝑇 . In particular, if ` has a parent _ and (`,𝑢) is either the leftmost or
rightmost child of ` in 𝑆 , then the inequality holds by assumption for (_, `). Otherwise,
the inequality holds explicitely by choice of 𝑟 . Moreover, it is 𝐻𝑆 (^) ⊆ 𝐻𝑆′ (^),
so min𝐻𝑆 (^) ≥ 𝐻𝑆′ (^). Together, this gives max𝐻𝑆 ((], ^)) ≤ min𝐻𝑆 (^). This
shows Statement 3. The prune operation is specifically designed so that Statement 4
holds for the arcs 𝛼 and 𝛽 that were incident to (`,𝑢) in 𝑆 ′. For all remaining arcs
the statement holds by assumption for 𝑆 ′.

We now turn to Property 2. Observe that at least one of p, 𝑞 is an apex and exactly
one apex 𝑎 is deleted from the PC-tree during the construction of 𝑇 . Obtain Ḡ𝑆

from G ′¯
𝑆′ by extending an edge from each non-pertinent vertex, deleting the attach-

ment path from 𝑎 to �̄�, and extending an edge from each remaining attachment vertex.
Statement 1 and Statement 2 hold trivially. Statement 3 holds by construction of 𝑇 .

For Statement 4 consider two vertices 𝑥 ⊲ 𝑦 in G𝑆 and let 𝑥 ′, 𝑦 ′ denote their unique
parents in 𝐺 . If 𝑥 ′ ⊲ 𝑦 ′ in G ′

𝑆′ , then 𝐼 (𝑗, 𝑘) can be merged into G𝑆 between 𝑥 and 𝑦

if and only if 𝐼 (𝑗, 𝑘 − 1) can be merged into G ′
𝑆′ between 𝑥 ′ and 𝑦 ′, i.e., if and only

the space ℎ′ between 𝑥 ′ and 𝑦 ′ in 𝑆 ′ satisfies ℎ′ < 𝑗 . By construction of 𝑆 the space
between 𝑥 and 𝑦 in 𝑆 is ℎ′, so Statement 4 holds. Otherwise 𝑥 ′ and 𝑦 ′ precede and
succeed 𝑢 in G ′

𝑆′ , respectively. Then 𝐼 (𝑗, 𝑘) can be merged into G𝑆 between 𝑥 and 𝑦

if and only if 𝐼 (𝑗, 𝑘 − 1) can be merged into G ′
𝑆′ between 𝑥 ′ and 𝑢, or between 𝑢

and 𝑦 ′. By assumption, this is possible if and only if min(ℎ′
𝑥 , ℎ

′
𝑦) < 𝑗 , where ℎ′

𝑥 is
the space between 𝑥 ′ and 𝑢 in 𝑆 ′ and ℎ′

𝑦 is the space between 𝑢 and 𝑦 ′ in 𝑆 ′. By
construction of 𝑆 , and because of Property 1 Statement 3, the space ℎ between 𝑥

and 𝑦 in 𝑆 is min(ℎ′
𝑥 , ℎ

′
𝑦). So, Statement 4 holds.

For Statement 5 consider a level-planar embedding E of 𝐺 . Let E ′ denote the
restriction of E to 𝐺 ′. By assumption there exists a PC-tree 𝑅′ ≡ 𝑇 ′ such that 𝑅′

matches E ′ and for each pair of vertices 𝑥 ′ ⊲ 𝑦 ′ in the frontier of E ′, if 𝐼 (𝑗, 𝑘 − 1)
can be merged into E ′ between 𝑥 ′ and 𝑦 ′, then the space ℎ′ between 𝑥 ′ and 𝑦 ′ in 𝑅′

Chapter 5 Level Planarity Testing: A Unified Approach

80

u v u
u

v

p q r

s t

u
p q r v s t

Figure 5.6: Handling of apices and references during an update.

satisfies ℎ′ < 𝑗 . Obtain 𝑅 from 𝑅′ by pruning 𝑢. Clearly 𝑅 matches E . Consider a pair
of vertices 𝑥 ⊲𝑦 in E and let 𝑥 ′, 𝑦 ′ denote their unique parents in𝐺 . First, assume 𝑥 ′⊲𝑦 ′

in E ′. If 𝐼 (𝑗, 𝑘) can be merged into E , then 𝐼 (𝑗, 𝑘 − 1) can also be merged into E ′

between 𝑥 ′ and 𝑦 ′. By assumption, the spaceℎ′ between 𝑥 ′ and 𝑦 ′ in𝑅′ satisfiesℎ′ < 𝑗 .
By construction, the space between 𝑥 and 𝑦 in 𝑅 is ℎ′. Otherwise, 𝑥 ′ ⊲𝑢 ⊲𝑦 ′ around E ′.
If 𝐼 (𝑗, 𝑘) can be merged into E between 𝑥 and 𝑦 , then 𝐼 (𝑗, 𝑘 − 1) can be merged
into E ′ between 𝑥 ′ and 𝑢, or between 𝑢 and 𝑦 ′. By assumption, then min(ℎ′

𝑥 , ℎ
′
𝑦) < 𝑗 ,

where ℎ′
𝑥 is the space between 𝑥 ′ and 𝑢 in 𝑅′ and ℎ′

𝑦 is the space between 𝑢 and 𝑦 ′

in 𝑅′. By construction of 𝑅, the space ℎ between 𝑥 and 𝑦 in 𝑅 is min(ℎ′
𝑥 , ℎ

′
𝑦), so

Statement 5 holds. □

5.9 Tree Operation Update

Let 𝑇 ′ be a PC-tree and let 𝑇 be the PC-tree obtained from 𝑇 ′ by updating with a
subset𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑛} of its leaves. Recall that the update operation for PC-trees
creates a new C-node 𝜒 . Annotate 𝜒 with apices as follows; see Figure 5.6.

Let 𝛼 ⊲ 𝛽 denote child arcs around 𝜒 . Further, let 𝑢 (let v) denote the rightmost leaf
(the leftmost leaf) in the subtree of 𝑇 ′ rooted at the endpoint of 𝛼 (at the endpoint
of 𝛽). Define the apex between 𝛼 and 𝛽 in 𝑇 as the apex between 𝑢 and v in 𝑇 ′. As a
side note, observe that this apex is incident to the terminal path, so we will be able to
find these apices in running time proportional to the length of the terminal path. If
the root of 𝑇 ′ does not lie on the terminal path, let (`, 𝜈) denote the unique arc of 𝑇 ′

whose endpoint lies on the terminal path. If 𝜈 is a C-node, move the references before
and after (`, 𝜈) around 𝜈 in 𝑇 ′ before and after (`, 𝜒) around 𝜒 in 𝑇 . If 𝜈 is a P-node,
create new references before and after (`, 𝜒) around 𝜒 in 𝑇 and annotate them with
the vertex with which 𝜈 is annotated. Now consider a child edge (𝜒, 𝜈) of 𝜒 in𝑇 such
that 𝜈 is a C-node. Note that 𝜈 is a child of a C-node _ on the terminal path in 𝑇 ′.
Any apex incident to (_, 𝜈) in 𝑇 ′ is also incident to (𝜒, 𝜈) in 𝑇 by construction. Now
suppose that there is a reference 𝑟 before (after) (_, 𝜈) around _ in 𝑇 ′, and there is
an apex 𝑎 before (after) (𝜒, 𝜈) around 𝜒 in 𝑇 . Let 𝑟 denote the root of the tree of 𝑃𝑇 ′

to which 𝑟 belongs. Note that 𝑟 is annotated with 𝑎. In 𝑇 , set the reference after

Tree Operation Update Section 5.9

81

(before) (𝜒, 𝜈) around 𝜈 to 𝑟 . Finally, if the highest node on the terminal path in 𝑇 ′

is a P-node, we may need to add incoming edges to the newly created references
around the parent arc of 𝜒 in 𝑇 . In particular, suppose that the leftmost child 𝛿 of 𝜒
in 𝑇 is a C-node. Let 𝑟 denote the reference after (𝜒, 𝛿) around 𝛿 . Add an edge with
timestamp 𝑘 to the reference network. Proceed symmetrically for the rightmost child
of 𝜒 .

Lemma 25. Let𝐺 be a level graph and let𝑇 ′ be a PC-tree that represents𝐺 . If𝑇 arises
from 𝑇 ′ by𝑈 -updating, then 𝑇 𝑈 -represents 𝐺 .

Proof. We first show that Property 1 holds. Let 𝑆 ≡ 𝑇 . There exists a unique 𝑆 ′ ≡ 𝑇 ′

so that 𝑆 arises from 𝑆 ′ by 𝑈 -updating without reordering. In particular, 𝑆 ′ and 𝑆

have the same frontier. Further, if the highest node on the terminal path is a C-node,
then 𝑃𝑆 = 𝑃𝑆′ and hence 𝐸𝑆 = 𝐸𝑆′ . Otherwise, if the highest node on the terminal
path is a P-node, then 𝑃𝑆 arises from 𝑃𝑆′ by introducing two new references p, 𝑞
with 𝑍 (p) = 𝑍 (𝑞) = ∅ and all new edges have timestamp 𝑘 . Then it is 𝐸𝑆 = 𝐸𝑆′ .

Statement 1 holds because 𝐸𝑆 = 𝐸𝑆′ . For Statement 2 observe that each P-node
of 𝑆 is annotated with a vertex v of𝐺 , i.e., v ≠ 𝜍 . Each C-node ` ≠ 𝜒 of 𝑆 is a C-node
in 𝑆 ′ that has the exact same apices and does not lie on the terminal path. Each apex
around 𝜒 in 𝑆 is a distinct apex around a node on the terminal path in 𝑆 ′. This shows
Statement 2.
For Statement 3, first consider the parent arc (_, 𝜒) of 𝜒 . Let (`, 𝜈) denote the

unique arc of 𝑆 ′ so that ` does not lie on the terminal path and 𝜈 does lie on the
terminal path. It is 𝐻𝑆 ((_, 𝜒)) = 𝐻𝑆′ ((`, 𝜈)) and 𝐻𝑆 (𝜒) ⊆ 𝐻𝑆′ (𝜈) by construction
of 𝑇 . Then max𝐻𝑆 ((_, 𝜒)) ≤ min𝐻𝑆 (𝜒) follows from max𝐻𝑆′ ((`, 𝜈)) ≤ min𝐻𝑆′ (𝜈),
which holds by assumption for 𝑆 ′. Now consider a child arc (𝜒, 𝜈) of 𝜒 . If 𝜈 is a
split P-node, let 𝜈′ denote the original P-node in 𝑆 ′, otherwise let 𝜈′ = 𝜈. Let ` ′
denote the parent node of 𝜈′ in 𝑆 ′. Note that ` ′ lies on the terminal path. By
definition of the apices around 𝜒 and using Statement 3 on 𝑆 ′ we obtain that it
is max𝐻𝑆 ((𝜒, 𝜈)) ≤ max𝐻𝑆′ ((` ′, 𝜈′)) and 𝐻𝑆 (𝜈) ⊆ 𝐻𝑆′ (𝜈′). Then Statement 3 holds
for (𝜒, 𝜈). Finally, consider an arc (`, 𝜈) that is not incident to 𝜒 . If ` is a split
P-node, let ` ′ denote the original P-node in 𝑆 ′, otherwise let ` ′ = `. Likewise,
if 𝜈 is a split P-node, let 𝜈′ denote the original P-node in 𝑆 ′, otherwise let 𝜈′ = 𝜈.
Then (` ′, 𝜈′) is an arc in 𝑆 ′ and it is 𝐻𝑆 ((`, 𝜈)) = 𝐻𝑆′ ((` ′, 𝜈′)) and 𝐻𝑆 (𝜈) ⊆ 𝐻𝑆′ (𝜈′).
This shows Statement 3. Our handling of the references in the construction of 𝑇 is
explicitly designed to ensure that Statement 4 holds for all arcs incident to 𝜒 . For an
arc (`, 𝜈) where ` is a split P-node and 𝜈 is a C-node the statement holds because ` is
annotated with the same vertex as its original P-node in 𝑇 . All remaining arcs in 𝑆

exist unchanged in 𝑆 ′, where the statement holds by assumption.
We now turn to Property 2. So, define Ḡ𝑆 as Ḡ𝑆′ . Let 𝑥 ⊲ 𝑦 be two leaves of 𝑆 and 𝑆 ′.

Then 𝐴𝑆 (𝑥, 𝑦) = 𝐴𝑆′ (𝑥, 𝑦). Together with 𝐸𝑆 = 𝐸𝑆′ it is 𝐺𝑆 = 𝐺𝑆′ , so Statement 1

Chapter 5 Level Planarity Testing: A Unified Approach

82

and Statement 2 hold trivially. Statements 3 and 4 hold by construction of 𝑇 . For
Statement 5 consider a level-planar embedding E of 𝐺 in which the vertices in 𝑈

are consecutive. There exists an 𝑅′ ≡ 𝑇 ′ such that 𝑅′ that matches E and for each
pair of vertices 𝑥 ⊲ 𝑦 in E if 𝐼 (𝑗, 𝑘) can be merged into E between 𝑥 and 𝑦 , then the
space ℎ′ between 𝑥 and 𝑦 in 𝑅′ satisfies ℎ′ < 𝑗 . Obtain 𝑅 from 𝑅′ by 𝑈 -updating
(without reordering, because the vertices in 𝑈 are consecutive in E and 𝑅′). As with
the previous statement, for each 𝑥 ⊲ 𝑦 around 𝑅 the space ℎ between 𝑥 and 𝑦 in 𝑅

equals the space ℎ′ between 𝑥 and 𝑦 in 𝑅′. This shows Statement 5. □

5.10 Unary Bundle

Let 𝐺 be a 𝑘-level graph that arises from 𝐺 ′ = 𝐺 [𝑘 − 1], which is a connected graph,
by bundling𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑛} into v . Let𝑇 ′ be a PC-tree that𝑈 -represents𝐺 ′. We
obtain 𝑇 from 𝑇 ′ by replacing 𝑢1, . . . , 𝑢𝑛 with v as follows.

There are three cases. First, consider the case that𝑢1, . . . , 𝑢𝑛 comprise all the leaves
of 𝑇 ′. We seek to preserve an apex on the smallest level. Let 𝑃 denote the set of
apices stored in𝑇 ′ and let p = min 𝑃 . Define𝑇 as the PC-tree that consists of the root
C-node ` and a single leaf v connected by an arc (`, v). Define the apex between (`, v)
and (`, v) as p . Define 𝑃𝑇 = 𝑃𝑇 ′ .

Lemma 26. Let 𝐺 be a 𝑘-level graph that arises from 𝐺 ′ = 𝐺 [𝑘 − 1] by unary
bundling 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑛} into v . Let 𝑇 ′ be a PC-tree that 𝑈 -represents 𝐺 ′ such
that 𝑈 denotes the set of leaves of 𝑇 ′, and let 𝑇 be the PC-tree obtained from 𝑇 ′ by
replacing 𝑢1, . . . , 𝑢𝑛 with v . Then 𝑇 represents 𝐺 .

Proof. We first show that Property 1 holds. Let 𝑆 ≡ 𝑇 , i.e., 𝑆 = 𝑇 . Because 𝑃𝑇 = 𝑃𝑇 ′ it
is 𝐸𝑆 = 𝐸𝑇 ′ . For Statement 1, observe that𝐺 ′

𝑇 ′ has a single source min𝑉 (𝐺 ′) and v has
parents 𝑢1, . . . , 𝑢𝑛 in 𝐺 ′. Therefore, 𝐺𝑆 has the single source min𝑉 (𝐺 ′) = min𝑉 (𝐺).
Because 𝑆 contains a single arc Statements 2, 3 and 4 trivially hold true.
We now turn to Property 2. Let 𝑆 ≡ 𝑇 , i.e., 𝑆 = 𝑇 . Let 𝜋 be a permutation so

that 𝑢𝜋 (1) , 𝑢𝜋 (2) , . . . , 𝑢𝜋 (𝑛) is the frontier around 𝑇 ′ and the apex p between 𝑢𝜋 (𝑛)
and 𝑢𝜋 (1) in𝑇 ′ equals the apex between v and v in 𝑆 . Obtain Ḡ𝑆 from G ′¯

𝑇 ′ as follows.
Remove all attachment paths except for the one ending at p̄ . Extend an edge 𝑒𝜋 (1)
from 𝑢𝜋 (1) to v . Then, for each 𝑖 with 1 < 𝑖 ≤ 𝑛 intersperse the edge 𝑒𝜋 (𝑖) = (𝑢𝜋 (𝑖) , v)
after 𝑒𝜋 (𝑖−1) . The linearized order of parents of v in Ḡ𝑆 then is 𝑢𝜋 (1) , 𝑢𝜋 (2) , . . . , 𝑢𝜋 (𝑛) .
Finally, extend an edge from the attachment vertex p̄ . Because𝐺 has a single vertex on
level 𝑘 , namely v , Statement 1 and Statement 2 trivially hold true. Statement 3 holds
by construction of Ḡ𝑆 . For Statement 4, observe that 𝐼 (𝑗, 𝑘) can be merged into G𝑆 be-
tween v and v if and only if 𝐼 (𝑗, 𝑘−1) can be merged into G ′

𝑇 ′ between𝑢𝜋 (𝑛) and𝑢𝜋 (1) .
Using Statement 5 on 𝑇 ′ this is the case when ℓ (p) < 𝑗 . By construction, ℓ (p) is

Unary Bundle Section 5.10

83

also the space between v and v in 𝑆 . So, Statement 4 holds. For Statement 5, con-
sider a level-planar embedding E of 𝐺 . Because 𝐺 has a single vertex on level 𝑘 ,
namely v , 𝑇 matches E . Let 𝜌 be a permutation such that the linearized order of
parent vertices of v in E is 𝑢𝜌 (1) , 𝑢𝜌 (2) , . . . , 𝑢𝜌 (𝑛) . If 𝐼 (𝑗, 𝑘) can be merged between v
and v in E , then 𝐼 (𝑗, 𝑘−1) can be merged between𝑢𝜌 (𝑛) and𝑢𝜌 (1) in the restriction E ′

of E to 𝐺 ′. Let 𝑅′ ≡ 𝑇 ′ denote a PC-tree as per Statement 5. This gives ℎ < 𝑗 for
the space ℎ between 𝑢𝜌 (𝑛) and 𝑢𝜌 (1) in 𝑅′. Our choice of p in the construction of 𝑆
guarantees ℓ (p) ≤ ℎ, so ℓ (p) < 𝑗 . This shows Statement 5. □

In the remaining two cases, there exists a white leaf in 𝑇 ′.
Because 𝑇 ′ 𝑈 -represents 𝐺 ′ it was obtained by an update operation. Let 𝜒 denote

the C-node that is newly created during this update. Assumewithout loss of generality
that no contractible node except for, possibly, 𝜒 , applying Lemma 23 as needed. Then
the counter-clockwise order of arcs around 𝜒 is 𝛽, . . . , 𝛾, 𝛿, . . . , 𝛼 , where the endpoints
of 𝛽, . . . , 𝛾 are black and the endpoints of 𝛿, . . . , 𝛼 are white. There are two cases,
namely that

(a) 𝜒 is the root or the parent of 𝜒 is white, or

(b) the parent of 𝜒 is black.

See Figure 5.7 (a) and (b) for case (a) and (b), respectively. These two cases differ sig-
nificantly. Indeed, the treatment of the second case requires quite a bit of extra work.
This is the case that we believe was not handled by Bachmaier et al. To understand its
importance, see Figure 5.8. In (a), we replace the left-maximal tree, which corresponds
to the embedding shown below. In particular, any component 𝐻 with ℓ (𝑎) < ℓ (𝐻)
can then be merged between ṽ and �̃�. If we simply replaced in an arbitrary tree such
as the one shown in (b), we would assume that only components 𝐻 with ℓ (𝑏) < ℓ (𝐻)
can be merged between ṽ and �̃�, which is incorrect because ℓ (𝑎) < ℓ (𝑏).

Consider case (a). Then 𝛽, . . . , 𝛾 are child arcs of 𝜒 in𝑇 ′. Let p denote the reference
or apex between 𝛼 and 𝛽 , and let 𝑞 denote the reference or apex between 𝛾 and 𝛿 .
Obtain 𝑇 from 𝑇 ′ as follows. Delete all arcs 𝛽, . . . , 𝛾 and the subtrees rooted at their
endpoints. Create a new leaf v and insert the arc (𝜒, v) between 𝛼 and 𝛿 around 𝜒 .
Define the reference or apex between 𝛼 and (𝜒, v) as p , and define the reference or
apex between (𝜒, v) and 𝛽 as 𝑞. Define 𝑃𝑇 = 𝑃𝑇 ′ .

Lemma 27. Let 𝐺 be a 𝑘-level graph that arises from 𝐺 ′ = 𝐺 [𝑘 − 1] by unary
bundling 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑛} into v . Let 𝑇 ′ be a PC-tree that 𝑈 -represents 𝐺 ′ such
that 𝜒 is the root of𝑇 ′ or the parent of 𝜒 is white. Let𝑇 be the PC-tree obtained from𝑇 ′

by replacing 𝑢1, . . . , 𝑢𝑛 with v . Then 𝑇 represents 𝐺 .

Chapter 5 Level Planarity Testing: A Unified Approach

84

Y

bb′a′a

p q

Y

ba p q

v

(a)

q

p1 p2

q

p2 p1

p2

R′ Ml(R
′)

S

r

(b)

α β α β

α β

q

vY Y

Y

Figure 5.7: Two cases of the replace operation.

Proof. Let 𝑆 ≡ 𝑇 . Let 𝑆 ′ ≡ 𝑇 ′ be a PC-tree such that 𝑆 is obtained from 𝑆 ′ by re-
placing 𝑢1, . . . , 𝑢𝑛 with v . In general this choice of 𝑆 ′ is not unique. To handle these
degrees of freedom we define a canonical tree𝑀 (𝑆 ′) as follows. Let 𝜏 be the permuta-
tion so that the linearized order of black leaves around𝑇 ′ is 𝑢𝜏 (1) , 𝑢𝜏 (2) , . . . , 𝑢𝜏 (𝑛) (this
linearized order exists because 𝑇 ′ has at least one white leaf). If the orientation of 𝜒
is the same in 𝑆 ′ and𝑇 ′, obtain𝑀 (𝑆 ′) from 𝑆 ′ by performing equivalence transforma-
tions only on black nodes so that the linearized order of black leaves around𝑀 (𝑆 ′)
is 𝑢𝜏 (1) , 𝑢𝜏 (2) , . . . , 𝑢𝜏 (𝑛) . Otherwise, if the orientation of 𝜒 is opposite in 𝑆 ′ and 𝑇 ′,
obtain𝑀 (𝑆 ′) from 𝑆 ′ by performing equivalence transformations only on black nodes
so that the linearized order of black leaves around 𝑀 (𝑆 ′) is 𝑢𝜏 (𝑛) , 𝑢𝜏 (𝑛−1) , . . . , 𝑢𝜏 (1) .
Observe that𝑀 (𝑆 ′) ≡ 𝑇 ′ and that 𝑆 is obtained from𝑀 (𝑆 ′) by replacing 𝑢1, . . . , 𝑢𝑛
with v . From now assume 𝑆 ′ = 𝑀 (𝑆 ′) without loss of generality. Then 𝐸𝑆 = 𝐸𝑆′ .

We first show that Property 1 holds. For Statement 1 observe that𝐺 ′
𝑆′ has the single

source min𝑉 (𝐺 ′) and, because 𝐸𝑆 = 𝐸𝑆′ , that 𝐺𝑆 arises from 𝐺 ′
𝑆′ by attaching v as a

child to 𝑢1, . . . , 𝑢𝑛 . Therefore, 𝐺𝑆 has the single source min𝑉 (𝐺 ′) = min𝑉 (𝐺) and
Statement 1 holds. For Statement 2, observe that the apices in 𝑆 are a sub(multi)set
of the apices in 𝑆 ′. For Statement 3, note that each inner node 𝜈 of 𝑆 ′ is also an inner
node of 𝑆 and it is 𝐻𝑆 (𝜈) ⊆ 𝐻𝑆′ (𝜈). Each arc (`, 𝜈) of 𝑆 ′ where 𝜈 is an inner node is
also an arc of 𝑆 ′ and it is 𝐻𝑆 ((`, 𝜈)) = 𝐻𝑆′ ((`, 𝜈)) by construction of 𝑇 . This shows
Statement 3. For Statement 4, observe that each arc (`, 𝜈) of 𝑆 where 𝜈 is a C-node

Unary Bundle Section 5.10

85

yx

a b

a b
a b

u v

w

yx

c

d d

c

a b

c

d

e e

w

c

u v

d

s

r

d

a

ũ ṽ

d

c

ũ ṽ

ũ ṽ ũ ṽ

e e

u v w xy w u v xy

(a) (b)

Figure 5.8: The importance of bundling correctly in the radial setting. In (a), we
correctly replace, i.e., in the left-maximal tree, which corresponds to the embedding
shown below. In particular, any component 𝐻 with ℓ (𝑎) < ℓ (𝐻) can then be merged
between ṽ and �̃�. If we simply replaced in an arbitrary tree such as the one shown
in (b), we would assume that only components 𝐻 with ℓ (𝑏) < ℓ (𝐻) can be merged
between ṽ and �̃�, which is incorrect because ℓ (𝑎) < ℓ (𝑏).

is also an arc in 𝑆 ′. Moreover, the references around (`, 𝜈) are the same in 𝑆 and 𝑆 ′.
Hence, Statement 4 holds for 𝑆 by assumption for 𝑆 ′.

We now turn to Property 2. Obtain Ḡ𝑆 from G ′¯
𝑆′ as follows. Let 𝜋 be a permutation

so that the black leaves 𝑢1, . . . , 𝑢𝑛 appear in the order 𝑢𝜋 (1) , 𝑢𝜋 (2) , . . . , 𝑢𝜋 (𝑛) around
the frontier of 𝑆 ′. For each 1 ≤ 𝑖 < 𝑛 remove all attachment paths ending between
the vertices 𝑢𝜋 (𝑖) and 𝑢𝜋 (𝑖+1) . Moreover, remove all attachment paths before 𝑢𝜋 (1)
and after the attachment path from p . Symmetrically, remove all attachment paths
after 𝑢𝜋 (𝑛) and before the attachment path from 𝑞. Extend an edge 𝑒𝜋 (1) from 𝑢𝜋 (1)
to v . Then, for each 𝑖 with 1 < 𝑖 ≤ 𝑛 intersperse the edge (𝑢𝜋 (𝑖) , v) after 𝑒𝜋 (𝑖−1) .
The linearized order of parents of v in Ḡ𝑆 then is 𝑢𝜋 (1) , 𝑢𝜋 (2) , . . . , 𝑢𝜋 (𝑛) . Extend an
edge from each remaining attachment path and from each non-pertinent vertex and
restrict this embedding to �̄�𝑆 .

For Statement 1 observe that 𝑢1, . . . , 𝑢𝑛 are consecutive around the frontiers of G ′
𝑆′

and 𝑆 ′. The frontier of G𝑆 is obtained from the frontier of G ′
𝑆′ by replacing the consecu-

tive subsequence𝑢𝜋 (1) , 𝑢𝜋 (2) , . . . , 𝑢𝜋 (𝑛) with v and renaming all non-pertinent vertices.
The frontier of 𝑆 is obtained from the frontier of 𝑆 ′ in the exact same way. There-

Chapter 5 Level Planarity Testing: A Unified Approach

86

fore,G𝑆 matches 𝑆 and Statement 1 holds. Statement 2 holds vacuously for𝑈 = ∅. Con-
sider Statement 3. Let 𝑤 ⊲v ⊲z around 𝑆 . Consider leaves 𝑥 ⊲𝑦 in 𝑆 . If 𝑥 = 𝑤 and 𝑦 = v
let 𝑥 ′ denote the unique parent of 𝑥 in𝐺 and let 𝑦 ′ = 𝑢𝜋 (1) . Then𝐴𝑆 (𝑥, 𝑦) is obtained
from 𝐴𝑆′ (𝑥 ′, 𝑦 ′) by removing the suffix after p . If 𝑥 = v and 𝑦 = z let 𝑥 ′ = 𝑢𝜋 (𝑛) and
let 𝑦 ′ denote the unique parent of 𝑦 in𝐺 . Then 𝐴𝑆 (𝑥, 𝑦) is obtained from 𝐴𝑆′ (𝑥 ′, 𝑦 ′)
by removing the prefix before 𝑞. Otherwise it is 𝑥, 𝑦 ∉ {𝑤, v, z }. Then let 𝑥 ′, 𝑦 ′

denote the unique parents of 𝑥, 𝑦 in 𝐺 , respectively. Then 𝐴𝑆 (𝑥, 𝑦) = 𝐴𝑆′ (𝑥 ′, 𝑦 ′). In
all three cases Statement 3 follows by construction of 𝑇 and by assumption for 𝑆 ′.

Consider Statement 4. Let 𝑤 ⊲ v ⊲ z around 𝑆 . Consider leaves 𝑥 ⊲ 𝑦 in 𝑆 . If 𝑥 = 𝑤

and 𝑦 = v let 𝑥 ′ denote the unique parent of 𝑥 in 𝐺 . By construction of Ḡ𝑆 the
graph 𝐼 (𝑗, 𝑘) can be merged into G𝑆 between 𝑥 and 𝑦 if and only if 𝐼 (𝑗, 𝑘 − 1) can be
merged into G ′

𝑆′ between 𝑥 ′ and 𝑢𝜋 (1) . Using Statement 4 on 𝑆 ′, 𝐼 (𝑗, 𝑘 − 1) can be
merged into G ′

𝑆′ between 𝑥
′ and 𝑢𝜋 (1) if and only if the space ℎ′ between 𝑥 ′ and 𝑢𝜋 (1)

in 𝑆 ′ satisfies ℎ′ < 𝑗 . By construction of 𝑆 , the space between 𝑥 and 𝑦 is ℎ′ and
Statement 4 holds. If 𝑥 = v and 𝑦 = z let 𝑦 ′ denote the unique parent of 𝑦 in 𝐺 . By
construction of Ḡ𝑆 the graph 𝐼 (𝑗, 𝑘) can be merged into G𝑆 between 𝑥 and 𝑦 if and
only if 𝐼 (𝑗, 𝑘 − 1) can be merged into G ′

𝑆′ between 𝑢𝜋 (𝑛) and 𝑦 ′. Using Statement 4
on 𝑆 ′, 𝐼 (𝑗, 𝑘−1) can be merged into G ′

𝑆′ between𝑢𝜋 (𝑛) and 𝑦
′ if and only if the spaceℎ′

between 𝑢𝜋 (𝑛) and 𝑦 ′ in 𝑆 ′ satisfies ℎ′ < 𝑗 . By construction of 𝑆 , the space between 𝑥
and 𝑦 is ℎ′ and Statement 4 holds. Otherwise it is 𝑥, 𝑦 ∉ {𝑤, v, z }. Let 𝑥 ′, 𝑦 ′ denote
the unique parents of 𝑥, 𝑦 in𝐺 . By construction of Ḡ𝑆 the graph 𝐼 (𝑗, 𝑘) can be merged
into G𝑆 between 𝑥 and 𝑦 if and only if 𝐼 (𝑗, 𝑘 − 1) can be merged into G ′

𝑆′ between 𝑥 ′

and 𝑦 ′. Using Statement 4 on 𝑆 ′, 𝐼 (𝑗, 𝑘 − 1) can be merged into G ′
𝑆′ between 𝑥

′ and 𝑦 ′

if and only if the space ℎ′ between 𝑥 ′ and 𝑦 ′ in 𝑆 ′ satisfies ℎ′ < 𝑗 . By construction
of 𝑆 , the space between 𝑥 and 𝑦 is ℎ′ and Statement 4 holds.
For Statement 5 consider a level-planar embedding E of 𝐺 . Let E ′ denote the

restriction of E to𝐺 ′ = 𝐺 [𝑘 − 1]. By Statement 5 there exists an 𝑅′ ≡ 𝑇 ′ such that 𝑅′

matches E ′ and for each pair of vertices 𝑥 ′ ⊲ 𝑦 ′ in E ′ if 𝐼 (𝑗, 𝑘 − 1) can be merged
into E ′ between 𝑥 ′ and 𝑦 ′, then the space ℎ′ between 𝑥 ′ and 𝑦 ′ in 𝑅′ satisfies ℎ′ < 𝑗 .
Obtain 𝑅 from 𝑀 (𝑅′) by replacing 𝑢1, . . . , 𝑢𝑛 with v without reordering. Consider
vertices 𝑥 ⊲ 𝑦 in E . If 𝑥 = v let 𝑥 ′ denote the parent of v that is the last black leaf
around𝑀 (𝑅′), i.e., either 𝑢𝜏 (𝑛) or 𝑢𝜏 (1) . Otherwise, let 𝑥 ′ denote the unique parent
of 𝑥 in𝐺 . If 𝑦 = v let 𝑦 ′ denote the parent of v that is the first black leaf around𝑀 (𝑅′),
i.e., either 𝑢𝜏 (1) or 𝑢𝜏 (𝑛) . Otherwise, let 𝑦 ′ denote the unique parent of 𝑦 in 𝐺 . In the
proof of Statement 4 we have shown that the space between 𝑥 and 𝑦 in 𝑅 equals the
space between 𝑥 ′ and 𝑦 ′ in 𝑀 (𝑅′). Note that by construction of 𝑀 (𝑅′), the space
between the last white leaf and the first black leaf around 𝑅′ equals the space between
the last white leaf and the first black leaf around𝑀 (𝑅′). Likewise, the space between
the last black leaf and the first white leaf around 𝑅′ equals the space between the
last black leaf and the first white leaf around𝑀 (𝑅′). Finally, for each pair of white

Unary Bundle Section 5.10

87

leaves 𝑎 ⊲𝑏 in 𝑅′ it is also 𝑎 ⊲𝑏 in𝑀 (𝑅′), and the space between them is the same in 𝑅′

and𝑀 (𝑅′). So the space ℎ between 𝑥 and 𝑦 in 𝑅 equals the space between 𝑥 ′ and 𝑦 ′

in 𝑅′. If 𝐼 (𝑗, 𝑘) can be merged into E between 𝑥 and 𝑦 then 𝐼 (𝑗, 𝑘 − 1) can be merged
into E ′ between 𝑥 ′ and 𝑦 ′. Then the space ℎ′ between 𝑥 ′ and 𝑦 ′ in 𝑅′ satisfies ℎ′ < 𝑗 .
This equals the space between 𝑥 and 𝑦 in 𝑅, which shows Statement 5. □

Now consider the remaining case (b). Recall that the counter-clockwise order
of arcs around 𝜒 is 𝛽, . . . , 𝛾, 𝛿, . . . , 𝛼 , where the endpoints of 𝛽, . . . , 𝛾 are black and
the endpoints of 𝛿, . . . , 𝛼 are white. In this case,the parent of 𝜒 is black, i.e., the
sequence 𝛽, . . . , 𝛾 includes the parent arc of 𝜒 .

Obtain the left-maximal tree 𝑀𝑙 (𝑇 ′) of 𝑇 ′ from 𝑇 ′ as follows. Consider each black
node ` on the path from 𝜒 to the root of 𝑇 ′ (that is, each node on the path from 𝜒 to
the root of 𝑇 ′, except for 𝜒 itself). Let (`, 𝜈) denote the child arc of ` that lies on the
path from 𝜒 to the root of𝑇 ′. If ` is a P-node, reorder the child arcs of ` so that (`, 𝜈)
becomes the first child arc in the linearized order of child arcs of `. If ` is a C-node,
let 𝛼 and 𝛽 denote the predecessor and successor of (`, 𝜈) around `. If 𝛼 is the parent
arc of `, leave ` unchanged. If 𝛽 is the parent arc of `, reverse `. If both 𝛼 and 𝛽

are child arcs of `, let p denote the apex between 𝛼 and (`, 𝜈), and let 𝑞 denote the
apex between (`, 𝜈) and 𝛽 . If ℓ (𝑞) < ℓ (p), reverse `. Otherwise, leave ` unchanged.
Obtain the right-maximal tree 𝑀𝑟 (𝑇 ′) of 𝑇 ′ from 𝑀𝑙 (𝑇 ′) by reversing the order of
arcs around each node on the path from 𝜒 to the root of𝑀𝑙 (𝑇 ′), except for 𝜒 itself.
Let p𝑙 denote the apex before the first black leaf in𝑀𝑙 (𝑇 ′), and let 𝑞𝑙 denote the

apex after the last black leaf in𝑀𝑙 (𝑇 ′). Likewise, let p𝑟 denote the apex before the
first black leaf in𝑀𝑟 (𝑇 ′), and let 𝑞𝑟 denote the apex after the last black leaf in𝑀𝑟 (𝑇 ′).
Finally, let p denote the apex before the first black leaf in𝑇 ′, and let 𝑞 denote the apex
after the last black leaf in 𝑇 ′. By construction of 𝑀𝑙 (𝑇 ′) it is ℓ (p𝑙) ≤ ℓ (p). By con-
struction of𝑀𝑟 (𝑇 ′) it is ℓ (𝑞𝑟) ≤ ℓ (𝑞). Moreover, it is ℓ (p𝑙) ≤ ℓ (p) and ℓ (𝑞𝑙) ≤ ℓ (𝑞),
or ℓ (p𝑟) ≤ ℓ (p) and ℓ (𝑞𝑟) ≤ ℓ (𝑞). In the former case, define 𝑀 (𝑇 ′) = 𝑀𝑙 (𝑇 ′),
otherwise define𝑀 (𝑇 ′) = 𝑀𝑟 (𝑇 ′).
Obtain 𝑇 from 𝑀 (𝑇 ′) as follows. Let p denote the apex between the unique

vertices 𝑎 ⊲𝑏 around𝑀 (𝑇 ′) where 𝑎 is white and 𝑏 is black, and let 𝑞 denote the apex
between the unique vertices 𝑐 ⊲𝑑 around𝑀 (𝑇 ′) where 𝑐 is black and 𝑑 is white. Delete
the arcs 𝛽, . . . , 𝛾 and, from the resulting forest, every tree that does not contain 𝜒 .
Create a new leaf v and insert the arc (𝜒, v) between 𝛼 and 𝛿 around 𝜒 . Define the
apex between 𝛼 and (𝜒, v) as p , and define the apex between (𝜒, v) and 𝛽 as 𝑞. If 𝛽
is the parent arc of 𝜒 let 𝑟 denote the reference between 𝛼 = (𝜒, 𝜈) and 𝛽 around 𝜒

in 𝑇 ′. Let 𝑟 denote the root of the tree of 𝑃𝑇 ′ to which 𝑟 belongs. Observe that 𝑟
is annotated with p . If 𝜈 is a C-node, move 𝑟 to be the reference before 𝛼 = (𝜒, 𝜈)
around 𝜈 in 𝑇 . Symmetrically, if 𝛾 is the parent arc of 𝜒 let 𝑜 denote the reference
between 𝛾 and 𝛿 = (𝜒, b) around 𝜒 in 𝑇 ′. Let 𝑜 denote the root of the tree of 𝑃𝑇 ′ to

Chapter 5 Level Planarity Testing: A Unified Approach

88

which 𝑜 belongs. Observe that 𝑜 is annotated with 𝑞. If b is a C-node, move 𝑜 to be
the reference after 𝛿 = (𝜒, b) around b in 𝑇 . Finally, define 𝑃𝑇 = 𝑃𝑇 ′ .

Lemma 28. Let 𝐺 be a 𝑘-level graph that arises from 𝐺 ′ = 𝐺 [𝑘 − 1] by unary
bundling𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑛} into v . Let𝑇 ′ be a PC-tree that𝑈 -represents𝐺 ′ such that
the parent of 𝜒 is black. Let 𝑇 be the PC-tree obtained from 𝑇 ′ by replacing 𝑢1, . . . , 𝑢𝑛
with v . Then 𝑇 represents 𝐺 .

Proof. Let 𝑆 ≡ 𝑇 . Then there exists an 𝑆 ′ ≡ 𝑇 ′ such that 𝑆 is obtained from 𝑆 ′ by re-
placing 𝑢1, . . . , 𝑢𝑛 with v . In particular, the linearized order of white leaves around 𝑆
is obtained from the linearized order of white leaves around 𝑆 ′ by renaming the
non-pertinent vertices. However, the choice of 𝑆 ′ is not unique in general because
the linearized order of black leaves around 𝑆 ′ is not fixed by 𝑆 . To handle this de-
gree of freedom we define a canonical tree 𝑀 (𝑆 ′) as follows. To this end, we first
define𝑀𝑙 (𝑆 ′) and𝑀𝑟 (𝑆 ′) as follows. Consider the case that the orientation of 𝜒 is the
same in 𝑆 ′ and𝑇 ′. Obtain𝑀𝑙 (𝑆 ′) from 𝑆 ′ by performing equivalence transformations
only on black nodes so that the linearized order of black leaves around𝑀𝑙 (𝑆 ′) equals
the linearized order of black leaves around𝑀𝑙 (𝑇 ′). Obtain𝑀𝑟 (𝑆 ′) from 𝑆 ′ by perform-
ing equivalence transformations only on black nodes so that the linearized order of
black leaves around𝑀𝑟 (𝑆 ′) equals the linearized order of black leaves around𝑀𝑟 (𝑇 ′).
Now consider the other case, namely that the orientation of 𝜒 is opposite in 𝑆 ′ and𝑇 ′.
Obtain 𝑀𝑙 (𝑆 ′) from 𝑆 ′ by performing equivalence transformations only on black
nodes so that the linearized order of black leaves around𝑀𝑙 (𝑆 ′) equals the reverse
linearized order of black leaves around𝑀𝑟 (𝑇 ′). Obtain𝑀𝑟 (𝑆 ′) from 𝑆 ′ by perform-
ing equivalence transformations only on black nodes so that the linearized order
of black leaves around 𝑀𝑟 (𝑆 ′) equals the reverse linearized order of black leaves
around𝑀𝑙 (𝑇 ′).
Let p𝑙 denote the apex before the first black leaf in 𝑀𝑙 (𝑆 ′), and let 𝑞𝑙 denote the

apex after the last black leaf in 𝑀𝑙 (𝑆 ′). Likewise, let p𝑟 denote the apex before
the first black leaf in 𝑀𝑟 (𝑆 ′), and let 𝑞𝑟 denote the apex after the last black leaf
in 𝑀𝑟 (𝑆 ′). Finally, let p denote the apex before the first black leaf in 𝑆 ′, and let 𝑞
denote the apex after the last black leaf in 𝑆 ′. It is ℓ (p𝑙) ≤ ℓ (p) and ℓ (𝑞𝑙) ≤ ℓ (𝑞),
or ℓ (p𝑟) ≤ ℓ (p) and ℓ (𝑞𝑟) ≤ ℓ (𝑞). In the former case, define 𝑀 (𝑆 ′) = 𝑀𝑙 (𝑆 ′).
Otherwise, define𝑀 (𝑆 ′) = 𝑀𝑟 (𝑆 ′). From now on assume 𝑆 ′ = 𝑀 (𝑆 ′) without loss of
generality. Importantly, this implies 𝐸𝑆 = 𝐸𝑆′ .
We first show that Property 1 holds. For Statement 1 observe that 𝐺 ′

𝑆′ has the
single source min𝑉 (𝐺 ′), it is 𝐸𝑆 = 𝐸𝑆′ and every level-𝑘 vertex of 𝐺 has a parent
in 𝐺 ′. Therefore, 𝐺𝑆 has the single source min𝑉 (𝐺 ′) = min𝑉 (𝐺) and Statement 1
holds. For Statement 2, observe that the apices in 𝑆 are a sub(multi)set of the apices
in 𝑆 ′. For Statement 3, note that each arc (`, 𝜈) of 𝑆 where 𝜈 is an inner node is
also an arc of 𝑆 ′ and it is 𝐻𝑆 (𝜈) = 𝐻𝑆′ (𝜈). Furthermore, unless (`, 𝜈) is adjacent

General Bundle Section 5.11

89

to (𝜒, v) in 𝑆 , it is 𝐻𝑆 ((`, 𝜈)) = 𝐻𝑆′ ((`, 𝜈)). Finally, if (`, 𝜈) is adjacent to (𝜒, v),
then max𝐻𝑆 ((`, 𝜈)) ≤ max𝐻𝑆′ ((`, 𝜈)) by construction of 𝑆 and by Statement 3 for 𝑆 ′.
This shows Statement 3. We explicitly made sure that Statement 4 holds for the
arcs 𝛼 and 𝛿 , which are adjacent to the arc (𝜒, v) during the construction of 𝑇 . All
remaining arcs of 𝑆 are also arcs of 𝑆 ′ and the exact same references and apices are
incident to these arcs in 𝑆 and 𝑆 ′. Statement 4 holds for these arcs by assumption
for 𝑆 ′.
We now turn to Property 2. Construct Ḡ𝑆 as in the proof of Lemma 27. Show

Statement 1, 2, 3 and 4 in the exact same way. For Statement 5, consider a level-planar
embedding E of𝐺 . Let E ′ denote the restriction of E to𝐺 ′ = 𝐺 [𝑘 −1]. By Statement 5
there exists an𝑅′ ≡ 𝑇 ′ such that𝑅′matches E ′ and for each pair of vertices 𝑥 ′⊲𝑦 ′ in E ′

if 𝐼 (𝑗, 𝑘 − 1) can be merged into E ′ between 𝑥 ′ and 𝑦 ′, then the space ℎ′ between 𝑥 ′

and 𝑦 ′ in 𝑅′ satisfies ℎ′ < 𝑗 . Obtain 𝑅 from 𝑀 (𝑅′) by replacing 𝑢1, . . . , 𝑢𝑛 with v .
If 𝐼 (𝑗, 𝑘) can be merged into E between 𝑥 and 𝑦 then 𝐼 (𝑗, 𝑘 − 1) can be merged into E ′

between the corresponding 𝑥 ′ and 𝑦 ′. By Statement 5, then the space ℎ′ between 𝑥 ′

and 𝑦 ′ in 𝑅′ satisfies ℎ′ < 𝑗 . By construction of 𝑀 (𝑅′) the space ℎ′
𝑀

between 𝑥 ′

and 𝑦 ′ in 𝑀 (𝑅′) satisfies ℎ′
𝑀

≤ ℎ′. By construction of 𝑅 from 𝑀 (𝑅′) the space ℎ
between 𝑥 and 𝑦 in 𝑅 is ℎ′

𝑀
. So, ℎ = ℎ′

𝑀
≤ ℎ′ < 𝑗 , and Statement 5 holds. □

Together, Lemmas 26, 27 and 28 give the following corollary.

Corollary 5. Let 𝐺 be a 𝑘-level graph that arises from 𝐺 ′ = 𝐺 [𝑘 − 1] by unary
bundling 𝑢1, 𝑢2, . . . , 𝑢𝑛 into v . Let 𝑇 ′ be a PC-tree that represents 𝐺 ′ and let 𝑇 be the
PC-tree obtained from 𝑇 ′ by bundling 𝑢1, . . . , 𝑢𝑛 into v . Then 𝑇 represents 𝐺 .

5.11 General Bundle

The remaining operation is the general bundle, i.e., 𝐺 arises from 𝐺 ′ = 𝐺 [𝑘 − 1] by
bundling the ancestors 𝑢1, 𝑢2, . . . , 𝑢𝑛 of v , where 𝑢1, . . . , 𝑢𝑛 belong to two or more
distinct connected components of 𝐺 ′. Recall Theorem 7, which states that either all
connected components of𝐺 ′ are v-singular, or the ancestors of v belong to exactly
two connected components. We treat the former case in Section 5.11.1. The latter
case is treated in Sections 5.11.2 and 5.11.3. As a preliminary step, we investigate
how embeddings of two distinct connected components can be merged into a single
embedding. Let 𝐺 = 𝐺1 ∪𝐺2 be a 𝑘-level graph such that 𝐺1 and 𝐺2 are connected.
Recalling that 𝐺 is regularized, assume ℓ (𝐺1) < ℓ (𝐺2) without loss of generality.
Consider a level-planar embedding E of 𝐺 . For 𝑖 = 1, 2, the embedding E induces a
level-planar embedding E𝑖 of𝐺𝑖 . Assume that Property 1 and 2 hold for𝐺𝑖 . Because𝐺𝑖

is connected this is the case if and only if these properties hold for 𝐺𝑖 [𝑘 − 1]. Let 𝑇𝑖
denote a PC-tree that represents 𝐺𝑖 and let 𝑅𝑖 ≡ 𝑇𝑖 as in Property 2 Statement 5.

Chapter 5 Level Planarity Testing: A Unified Approach

90

Because E is level planar, the level-𝑘 vertices of 𝐺𝑖 are consecutive in the frontier
of E . Let 𝑎, 𝑦, . . . , 𝑥, 𝑏, . . . , 𝑎 denote the frontier of E where 𝑏, . . . , 𝑎 are the vertices
of 𝐺1 and 𝑦, . . . , 𝑥 are the vertices of 𝐺2.

Lemma 29. The space ℎ between 𝑎 and 𝑏 in 𝑅1 satisfies ℎ < ℓ (𝐺2), and the apex
between 𝑥 and 𝑦 in 𝑅2 is 𝜍 .

Proof. The existence of E implies that 𝐼 (ℓ (𝐺2), 𝑘) can be merged into E1 between 𝑎

and𝑏 (Lemma 6 fromChapter 3). FromProperty 2 Statement 5 it follows thatℎ < ℓ (𝐺2).
Symmetrically, we obtain that the space ℎ′ between 𝑥 and 𝑦 in 𝑅2 satisfies ℎ′ < ℓ (𝐺1).
With ℓ (𝐺1) < ℓ (𝐺2) and the fact that every apex in 𝑅2 other than 𝜍 is a vertex of 𝐺2
this implies that the apex between 𝑥 and 𝑦 in 𝑅2 is 𝜍 . □

Consider PC-trees 𝑆1 ≡ 𝑇1, 𝑆2 ≡ 𝑇2. Let 𝑎 ⊲ 𝑏 denote leaves of 𝑆1 and let p denote
the apex between 𝑎 and 𝑏 in 𝑆1. Define p ′ = min𝑉 (𝐺1) if p = 𝜍 , or p ′ = p if p ≠ 𝜍 .
Further, let 𝑥 ⊲ 𝑦 denote leaves of 𝑆2 and let 𝑞 denote the apex between 𝑥 and 𝑦

in 𝑆2. We say that the merge candidate 𝑎, 𝑏, 𝑥, 𝑦 is feasible for 𝑆1, 𝑆2 if there exists
a level-planar embedding of the graph 𝐺𝑆1 +𝐺𝑆2 + (p ′,min𝑉 (𝐺2)) whose frontier
is 𝑎, 𝑦, . . . , 𝑥, 𝑏, . . . , 𝑎, where 𝑏, . . . , 𝑎 are the vertices of𝐺1 and 𝑦, . . . , 𝑥 are the vertices
of 𝐺2, and whose restriction to 𝐺𝑆1 ,𝐺𝑆2 is G𝑆1 ,G𝑆2 , respectively.

Lemma 30. If ℓ (p) < ℓ (𝐺2) and 𝑞 = 𝜍 , then the merge candidate 𝑎, 𝑏, 𝑥, 𝑦 is feasible
for G𝑆1 and G𝑆2 .

Proof. Justified by Property 2 Statement 4 and ℓ (p) < ℓ (𝐺2), intersperse G𝑆2 (split
between 𝑥 and 𝑦) into Ḡ𝑆1 between 𝑎 and 𝑏. Symmetrically, Property 2 Statement 4
and ℓ (𝜍) = 0 < ℓ (𝐺1) justifies interspersing Ḡ𝑆1 (split between 𝑎 and 𝑏) into G𝑆2
between 𝑥 and 𝑦 . Next, intersperse the edge (p ′,min𝑉 (𝐺2)) after the augmentation
path from p to p̄ . Finally, remove all augmentation paths. We have obtained a level-
planar embedding of the graph𝐺𝑆1+𝐺𝑆2+(p ′,min𝑉 (𝐺2)). By construction, its frontier
is 𝑎, 𝑦, . . . , 𝑥, 𝑏, . . . , 𝑎, and the restriction to 𝐺𝑆1 ,𝐺𝑆2 is G𝑆1 ,G𝑆2 , respectively. □

By Property 1 Statement 2 𝜍 occurs at most once in 𝑅2. So the choice of 𝑥 and 𝑦 is
implied as the unique pair of leaves 𝑥 ⊲ 𝑦 of 𝑅2 such that the apex between 𝑥 and 𝑦

is 𝜍 . We then simply say that the merge candidate 𝑎, 𝑏 is feasible for 𝑆1, 𝑆2.

5.11.1 Many v-Singular Components

In this section we treat the case that 𝐺 is v-singular, i.e., 𝐺 is a connected 𝑘-level
graph with a single vertex v on level 𝑘 . Let 𝐺1,𝐺2, . . . ,𝐺𝑛 denote the components
of 𝐺 that are connected by v such that ℓ (𝐺𝑖) < ℓ (𝐺𝑖+1) for 1 ≤ 𝑖 < 𝑛. Moreover, for

General Bundle Section 5.11

91

each 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 let 𝑇𝑖 denote a PC-tree that represents 𝐺𝑖 , let 𝐺 ′
𝑖 = 𝐺𝑖 [𝑘 − 1]

and let 𝑇 ′
𝑖 denote a PC-tree that represents 𝐺 ′

𝑖 .
Obtain 𝑇 as follows. Let p denote the unique apex stored in 𝑇1. If ℓ (p) ≥ ℓ (𝐺2), or

if any 𝑇2, . . . ,𝑇𝑛 does not contain 𝜍 as an apex, define 𝑇 as the null tree. Otherwise,
define𝑇 as the PC-tree that consists of the root C-node ` and a single leaf v connected
by an arc (`, v). Define the apex between (`, v) and (`, v) as p . Define 𝑃𝑇 as follows.
First, take the union of each 𝑃𝑇𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Then, create a new reference 𝑟 and
annotate it with p . Next, add the edge (v, 𝑟) with timestamp 𝑘 for each root v of 𝑃𝑇𝑖
annotated with 𝜍 , where 1 < 𝑖 ≤ 𝑛. Note that there are at most two such roots
per 𝑃𝑇𝑖 . This means that any augmentation edge of 𝐺𝑇𝑖 previously beginning at 𝜍
will from now on begin at p instead. Finally, add ⟨min𝑉 (𝐺𝑖), 𝑘⟩ to 𝑍 (𝑟) for each 𝑖

with 1 < 𝑖 ≤ 𝑛.

Lemma 31. Let 𝐺 be a v-singular 𝑘-level graph that arises from 𝐺 ′ = 𝐺 [𝑘 − 1] by
bundling. Let𝑇 be the PC-tree obtained from𝑇1, . . . ,𝑇𝑛 by merging. Then𝑇 represents𝐺 .

Proof. If ℓ (p) ≥ ℓ (𝐺2), or if any 𝑇2, . . . ,𝑇𝑛 does not contain 𝜍 as an attachment, then
Lemma 29 gives that 𝐺 is not level planar. We defined 𝑇 as the null tree in this case,
so 𝑇 represents 𝐺 .
Otherwise, 𝑇 is not the null tree. Let 𝑆 ≡ 𝑇 , i.e., 𝑆 = 𝑇 . By construction of 𝑆 it

is 𝐸𝑆 = {𝑒 (𝑃𝑆 , z) | z ∈ 𝑍 (𝑟)} ∪
(︁⋃︁

1≤𝑖≤𝑛 𝐸𝑇𝑖
)︁
, where 𝑟 denotes the newly created

reference. In particular, 𝐸𝑇𝑖 ⊂ 𝐸𝑆 .
We first show that Property 1 holds. For Statement 1, observe that for each 1 ≤ 𝑖 ≤ 𝑛

the graph 𝐺𝑇𝑖 has the single source min𝑉 (𝐺𝑖). The graph 𝐺𝑇 is the union of all 𝐺𝑇𝑖

together with edges that connect the single source of𝐺𝑇𝑖 for 1 < 𝑖 ≤ 𝑛 to the vertex p
of 𝐺𝑇1 . So, 𝐺𝑇 is has the single source min𝑉 (𝐺1) = min𝑉 (𝐺) and Statement 1 holds.
Statement 2 holds because 𝑇 contains a single apex. Statement 3 and Statement 4
hold because 𝑇 does not contain an arc whose endpoint is an inner node.
We now turn to Property 2. Let 𝑆 ≡ 𝑇 , i.e., 𝑆 = 𝑇 . Define Ḡ𝑇 as follows. Start

with Ḡ𝑇1 . Intersperse G𝑇2 into Ḡ𝑇1 after the augmentation path from p to p̄ . Then
intersperse the edge (p ′,min𝑉 (𝐺2)) after that augmentation path as well. This
creates two separate instances of the vertex v , one from Ḡ𝑇1 (call it v1) and one
from G𝑇2 (call it v2). Reroute the edges with endpoint v2 towards v1 as follows.
Let 𝑢1, 𝑢2, . . . , 𝑢𝑚 denote the parent vertices of v in the linearized order in which they
occur around v in G𝑇2 . For 𝑗 =𝑚,𝑚 − 1, . . . , 1 intersperse the edge (𝑢 𝑗 , v1) after the
edge (𝑢 𝑗 , v2), then delete (𝑢 𝑗 , v2). Finally, delete v2. For 𝑖 = 3, . . . , 𝑛 intersperse G𝑇𝑖

into this embedding after the augmentation path from p to p̄ in a similar fashion
and denote the result by Ḡ𝑇 . Statement 1 holds because 𝐺 is v-singular. Statement 2
holds vacuously for𝑈 = ∅. Statement 3 holds by construction of Ḡ𝑇 . For Statement 4,
observe that if 𝐼 (𝑗, 𝑘) can be merged into G𝑇 between v and v , then 𝐼 (𝑗, 𝑘) can be

Chapter 5 Level Planarity Testing: A Unified Approach

92

merged into G𝑇1 , and then the space ℎ1 between v and v in 𝑇1 satisfies ℎ1 < 𝑗 . By
construction the space ℎ between v and v in 𝑇 equals ℎ1. So if ℎ ≥ 𝑗 , then 𝐼 (𝑗, 𝑘)
cannot be merged into G𝑇 between v and v . On the other hand, the existence of the
attachment path from p to p̄ in Ḡ𝑇 shows that if ℎ < 𝑗 then 𝐼 (𝑗, 𝑘) can be merged
into G𝑇 between v and v . For Statement 5, consider a level-planar embedding E of 𝐺 .
Then 𝑇 trivially matches E . Let E1 denote the restriction of E to 𝐺1. If 𝐼 (𝑗, 𝑘) can be
merged into E between v and v , then 𝐼 (𝑗, 𝑘) can be merged into E1 between v and v .
Applying Statement 4, this means that the only space ℎ1 stored in 𝑇1 satisfies ℎ1 < 𝑗 .
By construction the space ℎ between v and v in 𝑇 equals ℎ1. So ℎ = ℎ1 < 𝑗 and
Statement 5 holds. □

5.11.2 Independent Merging

In the remaining cases𝐺 ′ consists of just two connected components. Let𝑇1,𝑇2 denote
PC-trees that represent 𝐺1,𝐺2, respectively. Consider a level-planar embedding E
of 𝐺 (if one exists). It induces level-planar embeddings E1, E2 of 𝐺1,𝐺2. Let 𝑅2 ≡ 𝑇2
be as in Property 2 Statement 5. Lemma 29 gives that 𝑅2 contains 𝜍 as an apex, and,
together with the fact that E is level-planar, that v is incident to the apex 𝜍 . We reflect
this necessary condition by updating 𝑇2 so that v is incident to the apex 𝜍 as follows.
If 𝑇2 does not contain 𝜍 as an apex, then 𝐺 is not level planar, and, correspondingly,
we define 𝑇 as the null tree. Otherwise, by Property 1 Statement 2 𝑇2 contains a
unique pair of consecutive child arcs 𝛼, 𝛽 so that the apex between them is 𝜍 . By
Property 1 Statement 3 𝛼, 𝛽 are child arcs of the root of 𝑇2. If 𝛼 = 𝛽 , let 𝐿 denote the
set of leaves of 𝑇2. Obtain 𝑇 +

2 from 𝑇2 by (𝐿 \ {v})-updating. Note that during this
update the root of 𝑇2 behaves like a white leaf. If 𝛼 ≠ 𝛽 , let 𝛾 ∈ {𝛼, 𝛽} denote the arc
so that v is a leaf in the subtree of 𝑇2 rooted at the endpoint of 𝛾 , and let 𝛿 ∈ {𝛼, 𝛽}
such that 𝛿 ≠ 𝛾 . Let 𝐿 denote the set of leaves of 𝑇2 that appear in the subtree of 𝑇2
rooted at the endpoint of 𝛿 . Obtain 𝑇 +

2 from 𝑇2 by (𝐿 ∪ {v})-updating. If 𝑇 +
2 is the

null tree, then 𝐺 is not level planar and, accordingly, we define 𝑇 to be the null tree.
Otherwise, if 𝑇 +

2 is not the null tree, then v is a child of the root of 𝑇 +
2 . Assume

without loss of generality that the apex before v in𝑇 +
2 is 𝜍 , reversing the root of𝑇 +

2 if
necessary.
Consider the case that 𝐺1 is v-singular. Let p denote the one apex stored in 𝑇1.

If ℓ (p) ≥ ℓ (𝐺2), define 𝑇 as the null tree. Otherwise, it is ℓ (p) < ℓ (𝐺2) and 𝑇 +
2

contains 𝜍 as an apex. Then obtain 𝑇 from 𝑇 +
2 as follows. Replace the apex 𝜍 with p .

Start defining 𝑃𝑇 as the union of 𝑃𝑇1 and 𝑃𝑇2 . Create a new reference 𝑜 , annotate 𝑜
with p and set 𝑍 (𝑜) = {⟨min𝑉 (𝐺2), 𝑘⟩}. Let (`, 𝜈) denote the arc that precedes (`, v)
around the root ` of 𝑇 +

2 . If 𝜈 is a C-node, let 𝑟 denote the reference before (`, 𝜈)
around 𝜈. Note that 𝑟 is annotated with 𝜍 . Replace 𝑟 with 𝑜 and add the edge (𝑟, 𝑜)
with timestamp 𝑘 to 𝑃𝑇 .

General Bundle Section 5.11

93

Lemma 32. Let 𝐺 be a binary 𝑘-level graph so that 𝐺1 is v-singular. Further, let 𝑇 be
the PC-tree obtained from 𝑇1,𝑇

+
2 by merging. Then 𝑇 represents 𝐺 .

Proof. If 𝑇 is the null tree, then the correctness follows from Lemma 29. Consider
the other case, namely that 𝑇 is not the null tree and let 𝑆 ≡ 𝑇 . Let 𝑆2 ≡ 𝑇 +

2 so that 𝑆
is obtained by merging 𝑇1 and 𝑆2. Then 𝐸𝑆 = 𝐸𝑇1 ∪ 𝐸𝑆2 ∪ {𝑒 (𝑃𝑆 , ⟨min𝑉 (𝐺2), 𝑘⟩)}.
We first show that Property 1 holds. For Statement 1 observe that 𝐺𝑇1 has the

single source min𝑉 (𝐺1) and 𝐺𝑆2 has the single source min𝑉 (𝐺2). The graph 𝐺𝑆 is
the union of𝐺𝑇1 and𝐺𝑆2 together with, because (min𝑉 (𝐺2), 𝑘) ∈ 𝑍 (𝑜), an edge that
connects a vertex in𝐺1 to min𝑉 (𝐺2). So,𝐺𝑆 has the single source min𝑉 (𝐺1), which,
because ℓ (𝐺1) < ℓ (𝐺2) is min𝑉 (𝐺). For Statement 2, observe that 𝑇 +

2 contains 𝜍
as an apex once and in the construction of 𝑇 it is replaced with p . Depending on
whether p = 𝜍 or p ≠ 𝜍 , the tree 𝑆 contains 𝜍 as an apex once or not at all. For
Statement 3, observe that with ℓ (p) < ℓ (𝐺2) the claim follows because Statement 3
holds for 𝑆2. Statement 4 holds by construction of 𝑃𝑇 .

We now turn to Property 2. Obtain Ḡ𝑆 as follows, starting with Ḡ𝑇1 . First, duplicate
the (unique) augmentation path ending in p̄ in Ḡ𝑇1 . Merge Ḡ𝑆2 − 𝜍 into Ḡ𝑇1 between
these two duplicates. Note that this creates two separate instances of the vertex v ,
one from Ḡ𝑇1 (call it v1), and one from Ḡ𝑆2 (call it v2). Depending on whether 𝜍 is
the apex before or after v in 𝑆2, either v1 ⊲ p̄ ⊲ v2 or v2 ⊲ p̄ ⊲ v1 in this intermediate
embedding. In both cases, delete the middle attachment path with endpoint p̄ , the
other attachment path remains in the embedding. Then, in the first case, reroute all
edges with endpoint v1 to v2. In the second case, reroute all edges with endpoint v2
to v1. See the proof of Lemma 31 for a more detailed description of how this rerouting
can be achieved by interspersing.
Statement 1 follows because Statement 1 holds for Ḡ𝑇1 and Ḡ𝑆2 , and by explicit

construction of Ḡ𝑆 from those embeddings. Statement 2 holds vacuously for𝑈 = ∅.
Statement 3 holds by construction. For Statement 4, consider vertices 𝑥 ⊲ 𝑦 in G𝑆 . If
the apex between 𝑥 and 𝑦 in 𝑆 is not p , then Statement 4 holds for G𝑆 because it holds
for G𝑆2 . If the apex between 𝑥 and 𝑦 in 𝑆 is p , then 𝐼 (𝑗, 𝑘) can be merged into G𝑆

between 𝑥 and 𝑦 if and only if 𝐼 (𝑗, 𝑘) can be merged into G𝑇1 between v and v (i.e.,
if the space ℎ1 between v and v in 𝑇1 satisfies ℎ1 < 𝑗) and into G𝑆2 between 𝑥 and 𝑦

(i.e., the space ℎ2 between 𝑥 and 𝑦 in 𝑆2 satisfies ℎ2 < 𝑗). It is ℎ1 = ℓ (p) and ℎ2 = 0,
so merging is possible if ℓ (p) < 𝑗 . Note that ℓ (p) is the space between 𝑥 and 𝑦 in 𝑆 .
Then Statement 4 holds.

For Statement 5, consider a level-planar embedding E of 𝐺 . Let E2 denote the
restriction of E to𝐺2. By construction of𝑇 +

2 and by Statement 5 there exists an𝑅2 ≡ 𝑇 +
2

such that 𝑅2 matches E2 and for each pair of vertices 𝑥 ⊲𝑦 in E2 if 𝐼 (𝑗, 𝑘) can be merged
into E2 between 𝑥 and 𝑦 , then the space ℎ2 between 𝑥 and 𝑦 in 𝑅2 satisfies ℎ2 < 𝑗 .
Obtain 𝑅 ≡ 𝑇 by merging𝑇1 and 𝑅2. The frontiers of 𝑅, 𝑅2 and E, E2 are identical, so 𝑅

Chapter 5 Level Planarity Testing: A Unified Approach

94

matches E . Consider vertices 𝑥 ⊲ 𝑦 in E . If 𝐼 (𝑗, 𝑘) can be merged into E between 𝑥

and 𝑦 , then 𝐼 (𝑗, 𝑘) can be merged into E1 between v and v , and into E2 between 𝑥

and 𝑦 . Then the space ℎ1 between v and v in 𝑇1 satisfies ℎ1 < 𝑗 , and the space ℎ2
between 𝑥 and 𝑦 in 𝑅2 satisfies ℎ2 < 𝑗 . If the apex between 𝑥 and 𝑦 in 𝑅 is p , it
is ℎ1 = ℓ (p) and ℎ2 = 0. Otherwise it is ℎ1 = ℓ (p) and ℎ2 ≥ ℓ (𝐺2) > ℓ (p) equals the
space between 𝑥 and 𝑦 in 𝑅. So Statement 5 holds. □

For the remainder of this section, assume that 𝐺1 is not v-singular. Let 𝑇 ′
1 denote

the PC-tree that𝑈1-represents 𝐺 ′
1, where𝑈1 is the set of ancestors of v in 𝐺1. That

is, 𝑇1 is obtained from 𝑇 ′
1 by replacing 𝑈1 with v . Consider the case that 𝐺2 is v-

singular and that𝑇 ′
1 contains two consecutive black leaves so that the apex p between

them satisfies ℓ (p) < ℓ (𝐺2). Note that because 𝐺2 is v-singular it is 𝑇 +
2 = 𝑇2. Take 𝑇

as 𝑇1. Start defining 𝑃𝑇 as the union of 𝑃𝑇1 and 𝑃𝑇 +
2
. Next, create a new reference 𝑜 ,

annotate 𝑜 with p and set 𝑍 (𝑜) = {⟨min𝑉 (𝐺2), 𝑘⟩}. Then, add the edge (v, 𝑜) with
timestamp 𝑘 for each root v of 𝑃𝑇 +

2
annotated with 𝜍 .

Lemma 33. Let𝐺 be a binary 𝑘-level graph so that𝐺2 is v-singular and that𝑇 ′
1 contains

two consecutive black leaves so that the apex p between them satisfies ℓ (p) < ℓ (𝐺2).
Further, let 𝑇 be the PC-tree obtained from 𝑇1,𝑇

+
2 by merging. Then 𝑇 represents 𝐺 .

Proof. Let 𝑆 ≡ 𝑇 . Let 𝑆1 ≡ 𝑇1 denote the unique PC-tree so that 𝑆 is obtained by
merging 𝑆1 and 𝑇 +

2 . Then 𝐸𝑆 = 𝐸𝑆1 ∪ 𝐸𝑇 +
2
∪ {𝑒 (𝑃𝑆 , (min𝑉 (𝐺2), 𝑘))}.

We first show Property 1. Statement 1 holds as𝐺𝑆1 has the single source min𝑉 (𝐺1),
the graph 𝐺𝑇2 has the single source min𝑉 (𝐺2), and the edge 𝑒 (𝑃𝑆 , (min𝑉 (𝐺2), 𝑘))
connects a vertex of𝐺𝑆1 to the source of𝐺𝑇 +

2
. Statement 2, Statement 3 and Statement 4

hold for 𝑆 because they hold for 𝑆1.
We now turn to Property 2. Define Ḡ𝑆 as follows. Let 𝑆 ′1 ≡ 𝑇 ′

1 denote a PC-tree so
that 𝑆1 arises from 𝑆 ′1 by replacing 𝑈1 with v without reordering. By assumption 𝑇 ′

1
contains two black leaves 𝑥 ⊲𝑦 so that the apex p between them satisfies ℓ (p) < ℓ (𝐺2).
Then 𝑆 ′1 also contains the apex p and two black leaves 𝑥 ′ ⊲𝑦 ′ so that the apex between
them is p , which satisfies ℓ (p) < ℓ (𝐺2). Let 𝑇 ′

2 denote the PC-tree that represents𝐺 ′
2.

Obtain G ′¯ by merging Ḡ𝑇 ′
2
into Ḡ𝑆′1

between 𝑥 ′ and 𝑦 ′. Obtain Ḡ𝑆 from G ′¯ as in the
proofs of Lemma 27 and Lemma 28. Observe that the restriction of Ḡ𝑆 to 𝐺𝑆2 is Ḡ𝑆2 .
Moreover, observe that Ḡ𝑆 is obtained by inserting G𝑇 +

2
into an internal face of Ḡ𝑆1 .

All statements of Property 2 then translate directly from 𝐺1 and 𝑆1 to 𝐺 and 𝑆 . □

5.11.3 Interdependent Merging

The remaining case is that𝐺1 is not v-singular and either 𝐺2 is not v-singular, or 𝐺2
is v-singular and in 𝑇 ′

1 there do not exist two consecutive black leaves so that the

General Bundle Section 5.11

95

apex p between them satisfies ℓ (p) < ℓ (𝐺2). We then say that 𝐺1 and 𝐺2 are in-
terdependent. Consider the linearized order of parent edges of v in a level-planar
embedding E of𝐺 . The edges that belong to𝐺2 appear consecutively in this linearized
order because𝐺1 is not v-singular. The edges that belong to𝐺1 appear consecutively
in this linearized order because either 𝐺2 is not v-singular, or 𝐺2 is v-singular but
in 𝑇 ′

1 there do not exist two black leaves so that the apex p between them satis-
fies ℓ (p) < ℓ (𝐺2). Therefore, E can be obtained by merging E2 into E1 between two
appropriate vertices, and then merging the two instances of v .

Let 𝑅1 ≡ 𝑇1 be as in Property 2 Statement 5 for E1. Lemma 29 gives that the space ℎ
before or after v in 𝑅1 satisfies ℎ < ℓ (𝐺2). We update 𝑇1 to reflect this necessary
condition as follows. Let (𝜑,𝜓) denote the first arc in 𝑇1 on the path from v to the
root of 𝑇1, so that

1. both ℓ (p) < ℓ (𝐺2) and ℓ (𝑞) < ℓ (𝐺2), or

2. the arcs preceding and succeeding (𝜑,𝜓) around 𝜑 are both child arcs of 𝜑 , and
either ℓ (p) < ℓ (𝐺2) or ℓ (𝑞) < ℓ (𝐺2) (but not both),

where p and 𝑞 are the apices before and after (𝜑,𝜓) around 𝜑 , respectively (resolving
references if necessary). Note that if no such arc exists, then 𝐺 is not level planar
and, correspondingly, we define 𝑇 as the null tree.

Lemma 34. Let E be a level-planar embedding of 𝐺 and let E1 denote its restriction
to 𝐺1. Let 𝑅1 ≡ 𝑇1 be as in Property 2 Statement 5 for E1. Then v is the leftmost or
rightmost leaf in the subtree of 𝑅1 rooted at𝜓 .

Proof. If𝜓 = v the claim is trivially true. Otherwise,𝜓 is an inner node of 𝑅1. Con-
sider case (1). Let (𝜓,𝜔) denote the arc that precedes (𝜑,𝜓) on the path from v
to the root of 𝑅1. By choice of (𝜑,𝜓) it is max𝐻𝑅1 ((𝜓,𝜔)) ≥ ℓ (𝐺2). Together
with Property 1 Statement 3 this gives ℓ (𝐺2) ≤ max𝐻𝑅1 ((𝜓,𝜔)) ≤ min𝐻𝑅1 (𝜔).
Therefore, v must be either the leftmost or the rightmost leaf of the subtree of 𝑅1
rooted at 𝜔 . Consider that the arcs that precede and succeed (𝜓,𝜔) around 𝜓 are
both child arcs. Because we are not in case (2) we have that the apices p ′, 𝑞′ in-
cident to (𝜓,𝜔) around 𝜓 satisfy ℓ (p ′), ℓ (𝑞′) ≥ ℓ (𝐺2). Then the spaces ℎ1, ℎ2 be-
fore and after v in 𝑅1 satisfy ℎ1, ℎ2 ≥ ℓ (𝐺2), a contradiction to Lemma 29. There-
fore, (𝜑,𝜓) precedes or succeeds (𝜓,𝜔) around 𝜓 . Consider the case that (𝜑,𝜓)
precedes (𝜓,𝜔) around 𝜓 , i.e., (𝜓,𝜔) is the leftmost child arc of 𝜓 . Let p ′ denote
the apex between (𝜑,𝜓) and (𝜓,𝜔) (resolving a reference if necessary), and let 𝑞′
denote the apex between (𝜓,𝜔) and its successor around𝜓 . It is ℓ (p ′) ∈ 𝐻𝑅1 ((𝜑,𝜓))
and ℓ (𝑞′) ∈ 𝐻𝑅1 (𝜓). So, Property 1 Statement 3 gives that ℓ (p ′) ≤ ℓ (𝑞′). By choice
of (𝜑,𝜓) it is ℓ (𝑞′) ≥ ℓ (𝐺2). Recall that v must be either the leftmost or the right-
most leaf of the subtree of 𝑇1 rooted at 𝜔 . Together, this means that v must be the

Chapter 5 Level Planarity Testing: A Unified Approach

96

leftmost leaf of the subtree of 𝑇1 rooted at 𝜓 . Because (𝜓,𝜔) is the leftmost child
arc of 𝜓 this means that v is also the leftmost leaf of the subtree of 𝑅1 rooted at 𝜓 .
If (𝜑,𝜓) succeeds (𝜓,𝜔) around𝜓 , a symmetric argument argument shows that v is
the rightmost leaf in the subtree of 𝑅1 rooted at𝜓 .
In case (2) we know ℓ (𝐺2) ≤ max𝐻𝑇1 ((𝜑,𝜓)) ≤ min𝐻𝑇1 (𝜓), which suffices to

show the claim. □

Motivated by Lemma 34, let 𝐿 denote the set of leaves in the subtree of 𝑇1 rooted
at 𝜓 . Obtain 𝑇 +

1 from 𝑇1 by (𝐿 \ {v})-updating. Let 𝜒 denote the C-node that is
newly created during this update. Observe that v is either the first or the last child
of 𝜒 . Assume without loss of generality that the latter case holds true, reversing the
orientation of 𝜒 if necessary. Consider 𝑇 +

2 . Recall that by construction, v is a child
of the root 𝜌 of 𝑇 +

2 . Let (𝜌, v), 𝛼1, 𝛼2, . . . , 𝛼𝑛 denote the counter-clockwise order of
arcs around 𝜌 in 𝑇2. The apex between 𝛼𝑛 and (𝜌, v) is 𝜍 . Let 𝑟2 denote the apex
between (𝜌, v) and 𝛼1.
Obtain 𝑇 by merging 𝑇 +

2 into 𝑇 +
1 by inserting the arcs 𝛼1, . . . , 𝛼𝑛 after (𝜒, v)

around 𝜒 . Take 𝑃𝑇 as the union of 𝑃𝑇 +
1
and 𝑃𝑇 +

2
. Define the apex between (𝜒, v)

and 𝛼1 as 𝑟2. If 𝜒 is not the root, then let 𝑟1 denote the reference between (𝜒, v) and
the parent arc of 𝜒 in 𝑇 +

1 . Then define the reference between 𝛼𝑛 and the parent arc
of 𝜒 in𝑇 as 𝑟1. Add ⟨min𝑉 (𝐺2), 𝑘⟩ to 𝑍 (𝑟1). If the endpoint of 𝛼𝑛 is a C-node 𝜈, let 𝑜
denote the reference before 𝛼𝑛 around 𝜈. Add the edge (𝑜, 𝑟1) with timestamp 𝑘 to
the reference network. If 𝜒 is the root, let 𝑐 denote the apex after (𝜒, v) around 𝜒 .
In 𝑇 , define the apex after 𝛼𝑛 as 𝑐 . Create a new reference 𝑜 ′, annotate it with 𝑐 ,
and set 𝑍 (𝑜 ′) = {⟨min𝑉 (𝐺2), 𝑘⟩}. If the endpoint of 𝛼𝑛 is a C-node 𝜈, let 𝑜 denote
the reference before 𝛼𝑛 around 𝜈. Replace 𝑜 with 𝑜 ′ and add the edge (𝑜, 𝑜 ′) with
timestamp 𝑘 to the reference network. This completes the treatment of case (1).

In case (2) we continue with one final step. Observe that p ≠ 𝑞 implies that 𝜑 is a C-
node, which means that the parent of 𝜒 in𝑇 +

1 and𝑇 is 𝜑 . Contract 𝜒 into 𝜑 as follows.
Let 𝛽1 = (𝜑, 𝜒), 𝛽2, . . . , 𝛽𝑏 denote the counter-clockwise order of arcs around 𝜑 . Recall
that 𝛽𝑏, 𝛽1 and 𝛽2 are all child arcs of 𝜑 , and that p is the apex between 𝛽𝑏 and 𝛽1,
and 𝑞 is the apex between 𝛽1 and 𝛽2. Further, let 𝛾1 = (𝜑, 𝜒), 𝛾2, . . . , 𝛾𝑔 denote the
counter-clockwise order of arcs around 𝜒 . Contract 𝜒 into 𝜑 by setting the order of
arcs around 𝜑 as 𝛽2, 𝛽3, . . . , 𝛽𝑏, 𝛾2, 𝛾3, . . . , 𝛾𝑔. Define the apex between 𝛽𝑏 and 𝛾2 as p ,
and the apex between 𝛾𝑔 and 𝛽2 as 𝑞. If the endpoint of 𝛾2 is a C-node, move the
reference between 𝛾1 and 𝛾2 around 𝜒 to be the reference after 𝛾2 around its endpoint.
Symmetrically, if the endpoint of 𝛾𝑔 is a C-node, move the reference between 𝛾𝑔
and 𝛾1 around 𝜒 to be the reference before 𝛾𝑔 around its endpoint.

Lemma 35. Let 𝐺 be a binary 𝑘-level graph so that 𝐺1 and 𝐺2 are interdependent.
Further, let 𝑇 be the PC-tree obtained from 𝑇 +

1 ,𝑇
+
2 by merging. Then 𝑇 represents 𝐺 .

General Bundle Section 5.11

97

Proof. We have already argued the correctness in the case when 𝑇 is the null tree.
Consider the other case, namely that𝑇 is not the null tree. For now, consider case (1).
Let 𝑆 ≡ 𝑇 . Let 𝑆1 ≡ 𝑇 +

1 , 𝑆2 ≡ 𝑇 +
2 denote PC-trees so that 𝑆 arises from merging 𝑆1

and 𝑆2 without reordering. As always, 𝐸𝑆 = 𝐸𝑆1 ∪ 𝐸𝑆2 ∪ {𝑒 (𝑃𝑆 , ⟨min𝑉 (𝐺2), 𝑘)⟩}.
We first show Property 1. For Statement 1, observe 𝐸𝑆 = 𝐸𝑆1 ∪𝐸𝑆2 ∪{𝑥,min𝑉 (𝐺2)},

where 𝑥 is a vertex of𝐺1. Because𝐺1 +𝐸𝑆1 and𝐺2 +𝐸𝑆2 are single-source graphs, this
means that𝐺+𝐸𝑆 has the single source min𝑉 (𝐺1) = min𝑉 (𝐺). So, Statement 1 holds.
For Statement 2, observe that 𝜍 is the apex between 𝛼𝑛 and (𝜌, v) in𝑇 +

2 , so it is the one
apex in𝑇 +

2 that is not copied to𝑇 . Statement 2 then holds for𝑇 because it holds for𝑇 +
1

by Lemma 25. For Statement 3, first consider the arc (𝜑, 𝜒) of𝑇 . By construction of𝑇
it is𝐻𝑇 ((𝜑, 𝜒)) = 𝐻𝑇 +

1
((𝜑, 𝜒)) and𝐻𝑇 (𝜒) = 𝐻𝑇 +

1
(𝜒)∪

(︂
𝐻𝑇 +

2
(𝜌) \ {𝜍}

)︂
. By assumption

for 𝑇 +
1 it is max𝐻𝑇 +

1
((𝜑, 𝜒)) ≤ min𝐻𝑇 +

1
(𝜒). By choice of (𝜑, 𝜒) during the construc-

tion of 𝑇 it is max𝐻𝑇 +
1
((𝜑, 𝜒)) < ℓ (𝐺2). Because every apex in 𝑇 +

2 except for 𝜍 is a
vertex of𝐺2, it is ℓ (𝐺2) ≤ min

(︂
𝐻𝑇 +

2
(𝜌) \ {𝜍}

)︂
. Hence, max𝐻𝑇 ((𝜑, 𝜒)) ≤ min𝐻𝑇 (𝜒).

Next, consider the arc 𝛼𝑛 in 𝑇 , which is the rightmost child arc of 𝜒 . Let ` denote its
endpoint, which is an inner node in 𝑇 +

2 . It is 𝐻𝑇 (`) = 𝐻𝑇 +
2
(`). Let 𝑎 denote the apex

between the predecessor of 𝛼𝑛 and 𝛼𝑛 around 𝜌 in 𝑇 +
2 . It is 𝐻𝑇 +

2
(𝛼𝑛) = {ℓ (𝑎), ℓ (𝜍)},

so max𝐻𝑇 +
2
(𝛼𝑛) = ℓ (𝑎). Property 2 guarantees 𝑎 ≠ 𝜍 , then ℓ (𝐺2) ≤ ℓ (𝑎). By

construction of 𝑇 it is 𝐻𝑇 (𝛼𝑛) = {ℓ (𝑎), ℓ (𝑥)}, where 𝑥 is the apex after (𝜒, v)
in 𝑇 +

1 , resolving a reference if necessary. By choice of (𝜑, 𝜒) it is ℓ (𝑥) < ℓ (𝐺2).
Hence, max𝐻𝑇 (𝛼𝑛) = ℓ (𝑎) = max𝐻𝑇 +

2
(𝛼𝑛). By assumption for 𝑇 +

2 we have that
it is max𝐻𝑇 +

2
(𝛼𝑛) ≤ min𝐻𝑇 +

2
(`), and with the previous arguments we conclude

that it is max𝐻𝑇 (𝛼𝑛) ≤ min𝐻𝑇 (`). For all other arcs of 𝑇 whose existence can
be traced back to 𝑇 +

2 no sets change and the claim follows by assumption for 𝑇 +
2 .

Finally, consider an arc (`, 𝜈) of 𝑇 whose existence can be traced back to 𝑇 +
1 . It

is 𝐻𝑇 ((`, 𝜈)) = 𝐻𝑇 +
1
((`, 𝜈)). If the subtree of 𝑇 rooted at 𝑇 does not contain 𝜒 ,

then 𝐻𝑇 (𝜈) = 𝐻𝑇 +
1
(𝜈) and the claim follows by assumption for 𝑇 +

1 . If the sub-
tree of 𝑇 rooted at 𝑇 contains 𝜒 , then 𝐻𝑇 (𝜈) = 𝐻𝑇 +

1
(𝜈) ∪

(︂
𝐻𝑇 +

2
(𝜌) \ {𝜍}

)︂
. By as-

sumption for 𝑇 +
1 we have max𝐻𝑇 +

1
((`, 𝜈)) ≤ min𝐻𝑇 +

1
(𝜈). By choice of (𝜑, 𝜒) we

have max𝐻𝑇 +
1
((`, 𝜈)) < ℓ (𝐺2). Because every apex in 𝑇 +

2 other than 𝜍 is an apex
of 𝐺2, it is ℓ (𝐺2) ≤ min

(︂
𝐻𝑇 +

2
(𝜌) \ {𝜍}

)︂
. This shows max𝐻𝑇 ((`, 𝜈)) ≤ min𝐻𝑇 (𝜈).

This shows Statement 3 for 𝑇 . Statement 4 holds by construction of 𝑃𝑇 .
We now turn to Property 2. Obtain Ḡ𝑆 from Ḡ𝑆1 and Ḡ𝑆2 as follows. Define 𝑎, 𝑏

as follows. If 𝜒 has the same orientation in 𝑆1 as in 𝑇 +
1 , let 𝑎 = v and let 𝑏 denote

the successor of v around 𝑆1, and define 𝑟 = 𝑞. Otherwise, if 𝜒 has the opposite
orientation in 𝑆1 as in 𝑇 +

1 , let 𝑏 = v and let 𝑎 denote the predecessor of v around 𝑆1,
and define 𝑟 = p . In the former case, 𝜌 also has the same orientation in 𝑆2 as in 𝑇 +

2 ,

Chapter 5 Level Planarity Testing: A Unified Approach

98

define 𝑥 as the predecessor of v around 𝑆2 and define 𝑦 = v . In the latter case, 𝜌 has
the opposite orientation in 𝑆2 as in 𝑇 +

2 , define 𝑥 = v and define 𝑦 as the successor
of v around 𝑆2. The apex between 𝑥 and 𝑦 in 𝑆2 is then 𝜍 . Merge Ḡ𝑆2 (split at the
augmentation path from 𝜍 to 𝜍 between 𝑥 and 𝑦) into Ḡ𝑆1 between 𝑎 and 𝑏, as justified
by Lemma 30. More precisely, if 𝜒 has the same orientation in 𝑆1 as in𝑇 +

1 , merge before
the augmentation path between 𝑎 and 𝑏, which begins at the apex 𝑟 = 𝑞. Otherwise,
if 𝜒 has the opposite orientation in 𝑆1 as in 𝑇 +

1 , merge after the augmentation path
between 𝑎 and 𝑏, which begins at the apex 𝑟 = p .
Statement 1 holds by construction of Ḡ𝑆 . Statement 2 holds vacuously for 𝑈 = ∅.

Statement 3 holds by construction of Ḡ𝑆 . For Statement 4, consider vertices 𝑥 ⊲ 𝑦

in G𝑆 . If both 𝑥 and 𝑦 are vertices of𝐺1, then 𝐼 (𝑗, 𝑘) can be merged into G𝑆 between 𝑥
and 𝑦 if and only if 𝐼 (𝑗, 𝑘) can be merged into G𝑆1 between 𝑥 and 𝑦 . By construction
of Ḡ𝑆 , the space between 𝑥 and 𝑦 in 𝑆 equals the space between 𝑥 and 𝑦 in 𝑆1. A
similar argument holds if both 𝑥 and 𝑦 are vertices of 𝐺2. This leaves exactly one
pair of vertices in G𝑆 . Namely, if the orientation of 𝜒 is the same in 𝑆 as in 𝑇 , let 𝑥
denote the rightmost leaf of the subtree of 𝑆 rooted at 𝛼𝑛 (or 𝑥 = v if𝐺2 is v-singular)
and let 𝑦 denote the successor of v around G𝑆 , which is a vertex of 𝐺1. Then 𝐼 (𝑗, 𝑘)
can be merged into G𝑆 between 𝑥 and 𝑦 if it can be merged into G𝑆1 between v and 𝑦

and it can be merged into G𝑆2 between 𝑥 and v . The space between v and 𝑦 in 𝑆1
is ℓ (𝑟1) and the space between 𝑥 and v in 𝑆2 is ℓ (𝜍). By construction of 𝑇 , the space
between 𝑥 and 𝑦 in 𝑆 is ℓ (𝑟1). A similar argument holds if the orientation of 𝜒 is
opposite in 𝑆 and 𝑇 . This shows Statement 4.
For Statement 5, consider a level-planar embedding E of 𝐺 . Let E1, E2 denote the

restriction of E to 𝐺1,𝐺2, respectively. By assumption for 𝑇1,𝑇2 and by construction
of 𝑇 +

1 ,𝑇
+
2 there exists for 𝑖 = 1, 2 a PC-tree 𝑅𝑖 ≡ 𝑇 +

𝑖 such that 𝑅𝑖 matches E𝑖 and for
each pair of vertices 𝑥 ⊲ 𝑦 in E𝑖 if 𝐼 (𝑗, 𝑘) can be merged into E𝑖 between 𝑥 and 𝑦 , then
the space ℎ𝑖 between 𝑥 and 𝑦 in 𝑅𝑖 satisfies ℎ𝑖 < 𝑗 . Obtain 𝑅 by merging 𝑅1 and 𝑅2.
Clearly 𝑅 ≡ 𝑇 , and 𝑅 matches E .
The proof of case 2 is a special case of the proof of case 1, namely for a fixed

orientation of 𝜒 with respect to its parent node in 𝑇 . Note that the contraction of 𝜒
into 𝜑 enforces precisely this fixed relative orientation. □

5.12 Disjoint Connected Components

Finally, we treat disjoint connected components. In the non-radial case, level pla-
narity of the entire graph trivially reduces to level planarity of each of its con-
nected components. This is not true in the radial setting; see Figure 5.9 for an
example. Consider a level graph 𝐺 and let 𝐺1,𝐺2, . . . ,𝐺𝑛 denote its disjoint con-
nected components that contain a vertex on level 𝑘 . Without loss of generality,

Implementation in Linear Time Section 5.13

99

(a) (b)

Figure 5.9: The graph shown in (a) is radial level planar, but two disjoint copies of it
are not (b).

assume ℓ (𝐺1) < ℓ (𝐺2) < · · · < ℓ (𝐺𝑛). Let 𝑇1,𝑇2, . . . ,𝑇𝑛 be PC-trees such that 𝑇𝑖
represents 𝐺𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Using Lemmas 29 and 30, we find that 𝐺 is level planar
if and only if 𝑇1 contains an apex p with ℓ (p) < ℓ (𝐺2) (from which ℓ (p) < ℓ (𝐺𝑖)
follows for 2 ≤ 𝑖 ≤ 𝑛) and for 2 ≤ 𝑖 ≤ 𝑛 the PC-tree 𝑇𝑖 contains 𝜍 as an apex. We can
run this check once for every level.

5.13 Implementation in Linear Time

Our algorithm as described in the previous sections clearly runs in polynomial time.
We now argue that it can even be implemented in linear time. First, recall from
Theorem 7 that given a level graph𝐺 the graph𝐺× (on which our algorithm operates)
can be computed in linear time. From now on, we refer to 𝐺× simply as 𝐺 .
To obtain the linear-time bound for PC-tree updates, Hsu and McConnell use a

potential 𝜑 as follows [HM03, Section 4.4]. Let 𝑇 be a PC-tree and let 𝐶 and 𝑃 denote
the set of C-nodes and P-nodes in 𝑇 , respectively. Moreover, let 𝑢 denote the number
of leaves that are to be made consecutive during all upcoming updates. Define the
potential of 𝑇 as 𝜑 (𝑇) = 𝑢 + |𝐶 | +∑︁

𝑥 ∈𝑃 (deg(𝑥) − 1). The idea is that 𝜑 provides a
budget from which the cost of updates can be paid. Hsu and McConnell show that
updates (including subsequent contracts) are within the budget. We have to show
that this extends to the adaptions that we made to the update operation, and also to
the other operations that we defined.
First, consider growing a vertex 𝑢 with children v1, v2, . . . , v𝑛 . This requires de-

positing another 𝑛 credits. We can bill this cost to the edges (𝑢, v1), (𝑢, v2), . . . , (𝑢, v𝑛).
To cover the costs of all grow operations a number of credits linear in the size of
the input graph need to be deposited. Contracting and pruning are constant-time
operations. To implement our adapted update operation, observe that all references

Chapter 5 Level Planarity Testing: A Unified Approach

100

and apices that need to be handled are stored incident to the terminal path. Therefore,
the overhead incurred by the treatment of references and apices is linear in the
length p of the terminal path. Recall from Lemma 1 that updating requires𝑂 (|𝑈 | +p)
time. So the overhead is linear in the cost of the update itself.
For the unary bundle, we need to inspect the black neighbors of 𝜒 to find out

which one of the three cases applies. There are at most |𝑈 | black neighbors, so again
this is bounded by the cost of the update that creates these black neighbors. The
first two cases of the unary bundle, namely those treated by Lemmas 26 and 27,
are constant-time operations. The third case, namely the one treated by Lemma 28,
requires computing the left-maximal and right-maximal trees. The running time of
this computation is proportional to the size of subtree induced by the black nodes.
Because this entire subtree is then replaced by a single leaf v we can pay for this
running time using the PC-tree budget.

Now consider the general bundle. Merging v-singular components 𝐺1,𝐺2, . . . ,𝐺𝑛

is clearly feasible in 𝑂 (𝑛) time. In the remaining cases, the updates involved in
the computation of 𝑇 +

1 and 𝑇 +
2 are covered by the PC-tree budgets. Independent

merging as in Lemma 32 is a constant-time operation. Independent merging as in
Lemma 33 requires us to inspect the black neighbors of 𝜒 in 𝑇 ′

1 , which we can bill to
the preceding update as we did before. During an interdependent merge as described
by Lemma 35, the cost of walking up in 𝑇1 to compute 𝑇 +

1 can be forward-billed to
the subsequent update. Once 𝑇 +

1 and 𝑇 +
2 are computed, interdependent merging is a

constant-time operation. The budget of the merged tree 𝑇 is obtained by combining
the budgets of 𝑇 +

1 and 𝑇 +
2 plus, possibly, a constant number of credits.

To handle disjoint connected components, we maintain for each PC-tree𝑇 a list of
apices stored in𝑇 that is sorted with respect to the level of each apex. Recall that new
apices are only created during a grow, at which point the apex can simply be appended
to the list. We store for each apex a pointer into the list so that when an apex is
removed from the tree it can be removed from the list in constant time. Furthermore,
the value ℓ (𝐺𝑖) can easily be maintained for each connected component 𝐺𝑖 . The
check described in Section 5.12 can then be implemented in constant time, so running
it once for each level incurs at most linear additional running time.

Let 𝑇 denote the PC-tree that represents 𝐺 . To compute a level-planar embedding
of 𝐺 in linear time, we need to compute 𝐸𝑇 in linear time. First, recall that reversing
C-nodes involves performing a reference flip of that node and all of its C-node
children. For our algorithm to run in linear time, reversing a C-node needs to be
a constant-time operation. To achieve this, we store the references incident to an
arc (_, `) around ` not in the circular list of arcs around `, but in the one around _.
When asking for the references incident to (_, `) around `, we then have to query the
circular list of arcs around _ instead. This only takes a constant amount of additional
running time. The benefit of this is that reversing a C-node, which reverses the

Conclusion Section 5.14

101

circular list of arcs around it, automatically performs a reference flip of all of its
children. We then only have perform a reference flip of the node itself, which also
takes a constant amount of additional running time. Next, recall that the reference
network is a forest of rooted trees. Resolving references works by walking towards
the root of the tree that contains the reference and then returning the vertex with
which this root is annotated. Over time, previously disjoint trees of that forest are
merged together. Resolving references in overall linear time can be achieved by an
application of the offline union-find algorithm due to Gabow and Tarjan [GT85]. This
augments 𝐺 into a single-source supergraph of 𝐺 . We can then use the linear-time
level-planar embedding algorithm for single-source level graphs by Di Battista and
Nardelli [DN88]. Alternatively, we can vertically flip the single-source supergraph
of 𝐺 and run our algorithm again to obtain an 𝑠𝑡-planar augmentation of 𝐺 . Using
the fact that for 𝑠𝑡-graphs planarity coincides with level planarity [Lei98, p. 117,
Theorem 5.1] we can then use the linear-time planar embedding algorithm by Chiba
et al. [CNAO85] to obtain a level-planar embedding of𝐺 . We conclude the following.

Theorem 8. A level graph can be tested for (radial) level planarity in linear time. If
the result is positive, it can be embedded in linear time as well.

5.14 Conclusion

We have presented a linear-time algorithm that tests a level graph for (radial) level
planarity and, if the result is positive, outputs a (radial-)level-planar embedding of
it. Although our algorithm is not the first linear-time algorithm for (non-radial)
level planarity testing, it is, in our opinion, the first one to come with a convincing
proof of correctness. For radial level planarity testing, we have argued that our
algorithm covers an important case that seems to have not been handled by the
existing literature. This makes our algorithm the first complete linear-time algorithm
for radial level planarity testing and embedding.

103

Part II

Constrained Embeddings

105

6 Partial and Constrained

Level Planarity

Let 𝐺 = (𝑉 , 𝐸) be a 𝑘-level graph with level assignment ℓ . In the problem Con-
strained Level Planarity (CLP for short), we are given a partial ordering ≺𝑖

of 𝑉𝑖 := ℓ−1 (𝑖) for each 𝑖 ∈ [𝑘], and we seek a level-planar drawing where the order
of the vertices on ℓ𝑖 is a linear extension of ≺𝑖 . A special case of this is the problem
Partial Level Planarity (PLP for short), where we are asked to extend a
given level-planar drawing H of a subgraph 𝐻 ⊆ 𝐺 to a complete drawing G of 𝐺
without modifying the given drawing, i.e., the restriction of G to 𝐻 must coincide
with H.

We give a simple polynomial-time algorithm with running time 𝑂 (𝑛5) for CLP
of single-source graphs that is based on a simplified version of an existing level-
planarity testing algorithm for single-source graphs. We introduce a modified type of
PQ-tree data structure that is capable of efficiently handling the arising constraints to
improve the running time to𝑂 (𝑛+𝑘𝑠), where 𝑠 denotes the size of the constraints. We
complement this result by showing that PLP is NP-complete even in very restricted
cases. In particular, PLP remains NP-complete even when 𝐺 has a constant number
of levels, and when 𝐺 is a subdivision of a triconnected planar graph with bounded
degree.

This chapter extends work initiated as part of my master’s thesis [Brü16] and is
based on joint work with Ignaz Rutter [BR17]. Here, we present improved running
times of 𝑂 (𝑛 + 𝑘𝑠) for CLP and 𝑂 (𝑘𝑛) for PLP, compared to 𝑂 (𝑛3) and 𝑂 (𝑛2)
in [Brü16], respectively. Moreover, we have restructured the correctness proof.

Chapter 6 Partial and Constrained Level Planarity

106

(b) 1

2

3

4

𝑥

𝑦

𝑧

𝑟

1

2

3

4

(a)

𝑠

𝑞 𝑢

𝑤 𝑡

1

2

3

4

(c)
𝑞

𝑢
𝑦

𝑥

𝑧

𝑤
𝑟

𝑠

𝑞 𝑢

𝑤 𝑡

Figure 6.1: A partial level-planar drawing (a) and an extension of it (b). The partial
level-planar drawing shown in (c) does not have an extension. For instance, the
vertex 𝑟 and its incident edges cannot be inserted into the partial drawing without
creating edge crossings.

6.1 Introduction

In this chapter, we study a generalization of the level planarity testing problem where,
in addition to the 𝑘-level graph𝐺 , we are given constraints on the order of the vertices
in each level in the form of a partial order ≺𝑖 for each level 𝑖 ∈ [𝑘]. The task is to
determine a level-planar drawing of 𝐺 compatible with the constraints, i.e., such
that the vertex order in each level 𝑖 is a linear extension of ≺𝑖 . We call this problem
Constrained Level Planarity or CLP for short.
A strongly related problem is the problem of extending a given drawing H of a

subgraph𝐻 ⊆ 𝐺 , also called partial drawing, to a level-planar drawing G of𝐺 without
changing the given drawingH. That is, the restriction of G to𝐻 must coincide withH.
We call such a drawing G an extension. The problem of deciding whether a given
partial drawing admits an extension is called Partial Level Planarity, or PLP
for short. See Figure 6.1 that shows a partial drawing (a) and an extension of it (b),
and also a partial drawing that does not have an extension (c). Of course, taking for
each level 𝑖 the order ≺𝑖 as the vertex order on level 𝑖 in H yields a set of constraints
for 𝐺 . An extension is necessarily compatible with all these constraints. Later, we
will see that for so-called proper level graphs, where all edges connect vertices of
adjacent levels, these instances are actually equivalent. Since both problems can be
reduced to the corresponding problem on proper level graphs it turns out that indeed
PLP can be seen as a special case of CLP.

Related Work. Historically, level drawings were among the first drawing styles
that were studied systematically with the introduction of the famous Sugiyama frame-
work [STT81]. Level drawings are frequently used for visualizing hierarchical data
and there is extensive research on every step of the framework; see [HN13] for a
survey. Due to the importance of crossings on the visual clarity of drawings [PCJ97],
the concept of level planarity has also received considerable attention. Di Battista

Introduction Section 6.1

107

and Nardelli [DN88] gave the first efficient recognition algorithm for the subclass
of single-source graphs. Jünger and Leipert [JLM98] solved the general case and
gave a linear-time algorithm for testing whether a given level graph is level planar.
Later they improved their algorithm to also output a corresponding level planar
embedding, if it exists, in the same running time [JL02]. Their algorithm is, how-
ever, quite complicated. As a result, Randerath et al. [Ran+01] gave a much simpler
recognition algorithm with running time 𝑂 (𝑛2), and Harrigan and Healy [HH07]
formulated a quadratic-time recognition and embedding algorithm. There is also a
quadratic-time algorithm based on a Hanani-Tutte characterization [FPSŠ13]. More-
over, radial variants, where the levels are represented by concentric circles rather
than horizontal lines, have been considered [BBF05]. There also exists a Hanani-Tutte
characterization for radial level planarity [FPS17]. Recently, a connection between
the algorithm due to Randerath et al. [Ran+01] and the Hanani-Tutte characterization
due to Fulek et al. [FPS17] was used to obtain a simple, efficient recognition algorithm
for radial level-planar graphs [BRS18]. Further variants on cylinders [Bra14] and on
the torus [Ang+15a] have also been considered.

Constrained versions of graph representations and planarity variants are another
type of widely studied problem as, for visualization purposes, it is often desirable to
find visualizations that satisfy additional properties. Some constrained versions of
level planarity have been considered. Harrigan and Healy [HH07] and Angelini et
al. [Ang+15b] both study level planarity where vertices of the same level must be
ordered consistently with different kinds of constraint trees. Klemz and Rote show
that deciding level planarity is NP-complete even in the severely constrained case
where the orders of all vertices on all levels are fixed [KR19]. In real-world settings,
sources of constraints include restrictions imposed by a user, e.g., by specifying
the left-to-right order of some vertices or even fixing a part of the drawing, or as a
consistency requirement stemming from the dynamic nature of a network, where
one considers the restrictions imposed by stable parts of a network as constraints
on the representation of the next snapshot. The latter leads to a partial drawing
extension problem. More formally, a partially drawn graph is a triplet (𝐺,𝐻,H),
where 𝐺 is a graph, 𝐻 ⊆ 𝐺 is a subgraph and H is a drawing of 𝐻 . The partial
drawing extension problem with input (𝐺,𝐻,H) asks to complete the drawing H to
a drawing G of 𝐺 without modifying the given subdrawing of H, i.e., the restriction
of G to 𝐻 is identical to H. The partial drawing extension problem, and the related
simultaneous drawing problem have received considerable attention in the last years.

Angelini et al. [Ang+15c] give a linear-time algorithm for partial drawing extension
of topological planar drawings, where edges are represented by arbitrary, non-crossing
Jordan arcs between their endpoints. In this case, the positive instances have also
been characterized via forbidden subgraphs [JKR13] and there exists a Hanani-Tutte
characterization [Sch13], which also leads to a polynomial-time algorithm. In contrast,

Chapter 6 Partial and Constrained Level Planarity

108

for planar straight-line drawings, the partial drawing extension problem is NP-
complete [Pat06], though it becomes polynomial-time solvable if 𝐻 is biconnected
and H is a convex drawing [MNR16]. Recently, partial upward planar drawings have
been considered [DDF20, BHR19]. Moreover, the problem has also been studied under
the name partial representation extension for graph representations that are not node-
link representations, in particular for different types of intersection representations,
namely for interval representations [Kla+17b, BR16], for proper and unit interval
representations [Kla+17a], for chordal graphs (which are intersection graphs of
subtrees of a tree) [KKOS15], for permutation and function graphs [KKKW12] and,
recently, for circle graphs [CFK19] and trapezoid graphs [KW17].

We point out that the partial drawing extension problem is strongly related to the
simultaneous drawing problem, whose input consists of two graphs𝐺1 and𝐺2 sharing
a subgraph𝐺 = 𝐺1 ∩𝐺2. The problem is to decide whether there exist drawings of𝐺1
and 𝐺2 that coincide on 𝐺 . This is equivalent to finding a drawing of 𝐺 that extends
to drawings of 𝐺1 and 𝐺2. It is known that the problem is NP-complete for planar
straight-line drawings [Est+07], though some special cases have recently been shown
to be polynomial-time solvable [GHKR14]. For topological planar drawings, this
problem is called Simultaneous Embedding with Fixed Edges and despite
significant progress in the last years [Ang+12, BR15, BKR18, BR16, FT20], the com-
plexity status is still open; see [BKR13] for a survey. The simultaneous representation
problem for intersection representations was introduced by Jampani and Lubiw, who
studied permutation and chordal graphs [JL12] and interval graphs [JL10]. Bläsius
and Rutter [BR16] improved the running time for simultaneous interval represen-
tations to linear. Recently, level planarity has been considered in this setting, too;
simultaneous level planarity is NP-complete for two graphs on three levels, as well
as for three graphs on two levels, an efficient algorithm exists only for two graphs
on two levels [Ang+15a].

Contribution and Outline. We study the level planarity problem subject to con-
straints and in the context of partial drawings. We present preliminaries in Section 6.2.
In particular, we show that, indeed, PLP reduces to CLP. In Section 6.3 we present a
simplified version of the algorithm of Di Battista and Nardelli [DN88] for the single-
source case. We then introduce the order graph, a data structure that allows us to
efficiently intersect an implicit representation of the set of all level-planar drawings
of a graph with an implicit representation of a set of (not necessarily planar) level
drawings that satisfy the constraints. Since the latter set is guaranteed to contain all
level-planar drawings that satisfy the constraints, this allows us to solve CLP for
single-source graphs in time 𝑂 (𝑛5 + 𝑠), where 𝑠 is the size of the constraints, i.e., the
number of distinct vertex pairs that are related by some ≺𝑖 . We then refine the algo-

Preliminaries Section 6.2

109

rithm and develop a modified version of a PQ-tree, which we call constrained PQ-tree.
It handles both the planarity and the constraints in the same data structure. With
this modification the algorithm runs in time 𝑂 (𝑛 + 𝑘𝑠) for proper 𝑘-level graphs. In
Section 6.4 we complement these results by showing that PLP is NP-complete even
in quite restricted cases, in particular, even when it has a constant number of levels,
and when it is a subdivision of a triconnected planar graph (i.e., its combinatorial
embedding is essentially fixed), the graph has fixed maximum degree and the graph
has only a constant number of sources per level. This shows that our algorithmic
results are likely tight.
Moreover, while a Hanani-Tutte-style characterization exists for level planarity,

our hardness result rules out the existence of such a characterization for partial
level planarity. This contrasts the situation for usual (topological) planarity, where
Hanani-Tutte characterizations exist for both variants [Sch13].

6.2 Preliminaries

In this chapter, we restrict our treatment to proper level graphs. This is without loss of
generality, though the resulting proper graph may have size in Θ(𝑛2), where 𝑛 = |𝑉 |
is the number of vertices of the original graph.
Consider a level-planar embedding of a proper 𝑘-level graph 𝐺 = (𝑉 , 𝐸), which

consists of linear orderings ≺𝑖 of the vertices in𝑉𝑖 along the horizontal line ℓ𝑖 with 𝑦-
coordinate 𝑖 . By defining 𝑢 ≺ v if ℓ (𝑢) < ℓ (v) or if ℓ (𝑢) = ℓ (v) and 𝑢 ≺𝑖 v , we can
describe a level drawing by a single linear ordering ≺ of 𝑉 , which lists the vertices
in 𝑉1, . . . ,𝑉𝑘 in their left-to-right orders. Di Battista and Nardelli give the following
characterization of level-planar drawings.

Lemma 36 ([DN88, Lemma 1]). Let 𝐺 = (𝑉 , 𝐸) be a proper 𝑘-level graph and let ≺
be a drawing of 𝐺 . Then ≺ is planar if and only if for any distinct vertices 𝑢, 𝑤 ∈ 𝑉𝑗

and v, 𝑥 ∈ 𝑉𝑗+1, 𝑗 ∈ [𝑘] with (𝑢, v), (𝑤, 𝑥) ∈ 𝐸 it is 𝑢 ≺ 𝑤 ⇔ v ≺ 𝑥 .

Two vertex pairs 𝑠𝑠 ′ with 𝑠, 𝑠 ′ ∈ 𝑉𝑖 and 𝑡𝑡 ′ with 𝑡, 𝑡 ′ ∈ 𝑉𝑗 are equivalent (𝑠𝑠 ′ ≡ 𝑡𝑡 ′

for short) if in every level-planar drawing ≺ of𝐺 it is either 𝑠 ≺ 𝑠 ′ and 𝑡 ≺ 𝑡 ′ or 𝑠 ′ ≺ 𝑠

and 𝑡 ′ ≺ 𝑡 . Lemma 36 allows us to determine a first set of equivalent vertex pairs.
Of course, if 𝑠𝑠 ′ ≡ 𝑡𝑡 ′ and 𝑡𝑡 ′ ≡ 𝑢𝑢 ′, transitivity implies 𝑠𝑠 ′ ≡ 𝑢𝑢 ′. More generally,

we can obtain additional equivalent pairs by considering suitable paths in𝐺 as follows.
Let lace(𝑎, 𝑏) denote the set of all paths whose first vertex is in level 𝑎, whose last
vertex is in level 𝑏, and whose interior vertices v satisfy ℓ (v) ∈ [𝑎, 𝑏].

Lemma 37 ([DN88, Lemma 2]). Let 𝐺 be a proper 𝑘-level graph and let (𝑠, . . . , 𝑡)
and (𝑠 ′, . . . , 𝑡 ′) in be two vertex-disjoint paths in lace(𝑎, 𝑏) with 1 ≤ 𝑎 < 𝑏 ≤ 𝑘 .
Then 𝑠𝑠 ′ ≡ 𝑡𝑡 ′.

Chapter 6 Partial and Constrained Level Planarity

110

Drawing constraints for a proper level graph𝐺 = (𝑉 , 𝐸) are expressed as a partial
ordering ≺′ of 𝑉 . A drawing ≺ of 𝐺 satisfies the constraints ≺′ if and only if for
every 𝑢, v ∈ 𝑉 with 𝑢 ≺′ v it is also 𝑢 ≺ v . The size 𝑠 of ≺′ is the number of distinct
vertex pairs that are related by ≺′. In general, 𝑠 is quadratic in 𝑛.

Let (𝐺,𝐻,H) be an instance of PLP. The proper subdivision of H induces a total
left-to-right order of the vertices on each level in the proper subdivision of 𝐻 , i.e., an
instance of CLP. Note that if a partial drawing is stored transitively reduced, its size
is linear in 𝑛. Moreover, Lemma 36 gives that in a straight-line level-planar drawing
of a proper graph, the vertices can be moved horizontally without creating crossings
as long as their order within the levels does not change. Thus, if a drawing satisfying
the order constraints of an instance of PLP exists, the vertices of the drawing can
always be moved so that the partial drawing is preserved. It follows that PLP is
indeed a special case of CLP.

Lemma 38. For proper level graphs, PLP reduces to CLP in linear time.

Note that this uses the fact that H is a drawing. A combinatorial embedding of 𝐻
would not be sufficient, because testing level planarity of non-proper level graphs
where the orders of all vertices on all levels are fixed is NP-complete [KR19]. The
complete edge-vertex order can therefore be assumed to be encoded in H, which
implies that PLP reduces to CLP in linear time even for non-proper graphs.
Conversely, drawing constraints are strictly more powerful than partial draw-

ings, e.g., it is possible to express the constraints 𝑢 ≺′ v, 𝑢 ≺′ 𝑤 without deciding
whether v ≺′ 𝑤 or 𝑤 ≺′ v . This is not possible with partial drawings, because the
totality property requires that v and 𝑤 be related by the partial drawing as well.

6.3 Single-Source Graphs

Di Battista and Nardelli [DN88] presented a linear-time algorithm to test single-
source proper level graphs for level planarity. In this section, we present a simplified
variant of their algorithm with the same running time. We then extend this algo-
rithm to a CLP algorithm with running time 𝑂 (𝑛5 + 𝑠), where 𝑠 is the size of the
constraints ≺′, by introducing the new concept of order graphs. Finally, we introduce
constrained PQ-trees, which are modified PQ-trees that are capable of efficiently main-
taining additional constraints. With the use of constrained PQ-trees, we improve the
running time of our algorithm to 𝑂 (𝑛 + 𝑘𝑠), where 𝑘 is the number of levels.

Single-Source Graphs Section 6.3

111

6.3.1 A Simple Level Planarity Testing Algorithm for

Single-Source Graphs

For a proper 𝑘-level planar graph, we denote by 𝐺 𝑗 the subgraph induced by the
vertices on levels 1, . . . , 𝑗 . Moreover, by 𝐸 𝑗 = (𝑉𝑗 ×𝑉𝑗+1) ∩ 𝐸, we denote the edges
of 𝐺 between levels 𝑗 and 𝑗 + 1. We start out by making the following observation
about level-planar drawings.

Lemma 39. Let 𝐺 be a proper 𝑘-level graph together with a planar drawing ≺.
Let 𝑗 ∈ [𝑘 − 1] and for some _ ∈ (0, 1) let the order of edges in 𝐸 𝑗 in which they
intersect with the horizontal line 𝑦 = 𝑗 + _ be (𝑢1, v1) ≺ (𝑢2, v2) ≺ . . . ≺ (𝑢𝑡 , v𝑡). Then
the edge endpoints are ordered consecutively, i.e., if 𝑢𝑎 = 𝑢𝑏 with 1 ≤ 𝑎 < 𝑏 ≤ 𝑡 , it
follows that 𝑢𝑎 = 𝑢𝑎+1 = . . . = 𝑢𝑏 , and if v𝑎 = v𝑏 with 1 ≤ 𝑎 < 𝑏 ≤ 𝑡 , it follows
that v𝑎 = v𝑎+1 = . . . = v𝑏 .

Proof. Assume that ≺ is planar and that there exists 𝑢𝑐 ≠ 𝑢𝑎 = 𝑢𝑏 with 𝑎 < 𝑐 < 𝑏.
Then it is (𝑢𝑎, v𝑎) ≺ (𝑢𝑐 , v𝑐) ≺ (𝑢𝑏 = 𝑢𝑎, v𝑏). From 𝑢𝑎 ≠ 𝑢𝑐 ≠ 𝑢𝑏 it follows that
either 𝑢𝑎 ≺ 𝑢𝑐 or 𝑢𝑐 ≺ 𝑢𝑏 = 𝑢𝑎 holds true. If it is 𝑢𝑎 ≺ 𝑢𝑐 , then (𝑢𝑐 , v𝑐) intersects
with (𝑢𝑏 = 𝑢𝑎, v𝑏). Conversely, if it is 𝑢𝑐 ≺ 𝑢𝑎 , then (𝑢𝑐 , v𝑐) intersects with (𝑢𝑎, v𝑎).
With Lemma 36, this contradicts the planarity of ≺, so no such 𝑢𝑐 can exist. The same
idea can be used to show that there exists no v𝑐 ≠ v𝑎 with 𝑎 < 𝑐 < 𝑏. □

The idea of Di Battista and Nardelli is to perform a sweep of the single-source
proper 𝑘-level graph, successively visiting each level 𝑗 ∈ [𝑘] in increasing order.
When going from level 𝑗 to level 𝑗 + 1, they compute how level-planar drawings of𝐺 𝑗

can be extended to level-planar drawings of𝐺 𝑗+1. To efficiently represent all possible
planar drawings simultaneously, they use PQ-trees.
Our algorithm follows this approach, computing the same PQ-trees, albeit in

a simpler way. Consider how a planar drawing ≺𝑗 of 𝐺 𝑗 can be extended to a
drawing ≺𝑗+1 of 𝐺 𝑗+1. Start by drawing non-intersecting edge stubs protruding
from 𝑢 for any edge (𝑢, v) ∈ 𝐸 𝑗 . Lemma 39 states that in any planar drawing, these
edge stubs have to be ordered so that identical endpoints are consecutive. The stubs
can then be extended to complete edges meeting at their shared endpoints without
causing any edge crossings.
The algorithm is as follows. Instead of considering individual drawings, for each

level 𝑗 ∈ [𝑘] a PQ-tree 𝑇𝑗 is computed that represents the orders of level- 𝑗 vertices
across all level-planar drawings of 𝐺 𝑗 ; see Figure 6.2 for an example. The tree 𝑇1
consists of a single leaf, the source of 𝐺 . Given a tree 𝑇𝑗 , the tree 𝑇𝑗+1 for the
subsequent level is generated as follows. If𝑇𝑗 is the null-tree, so is𝑇𝑗+1. If𝑇𝑗 is not the
null-tree, consider each leaf 𝑢 of 𝑇𝑗 . If 𝑢 has no child edges in 𝐸 𝑗 , mark 𝑢 as obsolete.
Otherwise, add each child edge as a child of 𝑢 in 𝑇𝑗 . Once all leaves have been

Chapter 6 Partial and Constrained Level Planarity

112

𝑏 𝑐 𝑑 𝑒 𝑒 𝑔 𝑖 𝑚 𝑓 ℎ ℓ 𝑚 𝑒 𝑔 𝑖 𝑚 𝑓 ℎ ℓ

1

2

1

2

3

1

2

3
𝑏 𝑐 𝑑

𝑒 𝑒 𝑔 𝑖 𝑚 𝑓 ℎ ℓ 𝑚 𝑒 𝑔 𝑖 𝑚 𝑓 ℎ ℓ

𝑇2 𝑇 ∗
3 𝑇3

𝐺3𝐺∗
3𝐺2

Figure 6.2: Illustration of Di Battista and Nardelli’s algorithm applied to the
graph 𝐺 = 𝐺3. Starting from the PQ-tree 𝑇2, the middle PQ-tree is generated
by adding all level-3 neighbors as children to 𝑏, 𝑐, 𝑑 . Then, multiple occurrences are
made consecutive and replaced by a single vertex, leading to 𝑇3, as shown in the
right.

considered, post-order traverse through 𝑇𝑗 and mark any node as obsolete if all its
children are obsolete. Then remove all obsolete nodes from𝑇𝑗 . For each vertex v ∈ 𝑉𝑗

the edge leafs with endpoint v are made consecutive in𝑇𝑗 using the update operation.
Recalling the PQ-tree update operation, the edge leafs are now consecutive black
subtrees attached to a Q-node. Finally, these black subtrees are replaced by a single
leaf v . The following lemma establishes the correctness of this algorithm.

Lemma 40. Let 𝐺 be a single-source proper 𝑘-level graph and let 𝑇𝑗 be the PQ-tree
for some level 𝑗 ∈ [𝑘]. It is (v1, v2, . . . , v𝑡) ∈ consistent(𝑇𝑗) if and only if there exists a
level-planar drawing ≺𝑗 of 𝐺 𝑗 that satisfies v1 ≺𝑗 v2 ≺𝑗 . . . ≺𝑗 v𝑡 .

Proof. We prove the claim by induction over the number of levels. Since 𝐺 has a
single source, it is |𝑉1 | = 1 and the claim is trivially true for 𝑗 = 1. Assume that the
claim is true for some 𝑗 ∈ [𝑘 − 1]. We show that it also holds for 𝑗 + 1.
By the inductive hypothesis, consistent(𝑇𝑗) contains exactly the orders of level- 𝑗

vertices across all level-planar drawings of 𝐺 𝑗 . We say that 𝑇𝑗 represents 𝐺 𝑗 for short.
Let𝐺★

𝑗+1 denote the graph obtained from𝐺 𝑗+1 by splitting the vertices on level 𝑗 such
that they all have degree 1 and label each leaf with the original vertex on level 𝑗 +1. By
Lemma 42 the level-planar drawings of𝐺 𝑗+1 correspond bijectively to the level-planar
drawings of𝐺★

𝑗+1 where the vertices of level 𝑗 + 1 with the same label are consecutive.
Let𝑇★

𝑗+1 be the PQ-tree obtained from𝑇𝑗 by turning each level- 𝑗 leaf𝑢 into a P-node
with a leaf for every edge in 𝐸 𝑗 incident to𝑢, or removing𝑢 if no edge in 𝐸 𝑗 is incident
to 𝑢. Note that the edges in 𝐸 𝑗 correspond bijectively with the level-(𝑗 + 1) vertices
of 𝐺★

𝑗+1. By Lemma 39, 𝑇★
𝑗+1 represents the orderings of the level-(𝑗 + 1) vertices

Single-Source Graphs Section 6.3

113

across all level-planar drawings of 𝐺★
𝑗+1, and after applying the update operations,

the resulting PQ-tree represents the level-(𝑗 + 1) vertex orders of all level-planar
drawings of 𝐺★

𝑗+1 where level-(𝑗 + 1)-vertices with the same label are consecutive.
Since these correspond bijectively to the orders of the level-planar drawings of 𝐺 𝑗+1,
the PQ-tree 𝑇𝑗+1 where all leaves with the same label v are replaced by a single leaf v
for each v ∈ 𝑉𝑗+1 indeed represents the orders of vertices on level 𝑗 + 1 across all
planar drawings of 𝐺 𝑗+1. □

From Lemma 40 it follows that if 𝑇𝑗 is the null-tree for any 𝑗 ∈ [𝑘], then 𝐺

is not level planar. Otherwise, if 𝑇𝑘 is not the null-tree, 𝐺 is level planar. For a
family of sets S = {𝑆1, 𝑆2, . . . , 𝑆𝑡 } all update(𝑇, 𝑆𝑖) operations are feasible in a total
running time of 𝑂 (|𝑇 | + |S | +∑︁𝑡

𝑖=1 |𝑆𝑖 |) [BL76]. Let 𝑛 𝑗 denote the number of level- 𝑗
vertices. It is |𝑇𝑗 | ∈ 𝑂 (𝑛 𝑗 + 𝑛 𝑗+1), |S | ∈ 𝑂 (𝑛 𝑗+1) and since S is a family of disjoint
sets

∑︁𝑡
𝑖=1 |𝑆𝑖 | ∈ 𝑂 (𝑛 𝑗+1). This gives linear running time for the entire algorithm.

Di Battista and Nardelli also give an important link of inner nodes of the PQ-tree 𝑇𝑗
to parts of the graph 𝐺 𝑗 .

Lemma 41 ([DN88]). Let 𝐺 be a single-source proper level graph and let 𝑇𝑗 be the PQ-
tree for some level 𝑗 ∈ [𝑘]. Every P-node 𝑌 in 𝑇𝑗 corresponds to a cutvertex of𝐺 𝑗 whose
removal from 𝐺 𝑗 separates vertices that appear in subtrees rooted at distinct children
of 𝑌 . Every Q-node 𝑌 in 𝑇𝑗 corresponds to a maximal biconnected component 𝐻 in 𝐺 .
Further, there exists a cycle 𝐶 in 𝐻 so that each child of 𝑌 corresponds to a cutvertex
of 𝐺 𝑗 that lies on 𝐶 whose removal separates the vertices that appear in the yield of the
subtree rooted at that child from 𝐻 .

6.3.2 A Polynomial-Time CLP Algorithm for Single-Source

Graphs

The algorithm from the previous section uses PQ-trees 𝑇𝑗 to restrict all drawings
of a level graph to just those that are level planar, represented by consistent(𝑇𝑗).
This section introduces order graphs 𝑃 𝑗 , which are used to restrict all drawings of
a level graph to just those that are compatible with the constraints ≺′, represented
by consistent(𝑃 𝑗). Together, these two data structures restrict all drawings of a level
graph to those that are planar and satisfy the given constraints ≺′, represented
by consistent(𝑇𝑗 , 𝑃 𝑗) ≔ consistent(𝑇𝑗) ∩ consistent(𝑃 𝑗). We show that there exists
a level-planar drawing of 𝐺 compatible with ≺′ if and only if consistent(𝑇𝑗 , 𝑃 𝑗) is
non-empty for all 𝑗 ∈ [𝑘]. The remainder of this section describes (i) the order
graph data structure, (ii) the generation of the order graphs 𝑃 𝑗 , (iii) the interoperation
of PQ-trees and order graphs, (iv) how to determine whether consistent(𝑇𝑗 , 𝑃 𝑗) is
non-empty, and (v) the resulting CLP algorithm.

Chapter 6 Partial and Constrained Level Planarity

114

𝑟 𝑤 𝑡 𝑧 𝑞 𝑢 𝑥 𝑠 𝑦𝑝 𝑡 𝑧

𝑝 𝑤 𝑟

𝑧

𝑝 𝑌

𝑃 [𝑌]

𝑌 𝑧 𝑞 𝑢 𝑥 𝑠 𝑦𝑝

𝑌

(a) (b)

Figure 6.3: Illustration of Lemma 42. Part (a) shows 𝑇 and 𝑃 , and (b) shows 𝑇 ◦ 𝑌
and 𝑃 ◦ 𝑌 .

Let 𝐺 = (𝑉 , 𝐸) be a proper level graph. The order graph 𝑃𝑘 = (𝑉 , 𝐹) for 𝐺 = 𝐺𝑘 is
initially the empty digraph on the same vertex set as 𝐺 . Edges are then added step
by step. First, for any vertex pair 𝑢, v ∈ 𝑉𝑗 on some level 𝑗 ∈ [𝑘] with 𝑢 ≺′ v , the
edge (𝑢, v) is added to 𝑃𝑘 . Next, according to Lemma 36, if (𝑢, 𝑤) ∈ 𝐹 and 𝑢𝑤 ≡ v𝑥 ,
then (v, 𝑥) is added to 𝑃𝑘 . To ensure transitivity, if (𝑢, v), (v, 𝑤) ∈ 𝐹 , then (𝑢, 𝑤) is
added to 𝑃𝑘 as well. These last two steps are repeated until nomore edges can be added
to 𝑃𝑘 . The level- 𝑗 order graph 𝑃 𝑗 is the order graph for 𝐺 𝑗 . We define yield(𝑃 𝑗) = 𝑉𝑗

and consistent(𝑃 𝑗) as the set of topological orderings of the subgraph of 𝑃 𝑗 induced
by 𝑉𝑗 .

Adding edges from the constraints takes time linear in the size of ≺′. Adding edges
whose existence is implied by Lemma 36 is possible by considering all quadratically
many edge pairs in 𝐸. The other edges can be added by running a transitive closure
algorithm, e.g., the Floyd-Warshall algorithm [War62], which requires cubic time.
These last two steps are repeated at most 𝑂 (𝑛2) times, because 𝑃𝑘 can contain at
most 𝑛2 edges. This gives an overall running time of 𝑂 (𝑛5). Because we only add
necessary constraints we do not have to recompute 𝑃 𝑗 for every level 𝑗 , but can
instead simply compute only 𝑃𝑘 .
The next step is to determine whether a PQ-tree 𝑇 and an order graph 𝑃 are con-

sistent, i.e., whether consistent(𝑇, 𝑃) ≠ ∅. To this end, we use a recursive procedure
similar to the one by Klavík et al. [Kla+17b, Step 3]. First, it picks an inner node 𝑌
of 𝑇 that has only leaves as children. If 𝑃 [𝑌] ≔ 𝑃 [yield(pertinent(𝑌))] has no
suitable topological ordering, 𝑇 and 𝑃 are inconsistent. Otherwise, the PQ-tree 𝑇 ◦ 𝑌
is generated from 𝑇 by removing all children of 𝑌 , making it a leaf, and the order
graph 𝑃 ◦ 𝑌 is generated from 𝑃 by identifying the vertices in yield(pertinent(𝑌))
into a single vertex 𝑌 ; see Figure 6.3. Then𝑇 and 𝑃 are consistent if and only if𝑇 ◦𝑌
and 𝑃 ◦ 𝑌 are consistent. This is formalized as follows.

Lemma 42. Let 𝑇 be a PQ-tree and 𝑃 an order graph with identical yields. Let 𝑌 be
an inner node of 𝑇 so that all its children 𝑦1, 𝑦2, . . . , 𝑦𝑡 are leaves. If 𝑌 is a P-node
and 𝑃 [𝑌] has no topological ordering, or if 𝑌 is a Q-node and neither (𝑦1, 𝑦2, . . . , 𝑦𝑡)
nor (𝑦𝑡 , 𝑦𝑡−1, . . . , 𝑦1) are topological orderings of 𝑃 [𝑌], then 𝑇 and 𝑃 are inconsistent.

Single-Source Graphs Section 6.3

115

𝑌 𝑢 𝑤

𝑦𝑏
𝑦𝑎

𝑝2𝑝1
𝑝

𝐶

𝑢 𝑣 𝑤 𝑥

𝑢 𝑣 𝑤 𝑥

𝑌𝑎 𝑌𝑏

𝑦

𝑦𝑎 𝑦𝑏

𝑌

𝑌𝑎

𝑌𝑏 𝑌𝑐

𝑌𝑑

(a) (b)

𝑢 𝑣 𝑤 𝑥

Figure 6.4: Proof of Lemma 43 for P-nodes and Q-nodes in (a) and (b), respectively.

Otherwise, 𝑇 and 𝑃 are consistent if and only if 𝑇 ◦ 𝑌 and 𝑃 ◦ 𝑌 are consistent.

Proof. If 𝑃 [𝑌] has no topological ordering, it is consistent(𝑃) = ∅, so 𝑇 and 𝑃 are
inconsistent. If 𝑌 is a Q-node and neither (𝑦1, 𝑦2, . . . , 𝑦𝑡) nor (𝑦𝑡 , 𝑦𝑡−1, . . . , 𝑦1) is a
topological ordering of 𝑃 [𝑌], either ordering of the children of 𝑌 is inconsistent
with 𝑃 . Now assume that 𝑇 and 𝑃 are consistent, as witnessed by some permu-
tation 𝜋 ∈ consistent(𝑇, 𝑃). Since 𝜋 ∈ consistent(𝑇), the children of 𝑌 appear
consecutively in 𝜋 . Replacing this sequence with 𝑌 yields a permutation 𝜋 ′ that
is in consistent(𝑇 ◦ 𝑌, 𝑃 ◦ 𝑌). Conversely, assume that 𝑇 ◦ 𝑌 and 𝑃 ◦ 𝑌 are consis-
tent, as witnessed by some permutation 𝜋 ′. If 𝑌 is a P-node, 𝑃 [𝑌] has a topological
ordering 𝜌 , which is used to replace 𝑌 in 𝜋 ′, yielding 𝜋 . It is 𝜋 ∈ consistent(𝑃).
The leaves 𝑦1, 𝑦2, . . . , 𝑦𝑡 can be attached to 𝑇 ◦ 𝑌 in the order 𝜌 . This implies
that 𝜋 ∈ consistent(𝑇, 𝑃). The same idea applies to Q-nodes with (𝑦1, 𝑦2, . . . , 𝑦𝑡)
and (𝑦𝑡 , 𝑦𝑡−1, . . . , 𝑦1) as the only topological ordering candidates. □

The running time of the consistency procedure is linear in the size of the order
graph 𝑃 , or 𝑂 (𝑛2) across all order graphs. Note that instead of destroying 𝑇 by
calculating 𝑇 ◦ 𝑌 , one can simply treat 𝑌 as a leaf. The consistency procedure then
applies equivalence transformations on 𝑇 to make its frontier a topological ordering
of 𝑃 , i.e., reordering 𝑇 according to 𝑃 . To prove the correctness of the algorithm, the
following relationship between inner nodes of the PQ-tree and order graphs is used.

Lemma 43. Let 𝐺 be a single-source planar proper level graph and let 𝑇 be the
corresponding PQ-tree for level 𝑗 . Further, let 𝑌 be a node in 𝑇 with ordered chil-
dren 𝑌1, 𝑌2, . . . , 𝑌𝑡 and let

𝑢 ∈ yield(pertinent(𝑌𝑎)), 𝑤 ∈ yield(pertinent(𝑌𝑏)),
v ∈ yield(pertinent(𝑌𝑐)), 𝑥 ∈ yield(pertinent(𝑌𝑑)),

where 1 ≤ 𝑎 < 𝑏 ≤ 𝑡 and 1 ≤ 𝑐 < 𝑑 ≤ 𝑡 . If 𝑌 is a Q-node, or if 𝑌 is a P-node with 𝑐 = 𝑎

and 𝑑 = 𝑏, then 𝑢𝑤 ≡ v𝑥 .

Proof. First, assume that 𝑌 is a P-node, as shown in Figure 6.4 (a). Lemma 41 gives
that 𝑌 corresponds to a cutvertex 𝑦 in 𝐺 . Since 𝑢 and 𝑤 belong to the yields of

Chapter 6 Partial and Constrained Level Planarity

116

pertinent subtrees of distinct children 𝑌𝑎 ≠ 𝑌𝑏 of 𝑌 , there are two paths (𝑢, . . . , 𝑦𝑎, 𝑦)
and (𝑤, . . . , 𝑦𝑏, 𝑦) in 𝐺 that have 𝑦 as the only common vertex. For some subset of
vertices, define a peak to be any vertex whose level is maximal among the vertices
of that subset. As 𝐺 is a single-source graph, 𝑦𝑎 and 𝑦𝑏 belong to the same level
and are peaks of the respective paths. Lemma 37 gives 𝑢𝑤 ≡ 𝑦𝑎𝑦𝑏 . The same idea
yields v𝑥 ≡ 𝑦𝑎𝑦𝑏 , which gives 𝑢𝑤 ≡ v𝑥 . Now assume that 𝑌 is a Q-node, as shown
in Figure 6.4 (b). Lemma 41 gives that 𝑌 corresponds to a biconnected component 𝐻
in𝐺 . Since𝐺 is planar, 𝐻 is bounded by a cycle𝐶 , and since𝐺 is single-source,𝐶 has
exactly one peak p . This peak has two children p1, p2 on 𝐶 , regardless of the choice
of 𝑎, 𝑏, 𝑐, 𝑑 . As 𝑢 and 𝑤 belong to the yields of pertinent subtrees of distinct children
of 𝑌 , there are disjoint paths (𝑢, . . . , 𝑦𝑎, p1) and (𝑤, . . . , 𝑦𝑏, p2) in𝐺 , where 𝑦𝑎 and 𝑦𝑏
are the first vertices on the paths that lie on𝐶 . Lemma 37 gives 𝑢𝑤 ≡ p1p2. Applying
the same idea yields v𝑥 ≡ p1p2, and therefore 𝑢𝑤 ≡ v𝑥 . □

Lemma 44. Let 𝐺 be a single-source proper 𝑘-level graph together with constraints ≺′,
let𝑇𝑗 be the PQ-tree for some level 𝑗 and let 𝑃 𝑗 be the order graph for level 𝑗 in step 𝑗 . Then
it is (v1, v2, . . . , v𝑡) ∈ consistent(𝑇𝑗 , 𝑃 𝑗) if and only if there exists a planar drawing ≺𝑗

of 𝐺 𝑗 that is compatible with ≺′
𝑗 and satisfies v1 ≺𝑗 v2 ≺𝑗 . . . ≺𝑗 v𝑡 .

Proof. Consider any level-planar drawing ≺𝑗 of 𝐺 𝑗 that extends ≺′
𝑗 such that it

is v1 ≺𝑗 v2 ≺𝑗 . . . ≺𝑗 v𝑡 . Since ≺𝑗 is level planar, 𝜋 ≔ (v1, v2, . . . , v𝑡) ∈ consistent(𝑇𝑗)
by Lemma 40. Because ≺𝑗 extends ≺′

𝑗 , and only necessary edges have been added to
the order graphs, it is 𝜋 ∈ consistent(𝑃 𝑗). Together, this gives 𝜋 ∈ consistent(𝑇𝑗 , 𝑃 𝑗).
We prove the reverse direction by induction on the number of levels. The claim

is trivially true for the base case 𝑗 = 1 because 𝑉𝑗 consists of the single source
of 𝐺 . Now let the claim hold true for level 𝑗 and show that it is true for level 𝑗 + 1.
Let (v1, v2, . . . , v𝑡) ∈ consistent(𝑇𝑗+1, 𝑃 𝑗+1). Lemma 40 gives the existence of a pla-
nar drawing ≺𝑗+1 of 𝐺 𝑗+1 with v1 ≺𝑗+1 v2 ≺𝑗+1 · · · ≺𝑗+1 v𝑡 . Let (𝑢1, 𝑢2, . . . , 𝑢𝑡 ′) be
the order of the level- 𝑗 vertices induced by ≺𝑗+1. Because ≺𝑗+1 is a level-planar
drawing it is (𝑢1, 𝑢2, . . . , 𝑢𝑡 ′) ∈ consistent(𝑇𝑗) by Lemma 40. A conflict is a pair 𝑢, 𝑤
of reversed vertices, i.e., where 𝑢 ≺𝑗+1 𝑤 and 𝑃 𝑗 contains the arc (𝑤,𝑢). We may
assume without loss of generality that the choice of ≺𝑗+1 minimizes the number of
conflicts in (𝑢1, 𝑢2, . . . , 𝑢𝑡 ′). The idea is then to show that if there is a conflict, there
exists a drawing ≺′

𝑗+1 that does not have this conflict (i.e., the conflict is resolved)
and introduces no new conflicts, a contradiction to the assumption that ≺𝑗+1 min-
imizes the number of conflicts. Therefore, ≺𝑗+1 has no conflicts, i.e., it is indeed
in consistent(𝑇𝑗 , 𝑃 𝑗).
From (𝑢1, 𝑢2, . . . , 𝑢𝑡 ′) ∉ consistent(𝑃 𝑗) it follows that there are distinct level- 𝑗

vertices 𝑢, 𝑤 with order 𝑢 ≺𝑗+1 𝑤 for which the order graph 𝑃 𝑗 prescribes the reverse
order. The relative order of 𝑢 and 𝑤 in frontier(𝑇𝑗) is determined at an internal

Single-Source Graphs Section 6.3

117

𝑌

𝑌𝑎
𝑌𝑐 𝑌𝑏

𝑌𝑑

𝑢 𝑤 𝑣 𝑥

𝑣′ 𝑥 ′
𝑇𝑗

𝑣′ 𝑥 ′

𝑇𝑗+1

𝑣 𝑥

𝑌𝑌

𝑢 𝑤 𝑢𝑤

𝑌𝑎 𝑌𝑏 𝑌𝑏 𝑌𝑎

(1)

(2)

𝑗

𝑗 + 1
𝐺

𝑇𝑗 𝑃 𝑗

Figure 6.5: Case (1) and (2) of the proof of Lemma 44. In case (1), suppose that
vertices 𝑢, 𝑤 appear in that order in the frontier of 𝑇𝑗 and that there are vertices v, 𝑥
with 𝑢𝑤 ≡ v𝑥 that have distinct children v ′, 𝑥 ′ on level 𝑗 + 1. Then the frontier of𝑇𝑗+1
cannot lie in consistent(𝑃 𝑗+1). In case (2), find a conflict induced by a closest pair of
reversed vertices, e.g., the green conflict between the children 𝑌𝑎 and 𝑌𝑏 (left). Then
this conflict can be resolved without creating new conflicts (right).

node 𝑌 of 𝑇𝑗 where 𝑢 and 𝑤 are leaves of subtrees rooted at distinct children of 𝑌 ,
say 𝑌𝑎 and 𝑌𝑏 ; i.e., 𝑌𝑎 appears to the left of 𝑌𝑏 in the ordered sequence of children
of 𝑌 . We distinguish two cases based on whether 𝑌 is a Q-node or a P-node.

1. Suppose that 𝑌 is a Q-node. See Figure 6.5 (1).
a) Suppose that there are level- 𝑗 vertices v, 𝑥 that (i) are leaves of subtrees

rooted at distinct children of 𝑌 , say 𝑌𝑐 and 𝑌𝑑 , where 𝑌𝑐 appears to the
left of 𝑌𝑑 , and (ii) have distinct children v ′, 𝑥 ′ on level 𝑗 + 1 in 𝐺 𝑗+1.
Lemma 43 gives 𝑢𝑤 ≡ v𝑥 . Lemma 36 gives v𝑥 ≡ v ′𝑥 ′, which means that
the order graph 𝑃 𝑗+1 prescribes the order 𝑥 ′ ≺𝑗+1 v ′. But planarity of ≺𝑗+1
gives v ′ ≺𝑗+1 𝑥

′, a contradiction to (v1, v2, . . . , v𝑡) ∈ consistent(𝑃 𝑗+1).
b) Otherwise, reverse the order of the children of 𝑌 . Let 𝑇 ′

𝑗 denote the new
tree. By Lemma 40 there exists a planar drawing ≺′ where the level- 𝑗
vertices appear in the order frontier(𝑇 ′

𝑗). Now extend this drawing to
level 𝑗 + 1 with the fixed order (v1, v2, . . . , v𝑡). Suppose that this draw-
ing is not level planar, i.e., there exists a crossing between two edges,
say (v, v ′) and (𝑥, 𝑥 ′). This implies ℓ (v) = ℓ (𝑥) = 𝑗 , ℓ (v ′) = ℓ (𝑥 ′) = 𝑗 + 1
and v ≠ 𝑥, v ′ ≠ 𝑥 ′. Because ≺𝑗+1 is planar we may assume v ≺𝑗+1 𝑥

and v ′ ≺𝑗+1 𝑥
′. To cause the crossing, reversing the order of the children

of 𝑌 must reverse the order of v and 𝑥 . This means that v and 𝑥 are leaves
of subtrees rooted at distinct children of 𝑌 . Furthermore, v ′ and 𝑥 ′ are
distinct children of v and 𝑥 in 𝐺 𝑗+1, respectively. This means that the as-
sumptions from case 1a are fulfilled, a contradiction. Therefore, reversing

Chapter 6 Partial and Constrained Level Planarity

118

the order of the children of 𝑌 does not cause a crossing. Hence, ≺′ has
one conflict less than ≺𝑗+1, a contradiction.

2. Suppose that 𝑌 is a P-node.
a) Suppose that there are level- 𝑗 vertices v, 𝑥 that (i) are leaves of the subtrees

rooted at 𝑌𝑎 and 𝑌𝑏 , respectively, and (ii) have distinct children v ′, 𝑥 ′ on
level 𝑗 + 1 in 𝐺 𝑗+1. Planarity gives v ′ ≺𝑗+1 𝑥

′. Lemma 43 gives 𝑢𝑤 ≡ v𝑥
and with v𝑥 ≡ v ′𝑥 ′ this means that if 𝑢 ≺𝑗+1 𝑤 contradicts the order
graph 𝑃 𝑗 , then v ′ ≺𝑗+1 𝑥

′ contradicts the order graph 𝑃 𝑗+1, a contradiction
to (v1, v2, . . . , v𝑡) ∈ consistent(𝑃 𝑗+1).

b) Otherwise. We say that𝑌𝑎, 𝑌𝑏 conflict if it is 𝑎 < 𝑏 but the order graph 𝑃 𝑗+1
contains the edge (𝑤,𝑢), where 𝑢 and 𝑤 are leaves of the subtrees rooted
at 𝑌𝑎 and 𝑌𝑏 , respectively. We may assume without loss of generality
that𝑌𝑎, 𝑌𝑏 are chosen so that𝑢 and𝑤 are a closest pair of reversed vertices.
See Figure 6.5 (2). Then we can change the relative order of 𝑌𝑎 and 𝑌𝑏
without introducing new conflicts by either moving 𝑌𝑎 so that it becomes
the right neighbor of 𝑌𝑏 , or by moving 𝑌𝑏 so that it becomes the left
neighbor of 𝑌𝑎 . We now show how to do so without breaking planarity.
i. There exist leaves 𝑢, 𝑤 in the subtrees rooted at 𝑌𝑎, 𝑌𝑏 , respectively
that both have children in 𝐺 𝑗+1. Because we’re not in case 2a all
leaves in the subtrees rooted at 𝑌𝑎, 𝑌𝑏 have no child or a common
child 𝑥 . Because ≺𝑗+1 is planar, all leaves of subtrees rooted at 𝑌𝑖
with 𝑖 ∈ [𝑎, 𝑏] also have either no child, or the child 𝑥 . Observe that
moving 𝑌𝑎 so that it becomes the right neighbor of 𝑌𝑏 only changes
the relative order of vertices that are leaves of subtrees rooted at
children𝑌𝑖 with 𝑖 ∈ [𝑎, 𝑏]. Because all of these vertices have the same
child 𝑥 on level 𝑗 + 1, changing their order does not break planarity.

ii. Otherwise, the leaves of one or both of the subtrees rooted at 𝑌𝑎, 𝑌𝑏
have no children, say𝑌𝑎 . Then𝑌𝑎 can bemoved so that it becomes the
right neighbor of 𝑌𝑏 . This only changes the relative order of vertices
that are leaves of subtrees rooted at 𝑌𝑎 and children 𝑌𝑖 with 𝑖 ∈ (𝑎, 𝑏].
Because 𝑌𝑎 has no leaf that has a child on level 𝑗 + 1, this cannot
cause a crossing. Analogously, if no leaves of 𝑌𝑏 have children, it can
be moved so that it becomes the left neighbor of 𝑌𝑎 .

In both cases we have resolved a conflict without creating new conflicts
while maintaining planarity.

Thismeans that (𝑢1, 𝑢2, . . . , 𝑢𝑡 ′) is in consistent(𝑇𝑗 , 𝑃 𝑗). When extending≺′
𝑗 to level 𝑗+1

with the fixed order (v1, v2, . . . , v𝑡), there are no crossings between levels 𝑗 and 𝑗 + 1,

Single-Source Graphs Section 6.3

119

i.e., ≺′
𝑗 is a level-planar drawing of 𝐺 𝑗+1 that extends ≺′. □

6.3.3 An Efficient CLP Algorithm for Single-Source Graphs

The running time of the CLP algorithm from the previous section can be improved
to 𝑂 (𝑛 + 𝑘𝑠), where 𝑠 is the number of constraints in the partial drawing ≺′. To this
end, order graphs and PQ-trees are merged into a single new data structure, the
constrained PQ-tree.
A constrained PQ-tree is a PQ-tree 𝑇 that stores additional edge constraints. An

edge constraint is an ordered pair of edges (𝑒, 𝑓) of the tree that have the same parent
node 𝑌 with the meaning that 𝑒 must occur before 𝑓 in the counter-clockwise order
of edges around 𝑌 starting with the parent edge. This information is stored in doubly
linked constraint lists at both 𝑒 and 𝑓 ; see Figure 6.6 for an example (constraints and
parent edges are colored). Storing these lists requires one pointer to the head of the
list for each edge and two list nodes of constant size for every constraint. Hence, 𝑇
has a total size of 𝑂 (𝑛 + 𝑘𝑠).

During the update procedure, a constraint (𝑒, 𝑓)may need to be replaced by another
equivalent constraint. See Figure 6.6. This is the case when their parent node is split
so that the edges corresponding to 𝑒 and 𝑓 end up at different parent nodes after the
update. In the following we distinguish cases based on whether 𝑒 and 𝑓 are terminal,
black, or white.
Assume that 𝑒 is terminal. Then (𝑒, 𝑓) needs to be replaced by the equivalent

constraint (𝑒 ′, 𝑓), where 𝑒 ′ is determined as follows. Let 𝑌 be the parent node of 𝑒
and 𝑓 and let 𝑒 = (𝑌, 𝑍). Then 𝑒 ′ is the black child edge of 𝑍 that is a neighbor of 𝑒 .
This edge can be found in constant time. The same procedure can be used if 𝑓 is
terminal, e.g., the green constraint in Figure 6.6. At this point, no constraints involve
terminal edges. Now, a constraint has to be moved if one edge is white, and the other
edge is black. Assume that 𝑒 is white and 𝑓 is black. Then (𝑒, 𝑓) is replaced by the
constraint ((𝑌, 𝑥), (𝑌 ′, 𝑥)), where 𝑌 ′ is the split node of 𝑌 . Analogously, if 𝑒 is black
and 𝑓 is white, (𝑒, 𝑓) is replaced by ((𝑌 ′, 𝑥), (𝑌, 𝑥)). For an example, see the blue
constraint in Figure 6.6. Note that all replacement operations have constant running
time. All other constraints do not have to be replaced, e.g., the red constraint in
Figure 6.6.

Let𝑇 ′ = update(𝑇, 𝑆) and𝑇 ′′ = update(𝑇 ′, 𝑆 ′) with 𝑆 ∩ 𝑆 ′ = ∅. If some edge 𝑒 of𝑇
is black or terminal during the update(𝑇, 𝑆) operation and it exists in 𝑇 ′, it is white
in 𝑇 ′ during the update(𝑇 ′, 𝑆 ′) operation. Only constraints that involve a black or
terminal edge are considered for replacement. Hence, any constraint is considered
for replacement at most twice, leading to an additional running time in 𝑂 (𝑠) across
all update operations for one level. Walking through the tree to consider all relevant
constraints for replacement requires an additional running time in 𝑂 (|𝑆 | + p) for

Chapter 6 Partial and Constrained Level Planarity

120

𝑥 𝑥

Figure 6.6: The update procedure for constrained PQ-trees. Constraints are drawn
in colors, together with their respective parent edges. The blue constraint involves a
white and a black edge, the green constraint involves a black edge and a terminal
edge, and the red constraint involves two black edges.

a single update operation. The original PQ-tree update procedure is run as part of
this new procedure. With Lemma 1, this gives a total running time of 𝑂 (𝑛 + 𝑘𝑠)
for all update operations of the constrained PQ-tree 𝑇 over the 𝑘 levels. We note
that Q-nodes are not explicitly represented in the PQ-tree data structure and therefore
references to their parents cannot necessarily be queried in constant time. However,
such references are computed for Q-nodes on the terminal path as part of the update
procedure, and only constraints around such nodes are candidates for replacement.

To check whether a constrained PQ-tree has a frontier that is consistent with the
stored constraints, we use a similar procedure to the one from Section 6.3.2, i.e.,
we check for every P-node whether the constraints around it are acyclic and for
every Q-node whether the constraints around it are non-conflicting. The running
time of this procedure for level 𝑗 is 𝑂 (𝑛 𝑗 + 𝑠). To solve CLP, run the algorithm from
Section 6.3.1 to compute the constrained PQ-tree 𝑇𝑗 for each level 𝑗 , then add all
level- 𝑗 constraints and run the consistency procedure. The partial drawing can be
extended to a complete planar drawing of 𝐺 if and only if 𝑇𝑗 is consistent for each
level. We conclude the following.

Theorem 9. For single-source proper 𝑘-level graphs CLP can be solved in time
𝑂 (𝑛 + 𝑘𝑠), where 𝑛 is the number of vertices in the graph and 𝑠 is the size of the
constraints. In particular, PLP can be solved in 𝑂 (𝑘𝑛) time for single source proper 𝑘-
level graphs.

6.4 Complexity of the General Case

It is an interesting question whether the algorithm can be extended to graphs with
multiple sources. Jünger et al. [JLM98] extend Di Battista and Nardelli’s level planarity
testing algorithm for multi-source graphs. To this end, they run an instance of
Di Battista and Nardelli’s algorithm for every source of the graph. As soon as the

Complexity of the General Case Section 6.4

121

0

1

2

3

4

5(b)(a)

𝑠

Figure 6.7: Removing sources from a multi-source level graph. Part (a) shows a level
graph 𝐺 with six sources. Sources are highlighted as white disks, all other vertices
are drawn as black vertices. By applying the procedure outlined above Corollary 6,
the supergraph 𝐺 ′ shown in part (b) is generated. This new graph has only one
source. Only a single new vertex has been added, namely 𝑠 , and six edges, one for
every former source, have been added. These new edges are drawn in bold.

algorithm has progressed to a level 𝑗 where multiple sources belong to the same
connected component in 𝐺 𝑗 , the corresponding PQ-trees are merged. Unfortunately,
the order graphs from the previous section cannot simply be reused in the multi-
source case, because neither does Lemma 43 apply to multi-source graphs, nor is
it obvious how constraints should be handled during the merge operation. One
possible solution stems from the fact that any level graph with multiple sources can
be transformed into a level graph with one source by adding one vertex and some
edges, without changing its planarity. To see this, consider a planar drawing of a
graph. Any level- 𝑗 source can be removed by adding an edge to a suitable vertex on
level 𝑗 − 1. For an example, see Figure 6.7. The difficulty of this procedure is to find
out which edges to add. If the input graph 𝐺 has a fixed number 𝑟 of sources, one
can simply try all possible combinations of edges. There are at most 𝑛 choices per
source, leading to a total of 𝑛𝑟 choices. For each of them we employ the algorithm
from Theorem 9.

Corollary 6. For proper𝑘-level graphs with 𝑟 sources CLP can be solved in𝑂 (𝑛𝑟 (𝑛+𝑘𝑠))
time.

Indeed, it is unlikely that order graphs can be used for multi-source graphs as well,
because in this section we show that PLP is NP-complete in the general case by
reducing from the NP-hard problems 3-Partition and Planar Monotone
3-Sat [dK12]. The first reduction shows that PLP is NP-complete even for proper
level graphs whose number of levels is bounded by a constant. The second reduction
shows that PLP isNP-complete even for proper level graphs with fixed combinatorial
embedding and high connectivity.

Chapter 6 Partial and Constrained Level Planarity

122

6.4.1 3-Partition Reduction

The 3-Partition problem asks whether a given multiset of integers can be par-
titioned into triples (referred to as buckets) so that the sums of elements of all
triples are equal (i.e., all buckets have the same size). More formally, an instance
of 3-Partition consists of a set 𝐴 of 𝑛 = 3𝑚 elements, a bound 𝐵 ∈ Z+,
and a size 𝑠 (𝑎) ∈ Z+ for each 𝑎 ∈ 𝐴 such that 𝐵/4 < 𝑠 (𝑎) < 𝐵/2 and such
that

∑︁
𝑎∈𝐴 𝑠 (𝑎) = 𝑚𝐵. The question is then whether 𝐴 can be partitioned into𝑚

disjoint sets 𝐴1, 𝐴2, . . . 𝐴𝑚 such that for 1 ≤ 𝑖 ≤ 𝑚 the equation
∑︁

𝑎∈𝐴𝑖
𝑠 (𝑎) = 𝐵 holds

true. Note that each 𝐴𝑖 must therefore contain exactly three elements from 𝐴. The
3-Partition problem is strongly NP-complete [GJ75].
The idea of the reduction is to construct a bucket graph, which largely consists

of gadgets of two kinds. The first kind of gadget is the socket. There are a total
of

∑︁
𝑎∈𝐴 𝑠 (𝑎) sockets, which are organized into𝑚 buckets. The second kind of gadget

is the pin. Every element 𝑎 ∈ 𝐴 is represented by a plug that consists of 𝑠 (𝑎) pins.
As the naming suggests, sockets and plugs interact with each other. In any planar
embedding of the bucket graph, every plug of size 𝑠 (𝑎) is coupled to 𝑠 (𝑎) sockets, and
every socket is coupled to one pin of some plug. The embedding of the sockets is fixed
by the partial drawing, whereas the order of the plugs remains variable. The bucket
structure ensures the required property of the 3-Partition problem that every
set 𝐴𝑖 must contain exactly three elements. Furthermore, the sets 𝐴1, 𝐴2, . . . , 𝐴𝑚 can
be easily determined by inspecting the 𝑖-th bucket of the bucket graph.
The socket, pin and plug gadgets are shown in Figure 6.8. A socket consists of a

U-shaped path, together with two short 𝑦-monotone intertwined paths connected to
it. The endpoints of these paths lie on the same level so that the endpoint of the path
running downwards lies to the right of the endpoint of the path running upwards.
Sockets are always fixed by the partial drawing. A pin is a simple serpentine-shaped
path designed to fit into socket by “snaking” its way through the socket to reach the
bottom. Pins are always left variable by the partial drawing. A pin is coupled with a
socket when the end of plug p𝑒 lies in between the vertices 𝑠ℓ and 𝑠𝑟 of the socket. To
create adjacent sockets, take two sockets and identify the path (Z , . . . , 𝑠𝑟) of the left
socket and the path (𝛼, . . . , 𝑠ℓ) of the right socket. To create a plug of size 𝑘 , identify
the roots of 𝑘 pins. Figure 6.8 (c) shows a plug of size two coupled with two adjacent
sockets. It is readily observed that a socket cannot be coupled with more than one
pin or plug without causing edge crossings.
The bucket graph is constructed step-by-step, starting out with an empty level

graph. Given an instance of the 3-Partition problem, the first step is to create
a total of𝑚𝐵 pins so that the roots of all pins are level-1 vertices. Then, for every
element 𝑎 ∈ 𝐴, take 𝑠 (𝑎) pins to create one plug of size 𝑠 (𝑎) and associate 𝑎 with it.
Given a plug p , the associated element is denoted by 𝑎(p). At this point the strong

Complexity of the General Case Section 6.4

123

(a) (b) (c)

𝑠ℓ 𝑠𝑟

𝑝𝑒

𝑝𝑟
1

2

3

4

5

6

7

𝛼

𝛽

𝛾𝛿

𝜖

𝑞

𝑟

𝑡

𝑢

𝑣

𝑤
Z

Figure 6.8: Part (a) shows a socket drawn in black and part (b) shows a pin drawn
in blue. The pin has a root vertex p𝑟 and an end vertex p𝑒 . A pin is coupled with a
socket when the end vertex of the pin, p𝑒 , lies between the vertices 𝑠ℓ and 𝑠𝑟 of the
socket. It is shown that a socket can be coupled with at most one pin. In part (c), a
plug of size two is coupled with two adjacent sockets. The plug of size two is created
by merging the roots of two pins. It is shown that a plug of size 𝑘 is always coupled
with 𝑘 adjacent sockets.

NP-completeness is required because a plug of size 𝑠 (𝑎) is created by merging the
roots of 𝑠 (𝑎) pins. Next, create𝑚𝐵 adjacent sockets. Note that this equals the number
of pins created. Then, constrain the end vertex p𝑒 of every plug to lie within this
socket structure, i.e., to lie to the right of the vertex 𝑠ℓ of the leftmost socket and to
the left of the vertex 𝑠𝑟 of the rightmost socket. This means that in every level planar
embedding extending the partial drawing, every plug has to be coupled with a socket.
Conversely, every socket has to be coupled with a pin of a plug. Therefore, each plug
is coupled with a socket, and each socket is coupled with a plug. Furthermore, a plug
has to be coupled with consecutive sockets in order to maintain planarity. The last
step of the construction is to organize the sockets into buckets. The bucket structure
forces all sockets coupled with a given plug to be part of the same bucket, i.e., no
plug may span across buckets. The buckets are constructed by adding𝑚 + 1 new
level 1 vertices to the graph, called bucket separators. Then, the 𝑖-th bucket separator
is connected to the vertex 𝛼 of the 𝑖-th socket, and the𝑚 + 1-th bucket separator is
connected to the vertex Z of the𝑚-th socket. Since the bucket separators lie on the
same level as the roots of the plugs, any plug must clearly lie completely on either
side of any bucket separator.

At this point, the equivalence of finding a solution for a 3-Partition instance I
and extending the partial drawing <′ of the corresponding bucket graph 𝐺 can be
shown. Assume A = {{𝑎1, 𝑎2, 𝑎3} , . . . , {𝑎3𝑚−2, 𝑎3𝑚−1, 𝑎3𝑚}} is a solution of the given

Chapter 6 Partial and Constrained Level Planarity

124

︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸
𝑏1 𝑏2, 𝑏3, . . . , 𝑏𝑚−1 𝑏𝑚

Figure 6.9: A bucket graph. There are a total of𝑚 buckets, each of which consists of
eight adjacent sockets, drawn in black. The bucket separators are drawn as slightly
larger black vertices. The plugs are drawn in blue. The sockets of the first bucket
are coupled with three plugs. Two of these plugs have size two and the third plug
has size two. This means that one of the triples in the corresponding 3-Partition
problem is (3, 3, 2). Similarly, the𝑚-th bucket corresponds to the triple (4, 1, 3).

3-Partition instance I . Since A is a solution for I , it is 𝑠 (𝑎1) + 𝑠 (𝑎2) + 𝑠 (𝑎3) = 𝐵.
Let p𝑖 be the plug in the bucket graph 𝐺 that is associated with 𝑎𝑖 , i.e., 𝑎(p𝑖) = 𝑎𝑖 . To
complete the partial drawing <′ of 𝐺 , take the first three plugs p1, p2, p3 and couple
them with the sockets of the first bucket. This same reasoning can be applied to
all other triples in A, resulting in a complete level-planar drawing < of the bucket
graph𝐺 . Now let𝐺 be the bucket graph corresponding to a 3-Partition instance I
and assume that 𝐺 has a level-planar drawing <. The drawing < gives a strict total
order on the roots of all plugs: p1 < p2 < p3 < . . . < p3𝑚−2 < p3𝑚−1 < p3𝑚 .
Consider the first bucket 𝑏1 and recall the size restriction 𝐵/4 < 𝑠 (𝑎) < 𝐵/2 for
each 𝑎 ∈ 𝐴 of the instance I . This means that p1 and p2 alone cannot fill the
bucket 𝑏1. Likewise, p1, p2, p3 and p4 cannot fit in the bucket 𝑏1. So, the only plug
candidates to fill the first bucket are the three first plugs p1, p2 and p3. Each socket
is coupled with a plug and because each bucket is made up of 𝐵 sockets, it follows
that 𝑠 (𝑎(p1))+𝑠 (𝑎(p2))+𝑠 (𝑎(p3)) ≤ 𝐵. Because no plug spans across multiple buckets,
this means that 𝑠 (𝑎(p1)) + 𝑠 (𝑎(p2)) + 𝑠 (𝑎(p3)) ≥ 𝐵. Together with the previous
statement, this gives 𝑠 (𝑎(p1)) + 𝑠 (𝑎(p2)) + 𝑠 (𝑎(p3)) = 𝐵. This same reasoning can
then be applied to the next three plugs p4, p5 and p6, and so on, up to the last three
plugs p3𝑚−2, p3𝑚−1 and p3𝑚 . Hence,

{{𝑎(p1), 𝑎(p2), 𝑎(p3)} , . . . , {𝑎(p3𝑚−2), 𝑎(p3𝑚−1), 𝑎(p3𝑚)}}

is a solution for the 3-Partition instance I . Using a similar construction we

Complexity of the General Case Section 6.4

125

︸ ︷︷ ︸
𝑏𝑚

︸ ︷︷ ︸
𝑏1

︸ ︷︷ ︸
𝑏2,...,𝑏𝑚−1

Figure 6.10: A connected bucket graph having a single cutvertex. The bucket
structure is drawn in black. It consists of two interconnected cycles. The bucket
separators are drawn as slightly larger black vertices. The plugs are drawn in blue.
Note that every plug is a cycle. All of these cycles share one vertex, which is the only
cutvertex in the graph.

can remove all cutvertices from the bucket graph, except one; see Figure 6.10. We
conclude the following.

Theorem 10. The PLP problem is NP-complete even for level graphs with a single
cutvertex and a constant number of levels.

We want to highlight the fact that because both the number of cutvertices and the
number of levels is bounded by a constant, it is unlikely that PLP is fixed-parameter
tractable with respect to either of these two parameters.

6.4.2 Planar Monotone 3-Sat Reduction

In this section, we present another reduction to show that PLP is NP-complete even
when restricted to biconnected proper subdivisions of triconnected graphs with fixed
combinatorial embedding and constant maximum vertex degree.

Recall that 3-Sat is the problem of deciding, given a set of variables 𝑉 and a set
of clauses C where every clause 𝐶 ∈ C contains at most three literals, whether there
is a Boolean truth assignment for the variables 𝑉 so that every clause contains at
least one literal that evaluates to true. A clause is called positive if it contains only
positive literals, and negative if it only contains negative literals. A 3-Sat instance
is monotone if it contains only positive and negative clauses. Further restrictions are
expressed in terms of the variable-clause graph. The vertices of this graph are 𝑉 ∪ C
and a vertex v and a clause 𝐶 are connected by an edge if and only if v or ¬v
occurs in 𝐶 . The variable-clause graph of Planar Monotone 3-Sat instances

Chapter 6 Partial and Constrained Level Planarity

126

𝑣2 ∨ 𝑣3 ∨ 𝑣4

𝑣1 ∨ 𝑣2 ∨ 𝑣4

𝑣1 ∨ 𝑣2

¬𝑣2 ∨ ¬𝑣3

¬𝑣3 ∨ ¬𝑣4

¬𝑣1 ∨ ¬𝑣3 ∨ ¬𝑣4

𝑣1

𝑣2

𝑣3

𝑣4

𝑣1

𝑣2

𝑣3

𝑣4

𝑣

𝑣′

𝑣′′

𝑣

(a) (c)(b)

Figure 6.11: A variable-clause graph (a), the construction to ensure that each literal
appears at most three times (note v ⇔ v ′′) (b) and the modified version with 𝑦-
monotone Jordan arcs (c).

can be drawn in such a way that all variable vertices are drawn as squares on a
vertical straight line, the line of variables, clauses are drawn as rectangles of variable
height and all edges are drawn as horizontal straight lines, and positive clauses are
drawn to the right of the line of variables and negative clauses are drawn to the
left of the line of variables. Figure 6.11 (a) shows a variable-clause graph. De Berg
and Khosravi proved that Planar Monotone 3-Sat is NP-complete [dK12,
Theorem 1]. Note that every literal in a Planar Monotone 3-Sat instance
can be assumed to occur in at most three clauses. See Figure 6.11 (b) to see how for
a variable v whose literals appear more than three times new variables v ′, v ′′ and
clauses (v ∨ v ′), (¬v ∨ ¬v ′), (v ′ ∨ v ′′), (¬v ′ ∨ ¬v ′′) can be created. Note v ⇔ v ′′, so
some literals of v can be replaced by literals of v ′′. This construction can be repeated
as many times until each literal appears in at most three clauses.
In order to transform a Planar Monotone 3-Sat instance I into a PLP

instance (𝐺, ≺′), parts of the variable clause graph are replaced by level graph gadgets
together with partial drawings thereof. First, the drawing is altered so that all edges
are drawn as 𝑦-monotone Jordan arcs that connect to the bottom of clause rectangles
and to the top of variable rectangles; see Figure 6.11 (c). Then, every variable is
replaced by a variable gadget, every clause is replaced by a clause gadget and every
edge is replaced by a pipe gadget.

The pipe gadget consists of two channels that are fixed by the partial drawing, and
one conductor that remains to be drawn. Figure 6.13 shows a pipe gadget, where the
channels are drawn in black and the conductor is drawn in blue. Depending on the
completion of the partial drawing, the conductor may flow through either the left

Complexity of the General Case Section 6.4

127

or the right channel. Note the construction in the middle, which serves to connect
the inner part separating the two channels to the boundary. It splits the conductor
into a lower and an upper part. The partial drawing is used to force the upper end of
the lower part of the conductor between the claw-like structure at the lower end of
the upper part of the conductor. This means that even though the conductor is split
into two parts, both of them must lie in the same channel. Each pipe gadget is then
merged with a clause gadget at the top and with variable gadget at the bottom. This
way, information is relayed between clause gadgets and variable gadgets.

The variable gadget consists of six merged pipe ends, separated in the middle by a
separator vertex, and three pins merged at their lower endpoint. This pin structure
must lie either completely to the left of the separator, or completely to the right.
Depending on this, the variable is configured as true or false. Figure 6.14 shows a
variable gadget configured as false.

Lemma 45. If a variable gadget is configured as false (true), the conductors of all pipes
leading from it to the gadgets of positive (negative) clauses must run through the right
channel. The channel choice of the conductors of all pipes leading to negative (positive)
clauses is not restricted.

The clause gadget consists of three merged pipe sources and a pin. Figure 6.12
shows a clause gadget where the first literal is satisfied. This pin must be drawn in
one of the pipe sources, thereby forcing the conductor of that pipe to flow through
the left channel.

Lemma 46. For each clause gadget, the conductor of at least one of the three connected
pipes must run through the left channel.

Given an instance I of Planar Monotone 3-Sat, the corresponding PLP
instance (𝐺, ≺′) can clearly be computed in polynomial time. Assume that there
exists a planar completion of ≺′. Consider a positive clause 𝐶 . Lemma 46 states
that the conductor of at least one of the connected pipes must run through the left
channel. Suppose that the variable 𝑉 at the other end of this pipe is configured
as false. Then Lemma 45 states that the conductors of all pipes leading to positive
clauses, including 𝐶 , must run through the right channel. This is a contradiction,
so 𝑉 must be configured as true and 𝐶 is satisfied. A similar argument can be made
when 𝐶 is a negative clause.

Conversely, suppose that all variable gadgets are configured according to a satisfy-
ing assignment. Consider a positive clause 𝐶 . Since 𝐶 is satisfied, at least one of its
variables 𝑉 is true. Let the conductor of the pipe 𝑃 connecting 𝐶 and 𝑉 flow through
the left channel. This is possible because according to Lemma 45, only the conductors
of pipes leading to negative clauses must run through the right channel. A similar

Chapter 6 Partial and Constrained Level Planarity

128

pipe 1 pipe 2 pipe 3

Figure 6.12: The clause gadget; pipes 1 and 3 transmit a literal value that satisfies
the clause.

Figure 6.13: The two states of a pipe gadget. Note the construction in the middle,
which serves to connect the inner part separating the two channels to the boundary.

separator

− pipe − pipe − pipe + pipe + pipe + pipe

Figure 6.14: A variable gadget configured as false.

Complexity of the General Case Section 6.4

129

pipe 1 pipe 2 pipe 3 pipe 4

F
i
g
u
r
e

6
.
1
5
:

Au
gm

en
te
d

va
ria

bl
e
ga
dg

et
w
he
re

th
e

gr
ap
h
fo
rm

sa
su
bd

iv
isi
on

of
a
tri
co
nn

ec
te
d
gr
ap
h.

︸ ︷︷ ︸ br
id
ge

︸ ︷︷ ︸ cl
au
se

co
nn

ec
to
r

cl
au
se

va
ria

bl
e

ex
te
nd

he
re

︸ ︷︷ ︸ va
ria

bl
e
co
nn

ec
to
r

F
i
g
u
r
e
6
.
1
6
:
Au

gm
en
te
d
pi
pe

ga
dg

et
w
he
re

th
eg

ra
ph

fo
rm

sa
su
bd

iv
isi
on

of
a
tri
co
nn

ec
te
d
gr
ap
h.

pipe 2 pipe 3pipe 1

F
i
g
u
r
e

6
.
1
7
:

Au
gm

en
te
d

cl
au
se

ga
dg

et
w
he
re

th
e

gr
ap
h
fo
rm

sa
su
bd

iv
isi
on

of
a
tri
co
nn

ec
te
d
gr
ap
h.

Chapter 6 Partial and Constrained Level Planarity

130

argument can be made when 𝐶 is a negative clause. Any remaining conductors may
flow through either channel.

Hence, a planar completion of ≺′ exists if and only if there is a satisfying variable
assignment for I . With the NP-completeness of Planar Monotone 3-Sat, this
gives the following.

Theorem 11. The problem PLP is NP-complete even for connected proper level graphs.

The gadgets can be strengthened by replacing each vertex and each edge by a
suitable internally triangulated graph (see Figures 6.15, 6.16 and 6.17) such that the
resulting graph is a subdivision of a triconnected graph. Then the combinatorial
embedding of the graph is fixed. Moreover, the maximum vertex degree is bounded,
and there is only a constant number of sources per level. Note that here it is crucial
that the graph we start with is connected.

Theorem 12. The PLP problem remains NP-complete when restricted to biconnected
proper subdivisions of triconnected graphs and constant maximum vertex degree.

Because triconnected planar graphs have a fixed combinatorial embedding this
result also implies NP-completeness of the PLP problem for level graphs with a fixed
combinatorial embedding.

6.5 Conclusion

In this chapter we studied a constrained version of level planarity that allows to
specify constraints on the linear order of vertices in the sought drawing. This problem
contains as a special case the problem of extending a partial drawing in the level-
planar setting, a problem that has recently received considerable interest for many
other drawing styles and also other graph representations.
Our strong hardness results leave little room for polynomial-time algorithms for

much larger classes of instances than single-source graphs. In view of Corollary 6,
our most important open question is whether CLP is fixed-parameter tractable with
respect to the number of sources in the graph.

Another interesting question is whether our techniques can be adapted for related
drawing styles, in particular radial drawings, where levels are represented by con-
centric circles rather than horizontal lines, and upward drawings, where the levels of
vertices are not fixed.

Acknowledgments: We thankGiordanoDa Lozzo for the idea behind the plug/socket
gadget.

131

7
An SPQR-Tree-Like

Embedding Representation

for Level Planarity

An SPQR-tree is a data structure that efficiently represents all planar embeddings
of a biconnected planar graph. It is a key tool in a number of constrained planarity
testing algorithms, which seek a planar embedding of a graph subject to some given
set of constraints.
We develop an SPQR-tree-like data structure that represents all level-planar em-

beddings of a biconnected level graph with a single source, called the LP-tree, and
give a simple algorithm to compute it in linear time. Moreover, we show that LP-trees
can be used to adapt three constrained planarity algorithms to the level-planar case
by using them as a drop-in replacement for SPQR-trees.

This chapter is based on joint work with Ignaz Rutter [BR20].

7.1 Introduction

Testing planarity of a graph and finding a planar embedding, if one exists, are classical
algorithmic problems. For visualization purposes, it is often desirable to draw a graph
subject to certain additional constraints, e.g., finding orthogonal drawings [Tam87]
or symmetric drawings [HME06], or inserting an edge into an embedding so that few
edge crossings are caused [GMW05]. Historically, these problems have been consid-
ered for embedded graphs. More recent research has attempted to optimize not only
one fixed embedding, but instead to optimize across all possible planar embeddings
of a graph. This includes (i) orthogonal drawings [BRW16], (ii) simultaneous embed-
dings, where one seeks to embed two planar graphs that share a common subgraph

Chapter 7 An SPQR-Tree-Like Embedding Representation for Level Planarity

132

such that they induce the same embedding on the shared subgraph (see [BKR13]
for a survey), (iii) simultaneous orthogonal drawings [Ang+16], (iv) embeddings
where some edge intersections are allowed [AB19], (v) inserting an edge [GMW05],
a vertex [CGMW09], or multiple edges [CH16] into an embedding, (vi) partial em-
beddings, where one insists that the embedding extends a given embedding of a
subgraph [Ang+15c], and (vii) finding minimum-depth embeddings [ADP11, BM90].

The common tool in all of these recent algorithms is the SPQR-tree data structure,
which efficiently represents all planar embeddings of a biconnected planar graph𝐺
by breaking down the complicated task of choosing a planar embedding of𝐺 into the
task of independently choosing a planar embedding for each triconnected component
of𝐺 [DT89, DT90, DT96, HT73, Mac37, Tut66]. This is a much simpler task since the
triconnected components have a very restricted structure, and so the components
offer only basic, well-structured choices.

For directed graphs there are two different major notions of planarity, namely up-
ward planarity and level planarity. Level planarity can be tested in linear time [FPSS11,
JL02, JLM98, Ran+01]. Recently, the problem of extending partial embeddings for
level-planar drawings has been studied [BR17]. While the problem is NP-hard in
general, it can be solved in polynomial time for single-source graphs. Very recently,
an SPQR-tree-like embedding representation for upward planarity has been used to
extend partial upward embeddings [BHR19]. The construction crucially relies on
an existing decomposition result for upward planar graphs [HL96]. No such result
exists for level-planar graphs. Moreover, the level assignment leads to components
of different “heights”, which makes our decompositions significantly more involved.

Contribution. We develop the LP-tree, an analogue of SPQR-trees for level-planar
embeddings of level graphs with a single source whose underlying undirected graph
is biconnected. It represents the choice of a level-planar embedding of a level-planar
graph by individual embedding choices for certain components of the graph, for each
of which the embedding is either unique up to reflection, or allows to arbitrarily
permute certain subgraphs around two pole vertices. Its construction is based on
suitably modifying the SPQR-tree of𝐺 , which represents all planar embeddings of𝐺 ,
not just the level-planar ones, such that, eventually, the modified tree represents
exactly the level-planar drawings of𝐺 . See Figure 7.1 (a, b) for examples of how level
planarity is more restrictive than planarity. The size of the LP-tree is linear in the size
of 𝐺 and it can be computed in linear time. The LP-tree is a useful tool that unlocks
the large amount of SPQR-tree-based algorithmic knowledge for easy translation to
the level-planar setting. In particular, we obtain linear-time algorithms for partial
and constrained level planarity for biconnected single-source level graphs, which
improves upon the𝑂 (𝑛2)-time algorithm known to date [BR17]. Further, we describe

Preliminaries Section 7.2

133

𝑤

𝑣

(a) (b) (c)

Figure 7.1: In (a), the height of the red component makes it impossible to flip it.
In (b), note that the red and green components can be exchanged, as can the blue and
yellow components, but neither the blue nor the yellow component can be embedded
between the red and green component. In (c), set the demand of v as 𝑑 (v) = ℓ (𝑤) in
the LP-tree that represents the graph that consists of the red and gray part (but not
the striped blue part). This models the restriction imposed on the embedding of the
red subgraph by the striped blue biconnected component.

the first efficient algorithm for the simultaneous level planarity problem when the
shared graph is a biconnected single-source level graph.
We first introduce important concepts and notation that we use throughout this

chapter in Section 7.2. We show the existence of LP-trees in Section 7.3. The proof
is constructive and immediately gives a polynomial-time algorithm, which we then
improve to run in linear time. In Section 7.4, we present three applications of LP-trees.
Finally, we give some concluding remarks in Section 7.5.

7.2 Preliminaries

Let 𝐺 = (𝑉 , 𝐸) be a connected level graph. For each vertex v ∈ 𝑉 let 𝑑 (v) ≥ ℓ (v)
denote the demand of v . Demands provide an interface to model the restrictions
imposed on the embeddings of one biconnected component by other biconnected
components; see Figure 7.1 (c). An apex of some vertex set 𝑉 ′ ⊆ 𝑉 is a vertex v ∈ 𝑉 ′

whose level is maximum. The demand of 𝑉 ′, denoted by 𝑑 (𝑉 ′), is the maximum
demand of a vertex in 𝑉 ′. An apex of a face 𝑓 is an apex of the vertices incident to 𝑓 .
A path is a sequence of vertices (v1, v2, . . . , v𝑗) so that for 1 ≤ 𝑖 < 𝑗 either (v𝑖 , v𝑖+1)
or (v𝑖+1, v𝑖) is an edge in 𝐸. A directed path is a sequence (v1, v2, . . . , v𝑗) of vertices so
that for 1 ≤ 𝑖 < 𝑗 it is (v𝑖 , v𝑖+1) ∈ 𝐸. A vertex 𝑢 dominates a vertex v if there exists a
directed path from 𝑢 to v . A vertex is a sink if it dominates no vertex except for itself.
A vertex is a source if it is dominated by no vertex except for itself. An 𝑠𝑡-graph is a
graph with a single source and a single sink, usually denoted by 𝑠 and 𝑡 , respectively.
Throughout this chapter all graphs are assumed to have a single source 𝑠 . For the

Chapter 7 An SPQR-Tree-Like Embedding Representation for Level Planarity

134

remainder of this chapter we restrict our considerations to level-planar drawings
of 𝐺 where each vertex v ∈ 𝑉 that is not incident to the outer face is incident to
some inner face 𝑓 so that each apex 𝑎 of the set of vertices on the boundary of 𝑓
satisfies 𝑑 (v) < ℓ (𝑎). We will use demands in Section 7.4 to restrict the admissible
embeddings of biconnected components in the presence of cutvertices. Note that
setting 𝑑 (v) = ℓ (v) for each v ∈ 𝑉 gives the conventional definition of level-planar
drawings. Note that for single-source level graphs, level-planar embeddings are
equivalence classes of topologically equivalent level-planar drawings.

Lemma 47. The level-planar drawings of a single-source level graph correspond bijec-
tively to its level-planar combinatorial embeddings with 𝑠 on the outer face.

Proof. Let 𝐺 = (𝑉 , 𝐸) be a single-source 𝑘-level graph. Assume without loss of
generality that 𝐺 = (𝑉 , 𝐸) is proper, i.e., for each edge (𝑢, v) ∈ 𝐸 it is ℓ (𝑢) + 1 = ℓ (v).
Let 𝑢, v ∈ 𝑉𝑖 be two vertices on level 𝑖 with 1 ≤ 𝑖 ≤ 𝑘 . Further, let 𝑤 be a vertex of 𝐺
so that there are disjoint directed paths p𝑢 and pv from 𝑤 to 𝑢 and v , respectively.
Because 𝐺 is a single-source graph, such a vertex must exist. Let 𝑒 and 𝑓 denote
the first edge on p𝑢 and pv , respectively. Further, let ≺ be a level-planar drawing
of 𝐺 and let G be a level-planar combinatorial embedding of 𝐺 . If 𝑤 is not the single
source of 𝐺 , it has an incoming edge 𝑔. Then it is 𝑢 ≺𝑖 v if and only if 𝑒, 𝑓 and 𝑔

appear in that order around 𝑤. Otherwise, if 𝑤 is the source of 𝐺 , let 𝑔 denote the
edge (𝑤, 𝑡), which exists by construction. Because 𝑔 is embedded as the leftmost
edge, it is 𝑢 ≺𝑖 v if and only if 𝑔, 𝑒 and 𝑓 appear in that order around 𝑤. The claim
then follows easily. □

To make some of the subsequent arguments easier to follow, we preprocess our
input level graph𝐺 on 𝑘 levels to a level graph𝐺 ′ on 𝑑 (𝑉) +1 levels as follows. We ob-
tain𝐺 ′ from𝐺 by adding a new vertex 𝑡 on level𝑑 (𝑉)+1 with demand𝑑 (𝑡) = 𝑑 (𝑉)+1,
connecting it to all vertices on level 𝑘 and adding the edge (𝑠, 𝑡). Note that 𝐺 ′ is
generally not an 𝑠𝑡-graph. Let 𝐻 be a graph with a level-planar embedding Λ and
let 𝐻 ′ be a supergraph of 𝐻 with a level-planar embedding Λ′. The embeddings of𝐺 ′

where the edge (𝑠, 𝑡) is incident to the outer face and the embeddings of 𝐺 are, in a
sense, equivalent.

Lemma 48. An embedding Γ of𝐺 is level-planar if and only if there exists a level-planar
embedding Γ′ of 𝐺 ′ that extends Γ where (𝑠, 𝑡) is incident to the outer face.

Proof. Let 𝐺 = (𝑉 , 𝐸) be a 𝑘-level graph, and let 𝐺 ′ be the supergraph of 𝐺 as
described above together with a level-planar embedding Γ′. Because 𝐺 is a subgraph
of 𝐺 ′, restricting Γ′ to 𝐺 immediately gives a level-planar embedding Γ of 𝐺 that is
extended by Γ′.

Preliminaries Section 7.2

135

Now let Γ be a level-planar embedding of𝐺 . Since all apices of 𝑉 lie on the outer
face, the newly added vertex 𝑡 can be connected to those vertices without causing
any edge crossings. Then, because 𝑠 is the single source of 𝐺 and 𝑡 is the sole apex
of 𝑉 (𝐺 ′), the edge (𝑠, 𝑡) can be drawn into the outer face as a 𝑦-monotone curve
without causing edge crossings. Let Γ′ refer to the resulting embedding. Then Γ′ is a
level-planar embedding of 𝐺 ′ that extends Γ. □

To represent all level-planar embeddings of 𝐺 , it is sufficient to represent all level-
planar embeddings of𝐺 ′ and to remove 𝑡 and its incident edges from all embeddings.
It is easily observed that if 𝐺 is a biconnected single-source graph, then so is 𝐺 ′. We
assume from now on that the vertex set of our input graph 𝐺 has a unique apex 𝑡
and that 𝐺 contains the edge (𝑠, 𝑡). We still refer to the highest level as level 𝑘 , i.e.,
the apex 𝑡 lies on level 𝑘 .
Level-planar embeddings of a graph have an important relationship with level-

planar embeddings of 𝑠𝑡-supergraphs thereof. We use Lemmas 49 and 50, and a novel
characterization of single-source level planarity in Lemma 51 to prove that certain
planar embeddings are also level planar.

Lemma 49. Let 𝐺 = (𝑉 , 𝐸) be a single-source level graph with a unique apex. Further,
let Γ be a level-planar embedding of𝐺 . Then there exists an 𝑠𝑡-graph𝐺𝑠𝑡 = (𝑉 , 𝐸 ∪𝐸𝑠𝑡)
together with a level-planar embedding Γ𝑠𝑡 that extends Γ.

Proof. We prove the claim by induction over the number of sinks in 𝐺 . Note that
because 𝑡 is an apex of 𝐺 , it must be a sink. So 𝐺 has at least one sink. If 𝐺 has one
sink, the claim is trivially true for 𝐸𝑠𝑡 = ∅. Now suppose that 𝐺 has more than one
sink. Let 𝑤 ≠ 𝑡 be a sink of 𝐺 . In some drawing of 𝐺 with embedding Γ, walk up
vertically from 𝑤 into the incident face above 𝑤. If a vertex v or an edge (𝑢, v) is
encountered, set 𝐸𝑠𝑡 = {(𝑤, v)}. If no vertex or edge is encountered, 𝑤 lies on the
outer face of Γ. Then set 𝐸𝑠𝑡 = {(𝑤, 𝑡)}. Note that in both cases the added edges can
be embedded into Γ as 𝑦-monotone curves while maintaining level planarity. Then
extend 𝐸𝑠𝑡 inductively, which shows the claim. □

Next we establish a characterization of the planar embeddings that are level planar.
The following lemma is implicit in the planarity test for 𝑠𝑡-graphs by Chiba [CNAO85]
and the work on upward planarity by Di Battista and Tamassia [DT88].

Lemma 50. Let 𝐺 be an 𝑠𝑡-graph. Then each planar embedding Γ of 𝐺 is also a
level-planar embedding of𝐺 in which (𝑠, 𝑡) is incident to the outer face, and vice versa.

Proof. Consider a vertex v ≠ 𝑠, 𝑡 of 𝐺 . Then the incoming and outgoing edges
appear consecutively around v in Γ. To see this, suppose that there are four ver-
tices 𝑤, 𝑥, 𝑦, z ∈ 𝑉 with edges (𝑤, v), (v, 𝑥), (𝑦, v), (v, z) ∈ 𝐸 that appear in that

Chapter 7 An SPQR-Tree-Like Embedding Representation for Level Planarity

136

counter-clockwise cyclic order around v in Γ. Because 𝐺 is an 𝑠𝑡-graph there are
directed paths p𝑤 and p𝑦 from 𝑠 to 𝑤 and 𝑦 , respectively, and directed paths p𝑥 and pz
from 𝑥 and z to 𝑡 , respectively. Moreover, p ∈ {p𝑤, p𝑦 } and p ′ ∈ {p𝑥 , pz } are disjoint
and do not contain v . Then some p ∈ {p𝑤, p𝑦 } and p ′ ∈ {p𝑥 , pz } must intersect, a
contradiction to the fact that Γ is planar; see Fig. 7.2 (a).
Let 𝑒1, 𝑒2, . . . , 𝑒𝑖 , 𝑒𝑖+1, . . . , 𝑒𝑛 denote the counter-clockwise cyclic order of edges

around v in Γ so that 𝑒1, . . . , 𝑒𝑖 are incoming edges and 𝑒𝑖+1, . . . , 𝑒𝑛 are outgoing edges.
Let 𝑒1, . . . , 𝑒𝑖 denote the left-to-right order of incoming edges and let 𝑒𝑛, 𝑒𝑛−1, . . . , 𝑒𝑖+1
denote the left-to-right order of outgoing edges. Split the clockwise cyclic order
of edges around 𝑠 at (𝑠, 𝑡) to obtain the left-to-right order of outgoing edges. Sym-
metrically, split counter-clockwise order of edges around 𝑡 at (𝑠, 𝑡) to obtain the
left-to-right order of incoming edges.

Create a level-planar embedding Γ′ of 𝐺 step by step as follows; see Fig. 7.2. Draw
vertices 𝑠 and 𝑡 on levels ℓ (𝑠) and ℓ (𝑡), respectively, and connect them by a straight
line segment. Call the vertices 𝑠, 𝑡 and the edge (𝑠, 𝑡) discovered. Call the path 𝑠, 𝑡 the
right frontier. Call a vertex on the right frontier settled if all of its outgoing edges are
discovered.

More generally, let 𝑠 = 𝑢1, 𝑢2, . . . , 𝑢𝑛 = 𝑡 denote the right frontier. Modify the right
frontier while maintaining that (i) the right frontier is a directed path from 𝑠 to 𝑡 ,
(ii) any edge (𝑢𝑎, 𝑢𝑎+1) on the right frontier is the rightmost discovered outgoing
edge around 𝑢𝑎 , and (iii) the right frontier is incident to the outer face of Γ′.

Let𝑢𝑖 denote the vertex on the right frontier closest to 𝑡 that is not settled. Discover
the leftmost undiscovered outgoing edges starting from 𝑢𝑖 to construct a directed
path v1 = 𝑢𝑖 , v2, . . . , v𝑚 , where v𝑚 is the first vertex that had been discovered before.
Because 𝐺 has a single sink such a vertex exists. Because Γ is planar v𝑚 lies on the
right frontier, i.e., v𝑚 = 𝑢 𝑗 for some 𝑗 with 𝑖 < 𝑗 ≤ 𝑛. Insert the vertices v2, . . . , v𝑚−1
and the edges (v𝑎, v𝑎+1) for 1 ≤ 𝑎 < 𝑚 to the right of the path 𝑢𝑖 , . . . , 𝑢 𝑗 into Γ′

(Property (iii) of the invariant), maintaining level planarity of Γ′. This creates a new
face 𝑓 of Γ′ whose boundary is 𝑢𝑖 , 𝑢𝑖+1, . . . , 𝑢 𝑗 = v𝑚, v𝑚−1, . . . , v1 = 𝑢𝑖 .

We show that 𝑓 is a face of Γ. Because𝑢𝑎 is settled there cannot be an undiscovered
outgoing edge between (𝑢𝑎−1, 𝑢𝑎) and (𝑢𝑎, 𝑢𝑎+1) in the counter-clockwise order of
edges around 𝑢𝑎 in Γ for 𝑖 < 𝑎 < 𝑗 (see edge 𝑔 in Fig. 7.2 (b)). There can also
not be a discovered outgoing edge because of Property (ii) of the invariant (see
edge 𝑒 in Fig. 7.2 (b)). Because the leftmost undiscovered edge is chosen there is no
undiscovered outgoing edge between (v𝑎, v𝑎+1) and (v𝑎−1, v𝑎) in the counter-clockwise
order of edges around v𝑎 in Γ for 1 < 𝑎 < 𝑚 (see edge ℎ in Fig. 7.2 (b)). There can
also not be a discovered outgoing edge because v𝑎 was not discovered before (see
edge 𝑞 in Fig. 7.2 (b)). There can be no outgoing edge between (v1, v2) and (𝑢𝑖 , 𝑢𝑖+1)
in the counter-clockwise order of edges around v1 = 𝑢𝑖 because either such an
edge would be discovered contradicting Property (ii), or not, contradicting the fact

Preliminaries Section 7.2

137

𝑤𝑥

𝑦 𝑧

𝑣𝑠 𝑡

Γ′

𝑢𝑖 = 𝑣1

𝑢 𝑗 = 𝑣𝑚

𝑢1 = 𝑠

𝑢𝑛 = 𝑡

𝑒 𝑓

𝑔 ℎ

𝑞

𝑟
𝑑

(a) (b)

Figure 7.2: Proof of Lemma 50. The incoming and outgoing edges around each
vertex are consecutive (a). Creating the level-planar embedding Γ′ by attaching the
path v1, v2, . . . , v𝑚 (drawn in red) to the right frontier 𝑢1, 𝑢2, . . . , 𝑢𝑛 , thereby creating a
new face 𝑓 . Discovered edges are drawn thickly. The edges 𝑒, 𝑔, ℎ, 𝑞, 𝑟, 𝑑 cannot exist.

that (v1, v2) is chosen as the leftmost undiscovered outgoing edge of v1. There can be
no outgoing edge between (𝑢 𝑗−1, 𝑢 𝑗) and (v𝑚−1, v𝑚) in the counter-clockwise order
of edges around 𝑢 𝑗 = v𝑚 because either 𝑢 𝑗 = v𝑚 = 𝑡 is a sink, or the incoming and
outgoing edges appear consecutively around 𝑢 𝑗 = v𝑚 in Γ (see edge 𝑑 in Fig. 7.2 (b)).
There can also be no incoming edge (𝑢, v) between any of these edge pairs (see

edge 𝑟 in Fig. 7.2 (b)). This is because𝐺 has a single source 𝑠 , so there exists a directed
path p from 𝑠 to 𝑢. Because 𝑢 lies inside of 𝑓 the path p must contain a vertex 𝑥 on
the boundary of 𝑓 . Then p would also contain an outgoing edge of 𝑥 which we have
just shown to be impossible.
Let 𝑠 = 𝑢1, 𝑢2, . . . , 𝑢𝑖 = v1, v2, . . . , v𝑚 = 𝑢 𝑗 , . . . , 𝑢𝑛 = 𝑡 denote the new right frontier.

Note that the invariant holds for this modified right frontier. Because 𝐺 has a single-
source all vertices and edges are drawn in this way. Because Γ and Γ′ have the same
faces they are the same embedding. Finally, Γ′ is level planar by construction, which
shows the claim. □

Thus, a planar embedding Γ of a graph 𝐺 is level-planar if and only if it can be
augmented to an 𝑠𝑡-graph𝐺 ′ ⊇ 𝐺 such that all augmentation edges can be embedded
in the faces of Γ without crossings. This gives rise to the following characterization.

Lemma 51. Let 𝐺 be a single-source 𝑘-level graph with a unique apex 𝑡 . Then 𝐺 is
level planar if and only if it has a planar embedding where every vertex v with ℓ (v) < 𝑘

is incident to at least one face 𝑓 so that v is not an apex of 𝑓 .

Proof. Let Γ𝑙 be a level-planar drawing of 𝐺 . Consider a vertex v such that it
is ℓ (v) < ℓ (𝑡). If v has an outgoing edge (v, 𝑤), then v and 𝑤 are incident to

Chapter 7 An SPQR-Tree-Like Embedding Representation for Level Planarity

138

some shared face 𝑓 . Because it is ℓ (v) < ℓ (𝑤), vertex v is not an apex of 𝑓 . If v has
no outgoing edges, start walking upwards from v in a straight line. Stop walking
upwards if an edge (𝑢, 𝑤) or a vertex 𝑤 is encountered. Then v and 𝑤 are again
incident to some shared face 𝑓 . Moreover, it is ℓ (v) < ℓ (𝑤), and therefore v is not an
apex of 𝑓 . If no edge or vertex is encountered when walking upwards, v must lie on
the outer face. Because 𝑡 lies on the outer face and it is ℓ (v) < ℓ (𝑡), vertex v is not an
apex of the outer face. Finally, because Γ𝑙 is level planar it is, of course, also planar.
Now let Γp be a planar embedding of 𝐺 . The idea is to augment 𝐺 and Γp by

inserting edges so that 𝐺 becomes an 𝑠𝑡-graph together with a planar embedding Γp .
To that end, consider a sink v ≠ 𝑡 of 𝐺 . By assumption, v is incident to at least
one face 𝑓 so that v is not an apex of 𝑓 . Hence, it is ℓ (v) < ℓ (apex(𝑓)). So the
augmentation edge 𝑒 = (v, apex(𝑓)) can be inserted into 𝐺 without creating a cycle.
Further, 𝑒 can be embedded into 𝑓 . Because all augmentation edges embedded into 𝑓

have endpoint apex(𝑓), the embedding Γp of 𝐺 remains planar. This means that 𝐺
can be augmented so that 𝑡 becomes the only sink while maintaining the planarity
of Γp . Because 𝐺 also has a single source, 𝐺 is now an 𝑠𝑡-graph and it follows from
Lemma 50 that Γp is not only planar, but also level planar. □

7.3 A Decomposition Tree for Level Planarity

We construct a decomposition tree of a given single-source level graph 𝐺 whose un-
derlying undirected graph is biconnected that represents all level-planar embeddings
of𝐺 , called the LP-tree. As noted in the Preliminaries, we assume that𝐺 has a unique
apex 𝑡 , for which ℓ (𝑡) = 𝑑 (𝑡) holds true. The LP-tree for 𝐺 is constructed based on
the SPQR-tree for 𝐺 . We keep the notion of S-, P-, Q- and R-nodes and construct
the LP-tree so that the nodes behave similarly to their namesakes in the SPQR-tree.
The skeleton of a P-node consists of two vertices that are connected by at least three
parallel virtual edges that can be arbitrarily permuted. The skeleton of an R-node `
is equipped with a reference embedding Γ̀ , and the choice of embeddings for such a
node is limited to either Γ̀ or its reflection. Unlike in SPQR-trees, the skeleton of `
need not be triconnected, instead it can be an arbitrary biconnected planar graph.
The embedding of R-node skeletons being fixed up to reflection allows us to again use
the equivalence of the arc-based and the skeleton-based embedding representations.
The construction of the LP-tree starts out with an SPQR-tree T of 𝐺 . Explicitly

label each node of T as an S-, P-, Q- or R-node. This way, we can continue to talk
about S-, P-, Q- and R-nodes of our decomposition tree even when they no longer
have their defining properties in the sense of SPQR-trees. Assume the edge (𝑠, 𝑡)
to be incident to the outer face of every level-planar drawing of 𝐺 (Lemma 48),
i.e., consider T rooted at the Q-node corresponding to (𝑠, 𝑡). The construction of

A Decomposition Tree for Level Planarity Section 7.3

139

our decomposition tree works in two steps. First, decompose the graph further by
decomposing P-nodes in order to disallow permutations that lead to embeddings
that are not level planar. Second, contract arcs of the decomposition tree, each time
fixing a reference embedding for the resulting node, so that we can consider it as
an R-node, such that the resulting decomposition tree represents exactly the level-
planar embeddings of 𝐺 . The remainder of this section is structured as follows. The
details and correctness of the first step are given in Section 7.3.1. Section 7.3.2 gives
the algorithm for constructing the final decomposition tree T . It follows from the
construction that all embeddings it represents are level-planar, and Section 7.3.3 shows
that, conversely, it also represents every level-planar embedding. In Section 7.3.4, we
present a linear-time implementation of the construction algorithm.

7.3.1 P-Node Splits

In SPQR-trees, the children of P-nodes can be arbitrarily permuted. We would like
P-nodes of the LP-tree to have the same property. Hence, we decompose skeletons
of P-nodes to disallow orders that lead to embeddings that are not level planar. The
decomposition is based on the height of the child virtual edges, which we define as
follows. Let ` be a node of a rooted decomposition tree and let 𝑢 and v be the poles
of `. Define 𝑉 (`) = 𝑉 (𝐺 (`)) \ {𝑢, v}. The height of ` and of the child virtual edge 𝑒
with corr(𝑒) = ` is 𝑑 (`) = 𝑑 (𝑒) = 𝑑 (𝑉 (`)).

Now let ` be a P-node, and let Γ be a level-planar embedding of𝐺 . The embedding Γ
induces a linear order of the child virtual edges of `. This order can be obtained by
splitting the combinatorial embedding of skel(`) around 𝑢 at the parent edge. Then
the following is true.

Lemma 52. Let T be a decomposition tree of 𝐺 , let ` be a P-node of T with poles 𝑢, v ,
and let 𝑒max be a child virtual edge of ` with maximal height. Further, let Γ be a level-
planar embedding of 𝐺 that is represented by T . If the height of 𝑒max is at least ℓ (v),
then 𝑒max is either the first or the last edge in the linear ordering of the child virtual
edges induced by Γ.

Proof. Let 𝜈 = corr` (𝑒max). Further, let 𝐺max = 𝐺 (𝑒max), and let 𝑤 ∈ 𝑉 (𝜈) such
that 𝑑 (𝑤) = 𝑑 (𝜈). If 𝑑 (𝑤) < ℓ (v), the statement of the lemma is trivially satisfied, so
assume 𝑑 (𝑤) ≥ ℓ (v) and suppose that 𝑒max is not the first edge or last edge. Let Γ̀
be the embedding of skel(`) in the corresponding skeleton-based representation
of Γ. Then there are child virtual edges 𝑒1, 𝑒2 immediately preceding and succeeding
edge 𝑒max in Γ̀ , respectively. By construction of the embedding Γ via contractions
from the embeddings of skeletons, it follows that 𝑤 shares a face only with the inner
vertices of 𝐺 (𝑒𝑖) for 𝑖 = 1, 2, the inner vertices of 𝐺max, and 𝑢 and v . By the choice
of 𝑒max it follows that 𝑑 (𝑤) ≥ ℓ (𝑤 ′) for all inner vertices 𝑤 ′ of 𝐺 (𝑒𝑖), 𝑖 = 1, 2, and

Chapter 7 An SPQR-Tree-Like Embedding Representation for Level Planarity

140

𝑒max

_ skel(`) skel(`1) skel(`2)_

𝑒max𝑒parent
𝑒parent

Figure 7.3: Result of a P-node ` split with parent _ and child with maximum height 𝜈.
Note that after the split, `1 is an R-node and `2 has one less child than ` had.

the choice of 𝑤 guarantees that 𝑑 (𝑤) ≥ ℓ (𝑤 ′) for all inner vertices 𝑤 ′ of 𝐺 (𝑒max).
Moreover, it is 𝑑 (𝑤) ≥ ℓ (v) ≥ ℓ (𝑢) by assumption. It follows that 𝑤 is not incident
to any face that has an apex 𝑎 with 𝑑 (𝑤) < ℓ (𝑎). Because 𝑤 is an inner vertex
of 𝐺max it is not incident to the outer face. Thus, Γ is not level-planar by Lemma 51,
a contradiction. □

Lemma 52 motivates the following modification of a decomposition tree T . Take a
P-node ` with poles 𝑢, v that has a child edge whose height is at least ℓ (v). Denote
by _ the parent of `. Further, let 𝑒max be a child virtual edge with maximum height
and let 𝑒parent denote the parent edge of skel(`). Obtain a new decomposition tree T ′

by splitting ` into two nodes `1 and `2 representing the subgraph𝐻1 consisting of the
edges 𝑒max and 𝑒parent, and the subgraph 𝐻2 consisting of the remaining child virtual
edges, respectively; see Fig. 7.3. Note that the skeleton of `1, which corresponds to𝐻1,
has only two child virtual edges. We therefore define it to be an R-node. Moreover,
observe that in any embedding of skel(`) that is obtained from choosing embeddings
for skel(`1) and skel(`2) and contracting the arc (`1, `2), the edge 𝑒max is the first
or last child edge. Conversely, because `2 is a P-node, all embeddings where 𝑒max
is the first or last child edge are still represented by T ′. Apply this decomposition
iteratively, creating new R-nodes on the way, until each P-node ` with poles 𝑢 and v
has only child virtual edges 𝑒 that have height at most ℓ (v) − 1. We say that a node 𝜈
with poles 𝑥, 𝑦 has I shape when the height of 𝐺 (𝜈) is less than ℓ (𝑦). The following
theorem sets the stage to prove that after this decomposition, the children of P-nodes
can be arbitrarily permuted.

Theorem 13. Let 𝐺 be a biconnected single-source graph with unique apex 𝑡 . There
exists a decomposition tree T that represents all level-planar embeddings of𝐺 such that
all children of P-nodes in T have I shape.

We see that this property ensures that P-nodes in our decomposition of level-planar
graphs work analogously to those of SPQR-trees for planar graphs. Namely, if we
have a level-planar embedding Γ of 𝐺 and consider a new embedding Γ′ that is
obtained from Γ by reordering the children of P-nodes, then also Γ′ is level-planar.

A Decomposition Tree for Level Planarity Section 7.3

141

We show that the 𝑠𝑡-augmentation from Lemma 49 can be assumed to have certain
useful properties. The proof that the children of P-nodes can be arbitrarily permuted
then uses Lemma 50 and the fact that the children of P-nodes in SPQR-trees can be
arbitrarily permuted.

Lemma 53. Let Γ be a level-planar embedding of 𝐺 = (𝑉 , 𝐸) and let ` be a node of T
with poles 𝑢, v such that 𝐺 (`) has I shape. Then there exists a planar 𝑠𝑡-augmenta-
tion𝐺 ′ = (𝑉 , 𝐸 ∪ 𝐸𝑠𝑡), Γ′ of𝐺 and Γ so that 𝑢, v separates 𝑉 (𝐺 (`)) from 𝑉 \𝑉 (𝐺 (`))
in 𝐺 ′.

Proof. Let Γ′ and 𝐺 ′ be an 𝑠𝑡-augmentation of Γ and 𝐺 where 𝑢, v is not a cutpair.
Modify 𝐺 ′, Γ′ so that they remain an 𝑠𝑡-augmentation of 𝐺, Γ and no edge in 𝐸𝑠𝑡 has
exactly one endpoint in 𝑉 (𝐺 (`)). Let 𝑓 be a `-incident arc in Γ. Let 𝐸 (𝑓) denote the
set of augmentation edges embedded into 𝑓 to obtain Γ′. Call an edge (𝑤, 𝑥) ∈ 𝐸 (𝑓)
critical if 𝑤 or 𝑥 lies in 𝑉 (`). Remove all critical edges from Γ′ and 𝐺 . Note that
because 𝑢, v is a cutpair in 𝐺 , the endpoints of all critical edges are now incident to
the same face 𝑓 ′. Observe that v is also incident to 𝑓 ′. Consider a critical edge (𝑤, 𝑥)
that was removed. Because 𝐺 (`) has I shape, it follows from 𝑤 ∈ 𝑉 (`) that it
is certainly ℓ (𝑤) < ℓ (v). If it is 𝑤 ∉ 𝑉 (`), then it must be 𝑥 ∈ 𝑉 (`) and cer-
tainly ℓ (𝑥) < ℓ (v). With ℓ (𝑤) < ℓ (𝑥) it follows that ℓ (𝑤) < ℓ (v). So for each
critical edge (𝑤, 𝑥) the non-critical edge (𝑤, v) can be added to Γ′ and𝐺 ′. Because all
endpoints are incident to 𝑓 ′ and all inserted edges share the endpoint v this preserves
the planarity of Γ′ and𝐺 ′. Therefore, Γ′ and𝐺 ′ is now an 𝑠𝑡-augmentation of Γ and𝐺
once more. Finally, 𝑢 and v separate 𝑉 (𝐺 (`)) from 𝑉 \ 𝑉 (𝐺 (`)) in 𝐺 ′ because 𝐺 ′

contains no critical edge. □

This sets the stage for the correctness proof. The idea is to transform any given 𝑠𝑡-
augmentation to one that satisfies the conditions from Lemma 53. Then the graphs
corresponding to child virtual edges can be permuted arbitrarily while preserving
planarity. Lemma 50 then gives that all these embeddings are also level planar.

Lemma 54. Let Γ be a level-planar embedding of 𝐺 and let T be a decomposition tree
of𝐺 whose skeletons are embedded according to Γ. Further, let ` be a P-node of T . Let Γ′

be the planar embedding obtained by arbitrarily permuting the child virtual edges of `.
Then Γ′ is level planar.

Proof. Let Γ′ and 𝐺 ′ be an 𝑠𝑡-augmentation obtained from Γ and 𝐺 according to
Lemma 53. Note that (𝑢, v) separates 𝐺 ′(𝜈) from the rest of 𝐺 ′ for each child 𝜈 of `.
Consider the SPQR-tree T ′ of𝐺 ′. Then𝑢, v are the poles of a P-node ` ′ in T ′ with the
same neighbors as ` in T . Then the child virtual edges of skel(` ′) can be arbitrarily
permuted to obtain a planar embedding. Because 𝐺 ′ is an 𝑠𝑡-graph, Lemma 50 gives
that any planar embedding of 𝐺 ′ is also level planar. □

Chapter 7 An SPQR-Tree-Like Embedding Representation for Level Planarity

142

𝑣

𝑢

𝐺 (`)

𝑣

𝑢

𝐺 (`)

𝑣

𝑢

𝐺 (`)

Figure 7.4: The three steps in the proof of Lemma 53. The subgraph𝐺 (`) is drawn
in pink, the `-incident face 𝑓 is drawn in white. Critical augmentation edges in 𝐸 (𝑓)
are drawn in red, and non-critical augmentation edges are drawn in gray. In the first
step, remove all critical edges, this gives the drawing in the middle. Note that the
red vertices and v are incident to a shared face. Finally, attach all red vertices to v ,
this gives the drawing on the right. The same process would then be repeated for the
other `-incident face, drawn with gray stripes.

This completes the proof that in our decomposition the children of P-nodes can be
arbitrarily permuted.

Theorem 14. Let 𝐺 be a biconnected single-source graph with a unique apex. There
exists a decomposition tree T that (i) represents all level-planar embeddings of 𝐺 (plus
some planar, non-level-planar ones), and (ii) if all skeletons of the nodes of T are
embedded so that contracting all arcs of T yields a level-planar embedding, then the
children of all P-nodes in T can be arbitrarily permuted and then contracting all arcs
of T still yields a level-planar embedding of 𝐺 .

7.3.2 Arc Processing

In this section, we finish the construction of the LP-tree. The basis of our construction
is the decomposition tree T from Theorem 13, which represents a subset of the
planar embeddings of 𝐺 that contains all level-planar embeddings, and moreover all
children of P-nodes have I shape. We now restrict T even further until it represents
exactly the level-planar embeddings of 𝐺 . As of now, all R-node skeletons have a
planar embedding that is unique up to reflection, as they are either triconnected
or consist of only three parallel edges. By assumption, 𝐺 is level-planar, and there
exists a level-planar embedding Γ of 𝐺 . Recall that our definition of level-planar
embeddings involves demands. Computing a level-planar embedding Γ of 𝐺 with
demands reduces to computing a level-planar embedding of the supergraph𝐺 ′ of 𝐺
obtained from 𝐺 by attaching to each vertex v of 𝐺 with 𝑑 (v) > ℓ (v) an edge to a
vertex v ′ with ℓ (v ′) = 𝑑 (v) without demands. Because 𝐺 ′ is a single-source graph
whose size is linear in the size of𝐺 this can be done in linear time [DN88]. We equip

A Decomposition Tree for Level Planarity Section 7.3

143

𝑤1 𝑤2

𝑎1 𝑎2

𝑎3 𝑣 𝑤3

𝑎4
𝑎5

𝐺 (_)
𝐺 (`) 𝐺 (𝜈)

Figure 7.5: The height of 𝐺 (_) is at least ℓ (𝑤1) = ℓ (𝑤2), the height of 𝐺 (`) is at
most ℓ (v) − 1 and the height of 𝐺 (𝜈) is at least ℓ (𝑤3). The space around _ is ℓ (𝑎1),
the space around ` is ℓ (v) and the space around 𝜈 is ℓ (𝑎5).

the skeleton of each node ` with the reference embedding Γ̀ such that contracting all
arcs yields the embedding Γ. For the remainder of this section we will work with the
arc-based embedding representation. As a first step, we contract any arc (_, `) of T
where _ is an R-node and ` is an S-node and label the resulting node as an R-node.
Note that, since S-nodes do not offer any embedding choices, this does not change
the embeddings that are represented by T . This step makes the correctness proof
easier. Any remaining arc (_, `) of T is contracted based upon two properties of `,
namely the height of 𝐺 (`) and the space around ` in the level-planar embedding Γ,
which we define next. The resulting node is again labeled as an R-node. Let ` be a
node of T with poles 𝑢 and v . We denote by Γ ◦ ` the embedding obtained from Γ
by contracting 𝐺 (`) to the single edge 𝑒 = (𝑢, v). We call the faces 𝑓1, 𝑓2 of Γ that
induce the incident faces of 𝑒 in Γ ◦ ` the `-incident faces. The space around ` in Γ
is min{ℓ (apex(𝑓1)), ℓ (apex(𝑓2))}; see Fig. 7.5. For the time being we will consider
the embeddings of P-node skeletons as fixed. Then all the remaining embedding
choices are done by choosing whether or not to flip the embedding for the incoming
arc of each R-node. Let 𝐴 denote the set of arcs in T . For each arc 𝑎 = (_, `) ∈ 𝐴

let space(`) denote the space around ` in Γ. We label 𝑎 as rigid if 𝑑 (`) ≥ space(`)
and as flexible otherwise.

Let T ′ be the decomposition tree obtained by contracting all rigid arcs and equip-
ping each R-node skeleton with the reference embedding obtained from the contrac-
tions. We now release the fixed embedding of the P-nodes, allowing to permute their
children arbitrarily. The resulting decomposition tree is called the LP-tree of the input
graph 𝐺 . See Fig. 7.6 (d) for an example. Our main result is the following theorem.

Theorem 15. Let 𝐺 be a biconnected, single-source, level-planar graph. The LP-tree
of 𝐺 represents exactly the level-planar embeddings of 𝐺 and can be computed in linear
time.

Chapter 7 An SPQR-Tree-Like Embedding Representation for Level Planarity

144

(a) (b)

(c) (d)

Figure 7.6: Example construction of the LP-tree for the graph 𝐺 (a). We start with
the SPQR-tree of𝐺 (b). Arcs are oriented towards the root. Next, we split the P-node,
obtaining the tree shown in (c). Finally, we contract arcs that connect R-nodes with
S-nodes and arcs that are found to be rigid (thick dashed lines). This gives the final
LP-tree T for 𝐺 (d).

The next subsection is dedicated to proving the correctness of Theorem 15. The
above algorithm considers every arc of T once. The height of ` and the space
around ` in Γ can be computed in polynomial time. Thus, the algorithm has overall

A Decomposition Tree for Level Planarity Section 7.3

145

polynomial running time. In Section 7.3.4, we present a linear-time implementation
of this algorithm.

7.3.3 Correctness

Process the arcs in top-down order 𝛼1, . . . , 𝛼𝑚 . For each 𝑖 = 0, 1, . . . ,𝑚 define the
set 𝐴𝑖 = {𝛼1, . . . , 𝛼𝑖 } as the first 𝑖 processed arcs for 𝑖 = 0, . . . ,𝑚. Note that 𝐴0 = ∅
and 𝐴𝑚 = 𝐴. Denote by 𝑅𝑖 and 𝐹𝑖 the arcs in 𝐴𝑖 that are labeled rigid and flexible,
respectively. We now introduce a refinement of the embeddings represented by a
decomposition tree. Namely, a restricted decomposition tree T is a decomposition tree
together with a subset of its arcs that are labeled as flexible, and, in the arc-based
view, the embeddings represented by T are only those that can be created by flipping
only at flexible arcs. We denote by T𝑖 the restricted decomposition tree obtained
from T by marking only the edges in 𝐹𝑖 as flexible.
Initially, 𝐹0 = ∅, and therefore T represents exactly the reference embedding Γref

and its reflection. Since all children of 𝑃-nodes have I shape and each P-node has
I shape, no arc incident to a P-node is labeled rigid. Therefore, if such an edge is
contained in 𝐴𝑖 , it is flexible. In particular, only arcs between adjacent R-nodes are
labeled rigid. As we proceed and label more edges as flexible, more and more embed-
dings are represented. Each time, we justify the level planarity of these embeddings.
As a first step, we extend the definition of space from the previous subsection, which
strongly depends on the initial level-planar embedding Γ, in terms of all level-planar
embeddings represented by the restricted decomposition tree T𝑖 . Let ` be a node
of T𝑖 with poles 𝑢, v . The space around ` is the minimum space around ` in any
level-planar embedding represented by the restricted decomposition tree T𝑖 . Now
let Γ be a planar embedding of 𝐺 and let Π be a planar embedding of 𝐺 (`) where 𝑢
and v lie on the outer face. Because 𝑢 and v is a cutpair that disconnects 𝐺 (`) from
the rest of 𝐺 and 𝐺 (`) is connected, the embedding of 𝐺 (`) in Γ can be replaced
by Π. Let Γ + Π refer to the resulting embedding. Now let Γ be a planar embedding
of 𝐺 and let ` be a node of T . Let Π denote the restriction of Γ to 𝐺 (`) and let Π̄ be
the reflection of Π. Reflecting ` in 𝑇 corresponds to replacing Π by Π̄ in Γ, obtaining
the embedding Γ + Π̄ of 𝐺 .
The idea is to show that if there is (is not) enough space around a node ` to

reflect it, it can (cannot) be reflected regardless of which level-planar embedding is
chosen for𝐺 (`). So, the algorithm always labels arcs correctly. We use the following
invariant.

Lemma 55. The restricted decomposition tree T𝑖 satisfies the following five conditions.
1. All embeddings represented by T𝑖 are level planar.
2. Let (_, `) be an arc that is labeled as flexible. Let Γ be an embedding represented

Chapter 7 An SPQR-Tree-Like Embedding Representation for Level Planarity

146

by T𝑖−1 and let Π be any level-planar embedding of𝐺 (`). Then Γ + Π and Γ + Π̄
are level planar.

3. Let (_, `) be an arc that is labeled as rigid. Let Γ be an embedding represented
by T𝑖−1 and let Π be a level-planar embedding of 𝐺 (`) so that Γ + Π is level
planar. Let all skeletons of T𝑖 be embedded according to Γ + Π. Then skel(`) has
the reference embedding and Γ + Π̄ is not level planar.

4. The space around each node ` of T𝑖 is the same across all embeddings represented
by T𝑖 .

5. Let Γ be a level-planar embedding of 𝐺 so that there exists a level-planar embed-
ding Γp of𝐺 that (i) is obtained from Γ by reordering the children of P-nodes, and
(ii) satisfies Γp = Γref (𝜋1, 𝜋2, . . . , 𝜋𝑚) where 𝜋 𝑗 indicates whether arc 𝛼 𝑗 = (_ 𝑗 , ` 𝑗)
should be flipped (𝜋 𝑗 = �̄� 𝑗) or not (𝜋 𝑗 = 𝛼 𝑗), and it is 𝜋 𝑗 = 𝛼 𝑗 for 𝑗 > 𝑖 . Then Γ is
represented by T𝑖 .

Proof. For 𝑖 = 0, no arc of the restricted decomposition tree T0 is labeled as flexible.
So T0 only represents the reference embedding Γref and its reflection Γ̄ref . Both of
these are level planar by assumption, so condition 1 is satisfied. Because 𝐴0 = ∅, no
arc has been labeled as flexible or rigid, so conditions 2 and 3 are trivially satisfied.
Because the incidences of vertices and faces are the same in Γ and its reflection Γ̄,
condition 4 is also satisfied.

Now consider the case 𝑖 ≥ 1. Let 𝛼𝑖 = (_, `). Let 𝑢, v be the poles of `. Let Γ be an
embedding represented by T𝑖−1 and letΠ be any level-planar embedding of𝐺 (`). Con-
sider the embedding Γ+Π. Let 𝑓1, 𝑓2 be the `-incident faces of Γ+Π. For 𝑗 = 1, 2, let𝑊𝑗

be the subset of vertices of𝐺 (`) that are incident to 𝑓𝑗 , except for𝑢 and v . And let𝑉𝑗 be
all other vertices incident to 𝑓𝑗 , including𝑢 and v . Now consider the embedding Γ+ Π̄.
Again, let 𝑓 ′1 , 𝑓 ′2 be the `-incident faces of Γ+Π̄. Then𝑉1∪𝑊2 and𝑉2∪𝑊1 are the set of
vertices incident to 𝑓 ′1 and 𝑓 ′2 , respectively. Note that all faces in Γ+ Π̄ except for 𝑓 ′1 , 𝑓 ′2
appear identically in Γ + Π. Let 𝑎1 and 𝑎2 denote the apices of 𝑓1 and 𝑓2, respectively.
Then the space around ` in Γ + Π, denoted by space(`), is min(ℓ (𝑎1), ℓ (𝑎2)). Distin-
guish two cases, namely height(`) < space(`) and height(`) ≥ space(`). Note that
because of condition 4, the same case applies for any embedding represented by T𝑖−1.

1. Consider the case height(`) < space(`). This implies 𝑎1 ∈ 𝑉1 and 𝑎2 ∈ 𝑉2.
We have to show that both Γ + Π and Γ + Π̄ are level planar. To this end, use
Lemma 51. By assumption, Π is a level-planar embedding of 𝐺 (`). So the con-
dition of Lemma 51 is satisfied for any vertex of𝐺 whose incident faces are all
inner faces of Π in Γ+Π (or of Π̄ in Γ+ Π̄). By condition 1, Γ is a level-planar em-
bedding of𝐺 . So the condition of Lemma 51 is satisfied for any vertex of𝐺\𝐺 (`)
that is not incident to 𝑓1 and 𝑓2. It remains to be shown that the condition of
Lemma 51 is satisfied for the vertices in (𝑉1 \ {𝑎1} ∪ (𝑉2 \ {𝑎2}) ∪𝑊1 ∪𝑊2.

A Decomposition Tree for Level Planarity Section 7.3

147

• Suppose 𝑤 ∈ 𝑉1 \ {𝑎1}. Then 𝑤 is incident to 𝑓 ′1 , as are the vertices
in 𝑉1. In particular, because 𝑎1 ∈ 𝑉1, the apex 𝑎1 is incident to 𝑓 ′1 . And
because 𝑎1 is the unique apex of 𝑓1, it is ℓ (𝑤) < ℓ (𝑎1). The argument
works analogously for 𝑤 ∈ 𝑉2 \ {𝑎2}.

• Otherwise, it is 𝑤 ∈𝑊1.
– Consider Γ + Π. Then 𝑤 is incident to 𝑓 ′1 , as are the vertices in𝑉1. In

particular, 𝑎1 is incident to 𝑓 ′1 . Further, space(`) = min(ℓ (𝑎1), ℓ (𝑎2)).
So it is

ℓ (𝑤) ≤ height(`) < space(`) ≤ ℓ (𝑎1)

and it follows that ℓ (𝑤) < ℓ (𝑎1).
– Consider Γ + Π̄. Then 𝑤 is incident to 𝑓 ′2 , as are the vertices in𝑉2. In

particular, 𝑎2 is incident to 𝑓 ′2 . Further, space(`) = min(ℓ (𝑎1), ℓ (𝑎2)).
So it is

ℓ (𝑤) ≤ height(`) < space(`) ≤ ℓ (𝑎2)

and it follows that ℓ (𝑤) < ℓ (𝑎2).
The argument works analogously for 𝑤 ∈𝑊2.

This shows that the condition in Lemma 51 is satisfied for all vertices in Γ + Π
and Γ + Π̄. As a result, both of these embeddings are level planar.

2. Consider the case height(`) ≥ space(`). Then the algorithm will find the
arc 𝛼𝑖 to be rigid and we have to show that this is the correct choice. Note
that as observed above, the fact that 𝛼𝑖 is labeled as rigid means that ` is
an R-node. Recall that 𝑢, v are the poles of ` and let 𝑤 ≠ 𝑢, v be a vertex
of 𝐺 (`) so that ℓ (𝑤) equals height(`). Note that it is 𝑤 ≠ v by definition
of height(`) and 𝑤 ≠ 𝑢 because of height(`) ≥ space(`). Again, because
of height(`) ≥ space(`), the apex 𝑤 lies on the outer face of Π. Either 𝑤 is a
vertex on the outer face of skel(`), or 𝑤 belongs to𝐺 (𝑒) for some child virtual
edge 𝑒 on the outer face of skel(`). Because ` is an R-node, its skeleton is
biconnected and therefore 𝑤 is incident to either 𝑓1 or 𝑓2, but not both, and this
choice depends entirely on the embedding of skel(`). By assumption Γ + Π is
level planar and it remains to be shown that Γ + Π̄, is not level planar. Note
that Γ + Π̄ is the embedding that is obtained by reflecting ` so that skel(`) does
not have the reference embedding. Assume 𝑤 ∈𝑊1 without loss of generality.
It is ℓ (𝑤) = max{ℓ (𝑥) | 𝑥 ∈𝑊1}. Because 𝑤 is an apex of 𝑉 (`), face 𝑓1 must
be the face incident to 𝑤 of which 𝑤 is not an apex. Now consider Γ + Π̄.
Now 𝑤 is incident to face 𝑓 ′2 which is incident to the vertices 𝑉2 ∪𝑊1. Be-
cause height(`) ≥ space(`) it is ℓ (𝑤) ≥ max{𝑤 ∈ 𝑉2 ∪𝑊1}. This means

Chapter 7 An SPQR-Tree-Like Embedding Representation for Level Planarity

148

that 𝑤 is an apex of all its incident faces. Then Γ + Π̄ cannot be level planar by
Lemma 51.

This means that if 𝑎 is labeled as flexible, then 𝐺 (`) can be reflected in all embed-
dings represented by T𝑖−1. And if 𝑎 is labeled as rigid, then 𝐺 (`) cannot be reflected
in any embedding represented by T𝑖−1. This shows that T𝑖 satisfies conditions 1
through 3. Next, we show that the space around nodes of T is the same across all em-
beddings represented by T𝑖 . Again, distinguish the two cases height(`) < space(`)
and height(`) ≥ space(`).

1. Consider the case height(`) < space(`). Let Γ be an embedding represented
by T𝑖−1 and let Γ′ be the embedding obtained by reflecting ` in Γ. See Fig. 7.7.
We show that the space around each node 𝜈 of T𝑖 is identical in Γ and Γ′. Let 𝑥, 𝑦
be the poles of 𝜈 and let 𝑓1, 𝑓2 be the `-incident faces in Γ. Further, let 𝑓 ′1 , 𝑓 ′2
be the `-incident faces in Γ′. As previously discussed, all faces in Γ and Γ′

are identical, except for 𝑓1, 𝑓2, 𝑓 ′1 , 𝑓 ′2 . Suppose that both 𝜈-incident faces in Γ
are neither 𝑓1 nor 𝑓2. Then the faces around 𝜈 do not change and therefore
the space around 𝜈 does not change. Conversely, suppose that the 𝜈-incident
faces are 𝑓1 and 𝑓2. Then the space around 𝜈 in Γ is min(ℓ (𝑎1), ℓ (𝑎2)). And
because 𝑎 𝑗 ∈ 𝑉𝑗 for 𝑗 = 1, 2, the space around 𝜈 in Γ′ is min(ℓ (𝑎1), ℓ (𝑎2)) as
well.
Otherwise, exactly one 𝜈-incident face in Γ is either 𝑓1 or 𝑓2. Without loss
of generality, let 𝑓1 be that face. Then exactly one 𝜈-incident face in Γ′ is
either 𝑓 ′1 or 𝑓 ′2 . Assume that face is 𝑓 ′1 . Because the apex of 𝑓 ′1 and 𝑓1 are
identical, the space around 𝜈 in Γ′ is the same as in Γ. Now assume that 𝑓 ′2
is the face. Then the space around 𝜈 is bounded by a vertex z ∈ 𝑉 (𝐺 (`))
and height(`) < space(`) implies that ℓ (z) ≤ height(`) < space(`). So the
space around 𝜈 is bounded by z in Γ and Γ′.
Again, because of condition 4, the argument can be made for any embed-
ding represented by T𝑖−1, and therefore the claim follows for all embeddings
represented by T𝑖 .

2. Consider the case height(`) ≥ space(`). Then T𝑖 represents the same embed-
dings as T𝑖−1 and so condition 4 is trivially satisfied.

Now we show that permuting the children of P-nodes does not change the space
around any node of T𝑖 . Recall Theorem 13, which states that all children of P-nodes
have I shape. Take any two adjacent children of a P node ` and merge them, creating
a new R-node child 𝜈 of the P-node. Then 𝜈 has I shape. Therefore it can be reflected.
Further reflecting both children of 𝜈, which is possible because they too have I shape,

A Decomposition Tree for Level Planarity Section 7.3

149

𝐺 (`)

𝑣

𝑢

𝑓1

𝑓2

𝑎2
𝑎1

𝑒2

𝑒1 𝑒0

𝑧 𝑒 ′1 𝐺 (`)

𝑣

𝑢

𝑓 ′1

𝑓 ′2

𝑎2
𝑎1

𝑒2

𝑒1 𝑒0

𝑧
𝑒 ′1

Γ Γ′

reect `

Figure 7.7: Proof of Lemma 55, Property 4 for the case height(`) < space(`). The
edge 𝑒0 is not incident to any `-incident face, the edges 𝑒1, 𝑒

′
1 are incident to exactly

one `-incident face and the edge 𝑒2 is incident to both `-incident faces. The space
around all nodes of T does not change when reflecting `.

means that in the resulting embedding the two children are reversed. Note that any
permutation can be realized by a number of exchanges of adjacent pairs, which shows
that condition 4 remains satisfied when permuting the children of P-nodes. This
shows that condition 4 is satisfied for T𝑖 .
As the final step, we prove that condition 5 is satisfied for T𝑖 . Recalling Theo-

rem 14 and the equivalence of the skeleton-based and arc-based representations,
we have that for every level-planar embedding Γ of 𝐺 there exists a level-planar
embedding Γp that is obtained from Γ by reordering the children of P-nodes such
that it is Γp = Γref (𝜋1, 𝜋2, . . . , 𝜋𝑚) where it is 𝛼 𝑗 = (_ 𝑗 , ` 𝑗) and 𝜋 𝑗 = 𝛼 𝑗 or 𝜋 𝑗 = �̄� 𝑗

denotes whether the embedding of 𝐺 (`𝑖) should remain unchanged or be flipped,
respectively. Now let 𝜋 𝑗 = 𝛼 𝑗 for 𝑗 > 𝑖 as required by the invariant. We show that Γp
is represented by T𝑖 , Theorem 14 then implies that Γ is represented by T𝑖 as well.
In the base case 𝑖 = 0 no arc is flipped, i.e., we have Γp = Γref , which is the level-

planar embedding of 𝐺 represented by T0 by definition. In the inductive case 𝑖 > 0,
we distinguish two cases based on whether it is 𝜋𝑖 = 𝛼𝑖 or 𝜋𝑖 = �̄�𝑖 . Define

Γ1
p = Γref (𝜋1, 𝜋2, . . . , 𝜋𝑖−1, 𝛼𝑖 , 𝛼𝑖+1, . . . , 𝛼𝑚) and
Γ2
p = Γref (𝜋1, 𝜋2, . . . , 𝜋𝑖−1,¬𝛼𝑖 , 𝛼𝑖+1, . . . , 𝛼𝑚).

Observe that Γ1
p is represented by T𝑖−1 by induction on condition 5. Then Γ1

p is also
represented by T𝑖 , which shows the claim for Γp = Γ1

p . Otherwise, it is Γp = Γ2
p . Let Π

denote the restriction of Γ1
p to𝐺 (`𝑖). Then it is Γ1

p = Γ1
p + Π and flipping 𝛼𝑖 reflects Π,

i.e., Γ2
p = Γ1

p + Π̄. We now distinguish two cases based on whether 𝛼𝑖 is labeled as
flexible or rigid. If 𝛼𝑖 is labeled as flexible, Γ2

p = Γp is represented by T𝑖 . Otherwise, 𝛼𝑖
is labeled as rigid. Recall that Γ1

p is represented by T𝑖−1 and T𝑖 . Then condition 3 gives
that Γp = Γ2

p = Γ1
p + Π̄ is not level planar, a contradiction. □

Chapter 7 An SPQR-Tree-Like Embedding Representation for Level Planarity

150

The restricted decomposition tree T𝑚 represents only level-planar embeddings by
Property 1 of Lemma 55. Because no arc of T𝑚 is unlabeled, it also follows that all
level-planar embeddings of𝐺 are represented by T𝑚 . Contracting all arcs labeled as
rigid in T𝑚 gives the LP-tree for 𝐺 , which concludes our proof of Theorem 15.

7.3.4 Construction in Linear Time

The algorithm described in Section 7.3 clearly has polynomial running time. In this
section, we describe an implementation of it that has linear running time. Starting out,
the preprocessing step where the apex 𝑡 and the edge (𝑠, 𝑡) is added to 𝐺 is feasible
in linear time. Next, the SPQR-tree T of this modified graph 𝐺 can be computed in
linear time [GM00, HT73]. Then, a level-planar embedding Γ of 𝐺 is computed in
linear time [DN88] and all skeletons of T are embedded accordingly.
For each node ` of T the height of 𝐺 (`) needs to be known. The heights for all

nodes are computed bottom-up. Note that the height of an edge 𝑒 = (𝑢, v) of 𝐺
is ℓ (𝑢). This means that the heights for all leaf Q-nodes can be easily determined.
In general, to determine the height for a node ` of T , proceed as follows. Assume
the heights are known for all children. Let 𝐸` be the child virtual edges of skel(`)
and let ℎ(𝑒) denote the height of 𝐺 (𝜈) with corr` (𝑒) = 𝜈. Then the height of `
is max{{𝑑 (𝑒) | 𝑒 ∈ 𝐸`} ∪ {𝑑 (𝑤) | 𝑤 ∈ 𝑉 (`)}}. Thus, the running time spent to
determine the height of ` when the heights of all its children is known is linear in
the size of skel(`). Because the sum of the sizes of all skeletons of T is linear in 𝑛,
all heights can be computed in linear time.

The next step is to split P-nodes. Let ` be a P-node. One split at ` requires to find
the child with the greatest height. Because Γ is a level-planar embedding, Lemma 52
gives that this is one of the outermost children. By inspecting the two outermost
children of `, the child 𝜈 with greatest height can be found, or it is found that all
children of ` have I shape and ` does not need to be split. A P-node split is a constant-
time operation. Because there are no more P-node splits than nodes in T , all P-node
splits are feasible in linear time.
The final step of the algorithm is to process all arcs. For this the space around

each node needs to be known. The space around a node ` depends on the apices
of the `-incident faces in Γ. Fortunately, these can be easily computed bottom-up.
Start by labeling every face 𝑓 of Γ with its apex by walking around the cycle that
bounds 𝑓 . For every edge 𝑒 of 𝐺 the apices on both sides of 𝑒 can then be looked
up in Γ. So the incident apices are known for each Q-node of T . Let ` be a node
of T so that for each child 𝜈 of ` the apices of the 𝜈-incident faces are known. Then
the apices of the `-incident faces can be determined from the child virtual edges
of skel(`) that share a face with the parent virtual edge of `. The running time of
this procedure is linear in the sum of sizes of all skeletons, i.e., linear in 𝑛. To process

Applications Section 7.4

151

the arcs, simply walk through T from the top down. Compute the space around each
child node 𝜈 from the available apices of the 𝜈-incident faces and compare it with the
precomputed height of𝐺 (`). Finally, contract all arcs marked as rigid, which again is
feasible in overall linear time. This proves the running time claimed in Theorem 15.

7.4 Applications

We use the LP-tree to translate efficient algorithms for constrained planarity problems
to the level-planar setting. First, we extend the partial planarity algorithm by Angelini
et al. [Ang+15c] to solve partial level planarity for biconnected single-source level
graphs. Second, we adapt this algorithm to solve constrained level planarity. In both
cases we obtain a linear-time algorithm, improving upon the best previously known
running time of 𝑂 (𝑛2), though that algorithm also works in the non-biconnected
case [BR17]. Third, we translate the simultaneous planarity algorithm due to Angelini
et al. [Ang+12] to the simultaneous level planarity problem when the shared graph
is a biconnected single-source level graph. Previously, no polynomial-time algorithm
was known for this problem.

7.4.1 Partial Level Planarity

Angelini et al. define partial planarity in terms of the cyclic orders of edges around
vertices (the “edge-order definition”) as follows. A partially embedded graph (Peg)
is a triple (𝐺,𝐻,H) that consists of a graph𝐺 and a subgraph 𝐻 of𝐺 together with a
planar embedding H of 𝐻 . The task is to find an embedding G of𝐺 that extends H in
the sense that any three edges 𝑒, 𝑓 , 𝑔 of𝐻 that are incident to a shared vertex v appear
in the same order around v in G as in H. The algorithm works by representing all
planar embeddings of𝐺 as an SPQR-tree T and then determining whether there exists
a planar embedding of𝐺 that extends the given partial embeddingH as follows. Recall
that 𝑒, 𝑓 , 𝑔 correspond to distinct Q-nodes `𝑒 , `𝑓 and `𝑔 in T . There is exactly one
node 𝜈 of T that lies on all paths connecting two of these Q-nodes. Furthermore, 𝑒, 𝑓 , 𝑔
belong to the expansion graphs of three distinct virtual edges 𝑒, 𝑓 , �̂� of skel(𝜈). The
order of 𝑒, 𝑓 and 𝑔 in the planar embedding represented by T is determined by the
order of 𝑒, 𝑓 , �̂� in skel(𝜈), i.e., by the embedding of skel(𝜈). Fixing the relative order
of 𝑒, 𝑓 , 𝑔 therefore imposes certain constraints on the embedding of skel(`). Namely,
an R-node can be constrained to have exactly one of its two possible embeddings
and the admissible permutations of the neighbors of a P-node can be constrained
as a partial ordering. To model the embedding H consider for each vertex v of 𝐻
each triple 𝑒, 𝑓 , 𝑔 of consecutive edges around v and fix their order as in H. The
algorithm collects these linearly many constraints and then checks whether they can

Chapter 7 An SPQR-Tree-Like Embedding Representation for Level Planarity

152

be satisfied simultaneously.
Define partial level planarity analogously, i.e., a partially embedded level graph is a

triple (𝐺,𝐻,H) of a level graph𝐺 , a subgraph𝐻 of𝐺 and a level-planar embedding H
of 𝐻 . Again the task is to find an embedding G of 𝐺 that extends H in the sense
that any three edges 𝑒, 𝑓 , 𝑔 of 𝐻 that are incident to a shared vertex v appear in the
same order around v in G as in H. This definition of partial level planarity is distinct
from but (due to Lemma 47 (★)) equivalent to the one given in [BR17], which is a
special case of constrained level planarity as presented in the next section. LP-trees
exhibit all relevant properties of SPQR-trees used by the partial planarity algorithm.
Ordered edges 𝑒, 𝑓 , 𝑔 of 𝐺 again correspond to distinct Q-nodes of the LP-tree T ′

for 𝐺 . Again, there is a unique node 𝜈 of T ′ that has three virtual edges 𝑒, 𝑓 , �̂� that
determine the order of 𝑒, 𝑓 , 𝑔 in the level-planar drawing represented by T ′. Finally,
in LP-trees just like in SPQR-trees, R-nodes have exactly two possible embeddings
and the virtual edges of P-nodes can be arbitrarily permuted. Using the LP-tree
as a drop-in replacement for the SPQR-tree in the partial planarity algorithm due
to Angelini et al. gives the following, improving upon the previously known best
algorithm with 𝑂 (𝑛2) running time (although that algorithm also works for the
non-biconnected case [BR17]).

Theorem16. Partial level planarity can be solved in linear running time for biconnected
single-source level graphs.

Angelini et al. extend their algorithm to the connected case [Ang+15c]. This requires
significant additional effort and the use of another data structure, called the enriched
block-cut tree, that manages the biconnected components of a graph in a tree. Some
of the techniques described in this chapter, in particular our notion of demands,
may be helpful in extending our algorithm to the connected single-source case.
Consider a connected single-source graph 𝐺 . All biconnected components of 𝐺 have
a single source and the LP-tree can be used to represent their level-planar embeddings.
However, a vertex v of some biconnected component 𝐻 of𝐺 may be a cutvertex in𝐺
and can dominate vertices that do not belong to 𝐻 . Depending on the space around v
and the levels on which these vertices lie this may restrict the admissible level-planar
embeddings of 𝐻 . Let 𝑋 (v) denote the set of vertices dominated by v that do not
belong to 𝐻 . Set the demand of v to 𝑑 (v) = 𝑑 (𝑋 (v)). Computing the LP-tree with
these demands ensures that there is enough space around each cutvertex v to embed
all components connected at v . The remaining choices are into which faces of 𝐻
incident to v such components can be embedded and possibly nesting biconnected
components. These choices are largely independent for different components and
only depend on the available space in each incident face. This information is known
from the LP-tree computation. In this way it may be possible to extend the steps for
handling non-biconnected graphs due to Angelini et al. to the level planar setting.

Applications Section 7.4

153

7.4.2 Constrained Level Planarity

A constrained level graph (Clg) is a tuple (𝐺, {≺′
1, ≺′

2, . . . , ≺′
𝑘
}) that consists of a 𝑘-

level graph 𝐺 and partial orders ≺′
𝑖 of 𝑉𝑖 for 𝑖 = 1, 2, . . . , 𝑘 (the “vertex-order defi-

nition”) [BR17]. The task is to find a drawing of 𝐺 , i.e., total orders ≺𝑖 of 𝑉𝑖 that
extend ≺′

𝑖 in the sense that for any two vertices 𝑢, v ∈ 𝑉𝑖 with 𝑢 ≺′
𝑖 v it is 𝑢 ≺𝑖 v .

Theorem 17. Constrained level planarity can be solved in linear running time for
biconnected single-source level graphs.

Proof. Translate the given vertex-order constraints into edge-order constraints. This
translation is justified by Lemma 47. We now show that all vertex-order constraints
can be translated in linear time. For any pair 𝑢, v with 𝑢 ≺′

𝑖 v we start by finding
a vertex 𝑤 so that there are disjoint paths p𝑢 and pv from 𝑤 to 𝑢 and v . This can
be achieved by using the algorithm of Harel and Tarjan on a depth-first-search
tree D of 𝐺 [HT84] in linear time. Mark 𝑤 with the pair 𝑢, v for the next step. Then,
we find the edges 𝑒 and 𝑓 of p𝑢 and pv incident to 𝑤, respectively. To this end, we
proceed similarly to a technique described by Bläsius et al. [BKR18]. At the beginning,
every vertex of 𝐺 belongs to its own singleton set. Proceed to process the vertices
of 𝐺 bottom-up in D, i.e., starting from the vertices on the greatest level. When
encountering a vertex 𝑤 marked with a pair 𝑢, v , find the representatives of 𝑢 and v ,
denoted by 𝑢 ′ and v ′, respectively. Observe that it is 𝑒 = (𝑤,𝑢 ′) and 𝑓 = (𝑤, v ′),
and that both 𝑒 and 𝑓 are tree edges of D. Then unify the sets of all of its direct
descendants in D and let 𝑤 be the representative of the resulting union. Because
all union operations are known in advance we can use the linear-time union-find
algorithm of Gabow and Tarjan [GT85]. Finally, pick some incoming edge around 𝑤

as 𝑔, or the edge (𝑠, 𝑡) if 𝑤 = 𝑠 . In this way, we translate the constraint of the
form 𝑢 ≺′

𝑖 v to a constraint on the order of the edges 𝑒, 𝑓 and 𝑔 around 𝑤. Apply this
translation for each constraint in the partial orders ≺′

𝑖 .
In a similar fashion we can find the node 𝜈 of the LP-tree T and the three virtual

edges 𝑒, 𝑓 and �̂� of skel(𝜈) so that the relative position of 𝑒, 𝑓 and �̂� in the embedding
of skel(𝜈) determines the relative position of 𝑒, 𝑓 and 𝑔 in the embedding represented
by T . We can the use a similar technique as the one described for partial level
planarity. □

7.4.3 Simultaneous Level Planarity

We translate the simultaneous planarity algorithm of Angelini et al. [Ang+12] to
solve simultaneous level planarity for biconnected single-source graphs. They define
simultaneous planarity as follows. Let 𝐺1 = (𝑉 , 𝐸1) and 𝐺2 = (𝑉 , 𝐸2) be two graphs
with the same vertices. The inclusive edges 𝐸1 ∩ 𝐸2 together with 𝑉 make up the

Chapter 7 An SPQR-Tree-Like Embedding Representation for Level Planarity

154

𝑓1

𝑓2

𝑒3𝑒1

R S P

𝜈

𝑒2
_

`

𝜈

𝑒

𝑓1

𝑓2

𝑎

𝑒2
`

_
𝑣

𝑒1
𝜈_

`

Figure 7.8: In the R-node, 𝑒 fixes the relative embeddings of𝐺 (_) and𝐺 (`). In the
level-planar setting, 𝑒 also fixes the embedding of 𝐺 (𝜈). In the S-node, 𝑒2 and 𝑒3
fix the relative embeddings of𝐺 (_),𝐺 (𝜈) and𝐺 (_),𝐺 (`), respectively. In the level-
planar setting, 𝑒1 also fixes the embedding of𝐺 (𝜈). In the P-node, 𝑒1 fixes the relative
embeddings of𝐺 (_) and𝐺 (`). In the level-planar setting, 𝑒1 also fixes the embedding
of 𝐺 (𝜈).

intersection graph 𝐺1∩2, or simply 𝐺 for short. All other edges are exclusive. The
graphs 𝐺1 and 𝐺2 admit simultaneous embeddings E1, E2 if the relative order of any
three distinct inclusive edges 𝑒, 𝑓 and 𝑔 with a shared endpoint is identical in E1
and E2. The algorithm of Angelini et al. works by building the SPQR-tree for the
shared graph 𝐺 and then expressing the constraints imposed on 𝐺 by the exclusive
edges as a 2-Sat instance 𝑆 that is satisfiable iff 𝐺1 and 𝐺2 admit a simultaneous
embedding. We give a very brief overview of the 2-Sat constraints in the planar
setting. In an R-node, an exclusive edge 𝑒 has to be embedded into a unique face.
This potentially restricts the embedding of the expansion graphs 𝐺 (_),𝐺 (`) that
contain the endpoints of 𝑒 , i.e., the embedding of𝐺 (_) and𝐺 (`) is fixed with respect
to the embedding of the R-node. Add a variable 𝑥` to 𝑆 for every node of T with the
semantics that 𝑥` is true if skel(`) has its reference embedding Γ̀ , and false if the
embedding of skel(`) is the reflection of Γ̀ . The restriction imposed by 𝑒 on 𝐺 (_)
and 𝐺 (`) can then be modeled as a 2-Sat constraint on the variables 𝑥_ and 𝑥` .
For example, in the R-node shown in Fig. 7.8 on the left, the internal edge 𝑒 must be
embedded into face 𝑓1, which fixes the relative embeddings of 𝐺 (_) and 𝐺 (`). In an
S-node, an exclusive edge 𝑒 may be embedded into one of the two candidate faces 𝑓1, 𝑓2
around the node. The edge 𝑒 can conflict with another exclusive edge 𝑒 ′ of the S-node,
meaning that 𝑒 and 𝑒 ′ cannot be embedded in the same face. This is modeled by
introducing for every exclusive edge 𝑒 and candidate face 𝑓 the variable 𝑥 𝑓

𝑒 with the
semantics that 𝑥 𝑓

𝑒 is true iff 𝑒 is embedded into 𝑓 . The previously mentioned conflict
can then be resolved by adding the constraints 𝑥 𝑓1

𝑒 ∨ 𝑥
𝑓2
𝑒 , 𝑥

𝑓1
𝑒′ ∨ 𝑥

𝑓2
𝑒′ and 𝑥

𝑓1
𝑒 ≠ 𝑥

𝑓1
𝑒′ to 𝑆 .

Additionally, an exclusive edge 𝑒 whose endpoints lie in different expansion graphs
can restrict their respective embeddings. For example, in the S-node shown in Fig. 7.8

Applications Section 7.5

155

in the middle, the edges 𝑒2 and 𝑒3 may not be embedded into the same face. And 𝑒2
and 𝑒3 fix the embeddings of𝐺 (_) and𝐺 (𝜈) and of𝐺 (_) and𝐺 (`), respectively. This
would be modeled as 𝑥_ = 𝑥𝜈 and 𝑥_ = 𝑥` in 𝑆 . In a P-node, an exclusive edge
can restrict the embeddings of expansion graphs just like in R-nodes. Additionally,
exclusive edges between the poles of a P-node can always be embedded unless all
virtual edges are forced to be adjacent by internal edges. For example, in the P-node
shown in Fig. 7.8 on the right, 𝑒1 fixes the relative embeddings of 𝐺 (_) and 𝐺 (`).
And 𝑒2 can be embedded if and only if one of the blue edges does not exist.

Adapt the algorithm to the level-planar setting. First, replace the SPQR-tree with
the LP-tree T . The satisfying truth assignments of 𝑆 then correspond to simultaneous
planar embeddings E1, E2 of 𝐺1,𝐺2, so that their shared embedding E of 𝐺 is level
planar. However, due to the presence of exclusive edges, E1 and E2 are not necessarily
level planar. Tomake sure that E1 and E2 are level planar, we addmore constraints to 𝑆 .
Consider adding an exclusive edge 𝑒 into a face 𝑓 . This splits 𝑓 into two faces 𝑓 ′, 𝑓 ′′.
The apex of at least one face, say 𝑓 ′′, remains unchanged. As a consequence, the
space around any virtual edge incident to 𝑓 ′′ remains unchanged as well. But the
apex of 𝑓 ′ can change, namely, the apex of 𝑓 ′ is an endpoint of 𝑒 . Then the space
around the virtual edges incident to 𝑓 ′ can decrease. This reduces the space around
the virtual edge associated with 𝜈. In the same way as described in Section 7.3.2, this
restricts some arcs in T . This can be described as an implication on the variables 𝑥 𝑓

𝑒

and 𝑥𝜈. For an example, see Fig. 7.8. In the R-node, adding the edge 𝑒 with endpoint v
into 𝑓1 creates a new face 𝑓 ′1 with apex v . This forces𝐺 (𝜈) to be embedded so that its
apex 𝑎 is embedded into face 𝑓2. Similarly, in the S-node and in the P-node, adding
the edge 𝑒1 restricts𝐺 (𝜈). We collect all these additional implications of embedding 𝑒
into 𝑓 and add them to the 2-Sat instance 𝑆 . Each exclusive edge leads to a constant
number of 2-Sat implications. To find each such implication𝑂 (𝑛) time is needed in
the worst case. Because there are at most 𝑂 (𝑛) exclusive edges this gives quadratic
running time overall. Clearly, all implications must be satisfied for E1 and E2 to be
level planar. On the other hand, suppose that one of E1 or E2, say E1, is not level
planar. Because the restriction of E1 to 𝐺 is level planar due to the LP-tree and
planar due to the algorithm by Angelini et al., there must be a crossing involving an
exclusive edge 𝑒 of 𝐺1. This contradicts the fact that we have respected all necessary
implications of embedding 𝑒 . We obtain Theorem 18.
Theorem 18. Simultaneous level planarity can be solved in quadratic time for two
graphs whose intersection is a biconnected single-source level graph.

In the non-biconnected setting Angelini et al. solve the case when the intersection
graph is a star. Haeupler et al. describe an algorithm for simultaneous planarity
that does not use SPQR-trees, but they also require biconnectivity [HJL13]. The
complexity of the general (connected) case remains open.

Chapter 7 An SPQR-Tree-Like Embedding Representation for Level Planarity

156

7.5 Conclusion

The majority of constrained embedding algorithms for planar graphs rely on two
features of the SPQR-tree: they are decomposition trees and the embedding choices
consist of arbitrarily permuting parallel edges between two poles or choosing the flip
of of a skeleton whose embedding is unique up to reflection. We have developed the
LP-tree, an SPQR-tree-like embedding representation that has both of these features.
SPQR-tree-based algorithms can then usually be executed on LP-trees without any
modification. The necessity for mostly minor modifications only stems from the
fact that in many cases the level-planar version of a problem imposes additional
restrictions on the embedding compared to the original planar version. Our LP-
tree thus allows to leverage a large body of literature on constrained embedding
problems and to transfer it to the level-planar setting. In particular, we have used
it to obtain linear-time algorithms for partial and constrained level planarity in
the biconnected case, which improves upon the previous best known running time
of 𝑂 (𝑛2). Moreover, we have presented an efficient algorithm for the simultaneous
level planarity problem. Previously, no polynomial-time algorithmwas known for this
problem. Finally, we have argued that an SPQR-tree-like embedding representation
for level-planar graphs with multiple sources does not substantially help in solving
the partial and constrained level planarity problems, is not efficiently computable, or
does not exist.

157

8
An SPQR-Tree-Like

Embedding Representation

for Upward Planarity

The SPQR-tree is a data structure that compactly represents all planar embeddings
of a biconnected planar graph. It plays a key role in constrained planarity testing.

We develop a similar data structure, called the UP-tree, that compactly represents
all upward planar embeddings of a biconnected single-source directed graph. We
demonstrate the usefulness of the UP-tree by solving the upward planar embedding
extension problem for biconnected single-source directed graphs.

This chapter is based on joint work withMarkus Himmel and Ignaz Rutter [BHR19].

8.1 Introduction

A natural extension of planarity to directed graphs (digraphs) is upward planarity.
Whereas undirected graphs can be tested for planarity in linear time, upward planarity
testing is NP-complete in general, though there are efficient algorithms for graphs
with a single source [HL96, BDMT98] and graphs with a fixed embedding [BDLM94].
In the special case of 𝑠𝑡-graphs, i.e., graphs with a single source 𝑠 and a single sink 𝑡
with 𝑠 and 𝑡 on the same face, every planar embedding is also upward planar [Pla76],
and hence upward planarity and planarity are equivalent.
A related but different planarity notion for digraphs is level planarity. Level

planarity can be tested in linear time [JL02] by a quite involved algorithm, or in
quadratic time by several simpler algorithms [BRS18, Ran+01, FPSŠ13].
In a constrained embedding problem, one seeks a planar embedding of a given

graph that satisfies additional constraints. Typical examples are simultaneous embed-

Chapter 8 An SPQR-Tree-Like Embedding Representation for Upward Planarity

158

dings with fixed edges [BKR13], cluster planarity [FCE95], constraints on the face
sizes [DJKR14, DR18], optimizing the depth of the embedding [ADP11] and optimiz-
ing the bends in an orthogonal drawing [BLR16, BRW16, DLP18]. One of the most
prominent examples of the last years is the partial drawing extension problem, which
asks whether a given drawing of a subgraph can be extended to a planar drawing of
the whole graph. The partial embedding extension problem is strongly related, here
the input is a planar embedding of a subgraph and the question is whether it can be
extended to a planar embedding of the whole graph. For undirected planar graphs
the two problems are equivalent and can be solved in linear time [Ang+15c, JKR13].

One of the key tools for all of these applications is the SPQR-tree, which compactly
represents all planar embeddings of a biconnected planar graph 𝐺 and breaks down
the complicated task of choosing a planar embedding of 𝐺 into simpler independent
embedding choices of its triconnected components [Mac37, Tut66, HT73, DT89, DT90,
DT96]. In fact, these embeddings are either uniquely determined up to reversal, or
they consist in arbitrarily choosing a permutation of parallel edges between two
pole vertices. The common approach for attacking the above-mentioned constrained
embedding problems is to project the constraints on the global embedding to local
constraints on the skeleton embeddings that can then be satisfied by consistent local
choices. While the implementation details are often highly technical and non-trivial,
the approach has proven to be extremely successful.
In comparison, relatively little is known about constrained planarity problems

for planarity notions of digraphs. Brückner and Rutter [BR17] study the problem of
extending a given partial drawing of a level graph and Da Lozzo et al. [DDF20] study
the same question for upward planarity. In general, extending a given partial upward
planar drawing requires to determine an upward planar embedding that (i) extends
the embedding of the partial drawing, and (ii) admits a drawing that extends the given
drawing. Here step (i) requires solving the embedding extension problem but with
additional constraints that ensure that a drawing extension is feasible. It is worth
noting that for upward planarity the embedding extension problem and the drawing
extension problem are distinct; Da Lozzo et al. show that, generally, even if an upward
planar embedding of the whole graph is given, it is NP-complete to decide whether it
can be drawn such that it extends a given partial drawing [DDF20, Theorem 2]. On
the positive side, they present tractability results for directed paths and cycles with
a given upward planar embedding, and for 𝑠𝑡-graphs. The restriction to 𝑠𝑡-graphs
allows a relatively simple characterization of the upward planar embeddings that
extend the given partial drawings [DDF20, Lemma 6], which yields an𝑂 (𝑛 log𝑛)-time
algorithm for step (ii). For step (i), Da Lozzo et al. exploit the fact that for 𝑠𝑡-graphs, the
choice of an upward planar embedding is equivalent to choosing a planar embedding,
and hence the SPQR-tree allows to efficiently search for an upward planar embedding
satisfying the additional constraints required by condition (ii).

Decomposition Trees and Upward Planar Embeddings Section 8.2

159

In this chapter, we seek to generalize the approach of Da Lozzo et al. to biconnected
single-source graphs. The key difficulty in this case is that neither do we have access
to all the upward planar embeddings of such graphs, nor it is known what the
necessary and sufficient conditions are for an upward planar embedding to admit a
drawing that extends a given subdrawing.

Contribution and Outline. We construct a novel SPQR-tree-like embedding repre-
sentation, called the UP-tree, that represents exactly the upward planar embeddings
of a biconnected single-source graph in which some prescribed edge appears leftmost
around the source. As in SPQR-trees, the embedding choices in the UP-tree are
broken down into independent embedding choices of skeleton graphs that are either
unique up to reversal or allow to arbitrarily permute parallel edges between two
poles. As such, UP-trees can take the role of SPQR-trees for constrained embedding
problems in upward planarity, making them a powerful tool with a broad range of
applications. We demonstrate this by giving an quadratic-time algorithm for the
upward planar embedding extension problem for biconnected single-source graphs
where the partial embedding is connected.

We review the results on decomposing upward planar single-source digraphs due
to Hutton and Lubiw [HL96] in Section 8.2. We proceed to extend this idea from a
single decomposition to decomposition trees. In Section 8.3, we define the UP-tree
and in Section 8.4 we use it to solve the partial upward embedding extension problem.

8.2 Decomposition Trees and Upward Planar

Embeddings

Recall that for biconnected graphs we can decompose any planar embedding into
planar embeddings of the skeletons of a decomposition tree; and symmetrically, we
can compose a planar embedding of the whole graph from planar embeddings of
the skeletons. In this section we find a similar relationship between upward planar
embeddings of a biconnected single-source digraph𝐺 and upward planar embeddings
of the skeletons of a suitably-defined decomposition tree of 𝐺 .

8.2.1 Decompositions and Upward Planar Embeddings

In this section we review the decomposition result of Hutton and Lubiw and formulate
the interface between their result and our results.
Let 𝐺 be a biconnected single-source digraph together with an upward planar

embedding E . Further, let 𝑒★ denote the edge around the source of 𝐺 that is leftmost
in E . Note that 𝑒★ is incident to the outer face. It will play a similar role as the

Chapter 8 An SPQR-Tree-Like Embedding Representation for Upward Planarity

160

𝑤𝑠 𝑢 𝑣 𝑢 𝑢
𝑣

𝑤𝑡𝑣𝑤𝑡𝑢 𝑣
𝑀𝑠 𝑀𝑡 𝑀𝑢𝑣 𝑀𝑢𝑣𝑡

Figure 8.1: The four markers used by Hutton and Lubiw. The markers are digraphs;
in the figure, all edges are directed upward.

edge 𝑒★ in rooted decomposition trees as described in Chapter 2. Now let 𝐻1, 𝐻2 be
two subgraphs of 𝐺 with (i) 𝐻1 ∪ 𝐻2 = 𝐺 , (ii) 𝐻1 ∩ 𝐻2 = {𝑢, v}, (iii) 𝑒★ ∈ 𝐻1 and
(iv) 𝐻1 \ {𝑢, v} or 𝐻2 \ {𝑢, v} is connected.

Hutton and Lubiw construct two graphs 𝐻 ′
1 and 𝐻 ′

2 from 𝐻1 and 𝐻2 by including
one of the markers shown in Figure 8.1. Markers are simple digraphs with two
vertices 𝑢, v that connect the marker to the remaining graph. The marker in 𝐻 ′

1 is
designed to represent 𝐻2 and the marker in 𝐻 ′

2 is designed to represent 𝐻1. If there
exists a directed path from 𝑢 to v we say that 𝑢 dominates v and write 𝑢 < v for
short. Otherwise 𝑢 and v are incomparable. The vertex v is a source if it has no
incoming edges in 𝐺 , a sink if it has no outgoing edges in𝐺 and an internal vertex
if it has both incoming and outgoing edges in 𝐺 . Markers are determined based
on whether 𝑢 < v and whether v is a source, sink or internal vertex in 𝐻1 and 𝐻2:
If 𝑢 and v are incomparable in 𝐺 , set 𝐻 ′

1 = 𝐻1 ∪𝑀𝑡 and 𝐻 ′
2 = 𝐻2 ∪𝑀𝑠 . Otherwise,

assume 𝑢 < v . Define 𝐻 ′
1 as follows. If v is a source in 𝐻2 set 𝐻 ′

1 = 𝐻1 ∪ 𝑀𝑡 . If v
is a sink in 𝐻2 set 𝐻 ′

1 = 𝐻1 ∪𝑀𝑢v . Otherwise v is an internal vertex in 𝐻2 and we
set 𝐻 ′

1 = 𝐻1 ∪𝑀𝑢v𝑡 . Define 𝐻 ′
2 as follows. If v is a source in 𝐻1 set 𝐻 ′

2 = 𝐻2 ∪𝑀𝑡 ,
otherwise set 𝐻 ′

2 = 𝐻2 ∪𝑀𝑢v . See Figure 8.2 for example decompositions. Such a
decomposition can be reversed by composing 𝐻 ′

1 and 𝐻 ′
2 to obtain 𝐺 . To this end,

remove the markers from 𝐻 ′
1 and 𝐻 ′

2 to obtain 𝐻1 and 𝐻2 and take their union to
obtain 𝐺 .
Recall that decomposition trees of planar graphs allow for (de-)composition of

planar embeddings. Hutton and Lubiw provide a similar property for upward planar
embeddings of 𝐺,𝐻 ′

1 and 𝐻 ′
2. Decompose an upward planar embedding of 𝐺 into

upward planar embeddings of 𝐻 ′
1, 𝐻

′
2 as follows. To obtain the embedding of 𝐻 ′

1,
contract 𝐻2 into the marker𝑀 in 𝐻 ′

1 that corresponds to 𝐻 ′
2. The embedding of 𝐻 ′

2 is
obtained symmetrically. To compose upward planar embeddings of 𝐻 ′

1, 𝐻
′
2, contract

the markers into a single edge and then proceed with the composition for planar
embeddings. Hutton and Lubiw state the following.

Theorem 19 (implicit in [HL96]). Let E be an upward planar embedding of𝐺 with 𝑒★

as the leftmost edge around 𝑠 . Then E induces upward planar embeddings F1,F2
of 𝐻 ′

1, 𝐻
′
2, respectively with the following properties. In F1, 𝑒★ is the leftmost edge

around the source of 𝐻 ′
1. The edges of the marker in 𝐻 ′

2 are incident to the outer face

Decomposition Trees and Upward Planar Embeddings Section 8.2

161

𝑠

𝑢

𝑣

𝑢

𝑣

𝑤𝑠𝑠

𝑢

𝑣

𝑤𝑡

𝑠

𝑣

𝑢

𝑠

𝑣

𝑢

𝑣

𝑢

𝑢 = 𝑠 𝑢 = 𝑠 𝑢 = 𝑠

𝑣
𝑣 𝑣

𝑤𝑡

𝑢 = 𝑠

𝑣

𝑢 = 𝑠

𝑣

𝑢 = 𝑠

𝑣

𝑤𝑡

Figure 8.2: Example decompositions of upward planar graphs. The left column shows
four examples of 𝐺 with 𝐻1 shaded in green and 𝐻2 shaded in red. The right column
shows the decomposition of 𝐺 into 𝐻 ′

1 and 𝐻 ′
2, with the dashed edge connecting

corresponding markers. The edge 𝑒★ is drawn more thickly.

in F2.
Conversely, if F1 and F2 are upward planar embeddings of 𝐻 ′

1 and 𝐻
′
2 such that 𝑒★

is the leftmost edge around the source of 𝐻 ′
1 in F1 and the edges of the marker in 𝐻 ′

2 are
incident to the outer face of F2, then the composition of these embeddings is upward
planar.

Hutton and Lubiw do not explicitly state Theorem 19. Because they are only
interested in testing upward planarity, they state that𝐺 is upward planar if and only
if 𝐻 ′

1 and 𝐻 ′
2 are upward planar subject to certain restrictions. However, their proof

shows that every upward planar embedding of 𝐺 can be decomposed into upward
planar embeddings F1,F2 of 𝐻 ′

1, 𝐻
′
2, respectively. Theorems 6.5, 6.7, 6.8 and 6.9 by

Hutton and Lubiw [HL96] distinguish cases based on which markers are used. For
the forward direction and markers𝑀𝑠 , 𝑀𝑡 and𝑀𝑢v observe that because 𝐻1 contains
a subgraph that is a subdivision of the marker in 𝐻 ′

2 that represents 𝐻1 (and the same
holds for 𝐻2 and the marker in 𝐻 ′

1 that represents 𝐻2). The marker 𝑀𝑢v𝑡 requires

Chapter 8 An SPQR-Tree-Like Embedding Representation for Upward Planarity

162

some extra treatment for the central vertex. The fact that 𝑒★ is the leftmost edge
in E implies that (i) 𝑒★ is the leftmost edge of 𝐻 ′

1 in F1, and (ii) the marker in 𝐻 ′
2 is

incident to the outer face in F2.
For the reverse direction, Hutton and Lubiw show that the composition E of upward

planar embeddings F1,F2 of 𝐻 ′
1, 𝐻

′
2, respectively, where the marker in 𝐻 ′

2 is incident
to the outer face in F2, yields an upward planar embedding of𝐺 . If 𝑒★ is the leftmost
edge around 𝑠 in F1, then it is also leftmost in E . Our restrictions involving 𝑒★ imply
that during the composition of E the embedding F1 is inserted into the outer face
of F2. Hutton and Lubiw do not have a similar restriction and treat F1 and F2 more
symmetrically. Due to this, if 𝑢 = 𝑠 , they have to carefully choose which component
has to be inserted into the outer face of the other component. In our case, these roles
are completely fixed by the choice of 𝑒★ and then coincide with the treatment of
Hutton and Lubiw.

8.2.2 Decomposition Trees and Upward Planar Embeddings

The approach of Hutton and Lubiw is to decompose a single-source digraph 𝐺 into
two smaller single-source digraphs 𝐺1,𝐺2 and use Theorem 19 to translate upward-
planarity testing of 𝐺 to upward-planarity testing of two smaller instances 𝐻 ′

1, 𝐻
′
2.

Observe that the markers and the replacement rules are defined so that both 𝐻 ′
1

and 𝐻 ′
2 are single-source digraphs. This means that 𝐻 ′

1 and 𝐻 ′
2 can be recursively

decomposed. Note that in the context of connectivity markers are treated simply as
edges, i.e., markers are not decomposed further. When a graph cannot be further
decomposed it is triconnected and therefore has a unique planar embedding which
can be tested for upward planarity in linear time using the algorithm of Bertolazzi et
al. [BDMT98]. In the context of upward planarity testing the full marker graph is
considered. Upward planar embeddings of 𝐻 ′

1 and 𝐻 ′
2 can then be composed to an

upward planar embedding of𝐺 . In the context of embedding composition markers are
again treated simply as edges. In particular, it does not matter whether the clockwise
order of the edges incident to 𝑢 in𝑀𝑢v𝑡 is (𝑢, v), (𝑢, 𝑥), (𝑢, 𝑤𝑡) or (𝑢, 𝑤𝑡), (𝑢, 𝑥), (𝑢, v).
We use a different approach. Instead of testing 𝐻 ′

1 and 𝐻 ′
2 for upward-planarity

separately, we manage them as the skeletons of two nodes in a decomposition tree T .
Note that Theorem 19 requires 𝐻1 \ {𝑢, v} or 𝐻2 \ {𝑢, v} to be connected. We call
such a decomposition maximal. We then decompose these skeletons further, which
grows the decomposition tree. A maximal-decomposition tree is a decomposition
tree obtained by performing only maximal decompositions. A configuration equips
the skeleton of each node in the tree with an upward planar embedding. In this
embedding, 𝑒★ or the marker that represents the component that contains 𝑒★ must
be incident to the outer face and leftmost around the source of the skeleton. See
Figure 8.6 (c) for an example of a maximal-decomposition tree. Applying Theorem 19

Decomposition Trees and Upward Planar Embeddings Section 8.2

163

at each decomposition step gives the following.

Theorem 20. Let 𝐺 be a biconnected graph with a single source 𝑠 , let 𝑒★ be an edge
of 𝐺 incident to 𝑠 and let T denote a maximal-decomposition tree of 𝐺 . Then the
upward-planar embeddings of𝐺 in which 𝑒★ is the leftmost edge around 𝑠 correspond
bijectively to the configurations of T .

We could use Theorem 20 directly to represent all upward planar embeddings of
a graph. But we also show that decomposition trees are uniquely defined by the
decompositions that are executed, but not by the order of these decompositions.
This means that just like we can talk about the SPQR-tree decomposition for a
graph we will be able to talk about the UP-tree decomposition. The benefit of this
is that we can use a UP-tree decomposition to determine that some constrained
representation problem has no solution without having to consider other conceivable
UP-tree decompositions.
To prove uniqueness, we show that the order of the decompositions is irrelevant.

We then apply the decompositions as defined by the SPQR-tree decomposition, which
is unique, and obtain the unique UP-tree decomposition. To this end, we prove that
the marker replacement rules do not depend on the order of the decompositions.
Recall that the marker replacement rules depend on vertex dominance and the local
neighborhood of certain vertices. We prove Lemma 56, which states that decomposi-
tions preserve vertex dominance and Lemma 57, which states that decompositions
preserve the local neighborhood of certain vertices.

Lemma 56. Let 𝐺 be a biconnected single-source digraph and let 𝐻 ′
1, 𝐻

′
2 denote the

result of decomposing along a cutpair {𝑢, v} of 𝐺 . For 𝑖 = 1, 2 and any two vertices 𝑥, 𝑦
in 𝐻 ′

𝑖 it is 𝑥 < 𝑦 in 𝐻 ′
𝑖 if and only if 𝑥 < 𝑦 in 𝐺 .

Proof. Recall that the edges of 𝐺 are partitioned across 𝐻1 and 𝐻2 and that 𝑢 is a
source in 𝐻2.

1. 𝑢 and v are incomparable in 𝐺 . Let 𝑥, 𝑦 be two vertices in 𝐻 ′
1 with 𝑥 < 𝑦

in 𝐺 . Because 𝑢 and v are incomparable in 𝐺 the directed path from 𝑥 to 𝑦

in 𝐺 cannot use an edge from 𝐻2, i.e., it consists entirely of edges in 𝐻1, i.e., it
is 𝑥 < 𝑦 in𝐻 ′

1. Now let 𝑥, 𝑦 be two vertices in𝐻 ′
1 with 𝑥 < 𝑦 in𝐻 ′

1. Because𝑀𝑡

contains no directed path between 𝑢 and v this path consists entirely of edges
in 𝐻1. Then this same path exists in 𝐺 , i.e., it is 𝑥 < 𝑦 in 𝐺 .
A symmetric argument using the fact that 𝑀𝑠 contains no directed path be-
tween 𝑢 and v works for the case when 𝑥, 𝑦 are vertices in 𝐻 ′

2.

2. 𝑢 < v in𝐺 . Let 𝑥, 𝑦 be two vertices in 𝐻 ′
1. Follow the construction rules for 𝐻 ′

1.

Chapter 8 An SPQR-Tree-Like Embedding Representation for Upward Planarity

164

a) v is a source in 𝐻2. Recall that 𝐻 ′
1 = 𝐻1 ∪ 𝑀𝑡 . Assume 𝑥 < 𝑦 in 𝐻 ′

1.
Because 𝑀𝑡 has no directed path between 𝑢 and v any directed path
from 𝑥 to 𝑦 in 𝐻 ′

1 cannot use edges from𝑀𝑡 . This means that such a path
consists entirely of edges in 𝐻1, i.e., it also exists in 𝐺 . Hence, it is 𝑥 < 𝑦

in 𝐺 . Now assume 𝑥 < 𝑦 in 𝐺 . Because v is a source in 𝐻2 there exists
no directed path from 𝑢 to v in 𝐻2. From 𝑢 < v in 𝐺 it follows that there
exists a directed path from 𝑢 to v in 𝐻1 and therefore in 𝐻 ′

1. Hence, it
is 𝑥 < 𝑦 in 𝐻 ′

1.
b) v is a sink in 𝐻2. Because 𝐺 is a single-source graph and it is 𝑢 < v there

exists a directed path p from 𝑢 to v in 𝐻2. Recall that it is 𝐻 ′
1 = 𝐻1 ∪𝑀𝑢v .

Any directed path from 𝑥 to 𝑦 in𝐻 ′
1 either uses only edges in𝐻1 in which

case the same path exists in 𝐺 , or it uses the edge 𝑀𝑢v in which case it
can be modified to a path that uses p in 𝐺 . The same argument works in
the reverse direction.

c) v is an internal vertex in 𝐻2. Recall that 𝐻 ′
1 = 𝐻1 ∪𝑀𝑢v𝑡 and apply the

same argument as in the previous case.
Now let 𝑥, 𝑦 be two vertices in 𝐻 ′

2 and follow the construction rules for 𝐻 ′
2.

a) v is a source in 𝐻1. Recall that 𝐻 ′
2 = 𝐻2 ∪𝑀𝑡 and follow the symmetric

case 𝐻 ′
1 = 𝐻1 ∪𝑀𝑡 .

b) v is not a source in𝐻1. Recall that𝐻 ′
2 = 𝐻2∪𝑀𝑢v and follow the symmetric

cases 𝐻 ′
1 = 𝐻1 ∪𝑀𝑢v or 𝐻 ′

1 = 𝐻1 ∪𝑀𝑢v𝑡 .

□

Lemma 57. Let 𝐺 be a biconnected single-source digraph and let 𝐻 ′
1, 𝐻

′
2 denote the

result of decomposing along a cutpair {𝑢, v} of𝐺 . For 𝑖 = 1, 2 let {𝑥, 𝑦} denote a cutpair
of 𝐻 ′

𝑖 that separates 𝐺 into 𝐷1 and 𝐷2, and 𝐻 ′
𝑖 into 𝐹1 and 𝐹2. Then 𝑦 is a source in 𝐷1

if and only if 𝑦 is a source in 𝐹1. Moreover, 𝑦 is a source, sink or internal vertex in 𝐷2 if
and only if 𝑦 is a source, sink or internal vertex in 𝐹2, respectively.

Proof. The separation of 𝐺 into 𝐷1 and 𝐷2 induces a separation of one of 𝐻 ′
1 or 𝐻 ′

2
into 𝐹1 and 𝐹2. Note that 𝐷1, 𝐷2 do not contain markers corresponding to each other,
and neither do 𝐹1 and 𝐹2. The only markers present are the ones corresponding to 𝐻 ′

1
and 𝐻 ′

2.

1. The induced separation lies in 𝐻 ′
1. Distinguish whether the marker 𝑀 that

corresponds to 𝐻 ′
2 lies in 𝐹2 or in 𝐹1.

a) 𝐹2 contains the marker 𝑀 corresponding to 𝐻 ′
2. See Figure 8.3 for an

sketch of the scenario. Then 𝐷1 = 𝐹1, so 𝑦 is a source in 𝐷1 if and only

Decomposition Trees and Upward Planar Embeddings Section 8.2

165

𝑢

𝑣

𝑥

𝑦

𝑢

𝑣

𝑥

𝑦

𝑢

𝑣

𝑥

𝑦

𝑢

𝑣

𝑥

𝑦

𝑥

𝑦

𝑢

𝑣

𝑥

𝑦
𝐺 𝐻 ′

1 𝐻 ′
2 𝐹1 𝐹2 𝐷2𝐷1

Figure 8.3: Case 1. (a) of the proof of Lemma 57. The graph 𝐺 is decomposed
into 𝐻 ′

1, 𝐻
′
2 along {𝑢, v}, the separation of 𝐺 into 𝐷1, 𝐷2 along {𝑥, 𝑦} induces a sepa-

ration of 𝐻 ′
1 into 𝐹1, 𝐹2.

if 𝑦 is a source in 𝐹1. Moreover, 𝐷2 is obtained from 𝐹2 by replacing 𝑀

with 𝐻 ′
2. Equivalently, 𝐹2 is obtained from 𝐷2 by replacing 𝐻2 with 𝑀 .

We have to show that 𝑦 is a source, sink or internal vertex in 𝐷2 if and
only if 𝑦 is a source, sink or internal vertex in 𝐹2, respectively.

If 𝑀 = 𝑀𝑡 vertex 𝑦 = v is a source in 𝐻2 and so exchanging 𝑀 = 𝑀𝑡

with 𝐻2 exchanges one outgoing edge with a non-empty set of outgoing
edges. If𝑀 = 𝑀𝑢v vertex 𝑦 = v is a sink in𝐻2 and so exchanging𝑀 = 𝑀𝑢v
with 𝐻2 exchanges one incoming edge with a non-empty set of incoming
edges. Finally, if 𝑀 = 𝑀𝑢v𝑡 vertex 𝑦 = v is an internal vertex in 𝐻2 and
so exchanging 𝑀 = 𝑀𝑢v𝑡 with 𝐻2 exchanges three outgoing and three
incoming edges with non-empty sets of outgoing and incoming edges.
Now consider the case 𝑦 = 𝑢. By definition 𝑢 is a source in 𝐻2 and in all
candidate markers. Thus, when going from 𝐹2 to 𝐷2 and vice versa only
edges of the same kind are exchanged, which shows the claim.

b) 𝐹1 contains the marker 𝑀 corresponding to 𝐻 ′
2. Then 𝐷1 is obtained

from 𝐹1 by replacing𝑀 with 𝐻2. Equivalently, 𝐹1 is obtained from 𝐷1 by
replacing 𝐻2 with 𝑀 . We have to show that 𝑦 is a source in 𝐷1 if and
only if 𝑦 is a source in 𝐹1. This works just like the previous case with
the names of 𝐷1 and 𝐷2 and of 𝐹1 and 𝐹2 reversed, where we show the
stronger statement that 𝑦 is a source, sink or internal vertex in 𝐷1 if and
only if 𝑦 is a source, sink or internal vertex in 𝐹1, respectively.

Moreover, it is 𝐷2 = 𝐹2, so 𝑦 is a source, sink or internal vertex in 𝐷2 if
and only if 𝑦 is a source, sink or internal vertex in 𝐹2, respectively.

2. The induced separation lies in 𝐻 ′
2. Because 𝐷1 contains 𝑒★ the component 𝐹1

contains the parent marker𝑀 corresponding to𝐻 ′
1. Then𝐷1 is obtained from 𝐹1

by replacing𝑀 with 𝐻1. Equivalently, 𝐹1 is obtained from 𝐷1 by replacing 𝐻1
with𝑀 . We have to show that 𝑦 is a source in 𝐷1 if and only if 𝑦 is a source
in 𝐹1.

Chapter 8 An SPQR-Tree-Like Embedding Representation for Upward Planarity

166

Note that if𝑀 is not adjacent to 𝑦 the neighborhood of 𝑦 remains unchanged
and nothing further needs to be shown. Otherwise 𝑀 is adjacent to 𝑦 , i.e.,
it is 𝑦 = 𝑢 or 𝑦 = v . Consider the case 𝑦 = v . If v = 𝑦 is a source in 𝐻1 it
is𝑀 = 𝑀𝑡 and exchanging𝑀 = 𝑀𝑡 with 𝐻1 exchanges one outgoing edge with
a non-empty set of outgoing edges. Otherwise v = 𝑦 is not a source in 𝐻1 and
it is 𝑀 = 𝑀𝑢v . From 𝑀 = 𝑀𝑢v it follows that v = 𝑦 is not a source in 𝐹1. The
case 𝑦 = 𝑢 cannot occur because 𝑢 is the source of 𝐻 ′

2.
Moreover, it is 𝐹2 = 𝐷2, so 𝑦 is a source, sink or internal vertex in 𝐷2 if and
only if 𝑦 is a source, sink or internal vertex in 𝐹2, respectively.

□

Lemmas 56 and 57 immediately give the following.

Lemma 58. Let 𝐺 be a biconnected graph with a single source 𝑠 , let 𝑒★ be an edge
of 𝐺 incident to 𝑠 and let T denote a decomposition tree of 𝐺 . Then T relative to 𝑒★ is
uniquely defined by the decompositions regardless of their order.

A configuration of T can be computed as follows. Recall that all skeletons are
single-source digraphs. We may therefore run the algorithm due to Bertolazzi et
al. [BDMT98] on each skeleton. Observe that in a configuration of T relative to 𝑒★
the skeleton of each node ` of T must be embedded so that 𝑒★ or the marker that
corresponds to the component that contains 𝑒★ must appear leftmost around the
source of skel(`). We can enforce this by rooting the decomposition tree constructed
by the algorithm of Bertolazzi et al. at the Q-node corresponding to 𝑒★ or an edge of
the marker that corresponds to the component that contains 𝑒★.

8.3 UP-Trees

We are ready to construct the UP-tree, a maximal-decomposition tree designed to
mimic the SPQR-tree. Let 𝐺 be a biconnected directed single-source graph. The
base of the construction is the decomposition tree obtained by performing the same
set of decompositions as in the construction of the SPQR-tree decomposition of
the underlying undirected graph of𝐺 . We then perform two additional steps. The
first step is to split P-nodes into chains of smaller nodes. The second step is to
determine whether skeletons of R-nodes can be reversed and to contract some arcs
of the decomposition tree. In both steps, we reason about upward planarity of fixed
embeddings with the following lemma due to Bertolazzi et al. [BDMT98].
Let 𝐺 be a biconnected single-source graph together with a planar embedding.

The face-sink graph 𝐹 of 𝐺 has the vertices and faces of 𝐺 as its vertices. It contains

UP-Trees Section 8.3

167

an undirected edge {𝑓 , v} if 𝑓 is a face of 𝐺 and v is a vertex of 𝐺 that is incident
to 𝑓 and both edges incident to v and 𝑓 are directed towards v . The following lemma
implies a linear-time algorithm that tests an embedding for upward planarity and
outputs for each face whether it can be the outer face.

Lemma 59 ([BDMT98, Theorem 1]). Let 𝐺 be an embedded planar single-source
digraph and let ℎ be a face of𝐺 . Graph𝐺 has an upward planar drawing that preserves
the embedding with outer face ℎ if and only if all of the following is true: (i) the face-sink
graph 𝐹 of 𝐺 is a forest (ii) there is exactly one tree 𝑇 of 𝐹 that contains no internal
vertex of 𝐺 , whereas each other tree contains exactly one internal vertex; (iii) ℎ is in
tree 𝑇 ; and (iv) the source of 𝐺 is in the boundary of ℎ.

8.3.1 P-Node Splits

In SPQR-trees, the edges of P-nodes may be arbitrarily permuted. In decomposition
trees for upward planar graphs there are stricter rules for the ordering of the markers
in P-nodes. In this section, we determine these rules and find that by breaking up
the P-nodes into chains of smaller nodes we obtain a decomposition tree for upward
planarity whose P-nodes exhibit the same behavior as in SPQR-trees, i.e., their edges
may be arbitrarily permuted. The idea is that certain kinds of markers must appear
consecutively.
First, we argue that all𝑀𝑢v markers must appear consecutively. To see this, note

that if𝑀𝑠 appears between two𝑀𝑢v markers then the outer face is not incident to
the source of the skeleton, which is vertex 𝑤𝑠 of 𝑀𝑠 . If a marker 𝑀 with 𝑀 = 𝑀𝑡

or 𝑀 = 𝑀𝑢v𝑡 appears between two 𝑀𝑢v markers then the face incident to 𝑤𝑡 of 𝑀
and a marker𝑀𝑢v is not connected to the outer face and not connected to an internal
vertex. In all cases the conditions from Lemma 59 are violated.

Moreover, all𝑀𝑢v and𝑀𝑢v𝑡 markers must appear consecutively. To see this, note
that if𝑀𝑡 appears between two markers𝑀𝑢v or𝑀𝑢v𝑡 the vertex 𝑤𝑡 of𝑀𝑡 cannot be
connected to an internal vertex of the outer face and apply Lemma 59.

These observations motivate the following restructuring of P-nodes. Let _ denote
a P-node obtained from the SPQR-tree. The parent marker in skel(_) is the marker
that corresponds to the parent node of _. Distinguish the three cases of whether
the parent marker is 𝑀𝑠 , 𝑀𝑡 or 𝑀𝑢v . If the parent marker in skel(_) is 𝑀𝑠 all other
markers must be𝑀𝑡 . In this case these markers can already be arbitrarily permuted
and nothing further needs to be shown. Now consider the second case that the
parent marker is 𝑀𝑡 ; see Figure 8.4 (a, b). Because all 𝑀𝑢v and 𝑀𝑢v𝑡 markers must
appear consecutively, we create a new P-node ` that contains the parent marker
of skel(_), all 𝑀𝑡 markers of skel(_) and a single 𝑀𝑢v𝑡 marker to represent all 𝑀𝑢v
markers (except for the parent marker) and all 𝑀𝑢v𝑡 markers of skel(_). The 𝑀𝑢v𝑡

Chapter 8 An SPQR-Tree-Like Embedding Representation for Upward Planarity

168

R
P

P(a) (b)

_ 𝜈
b

`

P
PR(c) (d)

_

`

b𝜈

Figure 8.4: Splitting a P-node _ whose parent marker is𝑀𝑡 (a) into a chain of smaller
nodes `, 𝜈, b (b), and splitting a P-node _ (c) whose parent marker is𝑀𝑢v into smaller
nodes `, 𝜈, b (d). The bold marker represents the component that contains the edge 𝑒★.

marker in skel(`) corresponds to a new R-node 𝜈 that contains all 𝑀𝑢v𝑡 markers
of skel(_) and—because all 𝑀𝑢v markers must appear consecutively—a single 𝑀𝑢v
marker. The 𝑀𝑢v marker in skel(𝜈) corresponds to a new P-node b that contains
all𝑀𝑢v markers of skel(_). If skel(_) contains no𝑀𝑢v𝑡 marker we can include a𝑀𝑢v
marker instead of a𝑀𝑢v𝑡 marker in skel(`) and connect it directly to b , the node 𝜈
can then be omitted. Using Lemma 59 it can be verified that the markers in skel(`)
can indeed be arbitrarily permuted to obtain an upward-planar embedding of skel(`),
i.e., it satisfies the desired property of a P-node. Using Lemma 59 it can be verified
that there can be at most two𝑀𝑢v𝑡 markers in skel(𝜈) for skel(𝜈) to be upward planar.
Therefore, if there are more than two𝑀𝑢v𝑡 markers in skel(𝜈) then 𝐺 is rejected as
not upward planar and there exists no UP-tree for 𝐺 . Otherwise skel(𝜈) has at most
four markers. Recall that the parent marker is leftmost by convention. Moreover,
if skel(𝜈) contains two 𝑀𝑢v𝑡 markers then Lemma 59 gives that the 𝑀𝑢v marker
must appear between them. This means that the embedding of skel(𝜈) is fixed up to
reversal, i.e., it satisfies the desired property of an R-node. Finally, the new node b
also has the property that its markers can be arbitrarily permuted, i.e., it also satisfies
the desired property of a P-node.

Finally, consider the third case that the parent marker is𝑀𝑢v . See Figure 8.4 (c, d).
Because all𝑀𝑢v markers must appear consecutively, create a new P-node 𝜈 whose
skeleton contains all𝑀𝑢v markers of skel(_) (except for the parent marker) and𝑀𝑢v
as the parent marker. Using Lemma 59 it can be verified that the markers in skel(𝜈)
can be permuted arbitrarily. The fact that all 𝑀𝑢v and 𝑀𝑢v𝑡 markers must appear
consecutively and the parent𝑀𝑢v marker is leftmost implies that if𝐺 is upward planar

UP-Trees Section 8.3

169

there can exist at most one𝑀𝑢v𝑡 marker in skel(_) and all𝑀𝑡 markers must appear
consecutively (otherwise, 𝐺 can be rejected as not upward planar). So, create a new
P-node b whose skeleton contains all𝑀𝑡 markers of skel(_) and𝑀𝑢v as the parent
marker. Again, using Lemma 59 it can be verified that the markers in skel(b) can be
permuted arbitrarily. Lastly, create a new R-node ` whose skeleton contains a parent
marker𝑀𝑢v and markers𝑀𝑢v , 𝑀𝑢v𝑡 , 𝑀𝑡 in that order. The parent marker of skel(`)
corresponds to the parent of _, the𝑀𝑢v marker corresponds to 𝜈, the𝑀𝑢v𝑡 marker is
the one from skel(_) and the𝑀𝑡 marker corresponds to b . If skel(_) contains no𝑀𝑢v𝑡
marker then it can be omitted from skel(`). Using Lemma 59 it can be verified that
this (and only this) embedding of skel(`) is upward planar. See Figure 8.6 (c) and (d)
for a larger example. We conclude the following.

Lemma 60. Let𝐺 be a biconnected digraph with a single source 𝑠 and let 𝑒★ denote an
edge incident to 𝑠 . There exists a decomposition tree T that (i) represents all upward
planar embeddings of 𝐺 in which 𝑒★ is the leftmost edge around 𝑠 , and (ii) the children
of all P-nodes in T can be arbitrarily permuted.

8.3.2 Arc Contractions

Recall that in SPQR-trees the skeletons of R-nodes are triconnected, i.e., their planar
embedding is fixed up to reversal. So, every R-node offers one degree of freedom,
namely, whether it has some reference embedding or the reversal thereof. In this
section we alter our decomposition tree so that it has this same property.
By definition the marker corresponding to the parent node is leftmost in any

embedding of a skeleton. Hence, this marker is incident to the outer face. Reversing
the embedding of the skeleton is equivalent to choosing the other face incident to
the marker as the outer face. Theorem 20 guarantees that any configuration of T
can be composed to an upward planar embedding. This means that a skeleton can
be reversed if and only if both faces incident to the parent marker can be chosen as
the outer face. This can be checked with the upward planarity test for embedded
single-source graphs due to Bertolazzi et al. [BDMT98], which also outputs the set
of faces that can be chosen as the outer face. If both incident faces are candidates
for the outer face this node does indeed offer a degree of freedom and we leave it
unchanged. Otherwise, if only one incident face is a candidate for the outer face this
node does not offer a degree of freedom. We then merge it with its parent node and
contract the corresponding arc in the decomposition tree. This leads to an R-node
with a larger skeleton.

See Figure 8.5 (a) for an upward planar graph𝐺 and (b) a decomposition tree thereof.
Parts of the face sink graphs of skel(`) and skel(𝜈) are shown in red, namely the
two quadratic vertices dual to the faces incident to the parent marker and the edges

Chapter 8 An SPQR-Tree-Like Embedding Representation for Upward Planarity

170

(a) (b) (c)

_

` 𝜈

Figure 8.5: An upward planar graph𝐺 (a) with a decomposition tree (b). The node `
offers no degree of freedom so the arc (_, `) is contracted (c). The node 𝜈 does offer a
degree of freedom and is therefore not contracted.

incident to those vertices. One criterion for a face to be a candidate for becoming the
outer face due to Bertolazzi et al. is that there has to be a path from this face to the
outer face in the face sink graph. This holds true for both faces incident to the parent
marker in skel(𝜈), but not in skel(`). Therefore the arc (`, 𝜈) is not contracted but
the arc (_, `) is contracted. This leads to the decomposition tree shown in (c). See
also Figure 8.6 (c) and (d) for a larger example.

Lemma 61. Let𝐺 be a biconnected digraph with a single source 𝑠 and let 𝑒★ denote an
edge incident to 𝑠 . There exists a decomposition tree T that (i) represents all upward
planar embeddings of𝐺 in which 𝑒★ is the leftmost edge around 𝑠 , and (ii) the children
of all P-nodes in T can be arbitrarily permuted. (iii) the skeletons of all R-nodes in T
can be reversed.

We call the decomposition tree T the UP-tree of 𝐺 relative to 𝑒★.

8.3.3 Computation in Linear Time

Let 𝐺 be a biconnected digraph with a single source 𝑠 and let 𝑒★ denote an edge
incident to 𝑠 . Recall that the construction of the UP-tree T of𝐺 relative to 𝑒★ consists
of the following seven steps. 1. Construct the SPQR-tree T of𝐺 in linear time [HT73,
GM00]. 2. For each pair of vertices𝑢, v that are the poles of a marker in some skeleton
of T , we have to determine whether 𝑢 < v in 𝐺 . To compute this information for
all pairs in linear time, we use a union-find-based technique described by Bläsius
et al. [BKR18]. Process all skeletons of T and for every pair of poles 𝑢, v that is
encountered register v as a candidate at 𝑢 and register 𝑢 as a candidate at v . Next,
initialize every vertex of 𝐺 in its own singleton set. Then, process each vertex 𝑢 in
some reverse topological order of 𝐺 . Unify the singleton set of 𝑢 with the sets of
its direct descendants in 𝐺 . Now for any candidate v stored at 𝑢 we can query in
whether 𝑢 and v belong to the same set, which is equivalent to 𝑢 < v . Note that the

UP-Trees Section 8.3

171

RP

P

R

SR

S

S

R

(b)(a)

(c) (d)

R R

R
R

R

R RS

S

S

P

Figure 8.6:Construction of the UP-tree. An upward planar biconnected single-source
graph (a), the SPQR-tree of its underlying undirected graph (b) with the Q-nodes
omitted, the result of replacing virtual edges with markers (c) and the UP-tree after
splitting P-nodes and contracting arcs (d).

operands to all unify operations are completely determined by the structure of 𝐺 .
We exploit this fact to run the linear-time union-find algorithm due to Gabow and
Tarjan [GT85]. 3. For each arc 𝑎 = (`, 𝜈) of T , decide whether the poles of 𝑎 are
sources, sinks or internal vertices in 𝐺 (`) and 𝐺 (𝜈). This information can be found
using a simple bottom-up technique. We first compute the indegree and outdegree of
every node of 𝐺 . We then perform a depth-first traversal of T . We maintain a list
of the number of incoming and outgoing edges for each node seen so far, which is
updated when a Q-node is visited. Upon entering a subtree, we store these numbers
for the poles of the arc leaving the subtree at the root of the subtree. Upon leaving a
subtree, we can now calculate the differences between the current numbers and the
stored numbers, which gives the in- and outdegree of the poles in the graph 𝐺 (`).
Using the in- and outdegree of the poles in𝐺 computed earlier, we can also compute
the in- and outdegree of the poles in 𝐺 (𝜈). This step clearly takes linear time. 4. In
each skeleton, replace all virtual edges with their respective markers. With the
information that was computed in the previous step and the fact that all markers
have constant size this step is feasible in linear time. 5. Construct a configuration
of T by running the linear-time upward planar embedding algorithm of Bertolazzi et
al. [BDMT98] on every skeleton. Because the size of all skeletons is linear in the size
of 𝐺 this step takes linear time. 6. Perform P-node splits. The running time spent on

Chapter 8 An SPQR-Tree-Like Embedding Representation for Upward Planarity

172

one P-node is clearly linear in the size of its skeleton. This gives linear running time
overall. 7. Perform arc contractions. The upward planarity test for fixed embeddings
due to Bertolazzi et al. runs in linear time. Contracting an arc is feasible in constant
time. This gives linear running time overall.

Theorem 21. Let 𝐺 be a biconnected digraph with a single source 𝑠 and let 𝑒★ denote
an edge incident to 𝑠 . The UP-tree T of 𝐺 relative to 𝑒★ is a decomposition tree whose
internal nodes are (i) S-nodes whose skeletons have a fixed embedding, (ii) R-nodes
whose skeletons have a fixed embedding up to reversal, or (iii) P-nodes where the markers
can be arbitrarily permuted in the skeleton and whose leaves are Q-nodes that offer no
embedding choice. The configurations of T correspond bijectively to the upward planar
embeddings of 𝐺 where 𝑒★ appears leftmost around 𝑠 . Moreover, T can be computed in
linear time.

8.4 Partial Upward Embedding

In this section we apply the UP-tree to solve the partial upward embedding problem
in quadratic time. A partially embedded graph is a tuple (𝐺,𝐻,H), where 𝐺 is a
planar graph, 𝐻 is a subgraph of 𝐺 and H is a planar embedding of 𝐻 . The partial
embedding problem asks whether there exists an embedding G of 𝐺 that extends H.
Angelini et al. solve the partial embedding problem in linear time [Ang+15c]. In the
case that 𝐻 is connected their algorithm considers every triple of edges (𝑒, 𝑓 , 𝑔) in 𝐻

that share a common endpoint v and enforces the constraints imposed by these edges
in the SPQR-tree T . Note that 𝑒, 𝑓 , 𝑔 each correspond to a Q node in T . Because T is
a tree there is exactly one node ` in T so that the paths from ` to these Q nodes are
disjoint. The relative order of 𝑒, 𝑓 , 𝑔 in the embedding represented by T is determined
by the embedding of skel(`). If skel(`) offers no embedding choice (as in S nodes)
determine whether the ordering of 𝑒, 𝑓 , 𝑔 given by H is the same as the one given
by the unique embedding of skel(`). If not, reject the instance. If skel(`) has two
possible embeddings (as in R nodes) the ordering of 𝑒, 𝑓 , 𝑔 given by H fixes one of the
two embeddings of skel(`) as the only candidate. Finally, if ` is a P node the ordering
of 𝑒, 𝑓 , 𝑔 given by H restricts the set of admissible permutations of the virtual edges
in skel(`). The algorithm collects all these constraints and checks whether they can
be fulfilled at the same time.

A partially embedded upward graph is defined as a tuple (𝐺,𝐻,H), where 𝐺 is an
upward planar graph, 𝐻 is a subgraph of 𝐻 and H is an upward planar embedding
of 𝐻 . Note that UP-trees have all properties of SPQR-trees that are needed in the
algorithm described above. In particular, the markers in P-nodes may be arbitrarily
permuted, R-nodes may be reversed and all other nodes offer no embedding choice.
Hence, we use the UP-tree as a drop-in replacement for the SPQR-tree in the algorithm

Conclusion Section 8.5

173

of Angelini et al. to obtain an algorithm that solves the partial upward embedding
problem for biconnected single-source graphs. Note that the UP-tree is rooted at
some edge that must be embedded as the leftmost edge around the source of the
graph. We may have to try a linear number of candidate edges in the worst case.
This gives the following.

Theorem 22. The partial upward embedding problem can be solved in quadratic
running time for biconnected single-source graphs and connected partial embeddings.

8.5 Conclusion

We have developed the UP-tree, which is an SPQR-tree-like embedding representation
for upward planarity. We expect that the UP-tree is a valuable tool that makes it
possible to translate existing constrained planar embedding algorithms that use SPQR-
trees to the upward planar setting. As an example, we have demonstrated how to
use the UP-tree as a drop-in replacement for the SPQR-tree in the partial embedding
extension problem, solving the previously open partial upward embedding extension
problem for the biconnected single-source case.

175

Part III

Custom Drawing Styles

177

9 Multilevel Planarity

In this chapter, we introduce and study multilevel planarity, a generalization of
upward planarity and level planarity. Let 𝐺 = (𝑉 , 𝐸) be a directed graph and
let ℓ : 𝑉 → P (Z) be a function that assigns a finite set of integers to each ver-
tex. A multilevel-planar drawing of 𝐺 is a planar drawing of 𝐺 such that for each
vertex v ∈ 𝑉 its 𝑦-coordinate 𝑦 (v) is in ℓ (v), and each edge is drawn as a strictly 𝑦-
monotone curve.
We present linear-time algorithms for testing multilevel planarity of embedded

graphs with a single source and of oriented cycles. Complementing these algorith-
mic results, we show that multilevel-planarity testing is NP-complete even in very
restricted cases.

This chapter extends work initiated as part of Paul Jungeblut’s bachelor’s the-
sis [Jun17] and is based on joint work with Lukas Barth, Paul Jungeblut and Marcel
Radermacher [BBJR19, BBJR21].

9.1 Introduction

Testing a given graph for planarity, and, if the graph is planar, finding a planar drawing
of it, are classic algorithmic problems. However, one is often not interested in just
any planar drawing, but in one that has some additional properties. Examples of such
properties include that a given existing partial drawing should be extended [Ang+15c,
JKR13] or that some parts of the graph should appear clustered together [DF09,
Jel+09].

Chapter 9 Multilevel Planarity

178

There also exist notions of planarity specifically tailored to directed graphs. While
testing upward planarity of a graph is an NP-complete problem in general [GT01],
efficient algorithms are known for outerplanar graphs, single-source graphs and
for embedded graphs [Pap94, BDLM94, HL96, BDMT98]. One notable constrained
version of upward planarity is that of level planarity. Level-planarity testing and
drawing is feasible in linear time [JL02]. There exist further level-planarity variants
on the cylinder and on the torus [Ang+20, BBF05] and there has been considerable
research on further-constrained versions of level planarity. Examples include ordering
the vertices on each level according to so-called constraint trees [Ang+15b, HH07],
clustered level planarity [Ang+15b, FB04], partial level planarity [BR17] and ordered
level planarity [KR19]. Finally, an undirected graph 𝐺 = (𝑉 , 𝐸) is leveled planar if
there exists an assignment 𝛾 : 𝑉 → Z and a planar drawing Γ of 𝐺 where for each
vertex v ∈ 𝑉 its 𝑦-coordinate is 𝛾 (v) and for each edge {𝑢, v} it is |𝛾 (𝑢) − 𝛾 (v) | = 1.
Recognizing leveled planar graphs is NP-complete [HR92]. Recently, relationships
between track layouts, layered pathwidth and leveled planarity have been studied,
and bipartite outerplanar graphs and square graphs have been shown to be leveled
planar [Ban+19].

Contribution and Outline. In this chapter, we introduce and study multilevel
planarity. Let P (Z) denote the power set of integers. The input of the multilevel-
planarity testing problem consists of a directed graph 𝐺 = (𝑉 , 𝐸) together with a
function ℓ : 𝑉 → P (Z), called a multilevel assignment, which assigns admissible
levels, represented as a set of integers, to each vertex. A multilevel-planar drawing
of 𝐺 is a planar drawing of 𝐺 such that for the 𝑦-coordinate of each vertex v ∈ 𝑉

it holds that 𝑦 (v) ∈ ℓ (v), and each edge is drawn as a strictly 𝑦-monotone curve.
Figure 9.1 shows in blue an example of a multilevel-planar graph. It visualizes an
excerpt of the genealogy of European royalty [Wik19, DD11, Kam01]. In this graph,
vertices are associated with individuals. The intervals assigned to a vertex are derived
from the corresponding individual’s lifespan and visualized as gray bars. Dashed
edges represent marriages and solid lines connected to dashed edges represent descent
of children. To improve readability the dashed edges are drawn as horizontal line
segments even though the formal definition requires strictly 𝑦-monotone curves.
This chapter is structured as follows. We start by discussing some preliminar-

ies, including the relationship between multilevel planarity and existing planarity
variants in Section 9.2. Then, we present linear-time algorithms that test multilevel
planarity of embedded single-source graphs and of oriented cycles with multiple
sources in Sections 9.3 and 9.4, respectively. In Section 9.5, we complement these
algorithmic results by showing that multilevel-planarity testing is NP-complete for
abstract single-source graphs, for oriented trees and for embedded multi-source

Introduction Section 9.1

179

Philip V
of Spain
1683–1746

Margaret eresa
of Spain
1651–1673

Mariana
of Austria
1635–1696

Elisabeth
of France
1602–1644

Louis XIII
of France
1601–1643

Anne
of Austria
1601–1666

Louis XIV
of France
1638–1715

Louis
Grand Dauphin
1661–1711

Maria eresa
of Spain
1638–1683

Philip IV
of Spain
1605–1665

Maria Anna
of Spain
1606–1646

Maria Antonia
of Austria
1669–1692

Henry IV
of France
1553–1610

Margaret
of Austria
1584–1611

Ferdinand III
Holy Roman Emperor
1608–1657

Eleonor Magdalene
of Neuburg
1655–1720

Charles VI
Holy Roman Emperor
1685–1740

Maria Anna Victoria
of Bavaria
1660–1690

Maximilian II Emanuel
Elector of Bavaria
1666–1726

Louis
Dauphin of France
1682–1712

Charles
Duke of Berry
1686–1714

Joseph Ferdinand
of Bavaria
1692–1699

Charles II
of Spain
1665–1700

Leopold I
Holy Roman Emperor
1640–1705

Philip III
of Spain
1578–1621

Marie
de’ Medici
1575–1642

Figure
9.1:Excerptofthe

genealogy
ofEuropean

royalty.
e
m
ultilevelgraph

isdraw
n
in

blue
w
ith

dashed
edgesrepresenting

m
arriages.G

ray
barsdenotethelifespansoftheindividuals(w

ith
tim

eprogressing
boom

-up),
i.e.,the

intervalsin
w
hich

the
corresponding

verticeshave
to

be
draw

n.

Chapter 9 Multilevel Planarity

180

graphs where |ℓ (v) | ≤ 2 for all v ∈ 𝑉 . We finish with some concluding remarks in
Section 9.6.

9.2 Preliminaries

This section consists of three parts. First, we introduce basic terminology and nota-
tion. Second, we discuss the relationship between multilevel planarity and existing
planarity variants for directed graphs. Third, we define a normal form for multilevel
assignments, which simplifies the arguments in Sections 9.3 and 9.4.

Basic Terminology. We say that two planar drawings of a graph are combinatorially
equivalent if they define the same combinatorial embedding and have the same outer
face. A multilevel assignment ℓ : 𝑉 → P (Z) assigns a finite set of integers to each
vertex. An upward-planar drawing is multilevel planar if 𝑦 (v) ∈ ℓ (v) for all v ∈ 𝑉 .
Note that any finite set of integers can be represented as a finite list of finite integer
intervals. We choose this representation to be able to represent sets of integers that
contain large intervals of numbers more efficiently.

A directed, acyclic and planar graph with a single source 𝑠 is an 𝑠𝑇 -graph. An 𝑠𝑇 -
graph with a single sink 𝑡 and an edge (𝑠, 𝑡) is an 𝑠𝑡-graph. In any upward-planar
drawing of an 𝑠𝑡-graph, the unique source and sink are the lowest and highest vertices,
respectively, and both are incident to the outer face. For a face 𝑓 of a planar drawing,
an incident vertex v is called face source (face sink) if all edges incident to 𝑓 and v are
outgoing (incoming). Note that a face source or face sink does not need to be a source
or sink in𝐺 . We will frequently add incoming edges to sources and outgoing edges to
sinks during later constructions, referring to this as source canceling and sink canceling,
respectively. An oriented path of length 𝑘 is a sequence of vertices (v1, v2, . . . , v𝑘+1)
such that for all 1 ≤ 𝑖 ≤ 𝑘 either the edge (v𝑖 , v𝑖+1) or the edge (v𝑖+1, v𝑖) is in 𝐺 .
A directed path of length 𝑘 is a sequence of vertices (v1, v2, . . . , v𝑘+1) such that for
all 1 ≤ 𝑖 ≤ 𝑘 the edge (v𝑖 , v𝑖+1) is in 𝐺 . Let 𝑢, v ∈ 𝑉 be two distinct vertices. Vertex 𝑢
is a descendant of v in 𝐺 , if there exists a directed path from v to 𝑢. A topological
ordering is a function 𝜏 : 𝑉 → N such that for every v ∈ 𝑉 and for each descendant 𝑢
of v it is 𝜏 (v) < 𝜏 (𝑢).

Relationship to Existing Planarity Variants. Multilevel-planarity testing is a
generalization of level planarity testing. To see this, let𝐺 = (𝑉 , 𝐸) be a directed graph
together with a level assignment 𝛾 : 𝑉 → Z. Define ℓ (v) = {𝛾 (v)} for all v ∈ 𝑉 .
It is readily observed that a drawing Γ of 𝐺 is level planar with respect to 𝛾 if and
only if Γ is multilevel planar with respect to ℓ . Therefore, level planarity reduces to
multilevel planarity in linear time.

Preliminaries Section 9.2

181

Multilevel-planarity testing is also a generalization of upward planarity testing.
Without loss of generality, the vertices in an upward-planar drawing can be assigned
unique integer 𝑦-coordinates so that there is at least one vertex on each level in [1, |𝑉 |].
Hence, upward planarity of𝐺 can be tested by setting ℓ (v) = [1, |𝑉 |] for all v ∈ 𝑉 and
testing the multilevel planarity of 𝐺 with respect to ℓ . Therefore, upward planarity
reduces to multilevel planarity in linear time. By then restricting the multilevel
assignment, multilevel planarity can also be seen as a constrained version of upward
planarity. Garg and Tamassia [GT01] showed that upward-planarity testing is NP-
complete. It is easy to see that multilevel-planarity testing is inNP and so we conclude
the following.

Theorem 23. Multilevel-planarity testing is NP-complete.

Multilevel planarity is related to leveled planarity. Both notions ask about the
existence of a certain 𝑦-coordinate assignment 𝛾 . However, multilevel planarity is
defined for directed graphs, i.e., for two adjacent vertices it is known which one has
the greater 𝑦-coordinate, whereas leveled planarity is defined for undirected graphs.
And for adjacent vertices 𝑢, v in a leveled planar drawing it must be |𝛾 (𝑢) −𝛾 (v) | = 1,
whereas no such restriction exists for the multilevel-planar drawings.

Multilevel Assignment Normal Form. A multilevel assignment ℓ has normal
form if for all (𝑢, v) ∈ 𝐸 it is min ℓ (𝑢) < min ℓ (v) and max ℓ (𝑢) < max ℓ (v). Some
proofs are easier to follow for multilevel assignments in normal form. The following
lemma justifies that we may assume without loss of generality that ℓ has normal
form.

Lemma 62. Let𝐺 = (𝑉 , 𝐸) be a directed graph together with a multilevel assignment ℓ .
Then there exists a multilevel assignment ℓ ′ in normal form such that a drawing of𝐺 is
multilevel planar with respect to ℓ if and only if it is multilevel planar with respect to ℓ ′.
Moreover, ℓ ′ can be computed in linear time.

Proof. The idea is to convert ℓ (v) into ℓ ′(v) ⊆ ℓ (v) for all v ∈ 𝑉 by finding a lower
bound 𝑙v and an upper bound 𝑢v for the level of v , and setting ℓ ′(v) = ℓ (v) ∩ [𝑙v , 𝑢v].
If this set is empty there exists no multilevel-planar drawing. To find the lower bound,
iterate over the vertices in increasing order with respect to some topological order-
ing 𝜏 of𝐺 . Because all edges have to be drawn as strictly 𝑦-monotone curves, for each
vertex v ∈ 𝑉 it must be 𝑦 (v) > max(𝑤,v) ∈𝐸 𝑙𝑤 . So, set 𝑙v to the maximum of min ℓ (v)
and max(𝑤,v) ∈𝐸 𝑙𝑤 +1. Analogously, to find the upper bound, iterate over𝑉 in decreas-
ing order with respect to 𝜏 . Again, because edges are drawn as strictly 𝑦-monotone
curves, for each vertex v ∈ 𝑉 it must hold true that 𝑦 (v) < min(v,𝑤) ∈𝐸 𝑢𝑤 . Therefore,
set 𝑢v to the minimum of max ℓ (v) and min(v,𝑤) ∈𝐸 𝑢𝑤 − 1. This means that in any

Chapter 9 Multilevel Planarity

182

multilevel-planar drawing of 𝐺 the 𝑦-coordinate of v ∈ 𝑉 is 𝑦 (v) ∈ ℓ (v) ∩ [𝑙v , 𝑢v].
So it follows that a drawing of𝐺 is multilevel planar with respect to ℓ if and only if it
is multilevel planar with respect to ℓ ′.

To see that the running time is linear, note that a topological ordering of 𝐺 can be
computed in linear time and every vertex and edge is handled at most twice during
the procedure described above. Because every level candidate in ℓ is removed at
most once, the total running time is O(𝑛 +∑︁

v∈𝑉 |ℓ (v) |), i.e., linear in the size of the
input. □

9.3 Embedded 𝒔𝑻 -Graphs

In this section, we characterize multilevel-planar 𝑠𝑇 -graphs as subgraphs of certain
planar 𝑠𝑡-graphs. Similar characterizations exist for upward planarity and level
planarity [DT88, Lei98]. The idea behind our characterization is that for any given
multilevel-planar drawing, we can find a set of edges that can be inserted without
rendering the drawing invalid, and which make the underlying graph an 𝑠𝑡-graph. For
these 𝑠𝑡-graphs multilevel planarity and planarity coincide and we can use existing
linear-time algorithms to find (multilevel-)planar drawings. This technique is similar
to the one found by Bertolazzi et al. [BDMT98], and in fact is built on top of it.
To use this characterization for multilevel-planarity testing, we cannot require a

multilevel-planar drawing to be given. We show that if we choose the set of edges to
be inserted carefully, the respective set of edges can be inserted into any multilevel-
planar drawing for a fixed combinatorial embedding. An algorithm constructing such
an edge set can therefore be used to test for multilevel planarity of embedded 𝑠𝑇 -
graphs, resulting in Theorem 24. The algorithm is constructive in the sense that it
finds a multilevel-planar drawing if one exists. In Section 9.5, we show that testing
multilevel planarity of 𝑠𝑇 -graphs without a fixed combinatorial embedding is NP-
hard. Recall that every multilevel-planar drawing is upward planar. We now prove
that the vertex with the largest 𝑦-coordinate on the boundary of each face is the
same across all combinatorially equivalent drawings. To this end we use the notion
of large and small angles at sink switches that Bertolazzi et al. [BDMT98] have
used for biconnected graphs. We extend this notion to simply-connected 𝑠𝑇 -graphs.
Lemma 63 is used to argue that such angles are well-defined, Lemma 64 extends the
observations of Bertolazzi et al. to simply-connected graphs and Lemma 65 sets the
foundation to our 𝑠𝑡-graph extension.

Lemma 63. Let𝐺 = (𝑉 , 𝐸) be an 𝑠𝑇 -graph together with an upward-planar drawing Γ.
Further, let 𝑓 be a face of Γ and let 𝑐 denote a sink switch of 𝑓 . Then 𝑐 appears exactly
once on the cyclic walk around the boundary of 𝑓 .

Embedded 𝒔𝑻 -Graphs Section 9.3

183

Proof. Suppose 𝑤 =
[︁
v1 = 𝑐, v2, . . . , v𝑗 = 𝑐, . . . , v𝑚 = v1 = 𝑐

]︁
with 2 < 𝑗 < 𝑚 − 1 is

the cyclic walk around 𝑓 . We show that 𝑐 is not a sink switch. Construct a Jordan
curve𝐶 by closely following 𝑤 along v1 = 𝑐, v2, . . . , v𝑗 = 𝑐 within 𝑓 and then crossing
through 𝑐 to close the curve. Let 𝐺outer denote the subgraph of 𝐺 induced by the
vertices in the exterior of 𝐶 and on 𝐶 . Let 𝐺inner denote the subgraph of 𝐺 induced
by the vertices in the interior of 𝐶 and on 𝐶 .

Consider the case that 𝐻 ∈ {𝐺outer,𝐺inner} does not contain 𝑠 . Because 𝐺 is an 𝑠𝑇 -
graph there exists in 𝐺 a directed path from 𝑠 to every vertex in 𝐻 . Because no
edge crosses 𝐶 and the only vertex that lies on 𝐶 is 𝑐 all these paths contain 𝑐 .
Therefore, there exists in 𝐻 a directed path from 𝑐 to every vertex of 𝐻 , i.e., 𝐻 is
an 𝑠𝑇 -graph with source 𝑐 . Either v2 or v𝑗+1 lies in 𝐻 by construction and so one of
the edges (v1 = 𝑐, v2), (v𝑗 = 𝑐, v𝑗+1) exists in 𝐺 , i.e., 𝑐 is not a sink switch of 𝑓 .
Now consider the other case, namely that both 𝐺outer and 𝐺inner contain 𝑠 . By

construction 𝐺outer and 𝐺inner share only the vertex 𝑐 , i.e., 𝑐 = 𝑠 . Because 𝑠 is the
source of 𝐺 it cannot be the sink switch of any face. □

𝑣

𝑢1 𝑢2

𝑒2𝑒1

𝑣

𝑢2 𝑢1

𝑦
𝑒1𝑒2

𝑦

𝑓

𝑓

∠Γ,𝑣 (𝑣, 𝑓) < 𝜋

∠Γ,𝑣 (𝑣, 𝑓) > 𝜋

Let v be a sink switch of a face 𝑓 in Γ. Further,
let 𝑒1 = (𝑢1, v), 𝑒2 = (𝑢2, v) denote the edges incident to 𝑓 and v .
By Lemma 63 the choice of these edges is unique. Let 𝑓 lie to the
right of 𝑒1 and to the left of 𝑒2 with respect to the directions of
those edges. Because Γ is upward there exists a horizontal line 𝑦
that intersects both 𝑒1 and 𝑒2 exactly once but does not intersect v .
For 𝑖 = 1, 2, let 𝑥𝑖 denote the 𝑥-coordinate of the intersection of 𝑦
and 𝑒𝑖 . Define ∠Γ,𝑓 (v) as small (written as ∠Γ,𝑓 (v) < 𝜋) if 𝑥1 < 𝑥2
(see the upper part of the figure on the right) and as large (written
as ∠Γ,𝑓 (v) > 𝜋) if 𝑥1 ≥ 𝑥2 (see the lower part of the figure on
the right). Note that 𝑥1 = 𝑥2 implies 𝑒1 = 𝑒2, i.e., 𝑢1 = 𝑢2 is a
cutvertex. This sets the stage for the following.

Lemma 64. Let𝐺 be an 𝑠𝑇 -graph together with an upward-planar
drawing Γ. Then the following properties hold:

1. For each sink switch v on the boundary of the outer face ℎ it is ∠Γ,ℎ (v) > 𝜋 .

2. For each inner face 𝑓 of Γ there is exactly one sink switch 𝑡𝑓 on the boundary
of 𝑓 with ∠Γ,𝑓 (𝑡𝑓) < 𝜋 , namely the vertex with greatest 𝑦-coordinate among all
vertices incident to 𝑓 .

Proof. Use induction over the number of biconnected components of 𝐺 . In the
base case of a biconnected graph both properties were observed by Bertolazzi et
al. [BDMT98, page 138, Facts 2 and 3].

Chapter 9 Multilevel Planarity

184

Let 𝑐 be a cutvertex of 𝐺 . Then there exists a face 𝑓 of Γ such that 𝑐 appears more
than once on the cyclic walk around 𝑓 . Let the cyclic walk around 𝑓 be denoted
by 𝑤 =

[︁
v1 = 𝑐, v2, . . . , v𝑗 = 𝑐, . . . , v𝑚 = v1 = 𝑐

]︁
, where 2 < 𝑗 < 𝑚 − 1. Let𝐶,𝐺1,𝐺2 be

defined as in the proof of Lemma 63.
If𝐺𝑖 does not contain 𝑠 we have already shown that it is an 𝑠𝑇 -graph with source 𝑐 .

Consider the case that 𝐺𝑖 does contain 𝑠 . Because 𝐺 is an 𝑠𝑇 -graph there exists in 𝐺
a directed path from 𝑠 to every vertex in 𝐺𝑖 . Suppose that such a directed path p
contains a vertex not in 𝐺𝑖 , i.e., a vertex in 𝐺3−𝑖 other than 𝑐 . Because no edge
crosses 𝐶 and the only vertex that lies on 𝐶 is 𝑐 this means that p must contain 𝑐

twice. This contradicts the fact that 𝐺 is acyclic. Hence, there exists in 𝐺𝑖 a directed
path from 𝑠 to every vertex of of 𝐺𝑖 , i.e., 𝐺𝑖 is an 𝑠𝑇 -graph with source 𝑠 .

The drawing Γ induces drawings Γ1, Γ2 of𝐺1,𝐺2, respectively. We have just shown
that 𝐺1 and 𝐺2 are 𝑠𝑇 -graphs. Furthermore, each one has strictly fewer biconnected
components than 𝐺 . Therefore, properties 1 and 2 hold for 𝐺1,𝐺2 by induction.
Observe that Γ can be obtained from Γ1 by inserting Γ2 into 𝐶 . This changes no

angles, except at 𝑐 which is not a sink switch of 𝑓 by Lemma 63. Every face of Γ
except for 𝑓 exists in one of Γ1, Γ2 and the claimed properties are true by induction.
Let 𝑓1 denote the face of Γ1 that contains the interior of𝐶 . Let ℎ2 denote the outer face
of Γ2, i.e., the face of Γ2 that contains the exterior of 𝐶 . Face 𝑓 in Γ is obtained from
combining the faces 𝑓1 in Γ and ℎ2 of Γ2. Every sink switch v on the boundary of 𝑓
in Γ is a sink switch on the boundary of either 𝑓1 in Γ1 or ℎ2 in Γ2. If v is a sink switch
on the boundary of ℎ2 Property 1 implies ∠Γ2,ℎ2 (v) > 𝜋 and therefore ∠Γ,𝑓 (v) > 𝜋 .
Now consider the case that v is a sink switch on the boundary of 𝑓1. If 𝑓1 is the
outer face of Γ1 then 𝑓 is the outer face of Γ. Then Property 1 implies ∠Γ1,𝑓1 (v) > 𝜋

and therefore ∠Γ,𝑓 (v) > 𝜋 . If 𝑓1 is an inner face of Γ1 then 𝑓 is an inner face of Γ.
Property 2 implies that there is exactly one sink switch v on the boundary of 𝑓1
in Γ1 with ∠Γ1,𝑓1 (v) < 𝜋 , namely the vertex with the greatest 𝑦-coordinate among
all vertices incident to 𝑓1. Then v is the only sink switch on the boundary of 𝑓 in Γ
with ∠Γ, 𝑓 (v) < 𝜋 . Also, because 𝐶 is contained within 𝑓1 vertex v is the vertex with
the greatest 𝑦-coordinate among all vertices incident to 𝑓 . □

We are now ready to prove the following.

Lemma 65. Let 𝐺 be an 𝑠𝑇 -graph, let Γ, Γ′ be combinatorially equivalent upward-
planar drawings of 𝐺 and let 𝑓 be an inner face of Γ and Γ′. Then the vertex with the
greatest 𝑦-coordinate among all vertices incident to 𝑓 is the same in Γ and Γ′.

Proof. Let 𝑡𝑓 denote the vertex with the greatest 𝑦-coordinate among all vertices
incident to 𝑓 in Γ. Further let 𝑒1 = (v1, 𝑡𝑓) and 𝑒2 = (v2, 𝑡𝑓) be the edges incident to 𝑓

and 𝑡𝑓 (by Lemma 63 and because 𝑡𝑓 is a sink switch 𝑒1, 𝑒2 are the only such edges).
Property 2 of Lemma 64 states that ∠Γ,𝑓 (v) < 𝜋 , i.e., 𝑒1 ≠ 𝑒2. Assume that 𝑡𝑓 does

Embedded 𝒔𝑻 -Graphs Section 9.3

185

𝑓 𝑓

𝑒1 𝑒2

𝑒2 𝑒1
𝑡𝑓

𝑡𝑓

𝑣1 𝑣2

𝑣2 𝑣1

𝑡 ′

∠Γ′,𝑓 (𝑡𝑓)∠Γ,𝑓 (𝑡𝑓)

𝑐 𝑐

𝑠 𝑠

(Γ) (Γ′)

Figure 9.2: Proof of Lemma 65.

not have the greatest 𝑦-coordinate of all vertices incident to 𝑓 in Γ′. See Figure 9.2.
Because 𝐺 has a single source 𝑠 , there exist directed paths p1 and p2 from 𝑠 to v1
and v2, respectively. Then the left-to-right order of the edges 𝑒1 and 𝑒2 in Γ and Γ′

is determined by the order of the outgoing edges at the last common vertex 𝑐 on p1
and p2. Because 𝑒1 ≠ 𝑒2 it is 𝑐 ≠ 𝑡𝑓 . Let 𝑡 ′ ≠ 𝑡𝑓 be the vertex with greatest 𝑦-
coordinate of all vertices incident to 𝑓 in Γ′. Then it holds that ∠Γ′,𝑓 (𝑡 ′) < 𝜋 and from
Property 2 of Lemma 64 it follows that ∠Γ′,𝑓 (𝑡𝑓) > 𝜋 . Since Γ and Γ′ have the same
underlying combinatorial embedding, the clockwise cyclic walk around 𝑓 is identical
in both drawings. But because ∠Γ,𝑓 (𝑡𝑓) < 𝜋 and ∠Γ′,𝑓 (𝑡𝑓) > 𝜋 , the left-to-right order
of the outgoing edges of 𝑐 is different in Γ and Γ′. This means that Γ and Γ′ are
not combinatorially equivalent: If 𝑐 has an incoming edge the cyclic order of the
edges around 𝑐 is different in Γ and Γ′. Otherwise it is 𝑠 = 𝑐 and because (𝑠, 𝑡) is the
left-most edge by definition the cyclic order of the edges around 𝑐 is different in Γ
and Γ′. □

Bertolazzi et al. showed that any 𝑠𝑇 -graph with an upward-planar drawing can be
extended to an 𝑠𝑡-graph with an upward-planar drawing that extends the original
drawing [BDLM94, BDMT98]. More formally, let𝐺 = (𝑉 , 𝐸) be an 𝑠𝑇 -graph together
with an upward-planar drawing Γ. There exists an 𝑠𝑡-graph𝐺𝑠𝑡 = (𝑉 ∪̇ {𝑡}, 𝐸 ∪̇ 𝐸𝑠𝑡)
where 𝑡 is the unique sink together with an upward-planar drawing Γ𝑠𝑡 that extends Γ.
Moreover,𝐺𝑠𝑡 and Γ𝑠𝑡 can be computed in linear time. Note that in general it is possible
for a given 𝐸𝑠𝑡 to choose an upward-planar drawing Γ of 𝐺 so that the additional
edges in 𝐸𝑠𝑡 cannot be added into Γ as 𝑦-monotone curves. For an example, see
Figure 9.3, where augmenting with the red and black edge works for the drawing
shown in (a) but not for the one shown in (b), whereas augmenting with the blue and
black edge works for both drawings. In Lemma 66 we show that there is a set 𝐸𝑠𝑡
that can be added into any upward planar drawing with the same combinatorial
embedding as Γ. In a way, this is the most general set 𝐸𝑠𝑡 .

Chapter 9 Multilevel Planarity

186

(a) (b)

𝑠 𝑠

Figure 9.3: Some edges are not admissible for augmentation in Lemma 66.

Lemma 66. Let 𝐺 = (𝑉 , 𝐸) be a directed 𝑠𝑇 -graph with a fixed combinatorial embed-
ding. Then there exists an 𝑠𝑡-graph 𝐺𝑠𝑡 = (𝑉 ∪̇ {𝑡}, 𝐸 ∪̇ 𝐸𝑠𝑡), where 𝑡 is the unique
sink, such that for any upward-planar drawing Γ of 𝐺 there exists an upward-planar
drawing Γ𝑠𝑡 of 𝐺𝑠𝑡 that extends Γ. Moreover, 𝐺𝑠𝑡 can be computed in linear time.

Proof. Start by finding an initial upward-planar drawing Γ of 𝐺 in linear time using
the algorithm due to Bertolazzi et al. [BDMT98]. The algorithm also outputs an
embedded 𝑠𝑡-graph 𝐺0

𝑠𝑡 = (𝑉 ∪̇ {𝑡}, 𝐸 ∪̇ 𝐸0
𝑠𝑡) together with an upward-planar

drawing Γ0
𝑠𝑡 that extends Γ. This means that Γ0

𝑠𝑡 is obtained from Γ by drawing
each edge (𝑢, v) ∈ 𝐸0

𝑠𝑡 within some face 𝐹 0 (𝑢, v) of Γ. Define a function 𝑇 that
maps the faces of Γ to the vertex set 𝑉 ∪̇ {𝑡} as follows. If 𝑓 is the outer face of Γ
define 𝑇 (𝑓) = 𝑡 and if 𝑓 is an inner face of Γ define 𝑇 (𝑓) = 𝑡𝑓 , where 𝑡𝑓 denotes
the sink switch of 𝑓 with ∠Γ,𝑓 (𝑡𝑓) < 𝜋 , which is unique by Property 2 of Lemma 64
and the same for all combinatorially equivalent drawings by Lemma 65. We show
that 𝐸𝑠𝑡 =

{︁
(𝑢,𝑇 (𝐹 0 (𝑢, v))) | (𝑢, v) ∈ 𝐸0

𝑠𝑡

}︁
satisfies the claim.

For each face 𝑓 of Γ the vertex 𝑇 (𝑓) has the greatest 𝑦-coordinate among all
vertices incident to 𝑓 . This means that for each edge (𝑢, v) ∈ 𝐸𝑠𝑡 the 𝑦-coordinate
of 𝑢 is smaller than the 𝑦-coordinate of v in Γ. Together with the fact that Γ is an
upward-planar drawing this means that 𝐺𝑠𝑡 is acyclic. Recall that 𝐺0

𝑠𝑡 is an 𝑠𝑡-graph,
i.e., every sink of 𝐺 is incident to an outgoing edge in 𝐸0

𝑠𝑡 . By construction of 𝐸𝑠𝑡
every sink of 𝐺 is then also incident to an outgoing edge in 𝐸𝑠𝑡 . Therefore 𝐺𝑠𝑡 has
exactly one sink, namely 𝑡 . Together with the fact that 𝐺𝑠𝑡 is acyclic this shows
that 𝐺𝑠𝑡 is an 𝑠𝑡-graph.
Now let Γ′ be an upward-planar drawing of 𝐺 . Recall that the embedding of𝐺 is

fixed, so Γ′ is combinatorially equivalent to Γ. We show that we can extend Γ′ to an
upward-planar drawing of 𝐺𝑠𝑡 . To this end, we insert the vertex 𝑡 and then insert
the edges in 𝐸𝑠𝑡 into Γ′ one after the other. Let 𝑌 denote the greatest 𝑦-coordinate of
any vertex in Γ′. Insert 𝑡 into Γ′ with 𝑦-coordinate 𝑌 + 1.

Embedded 𝒔𝑻 -Graphs Section 9.3

187

Let (𝑢, v) be an edge in 𝐸𝑠𝑡 . The idea is that it is possible to walk from any vertex 𝑥
on the boundary of 𝑓 upwards to 𝑡𝑓 . If 𝑥 is incident to an outgoing edge (𝑥, 𝑤)
incident to 𝑓 follow that edge to 𝑤. Because Γ′ is an upward-planar drawing this
segment is 𝑦-monotone. Then continue walking up from 𝑤 to 𝑡𝑓 . Otherwise, if 𝑥 is
not incident to an outgoing edge incident to 𝑓 , it is a sink switch of 𝑓 . There are two
cases.

1. It is ∠Γ′,𝑓 (𝑥) > 𝜋 . Then walk up vertically from 𝑥 within 𝑓 . If 𝑓 is an inner face
of Γ′, this walk will meet either a vertex 𝑤 or an edge (𝑥 ′, 𝑤). In the former
case continue walking up from 𝑤. The latter case has two subcases. The first
subcase is (𝑥 ′, 𝑤) ∉ 𝐸𝑠𝑡 . Then (𝑥 ′, 𝑤) is incident to 𝑓 , so follow the edge to 𝑤

and then continue walking up from 𝑤. The second subcase is (𝑥 ′, 𝑤) ∈ 𝐸𝑠𝑡 .
Then (𝑥 ′, 𝑤) is an edge that was inserted into 𝑓 in Γ′ previously. Note that all
edges inserted into 𝑓 have endpoint 𝑡𝑓 , i.e., 𝑤 = 𝑡𝑓 = v , so follow (𝑥 ′, 𝑤) to its
endpoint 𝑤 to complete the drawing of (𝑢, v).
If 𝑓 is the outer face of Γ′, either one of the previous situations occurs, or we
could walk vertically up infinitely without meeting an edge or a vertex. Note
that this means v = 𝑡 . In this case stop walking up when the 𝑦-coordinate is 𝑌 ,
bend and then connect to 𝑡 with a straight line segment.

2. It is ∠Γ′,𝑓 (𝑥) < 𝜋 . From Lemma 64 it follows that 𝑥 = 𝑡𝑓 .

□

We now have a set of edges that can be used to complete𝐺 into𝐺𝑠𝑡 . If a multilevel-
planar drawing for the given combinatorial embedding of 𝐺 respecting ℓ exists, then
it must also exist for𝐺𝑠𝑡 . However, the property of ℓ being in normal form might not
be fulfilled anymore in 𝐺𝑠𝑡 because of the added edges. We therefore need to bring ℓ
into normal form ℓ ′ again. Lemma 62 tells us that this does not impact multilevel
planarity. We conclude that 𝐺 is multilevel planar with respect to ℓ if and only if 𝐺𝑠𝑡

is multilevel planar with respect to ℓ ′. The final property we need is that 𝐺𝑠𝑡 is level
planar with respect to any level assignment 𝛾 (recall that 𝛾 is a level assignment
of 𝐺𝑠𝑡 if for each directed edge (𝑢, v) in 𝐺𝑠𝑡 it is 𝛾 (𝑢) < 𝛾 (v)). The following is
due to Leipert [Lei98, Theorem 5.1 and page 121], who notes that an algorithm for
drawing upward planar graphs by Di Battista and Tamassia [DT88, Theorem 3.5] can
be adapted for the level-planar setting.

Lemma 67. Let 𝐺 be an 𝑠𝑡-graph on 𝑛 vertices together with a level assignment 𝛾 .
Then for any combinatorial embedding of 𝐺 there exists a combinatorially equivalent
drawing of 𝐺 that is level planar with respect to 𝛾 . Moreover, such a drawing has O(𝑛)
size and can be computed in O(𝑛) time.

Chapter 9 Multilevel Planarity

188

If ℓ ′ is in normal form, ℓ ′(v) ≠ ∅ is a necessary and sufficient condition that
there exists a level assignment 𝛾 : 𝑉 → Z with 𝛾 (v) ∈ ℓ ′(v) for all v ∈ 𝑉 . Set-
ting 𝛾 (v) = min ℓ ′(v) is one possible such level assignment. Then 𝐺 is level planar
with respect to 𝛾 and therefore multilevel planar with respect to ℓ , resulting in the
characterization of multilevel-planar 𝑠𝑡-graphs:

Corollary 7. Let𝐺 be an 𝑠𝑡-graph together with a multilevel assignment ℓ in normal
form. Then there exists a multilevel-planar drawing for any combinatorial embedding
of 𝐺 if and only if ℓ (v) ≠ ∅ for all v .

For a constructive multilevel-planarity testing algorithm, we now first take the edge
set computed by the algorithm by Bertolazzi et al. [BDMT98] and modify it using
Lemma 66 to complete any 𝑠𝑇 -graph to an 𝑠𝑡-graph. Note that for this step, we need
a fixed combinatorial embedding to be given, as is required by the second property of
Lemma 64. Once arrived at an 𝑠𝑡-graph, we check the premise of Corollary 7. Then,
we either output that the graph is not multilevel planar or use Lemma 67 to find a
multilevel-planar drawing in linear time. This concludes the testing algorithm:

Theorem 24. Let 𝐺 be an 𝑠𝑇 -graph with a multilevel assignment ℓ together with
a combinatorial embedding and an outer face. Then it can be decided in linear time
whether there exists a combinatorially equivalent multilevel-planar drawing of𝐺 . If so,
such a drawing can be computed within the same running time.

Our algorithm uses the fact that to augment 𝑠𝑇 -graphs to 𝑠𝑡-graphs, only edges
connecting sinks to other vertices need to be inserted. For graphs with multiple
sources and multiple sinks, further edges connecting sources to other vertices need
to be inserted. The interactions that occur then are very complex: In Section 9.5, we
show that deciding multilevel planarity is NP-complete for embedded multi-source
graphs. In the next section, we identify oriented cycles as a class of multi-source
graphs for which multilevel planarity can be decided efficiently.

9.4 Oriented Cycles

In this section, we present a constructive multilevel-planarity testing algorithm for
oriented cycles, i.e., directed graphs whose underlying undirected graph is a simple
cycle. We start by giving a condition for when an oriented cycle 𝐺 = (𝑉 , 𝐸) together
with some level assignment 𝛾 admits a level-planar drawing. This condition yields
an algorithm for the multilevel-planar setting.
In this section, 𝛾 is always a level assignment and ℓ is always a multilevel as-

signment. Define max𝛾 = max{𝛾 (v) | v ∈ 𝑉 } and min𝛾 = min{𝛾 (v) | v ∈ 𝑉 }.
Further set max ℓ = max{max ℓ (v) | v ∈ 𝑉 } and min ℓ = min{min ℓ (v) | v ∈ 𝑉 }.

Oriented Cycles Section 9.4

189

𝑡1 𝑡2

𝑠min

𝑡1 𝑡2

𝑠

𝑡(a) (b)

Figure 9.4: Augmenting the oriented cycle in (a) to an 𝑠𝑡-graph in (b). See the proof
of Lemma 68.

Let 𝑆min ⊂ 𝑉 be sources with minimal level, i.e., 𝑆min = {v ∈ 𝑉 | 𝛾 (v) = min𝛾}, and
let𝑇max ⊂ 𝑉 be the sinks with maximal level. We call sources in 𝑆min minimal sources,
sinks in 𝑇max are maximal sinks. Two maximal sinks 𝑡1, 𝑡2 ∈ 𝑇max are consecutive if
there is an oriented path between 𝑡1 and 𝑡2 that does not contain any vertex in 𝑆min.
The set𝑇max is consecutive if all sinks in𝑇max are pairwise consecutive. We define con-
secutiveness for sources in 𝑆min analogously. Because 𝐺 is a cycle, consecutiveness
of 𝑇max also means that 𝑆min is consecutive. If both 𝑆min and 𝑇max are consecutive, we
say that 𝛾 is separating.

Lemma 68. Let𝐺 be an oriented cycle with a level assignment 𝛾 . Then𝐺 is level planar
with respect to 𝛾 if and only if 𝛾 is separating.

Proof. For the “if” part, augment 𝐺 to a planar 𝑠𝑡-graph as follows. See Figure 9.4 (a)
for a cycle and (b) for the augmented 𝑠𝑡-graph. Let p𝑡 be the oriented path of minimal
length that contains all sinks in𝑇max and no vertex in 𝑆min, and let 𝑡1, 𝑡2 ∈ 𝑇max denote
its endpoints. Fix some vertex 𝑠min ∈ 𝑆min and cancel every source v on p𝑡 by adding
an edge from 𝑠min to v . Because 𝑠min ∈ 𝑆min it is 𝛾 (𝑠min) < 𝛾 (v) and the graph remains
acyclic. Introduce a new sink 𝑡 with 𝛾 (𝑡) = 𝛾 (𝑡1) + 1 and cancel every sink v on p𝑡 by
adding an edge from v to 𝑡 . Because 𝛾 (v) < 𝛾 (𝑡) the graph remains acyclic. Let p1
denote an oriented path from 𝑡1 to 𝑠min and let p2 denote an oriented path from 𝑠min
to 𝑡2 so that p1 and p2 share no edge. Note that the paths p𝑡 , p1, p2 are pairwise disjoint
except in common endpoints. Cancel every sink v on p1 or p2 by adding an edge
from v to 𝑡1 or 𝑡2, respectively. Introduce a new source 𝑠 with 𝛾 (𝑠) = 𝛾 (𝑠min) − 1 and
cancel every source v on p1 or p2 by adding an edge from 𝑠 to v . Because 𝛾 (𝑠) < 𝛾 (v)
the graph remains acyclic. Finally add the edge (𝑠, 𝑡) to make the graph an 𝑠𝑡-graph.

To see that the augmented graph is planar observe that the cycle is trivially planar.
Furthermore, all augmentation edges incident to 𝑡 are incident to vertices on p𝑡 and
no augmentation edges incident to 𝑠 are incident to vertices on p𝑡 (except, possibly,
for 𝑡1 and 𝑡2). Moreover, the interior of the circle is partitioned into three regions
corresponding to the oriented paths p𝑡 , p1, p2. In Figure 9.4 these regions are separated

Chapter 9 Multilevel Planarity

190

by the black dashed edges, the area corresponding to p𝑡 is shaded in blue whereas
the areas corresponding to p1 and p2 are shaded in red. The regions are disjoint and
all augmentation edges in one region have the same endpoint, therefore they do not
cross. Because p𝑡 , p1, p2 are disjoint except in common endpoints the augmentation
edges of different areas do not cross. Hence, the augmented graph is a planar 𝑠𝑡-graph
and then Lemma 67 yields that 𝐺 is level planar with respect to 𝛾 . The “only if” part
is due to Healy et al. [HKL04, Theorem 7]. □

Recall that any multilevel-planar drawing is a level-planar drawing with respect to
some level assignment 𝛾 . Lemma 68 states a necessary and sufficient condition for 𝛾
so that the drawing is level planar. Given a multilevel assignment ℓ , we therefore find
a separating level assignment 𝛾 , or determine that no such level assignment exists. It
must be ℓ (v) ≠ ∅ for all v ∈ 𝑉 ; otherwise,𝐺 admits no multilevel drawing. We find a
level assignment 𝛾 that keeps the sets 𝑆min and𝑇max as small as possible, because such
a level assignment is, intuitively, most likely to be separating. To this end, let 𝑆may ⊂ 𝑉

contain each source 𝑠 ′ of 𝐺 with min ℓ (𝑠 ′) = min ℓ . Further, let 𝑆must ⊆ 𝑆may contain
each source 𝑠 ′′ of 𝐺 with ℓ (𝑠 ′′) = {min ℓ}. Likewise, let 𝑇may ⊂ 𝑉 contain each
sink 𝑡 ′ of 𝐺 with max ℓ (𝑡 ′) = max ℓ and let 𝑇must ⊆ 𝑇may contain each sink 𝑡 ′′ of 𝐺
with ℓ (𝑡 ′′) = {max ℓ}.

Construct a level assignment ℓ ′ from ℓ as follows. First, consider the case that
both 𝑆must and 𝑇must are not empty. Let p denote the unique inclusion-minimal path
that contains all vertices in 𝑆must and no vertex in 𝑇must—if no such path exists there
exists no separating level assignment, i.e.,𝐺 is not multilevel planar by Lemma 68.
Set ℓ ′(𝑠) = {min ℓ} for all vertices 𝑠 ∈ 𝑆may that lie on p and ℓ ′(𝑠) = ℓ (𝑠) \ {min ℓ}
for all vertices 𝑠 ∈ 𝑆may that do not lie on p . Next, set ℓ ′(𝑡) = ℓ (𝑡) \ {max ℓ} for all
vertices 𝑡 ∈ 𝑇may that lie on p . And set ℓ ′(𝑡) = {max ℓ} for all vertices 𝑡 ∈ 𝑇may that
do not lie on p . Now consider the case 𝑆must = ∅. If 𝑆must = ∅, choose an arbitrary
source 𝑠 ∈ 𝑆may, define p as the path that consists of only 𝑠 and proceed as in the
previous case. The case 𝑇must = ∅ is symmetric by vertically mirroring. For each
remaining vertex v set ℓ ′(v) = ℓ (v). Finally, bring ℓ ′ into normal form.
We now show that ℓ ′(v) ≠ ∅ for all v ∈ 𝑉 . Non-empty intervals are explicitly

assigned to all vertices in 𝑆may and 𝑇may. We are left to show that bringing ℓ ′ into
normal form does not create empty intervals. Changing the upper bound of a source’s
interval does not affect the intervals of that source’s neighbors. The same applies
to changing the lower bound of a sink’s interval. Increasing the lower bound of a
source’s interval by one may increase the lower bound of the intervals of that source’s
neighbors (and, recursively, all vertices dominated by that source). However, because ℓ
is in normal form this creates no empty intervals. Likewise, decreasing the upper
bound of a sink’s interval by one may decrease the upper bound of the intervals of all
vertices that dominate that sink but creates no empty intervals. Moreover, there exists

Hardness Results Section 9.5

191

no vertex for whose interval both the lower bound and the upper bound is changed
in this way. To see this, observe that the existence of such a vertex is equivalent
to the existence of a directed path from a source 𝑠 with ℓ ′(𝑠) = ℓ (𝑠) \ {min ℓ}, i.e.,
not on p to a sink 𝑡 with ℓ ′(𝑡) = ℓ (𝑡) \ {max ℓ}, i.e., on p . Such a directed path
cannot exist because p is delimited by sources 𝑠1, 𝑠2 with ℓ ′(𝑠1) = ℓ ′(𝑠2) = {min ℓ} by
construction.

Together with the fact that every level assignment that can be obtained from ℓ ′ is
separating by construction and Lemma 68 we conclude the following.

Theorem 25. Let𝐺 be an oriented cycle together with a multilevel assignment ℓ . Then
it can be decided in linear time whether 𝐺 admits a drawing that is multilevel planar
with respect to ℓ . Furthermore, if such a drawing exists, it can be computed within the
same time.

9.5 Hardness Results

Recall Theorem 23, which states that multilevel-planarity testing is in general NP-
complete. Theorem 23 is a direct consequence of the fact that multilevel-planarity is a
generalization of upward-planarity testing, which is known to beNP-complete [GT01].
We now show that multilevel-planarity testing is NP-complete even in very restricted
cases, namely for 𝑠𝑇 -graphs without a fixed combinatorial embedding, for oriented
trees and for embedded multi-source graphs with at most two possible levels for each
vertex.

9.5.1 𝒔𝑻 -Graphs with Variable Embedding

In Section 9.3, we showed that testing multilevel planarity of embedded 𝑠𝑇 -graphs is
feasible in linear time, because for every inner sink there is a unique sink switch to
cancel it with. We now show that dropping the requirement that the combinatorial
embedding is fixed makes multilevel-planarity testing NP-hard. To this end, we
reduce the Scheduling With Release Times And Deadlines (Srtd)
problem, which is strongly NP-complete [GJ77], to multilevel-planarity testing. An
instance of this scheduling problem consists of a set of tasks 𝑇 = {𝑡1, . . . , 𝑡𝑛} with
individual release times 𝑟1, . . . , 𝑟𝑛 ∈ N+, deadlines 𝑑1, . . . , 𝑑𝑛 ∈ N+ and processing
times p1, . . . , p𝑛 ∈ N+ for each task so that

∑︁𝑛
𝑖=1 p𝑖 is bounded by a polynomial

in 𝑛. See Figure 9.5 (a) for an example. The question is whether there is a non-
preemptive schedule 𝜎 : 𝑇 → N that specifies the start time for each task, such
that for each 𝑖 ∈ {1, . . . , 𝑛} we get (1) 𝜎 (𝑡𝑖) ≥ 𝑟𝑖 , i.e., no task starts before its
release time, (2) 𝜎 (𝑡𝑖) + p𝑖 ≤ 𝑑𝑖 , i.e., each task finishes before its deadline, and

Chapter 9 Multilevel Planarity

192

𝑢{0} 𝑣{0}

𝑢{0} 𝑣{0}

𝑠{−1}

𝑤1
1 [𝑟𝑖 , 𝑑𝑖 − 1]

𝑤1
2 [𝑟𝑖 , 𝑑𝑖 − 1]

𝑤
𝑝𝑖
1 [𝑟𝑖 , 𝑑𝑖 − 1]

𝑤1
1

𝑤2
1

𝑤3
1

𝑤1
3

𝑤2
3

𝑤1
2

𝑤2
2

𝑠𝑢 𝑣
0
1
2
3
4
5
6
7
8(b)

(c)

(d)

1
2
3
4
5
6
7

9(a)

𝑡1

𝑡2

𝑡3

8

Figure 9.5: An instance of the Srtd problem (a) with tasks 𝑇 = {𝑡1, 𝑡2, 𝑡3}, release
times 𝑟1 = 1, 𝑟2 = 3, 𝑟3 = 4, deadlines 𝑑1 = 8, 𝑑2 = 9, 𝑑3 = 8 and processing
times p1 = 3, p2 = p3 = 2. A task gadget (b) for each task and one base gadget (c) that
provides the single source are used to turn the Srtd instance (a) into a multilevel-
planarity testing instance (d).

(3) 𝜎 (𝑡𝑖) < 𝜎 (𝑡 𝑗) ⇒ 𝜎 (𝑡𝑖) + p𝑖 ≤ 𝜎 (𝑡 𝑗) for any 𝑗 ∈ {1, . . . , 𝑛} \ {𝑖}, i.e., no two tasks
are executed at the same time.
Create for every task 𝑡𝑖 ∈ 𝑇 a task gadget T𝑖 that consists of two vertices 𝑢, v

together with a directed path 𝑃𝑖 = (𝑤1
𝑖 , 𝑤

2
𝑖 , . . . , 𝑤

p𝑖
𝑖
) of length p𝑖 −1; see Figure 9.5 (b).

For each vertex𝑤 𝑗

𝑖
on 𝑃𝑖 set ℓ (𝑤 𝑗

𝑖
) = [𝑟𝑖 , 𝑑𝑖−1], i.e., all possible points of time at which

this task can be executed. Set ℓ (𝑢) = ℓ (v) = {0}. Join all task gadgets with a base
gadget. The base gadget consists of three vertices 𝑠,𝑢, v and two edges (𝑠,𝑢), (𝑠, v),
where 𝑢 is placed to the left of v ; see Figure 9.5 (c). Set ℓ (𝑠) = {−1} and, again,
set ℓ (𝑢) = ℓ (v) = {0}. Identify the common vertices 𝑢 and v of all gadgets; see
Figure 9.5 (d). Because Srtd is strongly NP-complete, the size of the resulting graph
is polynomial in the size of the input. The idea of the construction is that because the
task gadgets may not cross in a planar drawing and because their common vertices 𝑢
and v are identified, they are stacked on top of each other, inducing a valid schedule
of the associated tasks. Contrasting linear-time tests of upward planarity and level
planarity for 𝑠𝑇 -graphs we show the following.

Theorem 26. Testing 𝑠𝑇 -graphs for multilevel planarity is NP-complete.

Proof. Clearly, the problem is in NP. We reduce Srtd to multilevel-planarity testing.
To this end, we show that the graph 𝐺 as described above is multilevel planar if
and only if there is a valid one-processor schedule for the Srtd instance. To see
this, start with a valid schedule 𝜎 . Define a level assignment 𝛾 as follows. Start
by setting 𝛾 (𝑠) = −1, 𝛾 (𝑢) = 𝛾 (v) = 0. And for 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ p𝑖 ,

Hardness Results Section 9.5

193

set 𝛾 (𝑤 𝑗

𝑖
) = 𝜎 (𝑡𝑖) + 𝑗 . Since 𝜎 is non-preemptive, it induces a total order on the

tasks, without loss of generality 𝜎 (𝑡1) < . . . < 𝜎 (𝑡𝑛). Order the edges to the task
gadgets T1, T2, . . . , T𝑛 from right to left at 𝑢, and from left to right at v . Observe that
any sink of𝐺 is the endpoint of a directed path of a task gadget. For 1 ≤ 𝑖 < 𝑛 cancel
the sink 𝑤

p𝑖
𝑖

by connecting it to 𝑤1
𝑖+1. This is possible because the schedule is valid.

Then Lemma 67 implies that there exists a drawing of 𝐺 that is level-planar with
respect to 𝛾 . Because it is 𝛾 (v) ∈ ℓ (v) for all v ∈ 𝑉 by construction, 𝐺 is multilevel
planar with respect to ℓ .
For the reverse direction, consider a drawing Γ of 𝐺 that is multilevel planar

with respect to ℓ . Let 𝛾 denote the level assignment induced by Γ. Further, let 𝜋
be the permutation of {1, 2, . . . , 𝑛} so that the counter-clockwise order of edges
around 𝑢 is (𝑠,𝑢), (𝑢, 𝑤1

𝜋 (1)), (𝑢, 𝑤
1
𝜋 (2)), . . . , (𝑢, 𝑤

1
𝜋 (𝑛)). For 1 ≤ 𝑖 < 𝑛 let 𝑗 = 𝜋 (𝑖)

and 𝑗 ′ = 𝜋 (𝑖 + 1). The vertices 𝑤
p𝑗
𝑗

and 𝑤1
𝑗 ′ are incident to a common face 𝑓 .

Note that 𝐺 is an 𝑠𝑇 -graph and because 𝑠 is not incident to 𝑓 it is an inner face,
i.e., Property 2 of Lemma 64 applies. Because 𝑤

p𝑗
𝑗

is incident to only one edge it
is ∠Γ,𝑓 (𝑤

p𝑗
𝑗
) > 𝜋 . Because 𝑤

p𝑗
𝑗

and 𝑤1
𝑗 ′ are the only sink switches of 𝑓 , we find

that ∠Γ,𝑓 (𝑤1
𝑗 ′) < 𝜋 , i.e., 𝑤1

𝑗 ′ is the vertex with the greatest 𝑦-coordinate among
all vertices incident to 𝑓 . In particular, it is 𝛾 (𝑤p𝑗

𝑗
) < 𝛾 (𝑤1

𝑗 ′). For 1 ≤ 𝑖 ≤ 𝑛

and 𝑗 = 𝜋 (𝑖) set 𝜎 (𝑡 𝑗) = 𝛾 (𝑤1
𝑖). For 𝑗 = 𝜋 (𝑖) with 𝑖 < 𝑛 it is 𝜎 (𝑡 𝑗) + p𝑗 < 𝜎 (𝑡 𝑗 ′).

Moreover, 𝜎 (𝑡 𝑗) ≥ 𝑟 𝑗 and 𝜎 (𝑡 𝑗) + p𝑗 ≤ 𝑑 𝑗 is ensured by the multilevel assignment.
Hence, 𝜎 is a valid schedule. □

9.5.2 Oriented Trees

We can show NP-completeness of oriented trees with a very similar reduction as
for 𝑠𝑇 -graphs without a fixed combinatorial embedding. As in Section 9.5.1 we reduce
from Scheduling with Release Times and Deadlines, the required gad-
gets are only slightly different. Let𝑇 = {𝑡1, . . . , 𝑡𝑛}, 𝑟1, . . . , 𝑟𝑛 , 𝑑1, . . . , 𝑑𝑛 and p1, . . . , p𝑛
be such an instance with

∑︁𝑛
𝑖=1 p bounded by a polynomial in 𝑛. Again we initialize𝐺

with the base gadget shown in Figure 9.6 (a) and for each task we add one task gadget
as shown in Figure 9.6 (b). The base gadget consists of two vertices 𝑢 and v on level 0
both connected to one vertex 𝑐1 on level 1, which in turn is connected to the final
vertex 𝑐2 on level 𝑑max + 1, where 𝑑max = max𝑖∈{1,...,𝑛} 𝑑𝑖 is the maximum deadline
among all tasks. The task gadget is the same as in the previous section, except that v
is replaced by a separate vertex 𝑎𝑖 per gadget. The base gadget and all task gadgets
share one common vertex 𝑢, which is identified in 𝐺 . The resulting graph 𝐺 is a tree
and because Srtd is strongly NP-complete the size of 𝐺 is polynomial in the size of
the Srtd instance.

Chapter 9 Multilevel Planarity

194

𝑢 [0, 0] 𝑎𝑖 [0, 0]

𝑤1
𝑖
[𝑟𝑖 , 𝑑𝑖 − 1]

𝑤2
𝑖
[𝑟𝑖 , 𝑑𝑖 − 1]

𝑤
𝑝𝑖
𝑖
[𝑟𝑖 , 𝑑𝑖 − 1]

𝑒𝑖,𝑎

𝑢 [0, 0]𝑣 [0, 0]

𝑐1 [1, 1]

𝑐2

(a)

0

1

2

3

4

5

6

7
8

[𝑑max + 1, 𝑑max + 1]

𝑢 𝑎1 𝑎2𝑣

𝑐1

𝑐2

𝑤1
1

𝑤2
1

𝑤3
1

𝑤1
2

𝑤2
2

𝑤3
2

𝑤4
2

(c)(b)

Figure 9.6: The base (a) and the task gadget (b) to transform a Srtd instance into a
multilevel-planarity testing instance with 𝐺 being a tree. An example (c) with two
task gadgets (in red and green).

Theorem 27. Testing oriented trees for multilevel planarity is NP-complete.

Proof. The proof is very similar to the proof of Theorem 26. Clearly, the problem
is in NP. Again, we reduce Srtd to multilevel-planarity testing. We show that the
graph 𝐺 as described above is a multilevel planar if and only if there is a valid one-
processor schedule for the Srtd instance. To see this, start with a valid schedule 𝜎 .
Define a level assignment 𝛾 as follows. Set 𝛾 (𝑢) = 𝛾 (v) = 0 and for 𝑖 ∈ {1, 2, . . . , 𝑛}
set 𝛾 (𝑎𝑖) = 𝛾 (𝑏𝑖) = 0. Moreover, set 𝛾 (𝑐1) = 1 and 𝛾 (𝑐2) = 𝑑max + 1. And for 1 ≤ 𝑖 ≤ 𝑛

and 1 ≤ 𝑗 ≤ p𝑖 set 𝛾 (𝑤 𝑗

𝑖
) = 𝜎 (𝑡𝑖) + 𝑗 . Since 𝜎 is non-preemptive it induces a

total order on the tasks, without loss of generality 𝜎 (𝑡1) < 𝜎 (𝑡2) < · · · < 𝜎 (𝑡𝑛).
Place v, 𝑢, 𝑎1, 𝑎2, . . . , 𝑎𝑛 in this order from left to right on level 0. Connect the edges
incident to 𝑢 from left to right in the order (𝑢, 𝑐1), (𝑢, 𝑤1

𝑛), (𝑢, 𝑤1
𝑛−1), . . . , (𝑢, 𝑤1

1). Ob-
serve that any sink of 𝐺 except for 𝑐2 is the endpoint of a directed path of a task
gadget. For 1 ≤ 𝑖 < 𝑛 cancel the sink 𝑤

p𝑖
𝑖

by connecting it to 𝑤1
𝑖+1. This is possible

because the schedule is valid. Cancel the sink 𝑤
p𝑛
𝑛 by connecting it to 𝑐2. Create

a new vertex 𝑠 and cancel all sources by connecting 𝑠 to them. Then Lemma 67
implies that there exists a drawing of𝐺 that is level-planar with respect to 𝛾 . Since it
is 𝛾 (v) ∈ ℓ (v) for all v ∈ 𝑉 by construction, 𝐺 is multilevel planar with respect to ℓ .
For the reverse direction, consider a drawing Γ of 𝐺 that is multilevel planar

with respect to ℓ . Obtain an 𝑠𝑇 -graph 𝐺 ′ together with a multilevel planar draw-
ing Γ′ from 𝐺 and Γ by adding a new vertex 𝑠 on level −1 and connecting it to 𝑢, v
and all 𝑎𝑖 . Let 𝛾 denote the level assignment induced by Γ′. Further, let 𝜋 be the
permutation of {1, 2, . . . , 𝑛} so that the counter-clockwise order of edges around 𝑢

Hardness Results Section 9.5

195

is (𝑢, 𝑐1), (𝑢, 𝑤1
𝜋 (1)), (𝑢, 𝑤

1
𝜋 (2)), . . . , (𝑢, 𝑤

1
𝜋 (𝑛)). For 1 ≤ 𝑖 < 𝑛 define 𝑗 = 𝜋 (𝑖) and fur-

ther 𝑗 ′ = 𝜋 (𝑖 + 1). The vertices 𝑤p𝑗
𝑗

and 𝑤1
𝑗 ′ are incident to a common face 𝑓 of Γ′.

Because 𝛾 (𝑐2) = max𝛾 the edge (𝑐1, 𝑐2) implies that all vertices 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑛 lie
on the same side of 𝑢 on level 0 and v lies on the other side. This means that 𝑓 is an
inner face. Together with the fact that 𝐺 ′ is an 𝑠𝑇 -graph this means that Property 2
of Lemma 64 applies. Because 𝑤p𝑗

𝑗
is incident to only one edge it is ∠Γ′,𝑓 (𝑤

p𝑗
𝑗
) > 𝜋 .

Because 𝑤p𝑗
𝑗

and 𝑤1
𝑗 ′ are the only sink switches of 𝑓 it is ∠Γ′,𝑓 (𝑤1

𝑗 ′) < 𝜋 , i.e., 𝑤1
𝑗 ′ is the

vertex with the greatest 𝑦-coordinate among all vertices incident to 𝑓 . In particular,
it is 𝛾 (𝑤p𝑗

𝑗
) < 𝛾 (𝑤1

𝑗 ′). For 1 ≤ 𝑖 ≤ 𝑛 and 𝑗 = 𝜋 (𝑖) set 𝜎 (𝑡 𝑗) = 𝛾 (𝑤1
𝑖). For 𝑗 = 𝜋 (𝑖)

with 𝑖 < 𝑛 it is 𝜎 (𝑡 𝑗) + p𝑗 < 𝜎 (𝑡 𝑗 ′). Moreover, 𝜎 (𝑡 𝑗) ≥ 𝑟 𝑗 and 𝜎 (𝑡 𝑗) + p𝑗 ≤ 𝑑 𝑗 is
ensured by the multilevel assignment. Hence, 𝜎 is a valid schedule. □

This also contrasts the results for upward planarity and level planarity, because
every oriented tree is upward planar and all level graphs can be tested for level
planarity in linear time.

9.5.3 Embedded Multi-Source Graphs

We show that multilevel-planarity testing for embedded graphs with multiple sources
is NP-complete by reducing from planar monotone 3-Sat, which is known to
be NP-complete [dK12]. An instance I = (V, C, E) of this problem consists of a set of
variables V , a set of clauses C and a planar drawing E of a so-called variable-clause
graph, and it obeys the following restrictions. Each clause consists of at most three
literals and it ismonotone, i.e., it is either positive or negative, meaning that it consists
of either only positive or only negative literals, respectively. We also assume that C
contains at least one positive and at least one negative clause. The variable-clause
graph consists of the nodes V ∪ C. Two nodes are connected by an undirected arc if
one of the nodes is a clause and the other node is a variable that appears as a literal
in the clause. The drawing E of the variable-clause graph is such that all variables lie
on a horizontal straight line, positive and negative clauses are drawn as horizontal
line segments with integer 𝑦-coordinates below and above that line, respectively,
and arcs connecting clauses and variables are drawn as non-intersecting vertical line
segments; see Figure 9.7. We call E a planar rectilinear drawing.

Transform the variable-clause graph and its rectilinear drawing E into a multilevel
graph by replacing each positive or negative clause with a positive or negative clause
gadget and identifying common vertices (namely those vertices that are variables).
The drawing E directly induces a combinatorial embedding and an outer face of the
multilevel graph obtained in this way. Figure 9.8 (a) shows the gadget for a positive
clause (𝑥𝑎 ∨ 𝑥𝑏 ∨ 𝑥𝑐). The vertices 𝑥𝑎 , 𝑥𝑏 and 𝑥𝑐 are variables in V . We call vertex p𝑖
the pendulum. A variable 𝑥 ∈ V is set to true (false) if it lies on level 1 (level 0). In a

Chapter 9 Multilevel Planarity

196

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

¬𝑥3 ∨ ¬𝑥4 ∨ ¬𝑥5
¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥5

𝑥2 ∨ 𝑥3 ∨ 𝑥5
𝑥1 ∨ 𝑥2 ∨ 𝑥5

𝑥3 ∨ 𝑥4 ∨ 𝑥5

2
1
0

−1
−2
−3

Figure 9.7:A planar monotone 3-Sat instance together with a rectilinear embedding
of its variable-clause graph.

positive clause gadget p𝑖 must lie on level 0. The idea is that it forces one variable to
lie on level 1, i.e., be set to true. This is achieved by arranging the variables 𝑥𝑎, 𝑥𝑏, 𝑥𝑐
together with auxiliary vertices v𝑖,1, v𝑖,2, v𝑖,3 on a cycle v𝑖,1, 𝑥𝑎, v𝑖,2, 𝑥𝑏, v𝑖,3, 𝑥𝑐 , v𝑖,1. This
cycle encloses an inner face, the edge (v𝑖,1, p𝑖) connects the pendulum to the cycle
and the fixed embedding around v𝑖,1 ensures that the pendulum lies within this face.
The gadget for a negative clause (¬𝑥𝑎 ∨ ¬𝑥𝑏 ∨ ¬𝑥𝑐) works symmetrically; the idea
is that its pendulum forces one variable to lie on level 0, i.e., be set to false; see
Figure 9.8 (b). To obtain the multilevel graph, replace each positive or negative clause
with a positive or negative clause gadget and identify common vertices, namely those
vertices that are variables. Figure 9.9 shows the multilevel graph obtained from the
planar monotone 3-Sat instance shown in Figure 9.7. In order for this graph to be
multilevel planar, it must be possible to place the vertices that are variables on of the
two possible levels so that all pendulums can be embedded within their gadgets, i.e.,
all clauses are satisfied.

Theorem 28. Testing embedded graphs for multilevel planarity is NP-complete, even
when restricted to multilevel assignments ℓ with |ℓ (v) | ≤ 2 for each vertex v .

Proof. Clearly, the problem is in NP. Reduce planar monotone 3-Sat to multilevel-
planarity testing by showing that the multilevel graph 𝐺 derived from (V, C, E) is
multilevel planar if and only if (V, C, E) is satisfiable.
Suppose that 𝜑 is a satisfying truth assignment of the 3-Sat instance underly-

ing (V, C, E). Construct a drawing Γ of 𝐺 that is multilevel planar with respect to ℓ

by constructing a level assignment 𝛾 as follows. Let v ∈ V be a variable. Recall that v
is a vertex in 𝐺 . If 𝜑 (v) = true, set 𝛾 (v) = 1. Otherwise, set 𝛾 (v) = 0. Let 𝑐𝑖 ∈ C be
a positive clause. Draw the pendulum p𝑖 of 𝑐𝑖 below a vertex v𝑖 with 𝜑 (v𝑖) = true.
Because 𝜑 is a satisfying truth assignment such a v𝑖 exists. Now let 𝑐 𝑗 ∈ C be a
negative clause. Draw the pendulum p𝑗 of 𝑐 𝑗 above a vertex v𝑗 with 𝜑 (v𝑗) = true.
Since 𝑐 𝑗 is a negative clause, a positive literal in 𝑐 𝑗 corresponds to a variable set to

Conclusion Section 9.6

197

𝑣𝑖,1

𝑥𝑎{0, 1} 𝑥𝑏 {0, 1} 𝑥𝑐 {0, 1}

𝑣𝑖,2 𝑣𝑖,3

𝑝𝑖

𝑥𝑎{0, 1} 𝑥𝑏 {0, 1} 𝑥𝑐 {0, 1}

𝑣𝑖,2 𝑣𝑖,3

𝑝𝑖

2𝑦 (𝑐)
2𝑦 (𝑐) + 1
0 1

2𝑦 (𝑐)
2𝑦 (𝑐) + 1

𝑣𝑖,1

(b)(a)

Figure 9.8: Gadgets for the clauses (𝑥𝑎 ∨ 𝑥𝑏 ∨ 𝑥𝑐) (a) and (¬𝑥𝑎 ∨ ¬𝑥𝑏 ∨ ¬𝑥𝑐) (b).

false, and because 𝜑 is a satisfying truth assignment such a v𝑗 exists. The resulting
drawing is then level planar with respect to 𝛾 and therefore multilevel planar with
respect to ℓ .

Now assume that Γ is a combinatorially equivalent drawing of 𝐺 and is multilevel
planar with respect to ℓ . Due to the construction rules and because C contains
at least one positive clause and one negative clause there exists exactly one face
that is incident to both the vertex vmin with ℓ (vmin) = min ℓ and the vertex vmax
with ℓ (vmax) = max ℓ . This face must be the outer face; see Figure 9.9. Let 𝛾 denote
the level assignment induced by Γ. Construct a truth assignment 𝜑 as follows: Set
the variable v ∈ V to true or false depending on whether it is 𝛾 (v) = 1 or 𝛾 (v) = 0,
respectively. Because it is ℓ (v) = {0, 1}, this always assigns a truth value to v .
Consider the pendulum p𝑖 of a positive clause 𝑐𝑖 ∈ C. In a positive gadget, p𝑖
forces one of the variables in 𝑐𝑖 , say v𝑖 , to level 1, i.e., 𝜑 (v𝑖) = true. Because 𝑐𝑖 is a
positive clause it is then satisfied. In a negative gadget for a negative clause 𝑐 𝑗 ∈ C,
pendulum p𝑗 forces one of the variables in 𝑐 𝑗 , say v𝑗 , to level 0, i.e., 𝜑 (v𝑗) = false.
Because 𝑐 𝑗 is a negative clause, it is then satisfied. Hence, 𝜑 is a satisfying truth
assignment of (V, C, E). □

9.6 Conclusion

We introduced and studied multilevel planarity, a generalization of both upward
planarity and level planarity. We started by giving a linear-time algorithm to decide
multilevel planarity of embedded 𝑠𝑇 -graphs. The correctness proof of this algorithm
uses insights from both upward planarity and level planarity. In contrast to this, we
showed that deciding the multilevel planarity of 𝑠𝑇 -graphs without a fixed embedding
is NP-complete. We also gave a linear-time algorithm to decide multilevel planarity
of oriented cycles, which is interesting because the existence of multiple sources
makes many related problems NP-complete, e.g., testing upward planarity, partial
level planarity or ordered level planarity. This positive result is contrasted by the
fact that multilevel-planarity testing is NP-complete for oriented trees. Whether
multilevel-planarity testing becomes tractable for trees with a given combinatorial

Chapter 9 Multilevel Planarity

198

true

false

5

4

3

2

1

0

−1

−2

−3

−4

−5

−6

𝑥1

𝑥2

𝑥3 𝑥5
𝑥4

𝑣max

𝑣min

Figure 9.9: A multilevel-planar drawing of the graph constructed from the planar
monotone 3-Sat instance shown in Figure 9.7. The shaded faces correspond to the
gadgets that substitute the clauses. In this multilevel-planar drawing, vertices 𝑥1, 𝑥3
and 𝑥5 are on level 0 so variables 𝑥1 = 𝑥3 = 𝑥5 = false. On the other hand vertices 𝑥2
and 𝑥4 are on level 1 so variables 𝑥2 = 𝑥4 = true.

embedding remains an open question. Deciding multilevel planarity remains NP-
complete for embedded multi-source graphs where each vertex is assigned either to
exactly one level, or to one of two adjacent levels. This contrasts the existence of
efficient algorithms for testing upward planarity and level planarity of embedded
multi-source graphs. The following table summarizes our results for multilevel
planarity and relates them to existing results for upward planarity and level planarity.

Conclusion Section 9.6

199

fixed combinatorial embedding
𝑠𝑡-Graphs 𝑠𝑇 -Graphs arbitrary

Upward Planarity 𝑂 (1) [BDLM94] 𝑂 (𝑛) [BDLM94] P [BDLM94]

Multilevel Planarity 𝑂 (1)
(Corollary 7)

𝑂 (𝑛)
(Theorem 24)

NPC
(Theorem 28)

Level Planarity 𝑂 (1) [JL02] 𝑂 (𝑛) [JL02] 𝑂 (𝑛) (Chapter 3)
not embedded

Cycles 𝑠𝑇 -Graphs Trees
Upward Planarity 𝑂 (𝑛) [BDMT98] 𝑂 (𝑛) [BDMT98] 𝑂 (1) [DETT99]

Multilevel Planarity 𝑂 (𝑛)
(Theorem 25)

NPC
(Theorem 26)

NPC
(Theorem 27)

Level Planarity 𝑂 (𝑛) [JL02] 𝑂 (𝑛) [JL02] 𝑂 (𝑛) [JL02]

201

10 Level-Planar Drawings

with Few Slopes

We introduce and study level-planar straight-line drawings with a fixed number _
of slopes. For proper level graphs (all edges connect vertices of adjacent levels),
we give an 𝑂 (𝑛 log2 𝑛/log log𝑛)-time algorithm that either finds such a drawing or
determines that no such drawing exists. Moreover, we consider the partial drawing
extension problem, where we seek to extend an immutable drawing of a subgraph to a
drawing of thewhole graph, and the simultaneous drawing problem, which asks about
the existence of drawings of two graphs whose restrictions to their shared subgraph
coincide. We present𝑂 (𝑛4/3 log𝑛)-time and𝑂 (_𝑛10/3 log𝑛)-time algorithms for these
respective problems on proper level-planar graphs.

We complement these positive results by showing that testing whether non-proper
level graphs admit level-planar drawings with _ slopes is NP-hard even in restricted
cases.

This chapter extends work initiated as part of Nadine Davina Krisam’s bachelor’s
thesis [Kri18]. It is based on joint work with Nadine Davina Krisam and Tamara
Mchedlidze [BKM19].

10.1 Introduction

Directed graphs explaining hierarchy naturally appear in multiple industrial and
academic applications. Some examples include PERT diagrams, UML component
diagrams, text edition networks, text variant graphs [Jän+15], phylogenetic and

Chapter 10 Level-Planar Drawings with Few Slopes

202

(b) 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

2 3 4 5

0 1 2 3 4 5

6 7 8

6 7 8

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

11 12

11 12

(a)

Figure 10.1: Shearing drawings to change the slopes. In (a), the left drawing with
slopes 0 and 1 is transformed into the right orthogonal drawing, i.e., onewith slopes−1
and 1. In (b), the left drawing with slopes 0, 1 and 2 is transformed into a drawing
with slopes −1, 0 and 1.

neural networks. In these, and many other applications, it is essential to visualize
the implied directed graph so that the viewer can perceive the hierarchical structure
it contains. By far the most popular way to achieve this is to apply the Sugiyama
framework – a generic network visualization algorithm that results in a drawing
where each vertex lies on a horizontal line, called layer, and each edge is directed
from a lower layer to a higher layer [HN13].

The Sugiyama framework consists of several steps: elimination of directed cycles
in the initial graph, assignment of vertices to layers, vertex ordering and coordinate
assignment. During each of these steps several criteria are optimized, by leading
to more readable visualizations, see e.g. [HN13]. In this chapter we concentrate on
the last step of the framework, namely coordinate assignment. Thus, the subject of
our study are level graphs. A drawing is straight-line if the edges are straight-line
segments. In this chapter, we refer to 𝐺 together with a level-planar embedding to
as embedded level graph G. The third step of Sugiyama framework, vertex ordering,
results in an embedded level graph.
The general goal of the coordinate assignment step is to produce a final visu-

alization while further improving its readability. The criteria of readability that
have been considered in the literature for this step include straightness and steep-
ness of the edges [HN13]. Here we study the problem of coordinate assignment
step with bounded number of slopes. The slope of an edge (𝑢, v) in Γ is defined
as (Γ(v) − Γ(𝑢))/(ℓ (v) − ℓ (𝑢)). For proper level graphs it is ℓ (v) − ℓ (𝑢) = 1, the
slope of (𝑢, v) is then simply Γ(v) − Γ(𝑢). We restrict our study to drawings in which
all slopes are non-negative; such drawings can be transformed into drawings with
negative slopes by shearing; see Fig. 10.1. A level drawing Γ is a _-slope drawing if
all slopes in Γ appear in the set {0, 1, . . . , _ − 1}.
We study embedding-preserving straight-line level-planar _-slope drawings, or

Introduction Section 10.1

203

_-drawings for short and refer to the problem of finding these drawings as _-Draw-
ability. Since the possible edge slopes in a _-drawing are integers all vertices lie
on the integer grid.

Related Work. The number of slopes used for the edges in a graph drawing can be
seen as an indication of the simplicity of the drawing. For instance, the measure edge
orthogonality, which specifies how close a drawing is to an orthogonal drawing, where
edges are polylines consisting of horizontal and vertical segments only, has been
proposed as a measure of aesthetic quality of a graph drawing [Pur02]. In a similar
spirit, Kindermann et al. studied the effect reducing the segment complexity on
the aesthetics preference of graph drawings and observed that in some cases people
prefer drawings using lower segment complexity [KMS18]. More generally, the use of
few slopes for a graph drawing may contribute to the formation of “Prägnanz” (“good
figure” in German) of the visualization, that accordingly to the Gestalt law of Prägnanz,
or law of simplicity, contributes to the perceived quality of the visualizations. This
design principle often guides the visualization of metro maps. See [Nöl14] for a
survey of the existing approaches, most of which generate octilinear layouts of metro
maps, and [NN20] for a recent model for drawing more general 𝑘-linear metro maps.
Level-planar drawing with few slopes have not been considered in the literature

but drawings of undirected graphs with few slopes have been extensively studied.
The planar slope number of a planar graph 𝐺 is the smallest number 𝑠 so that 𝐺
has a planar straight-line drawing with edges of at most 𝑠 distinct slopes. Special
attention has been given to proving bounds on the (planar) slope number of undirected
graph classes [BMW06, GLM15, DESW07, DSW07, GLM18, KPPT08, KPP13, KMW14,
LLMN13, PP06]. Determining the planar slope number is hard in the existential
theory of reals [Hof17]. The slope number has also been studied for upward planar
drawings, that is, drawings of directed graphs where each edge is drawn as a 𝑦-
monotone curve (but, unlike with level planarity, the 𝑦-coordinate of the vertices is
not prescribed) [GLM20, Bek+18].
Several graph visualization problems have been considered in the partial and

simultaneous settings. In the partial drawing extension problem, one is presented
with a graph and an immutable drawing of some subgraph thereof. The task is to
determine whether the given drawing of the subgraph can be completed to a drawing
of the entire graph. The problem has been studied for the planar setting [MNR16,
Pat06] and also the level-planar setting [BR17]. In the simultaneous drawing problem,
one is presented with two graphs that may share some subgraph. The task is to
draw both graphs so that the restrictions of both drawings to the shared subgraph
are identical. We refer the reader to [BKR13] for an older literature overview. The
problem has been considered for orthogonal drawings [Ang+16] and level-planar

Chapter 10 Level-Planar Drawings with Few Slopes

204

drawings [Ang+20]. Up to our knowledge, neither partial nor simultaneous drawings
have been considered in the restricted slope setting.

Contribution. We introduce and study the _-Drawability problem. To solve
this problem for proper level graphs, we introduce two models. In Section 10.3 we
describe the first model, which uses a classic integer-circulation-based approach.
This model allows us to solve the _-Drawability in 𝑂 (𝑛 log3 𝑛) time and obtain
a _-drawing within the same running time if one exists. In Section 10.4, we describe
the second distance-based model. It uses the duality between flows in the primal
graph and distances in the dual graph and allows us to solve the _-Drawabili-
ty in 𝑂 (𝑛 log2 𝑛/log log𝑛) time.

We also address the partial and simultaneous settings. The classic integer-circula-
tion-based approach can be used to extend connected partial _-drawings in𝑂 (𝑛 log3 𝑛)
time. In Section 10.5, we build on the distance-based model to extend not-necessarily-
connected partial _-drawings in 𝑂 (𝑛4/3 log𝑛) time, and to obtain simultaneous _-
drawings in 𝑂 (_𝑛10/3 log𝑛) time if they exist.
We complement these algorithmic results in Section 10.6 with a proof that 2-

Drawability is NP-hard even for biconnected graphs where all edges have length
one or two, and then finish with some concluding remarks in Section 10.7.

10.2 Preliminaries

Let Γ be a level-planar drawing of an embedded level-planar graph G. The width of Γ
is defined as maxv∈𝑉 Γ(v) − minv∈𝑉 Γ(v). An integer 𝑥 is a gap in Γ if it is Γ(v) ≠ 𝑥

for all v ∈ 𝑉 , Γ(v1) < 𝑥 and Γ(v2) > 𝑥 for some v1, v2 ∈ 𝑉 , and Γ(𝑢) < 𝑥 < Γ(v)
for no edge (𝑢, v) ∈ 𝐸. For example, 2 is a gap in the left drawing in Fig. 10.1 (a). A
drawing Γ is compact if it has no gap, e.g., the left drawing in Fig. 10.1 (b). Note that
a _-drawing of a connected level-planar graph is inherently compact. In a _-drawing
of a non-connected level-planar graph every gap can be eliminated by a horizontal
shift. The fact that we only need to consider compact _-drawings helps us to limit the
drawing width. In particular, a compact _-drawing has width at most (_ − 1) (𝑛 − 1).
Let 𝑢 and v be two vertices on the same level 𝑖 . With [𝑢, v]G (or [𝑢, v] when G is

clear from the context) we denote the set of vertices that contains 𝑢, v and all vertices
in between 𝑢 and v on level 𝑖 in G. We say that two vertices 𝑢 and v are consecutive
in G when [𝑢, v] = {𝑢, v}. Two edges 𝑒 = (𝑢, 𝑤), 𝑒 ′ = (v, 𝑥) are consecutive in G
when the only edges with one endpoint in [𝑢, v]G and the other endpoint in [𝑤, 𝑥]G
are 𝑒 and 𝑒 ′. For example, in Fig. 10.2 (b), the vertices 𝑢 and v are consecutive, the
vertices 𝑥 and 𝑤 are consecutive, and the edges (𝑢, 𝑤) and (v, 𝑥) are consecutive; and
in Fig. 10.2 (c), the vertices vleft and vright are not consecutive.

Flow Model Section 10.3

205

𝑤 𝑥

𝑣𝑢

𝑤𝑥high

𝑢𝑣low

𝑒 ′right𝑒le

𝑒 ′𝑒

(c)(b)(a)

𝑡

𝑠

𝑣le 𝑣right

Figure 10.2: An embedded level graph G (a). The definition of the arcs of the flow
network (b). The graph G together with the paths pleft and pright in black (c). The
resulting flow network 𝐹_G consists of the blue slope arcs and the red space arcs, its
nodes are formed by merging the nodes in the gray areas. The red space arcs have a
demand of 1 and a capacity of (_ − 1) (𝑛 − 1) and the blue slope arcs have a demand
of zero and a capacity of _ − 1.

A flow network 𝐹 = (𝑁,𝐴) consists of a set of nodes 𝑁 connected by a set of
directed arcs𝐴. A node is a source if it has no incoming arcs and it is a sink if it has no
outgoing arcs. A flow network is an 𝑠𝑡-graph if it has exactly one source and exactly
one sink. Each arc has a demand specified by a function 𝑑 : 𝐴 → N0 and a capacity
specified by a function 𝑐 : 𝐴 → N ∪ {∞} where ∞ means unlimited capacity. A
circulation in 𝐹 is a function 𝜑 : 𝐴 → N0 that assigns an integral flow to each arc of 𝐹
and satisifies the two following conditions. First, the circulation has to respect the
demands and capacities of the arcs, i.e., for each arc 𝑎 ∈ 𝐴 it is 𝑑 (𝑎) ≤ 𝜑 (𝑎) ≤ 𝑐 (𝑎).
Second, the circulation has to respect flow conservation, i.e., for each node v ∈ 𝑁 it
is
∑︁

(𝑢,v) ∈𝐴 𝜑 (𝑢, v) =
∑︁

(v,𝑢) ∈𝐴 𝜑 (v, 𝑢). Depending on the flow network no circulation
may exist.

10.3 Flow Model

In this section, we model the _-Drawability as a problem of finding a circulation
in a flow network. Let G be an embedded proper 𝑘-level graph. As a first step, we
add two directed paths pleft and pright that consist of one vertex on each level from
1 to 𝑘 to G. Insert pleft and pright into G to the left and right of all other vertices as
the left and right boundary, respectively. See Fig. 10.2 (a) and (c). From now on, we
assume that G contains the left and right boundary.
The flow network 𝐹_G consists of nodes and arcs and is similar to a directed dual

of G with the difference that it takes the levels of G into account. In particular, for

Chapter 10 Level-Planar Drawings with Few Slopes

206

every edge 𝑒 of G, 𝐹_G contains two nodes 𝑒left and 𝑒right, in the left and the right faces
incident to 𝑒 , and a dual slope arc 𝑒★ = (𝑒right, 𝑒left) with demand 0 and capacity _ − 1;
see the blue arcs in Fig. 10.2 (b) and (c). The flow across 𝑒★ determines the slope of 𝑒 .
Additionally, for every pair of consecutive vertices 𝑢, v we add two nodes [𝑢, v] low
and [𝑢, v]high to 𝐹_G and connect them by a space arc [𝑢, v]★; see the red arcs in
Fig. 10.2 (b) and (c). The flow across [𝑢, v]★ determines the space between 𝑢 and v .
The space between 𝑢 and v needs to be at least one to prevent 𝑢 and v from colliding
and can be at most (_−1) (𝑛−1) due to the restriction to compact drawings. So, assign
to [𝑢, v]★ a demand of one and a capacity of (_ − 1) (𝑛 − 1). To obtain the final flow
network we merge certain nodes. Let 𝑒 = (𝑢, 𝑤) and 𝑒 ′ = (v, 𝑥) be consecutive edges.
Merge the nodes 𝑒right, 𝑒

′
left, the nodes {{𝑢 ′, v ′}high : ∀𝑢 ′, v ′ consecutive in [𝑢, v]}

and the nodes {{𝑤 ′, 𝑥 ′}low : ∀𝑤 ′, 𝑥 ′ consecutive in [𝑤, 𝑥]} into a single node. Next,
merge all remaining source and sink nodes into one source node 𝑠 and one sink node 𝑡 ,
respectively. See Fig. 10.2 (c), where the gray areas touch nodes that are merged
into a single node. Observe that flow network is a connected 𝑠𝑡-graph. Clearly 𝑠

is a source and 𝑡 is a sink. Each remaining node v corresponds to two consecutive
edges of G, so by construction it has exactly one incoming and one outgoing slope
arc, so v is neither a source nor a sink. This also implies that there exists a directed
path of slope arcs from 𝑠 to v , and a directed path of slope arcs from v to 𝑡 , so the
flow network is connected. Finally, to admit non-trivial circulations, insert an arc
from 𝑡 to 𝑠 with capacity∞. Observe that 𝐹_G is planar by its construction based on
the planar embedding of G.

The network 𝐹_G is designed in such a way that the circulations in 𝐹_G correspond
bijectively to the _-drawings of G. Let Γ be a drawing of G and let 𝑥 be the function
that assigns to each vertex of G its 𝑥-coordinate in Γ. We define a dual circulation 𝑥★
as follows. Recall that each arc 𝑎 of 𝐹_G − (𝑠, 𝑡) is a slope arc or a space arc. If 𝑎 is a
slope arc it is dual to an edge (𝑢, 𝑤) of G. Then define 𝑥★(𝑎) ≔ 𝑥 (𝑤) − 𝑥 (𝑢). If 𝑎 is a
space arc it is dual to consecutive vertices 𝑢, v of G, where 𝑢 appears left of v . Then
define 𝑥★(𝑎) ≔ 𝑥 (v) − 𝑥 (𝑢). We remark the following, although we defer the proof
to the next section.

Lemma 69. Let G be an embedded proper level-planar graph together with a _-
drawing Γ. The dual 𝑥★ of the function 𝑥 that assigns to each vertex of G its 𝑥-coordinate
in Γ is a circulation in 𝐹_G .

In the reverse direction, given a circulation𝜑 in 𝐹_G we define a dual function𝜑★ that,
when interpreted as assigning an𝑥-coordinate to the vertices ofG, defines a _-drawing
of G. Refer to the level-1-vertex of pright as vright. Start by setting 𝜑★(vright) = 0, i.e.,
the 𝑥-coordinate of vright is 0. Process the remaining vertices of the right boundary
in ascending order with respect to their levels. Let (𝑢, v) be an edge of the right

Flow Model Section 10.3

207

boundary so that 𝑢 has already been processed and v has not been processed yet.
Then set 𝜑★(v) = 𝜑★(𝑢) + 𝜑 ((𝑢, v)★), where (𝑢, v)★ is the slope arc dual to (𝑢, v).
Let 𝑤, 𝑥 be a pair of consecutive vertices so that 𝑥 has already been processed and 𝑤

has not yet been processed yet. Then set 𝜑★(𝑤) = 𝜑★(𝑥) −𝜑 ([𝑤, 𝑥]★), where [𝑤, 𝑥]★
is a space arc. It turns out that 𝜑★ defines a _-drawing of G.

Lemma 70. Let G be an embedded proper level-planar graph, let _ ∈ N and let 𝜑 be a
circulation in 𝐹_G . Then the dual 𝜑★, when interpreted as assigning an 𝑥-coordinate to
the vertices of G, defines a _-drawing of G.

While both Lemma 69 and Lemma 70 can be proven directly, we defer their proofs
to Section 10.4 where we introduce the distance model and prove Lemma 71 and
Lemma 72, the stronger versions of Lemma 69 and Lemma 70, respectively. Combining
Lemma 69 and Lemma 70 we obtain the following.

Theorem 29. Let G be an embedded proper level-planar graph and let _ ∈ N. The
circulations in 𝐹_G correspond bijectively to the _-drawings of G.

Theorem 29 implies that a _-drawing can be found by applying existing flow
algorithms to 𝐹_G . For that, first transform our flow network with arc demands to the
standard single-source single-sink maximum flow setting without arc demands using
the construction due to Kleinberg and Tardos [KT06, Chapter 7.7]. This construction
adds one new “super-source” 𝑠∗ and one new “super-sink” 𝑡∗ to 𝐹_G , and connects
them with arcs to the other nodes in 𝐹_G . In particular, the size of the resulting
flow network is linear in the size of 𝐹_G . Subdivide the arcs incident to 𝑠∗, 𝑡∗ and
then remove 𝑠∗, 𝑡∗ from the flow network, obtaining an instance of the multiple-
source multiple-sink maximum flow problem. Note that this network is planar. Use
the 𝑂 (𝑛 log3 𝑛)-time multiple-source multiple-sink maximum flow algorithm due
to Borradaile et al. [Bor+17] to find a circulation in 𝐹_G , or to determine that no
circulation exists.

Corollary 8. Let G be an embedded proper level-planar graph and let _ ∈ N. It can be
tested in 𝑂 (𝑛 log3 𝑛) time whether a _-drawing of G exists, and if so, such a drawing
can be found within the same running time.

10.3.1 Connected Partial Drawings

Recall that a partial _-drawing is a tuple (G,H,Π), where G is an embedded level-
planar graph, H is an embedded subgraph of G and Π is a _-drawing of H. We say
that (G,H,Π) is _-extendable if G admits a _-drawing Γ whose restriction to H is Π.
Here Γ is referred to as a _-extension of (G,H,Π).

Chapter 10 Level-Planar Drawings with Few Slopes

208

In this section we show that in case H is connected, we can use the flow model
to decide whether (G,H,Π) is _-extendable. Observe that when H is connected Π
is completely defined by the slopes of the edges in H up to horizontal translation.
Let 𝐹_G be the flow network corresponding to G. In order to fix the slopes of an
edge 𝑒 of H to a value ℓ , we fix the flow across the dual slope arc 𝑒★ in H to ℓ .
Checking whether a circulation in the resulting flow network exists can be reduced
to a multiple-source multiple-sink maximum flow problem, which once again can be
solved by the algorithm due to Borradaile et al. [Bor+17].

Corollary 9. Let (G,H,Π) be a partial _-drawing whereH is connected. It can be tested
in 𝑂 (𝑛 log3 𝑛) time whether (G,H,Π) is _-extendable, and if so, a corresponding _-
extension can be constructed within the same running time.

10.4 Dual Distance Model

A minimum cut (and, equivalently, the value of the maximum flow) of an 𝑠𝑡-planar
graph𝐺 can be determined by computing a shortest (𝑠★, 𝑡★)-path in a dual of𝐺 [Hu69,
IS79]. Hassin showed that to construct a flow, it is sufficient to compute the distances
from 𝑠★ to all other vertices in the dual graph [Has81]. To the best of our knowledge,
this duality has been exploited only for flow networks with arc capacities, but not
with arc demands. In this section, we extend this duality to arcs with demands.

The resulting dual distancemodel improves the running time for the _-Drawabil-
ity, lets us test the existence of _-extensions of partial _-drawings for non-connected
subgraphs, and allows us to develop an efficient algorithm for testing the existence
of simultaneous _-drawings.
We define 𝐷_

G to be the weighted directed dual of 𝐹_G as follows. Let 𝑎 be an arc
of 𝐹_G with demand 𝑑 (𝑎) and capacity 𝑐 (𝑎). Further, let 𝑓left and 𝑓right denote the left
and the right faces of 𝑎 in 𝐹_G , respectively. The dual 𝐷

_
G contains 𝑓left and 𝑓right as

vertices connected by the directed edge (𝑓left, 𝑓right) with weight 𝑐 (𝑎) and the directed
edge (𝑓right, 𝑓left) with weight −𝑑 (𝑎); see Fig. 10.3. Equivalently, 𝐷_

G is obtained
directly from G as follows. Recall that if 𝑎 is a slope arc, it is 𝑑 (𝑎) = 0, 𝑐 (𝑎) = _ − 1
and 𝑓left, 𝑓right correspond to vertices 𝑢, 𝑤 connected by the edge (𝑢, 𝑤) in 𝐺 . So,
create for each directed edge (𝑢, 𝑤) of G the weighted directed edges (𝑢, 𝑤) with
weight _ − 1 and (𝑤,𝑢) with weight 0 in 𝐷_

G ; see Fig. 10.3 (a). If 𝑎 is not a slope arc
then 𝑎 is a space arc and it is 𝑑 (𝑎) = 1, 𝑐 (𝑎) = (_ − 1) (𝑛 − 1) and 𝑓left, 𝑓right correspond
to consecutive vertices 𝑢, v in G, where 𝑢 appears to the left of v . So, create for each
pair of consecutive vertices 𝑢, v in G where 𝑢 appears to the left of v the weighted
directed edges (𝑢, v) with weight (_ − 1) (𝑛 − 1) and (v, 𝑢) with weight −1 in 𝐷_

G ;
see Fig. 10.3 (b). Observe that 𝐷_

G has the vertex set 𝑉 of G and a superset of its

Dual Distance Model Section 10.4

209

𝑎

0 ≤ 𝜑 (𝑎) ≤ _ − 1

𝑓right

𝑓le

−𝑑 (𝑎) = 0
𝑐 (𝑎) = _ − 1

(a)

1 ≤ 𝜑 (𝑎) ≤ (_ − 1) (𝑛 − 1)

𝑎

𝑓right
𝑓le

−𝑑 (𝑎) = −1

𝑐 (𝑎) = (_ − 1) (𝑛 − 1)
(b)

Figure 10.3: Definition of the dual edges for a flow network arc 𝑎 = (𝑢, v) with
demand 𝑑 (𝑎) and capacity 𝑐 (𝑎). Let 𝑓left and 𝑓right denote the vertices corresponding
to the faces to the left and right of 𝑎 in 𝐹_G . Then add the edge (𝑓left, 𝑓right) with
weight 𝑐 (𝑎) and the reverse edge (𝑓right, 𝑓left) with weight −𝑑 (𝑎). The edge weights
depend on whether 𝑎 is a slope arc (a) or a space arc (b).

edges. Fig. 10.4 shows the distance network obtained from the flow network shown
in Fig. 10.2 (c).
A distance labeling is a function 𝑥 : 𝑉 → Z that for every edge (𝑢, v) of 𝐷_

G
with weight 𝑙 satisfies 𝑥 (v) ≤ 𝑥 (𝑢) + 𝑙 . We also say that (𝑢, v) imposes the distance
constraint 𝑥 (v) ≤ 𝑥 (𝑢) + 𝑙 . A distance labeling for 𝐷_

G is the 𝑥-coordinate assignment
for a _-drawing: For an edge (𝑢, v) of 𝐷_

G where 𝑢, v are consecutive vertices in G,
the distance labeling guarantees 𝑥 (v) ≤ 𝑥 (𝑢) − 1, i.e., the consecutive vertices
are in the correct order and do not overlap. If an edge (𝑢, v) between layers has
weight _ − 1, then the distance labeling ensures 𝑥 (v) ≤ 𝑥 (𝑢) + _ − 1, i.e., (𝑢, v) has a
slope in {0, . . . , _ − 1}. Computing the shortest distances from vright in 𝐷_

G to every
vertex (if they are well-defined) gives a distance labeling that we refer to as the
shortest distance labeling. A distance labeling of 𝐷_

G does not necessarily exist. This
is the case when 𝐷_

G contains a negative cycle, e.g., when the in- or out-degree of a
vertex in G is strictly larger than _. For a distance labeling 𝑥 of 𝐷_

G we define a dual
circulation 𝑥★ as follows. Recall that each arc 𝑎 of 𝐹_G − (𝑡, 𝑠) is a slope arc or a space
arc. If 𝑎 is a slope arc it is dual to an edge (𝑢, 𝑤) of G. Recall that 𝑢, 𝑤 are vertices
of 𝐷_

G and define 𝑥★(𝑎) ≔ 𝑥 (𝑤) − 𝑥 (𝑢). If 𝑎 is a space arc it is dual to consecutive
vertices 𝑢, v of G. Again, 𝑢, v are vertices of 𝐷_

G , define 𝑥
★(𝑎) ≔ 𝑥 (v) − 𝑥 (𝑢).

Lemma 71. Let G be an embedded level-planar graph and Γ be a _-drawing of G. The
function 𝑥 that assigns to each vertex of G its 𝑥-coordinate in Γ is a distance labeling
of 𝐷_

G and its dual 𝑥★ is a circulation in 𝐹_G .

Proof. Since Γ preserves the embedding of G, for each consecutive vertices v, 𝑢, with v
preceding𝑢 inG it holds that Γ(v) < Γ(𝑢). Because Γ is a grid drawing Γ(v) ≤ Γ(𝑢)−1,
which implies 𝑥 (v) ≤ 𝑥 (𝑢) + 𝑙 , where 𝑙 = −1 is the weight of (𝑢, v). Since Γ is a _-
drawing, i.e., every edge (𝑢, v) between the two levels has a slope in {0, . . . _ − 1},
it holds that Γ(𝑢) ≤ Γ(v) ≤ Γ(𝑢) + _ − 1, which implies 𝑥 (𝑢) ≤ 𝑥 (v) + 0, for the

Chapter 10 Level-Planar Drawings with Few Slopes

210

𝑣right𝑣le

0-1-2-3-4 1 2 3

0-1-2-3-4 1 2 3

1 0
−1

19

Figure 10.4: The distance network 𝐷2
G obtained from the flow network 𝐹 2

G shown
in Fig. 10.2 (c). The 𝑥-coordinate of every vertex is its distance from vright in 𝐷2

G .
Red arcs pointing right have weight (_ − 1) (𝑛 − 1) = 19, red arcs pointing left have
weight −1. Blue arcs pointing up have weight _ − 1 = 1 and blue arcs pointing down
have weight 0.

edge (v, 𝑢) of 𝐷_
G with weight zero and 𝑥 (v) ≤ 𝑥 (𝑢) + _ − 1 for the edge (𝑢, v) of 𝐷_

G
with weight _ − 1. Hence, 𝑥 is a distance labeling of 𝐷_

G .
We now show that 𝑥★ is a circulation in 𝐹_G . Let 𝑓1, 𝑓2, . . . , 𝑓𝑡 , 𝑓𝑡+1 = 𝑓1 be the

faces incident to some node v of 𝐹_G in counter-clockwise order. Let 𝑎 be the arc
incident to v and dual to the edge between 𝑓𝑖 and 𝑓𝑖+1 with 1 ≤ 𝑖 ≤ 𝑡 . If 𝑎 is an
incoming arc, it adds a flow of 𝑥 (𝑓𝑖+1) − 𝑥 (𝑓𝑖) to v . If 𝑎 is an outgoing arc, it removes
a flow of 𝑥 (𝑓𝑖) − 𝑥 (𝑓𝑖+1) from v , or, equivalently, it adds a flow of 𝑥 (𝑓𝑖+1) − 𝑥 (𝑓𝑖) to v .
Therefore, the flow through v is

∑︁
𝑖 (𝑥 (𝑓𝑖+1) − 𝑥 (𝑓𝑖)). This sum cancels to zero, i.e., the

flow is preserved at v . Now consider an arc 𝑎 of 𝐹_G − (𝑡, 𝑠). If 𝑎 is a slope arc it is dual
to an edge (𝑢, 𝑤) of G. Then 𝐷_

G contains the edge (𝑢, 𝑤) with weight 𝑐 (𝑎), which
ensures 𝑥 (𝑤) ≤ 𝑥 (𝑢) + 𝑐 (𝑎), so 𝑥★(𝑎) ≤ 𝑐 (𝑎). It also contains the edge (𝑤,𝑢) with
weight −𝑑 (𝑎), which ensures 𝑥 (𝑢) ≤ 𝑥 (𝑤) − 𝑑 (𝑎), so 𝑥★(𝑎) ≥ 𝑑 (𝑎). If 𝑎 is a space
arc it is dual to consecutive vertices 𝑢, v of G. Then 𝐷_

G contains the edge (𝑢, v) with
weight 𝑐 (𝑎), which ensures 𝑥 (v) ≤ 𝑥 (𝑢) + 𝑐 (𝑎), so 𝑥★(𝑎) ≤ 𝑐 (𝑎). It also contains the
edge (v, 𝑢) with weight −𝑑 (𝑎), which ensures 𝑥 (𝑢) ≤ 𝑥 (v) − 𝑑 (𝑎), so 𝑥★(𝑎) ≥ 𝑑 (𝑎).
Finally, the arc (𝑡, 𝑠) has demand 0 and capacity ∞, so its demand is satisfied and its
capacity is not exceeded. Hence, 𝑥★ is indeed a circulation in 𝐹_G . □ □

Recall from Section 10.3 that for a circulation 𝜑 in 𝐹_G we define a dual drawing 𝜑★

by setting the 𝑥-coordinates of the vertices of G as follows. For the lowest vertex
of the right boundary set 𝜑★(vright) = 0. Process the remaining vertices of the right
boundary in ascending order with respect to their levels. Let (𝑢, v) be an edge of the
right boundary so that 𝑢 has already been processed and v has not been processed

Dual Distance Model Section 10.4

211

𝑢 𝑢 ′

𝑣′𝑣

Figure 10.5: Proof of Lemma 72. Sets 𝐴 and 𝐵 contain the incoming and outgoing
red flow network arcs incident to the gray oval, respectively.

yet. Then set 𝜑★(v) = 𝜑★(𝑢) +𝜑 ((𝑢, v)★), where (𝑢, v)★ is the slope arc dual to (𝑢, v).
Let 𝑤, 𝑥 be a pair of consecutive vertices so that 𝑥 has already been processed and 𝑤

has not yet been processed yet. Then set 𝜑★(𝑤) = 𝜑★(𝑥) −𝜑 ([𝑤, 𝑥]★), where [𝑤, 𝑥]★
is a space arc. It turns out that 𝜑★ is a distance labeling of 𝐷_

G and a _-drawing of G.

Lemma 72. Let G be an embedded level-planar graph, let _ ∈ N, and let 𝜑 be a
circulation in 𝐹_G . The dual 𝜑

★ is a distance labeling of 𝐷_
G and, when interpreted as

assigning an 𝑥-coordinate to the vertices of G, defines a _-drawing of G.

Proof. We show that 𝜑★ is a distance labeling in 𝐷_
G . The algorithm described above

assigns a value to every vertex of 𝐷_
G . We now show that 𝜑★ is indeed a distance

labeling by showing that every edge satisfies a distance constraint.
Observe that the distance constraints imposed by edges dual to the space arcs

are satisfied by construction. To show that the distance constraints imposed by
edges dual to the slope arcs are also satisfied, we prove that for every edge (𝑢, v),
it holds that 𝜑★(v) = 𝜑★(𝑢) + 𝜑 ((𝑢, v)★). We refer to this as condition C for short.
Since 𝜑 ((𝑢, v)★) ≤ _ − 1 and the weight 𝑙 of (𝑢, v) is 𝑙 = _ − 1 we obtain that it
is 𝜑★(v) = 𝜑★(𝑢) + ℓ , which implies that 𝜑★ is a distance labeling of 𝐷_

G .
The proof is by induction based on the bottom to top and right to left order among

the edges of 𝐷_
G . We say that (𝑎, 𝑏) precedes (𝑐, 𝑑) if either ℓ (𝑎) < ℓ (𝑐), or ℓ (𝑎) = ℓ (𝑐)

and 𝑎 is to the right of 𝑐 , or ℓ (𝑎) = ℓ (𝑐) and 𝑏 is to the right of 𝑑 (in case 𝑎 = 𝑐). For
the base case observe that the edges with both end-vertices on the first level and the
edges of pright satisfy condition C by the definition of𝜑★. Now let (𝑢, v) be an edge not
addressed in the base case and assume that for every edge (𝑢 ′, v ′) preceding edge (𝑢, v)
condition C holds. For the inductive step we show that condition C also holds
for (𝑢, v). Let (𝑢 ′, v ′) denote the edge to the right of (𝑢, v) so that (𝑢, v) and (𝑢 ′, v ′)
are consecutive; see Fig. 10.5. Because v is not the rightmost vertex on its level this
edge exists. Let 𝐴 denote the set of space arcs [𝑢1, 𝑢2]★ in 𝐹_G with 𝑢1, 𝑢2 ∈ [𝑢 ′, 𝑢].
Analogously, let 𝐵 denote the set of space arcs [v1, v2]★ in 𝐹_G with v1, v2 ∈ [v ′, v]. It
is 𝜑★(v) = 𝜑★(v ′) −∑︁

𝑏∈𝐵 𝜑 (𝑏) by definition of 𝜑★. Further, by induction hypothesis

Chapter 10 Level-Planar Drawings with Few Slopes

212

and since (𝑢 ′, v ′) precedes (𝑢, v) it is 𝜑★(v ′) = 𝜑★(𝑢 ′) + 𝜑 ((𝑢 ′, v ′)★). Inserting the
latter into the former equation, we obtain

𝜑★(v) = 𝜑★(𝑢 ′) + 𝜑 ((𝑢 ′, v ′)★) −
∑︁
𝑏∈𝐵

𝜑 (𝑏) . (10.1)

Again, by definition of 𝜑★, it is 𝜑★(𝑢) = 𝜑★(𝑢 ′) −∑︁
𝑎∈𝐴 𝜑 (𝑎). Solving for 𝜑★(𝑢 ′) and

inserting into (10.1) we obtain

𝜑★(v) = 𝜑★(𝑢) +
∑︁
𝑎∈𝐴

𝜑 (𝑎) + 𝜑 ((𝑢 ′, v ′)★) −
∑︁
𝑏∈𝐵

𝜑 (𝑏). (10.2)

Flow conservation on the vertex of 𝐹_G to which edges of 𝐴 and 𝐵 are incident gives

𝜑 ((𝑢 ′, v ′)★) +
∑︁
𝑎∈𝐴

𝜑 (𝑎) = 𝜑 ((𝑢, v)★) +
∑︁
𝑏∈𝐵

𝜑 (𝑏). (10.3)

Solving equation (10.3) for 𝜑 ((𝑢 ′, v ′)★) and then inserting it into equation (10.2)
yields 𝜑★(v) = 𝜑★(𝑢) + 𝜑 ((𝑢, v)★), i.e., condition C holds for (𝑢, v). Therefore 𝜑★ is a
distance labeling, which we have shown to define a _-drawing of G. □ □

Because 𝐷_
G is planar we can use the 𝑂 (𝑛 log2 𝑛/log log𝑛)-time shortest path al-

gorithm due to Mozes and Wulff-Nilsen [MW10] to compute the shortest distance
labeling. This improves our 𝑂 (𝑛 log3 𝑛)-time algorithm from Section 10.3.

Theorem 30. Let G be an embedded proper level-planar graph. The distance labelings
of 𝐷𝑘

G correspond bijectively to the _-drawings of G. If such a drawing exists, it can be
found in 𝑂 (𝑛 log2 𝑛/log log𝑛) time.

10.5 Partial and Simultaneous Drawings

In this section we use the distance model from Section 10.4 to construct partial
and simultaneous _-drawings. We start with introducing a useful kind of draw-
ing. Let Γ be a _-drawing of G. We call Γ a _-rightmost drawing when there exists
no _-drawing Γ′ with Γ(v) < Γ′(v) for some v ∈ 𝑉 . In this definition, we as-
sume 𝑥 (Γ(vright)) = 𝑥 (Γ′(vright)) = 0 to exclude trivial horizontal translations. Hence,
a drawing is rightmost when every vertex is at its rightmost position across all level-
planar _-slope grid drawings of G. It is not trivial that a _-rightmost drawing exists,
but it follows directly from the definition that if such a drawing exists, it is unique.
The following lemma establishes the relationship between _-rightmost drawings and
shortest distance labelings of 𝐷_

G .

Partial and Simultaneous Drawings Section 10.5

213

Lemma 73. Let G be an embedded proper level-planar graph. If 𝐷_
G has a shortest

distance labeling it describes the _-rightmost drawing of G.

Proof. The shortest distance labeling of 𝐷_
G is maximal in the sense that for any ver-

tex v there exists a vertex𝑢 and an edge (𝑢, v) with weight 𝑙 so that it is 𝑥 (v) = 𝑥 (𝑢)+𝑙 .
Recall that the definition of distance labelings only requires 𝑥 (v) ≤ 𝑥 (𝑢) + 𝑙 . The
claim then follows by induction over𝑉 in ascending order with respect to the shortest
distance labeling. □ □

10.5.1 Partial Drawings

Let (G,H,Π) be a partial _-drawing. In Section 10.3.1 we have shown that the flow
model can be adapted to check whether (G,H,Π) has a _-extension, in case H is
connected. In this section, we show how to adapt the distance model to extend
partial _-drawings, including the case H is disconnected. Recall that the distance
label of a vertex v is its 𝑥-coordinate. A partial _-drawing fixes the 𝑥-coordinates
of the vertices of H. The idea is to express this with additional constraints in 𝐷_

G .
Let vref be a vertex of H. In a _-extension of (G,H,Π), the relative distance along
the 𝑥-axis between a vertex v of H and vertex vref should be 𝑑v = Π(vref) −Π(v). This
can be achieved by adding an edge (v, vref) with weight 𝑑v and an edge (vref , v) with
weight −𝑑v . The first edge ensures that it is 𝑥 (vref) ≤ 𝑥 (v)+𝑑v , i.e., 𝑥 (v) ≥ 𝑥 (vref)−𝑑v
and the second edge ensures 𝑥 (v) ≤ 𝑥 (vref)−𝑑 . Together, this gives 𝑥 (v) = 𝑥 (vref)−𝑑v .
Let 𝐷_

G,Π be 𝐷_
G augmented by the edges {(v, vref), (vref,v) : ∀v ∈ H} with weights as

described above.
To decide existence of _-extension and in affirmative construct the correspond-

ing drawing we compute the shortest distance labeling in 𝐷_
G,Π . Observe that this

network can contain negative cycles and therefore no shortest distance labeling.
Unfortunately, 𝐷_

G,Π is not planar, and thus we cannot use the embedding-based
algorithm of Mozes and Wulff-Nilsen. However, since all newly introduced edges
have vref as one endpoint, vref is an apex of 𝐷_

G , i.e., removing vref from 𝐷_
G,Π makes

it planar. Therefore 𝐷_
G,Π can be recursively separated by separators of size 𝑂 (

√
𝑛).

The 𝑂 (𝑛4/3 log𝑛)-time shortest-path algorithm by Henzinger et al. [HKRS97] relies
not on planarity but only on 𝑂 (

√
𝑛)-sized separators [FR06, page 869]. So, run this

algorithm to compute the shortest distance labeling of 𝐷_
G,Π .

Theorem 31. Let (G,H,Π) be a partial _-drawing. In 𝑂 (𝑛4/3 log𝑛) time it can be
determined whether (G,H,Π) has a _-extension and in the affirmative the corresponding
drawing can be computed within the same running time.

Chapter 10 Level-Planar Drawings with Few Slopes

214

10.5.2 Simultaneous Drawings

In the simultaneous _-drawing problem, we are given a tuple (G1,G2) of two embed-
ded level-planar graphs that share a common subgraph G1∩2 = G1 ∩ G2. We assume
w.l.o.g. that 𝐺1 and 𝐺2 share the same right boundary and that the embeddings of G1
andG2 coincide onG1∩2. The task is to determinewhether there exist _-drawings Γ1, Γ2
of G1,G2, respectively, so that Γ1 and Γ2 coincide on the shared graph G1∩2. The ap-
proach is the following. Start by computing the _-rightmost drawings of G1 and G2.
Then, as long as these drawings do not coincide on G1∩2 add necessary constraints
to 𝐷_

G1
and 𝐷_

G2
. This process terminates after a polynomial number of iterations,

either by finding a simultaneous _-drawing, or by determining that no such drawing
exist.
Finding the necessary constraints works as follows. Suppose that Γ1, Γ2 are the _-

rightmost drawings of G1,G2, respectively. Because both G1 and G2 have the same
right boundary they both contain vertex vright. We define the coordinates in the
distance labelings of 𝐷_

G1
and 𝐷_

G2
in terms of this reference vertex.

Now suppose that for some vertex v of G1∩2 the 𝑥-coordinates in Γ1 and Γ2 differ, i.e.,
it is Γ1 (v) ≠ Γ2 (v). Assume Γ1 (v) < Γ2 (v) without loss of generality. Because Γ1 is a
rightmost drawing, there exists no drawing of G1 where v has an 𝑥-coordinate greater
than Γ1 (v). In particular, there exist no simultaneous drawings where v has an 𝑥-
coordinate greater than Γ1 (v). Therefore, we must search for a simultaneous drawing
where Γ2 (v) ≤ Γ1 (v). We can enforce this constraint by adding an edge (vright, v)
with weight Γ1 (v) into 𝐷_

G2
. We then attempt to compute the drawing Γ2 of G2 defined

by the shortest distance labeling in 𝐷_
G2
. This attempt produces one of two possible

outcomes. The first possibility is that there now exists a negative cycle in 𝐷_
G2
. This

means that there exists no drawing Γ2 of 𝐺2 with Γ2 (v) ≤ Γ(v). Because Γ1 is a
rightmost drawing, this means that no simultaneous drawings of G1 and G2 exist.
The algorithm then terminates and rejects this instance. The second possibility is
that we obtain a new drawing Γ2. This drawing is rightmost among all drawings
that satisfy the added constraint Γ2 (v) ≤ Γ1 (v). In this case there are again two
possibilities. Either we have Γ1 (v) = Γ2 (v) for each vertex v in G1∩2. In this case Γ1
and Γ2 are simultaneous drawings and the algorithm terminates. Otherwise there
exists at least one vertex 𝑤 in G1∩2 with Γ1 (𝑤) ≠ Γ2 (𝑤). We then repeat the procedure
just described for adding a new constraint.
We repeat this procedure of adding other constraints. To bound the number of

iterations, recall that we only consider compact drawings, i.e., drawings whose
width is at most (_ − 1) (𝑛 − 1). In each iteration the 𝑥-coordinate of at least one
vertex is decreased by at least one. Therefore, each vertex is responsible for at
most (_ − 1) (𝑛 − 1) iterations. The total number of iterations is therefore bounded

Complexity of the General Case Section 10.6

215

by 𝑛(_ − 1) (𝑛 − 1) ∈ 𝑂 (_𝑛2).
Note that due to the added constraints 𝐷_

G1
and 𝐷_

G2
are generally not planar.

However, all newly inserted arcs are incident to vright, so vright is an apex of 𝐷_
G𝑖

for 𝑖 = 1, 2. As in the previous section, we apply the 𝑂 (𝑛4/3 log𝑛)-time shortest-path
algorithm by Henzinger et al. to compute the shortest distance labelings. This gives
the following.

Theorem 32. Let G1,G2 be embedded level-planar graphs that share a common sub-
graph G1∩2. In𝑂 (_𝑛10/3 log𝑛) time it can be determined whether G1,G2 admit simulta-
neous _-drawings and if so, such drawings can be computed within the same running
time.

10.6 Complexity of the General Case

So far, we have considered _-Drawability problem for proper level graphs, i.e.,
level graphs where all edges have length one. In this section, we consider the general
case, where edges may have arbitrary lengths. We say that an edge with length
two or more is long. One approach would be to try to adapt the flow model from
Section 10.3 to this more general case. By subdividing long edges, any level graph 𝐺
can be transformed into a proper level graph𝐺 ′. Observe that two edges in𝐺 ′ created
by subdividing the same long edge must have the same slope in order to yield a
fixed-slope drawing of 𝐺 . In the context of our flow model, this means that the
amount of flow across the corresponding slope arcs must be the same. Our problem
then becomes an instance of the integer equal flow problem. In this problem, we are
given a flow network along with disjoint sets 𝑅1, 𝑅2, . . . , 𝑅𝑡 of arcs. The task is to
find the maximum flow from 𝑠 to 𝑡 such that the amount of flow across arcs in the
same set 𝑅𝑖 is the same. This problem was introduced and shown to be NP-hard by
Sahni [Sah74]. The problem remains NP-hard in special cases [EIS76, Sri+02] and
the integrality gap of the fractional LP can be arbitrarily large [MS09].
In this section we show that _-Drawability is NP-complete even for _ = 2,

biconnected graphs where all edges have length one or two. To this end, we present a
reduction from rectilinear planar monotone 3-Sat [dK12]. An instance of this problem
consists of a set of variables 𝑋 and a set of clauses 𝐶 . A clause is positive (negative)
when it consists of only positive (negative) literals. We say that the instance is
monotone when each clause is either positive or negative. The corresponding variable-
clause graph consists of the vertices 𝑋 ∪𝐶 and each undirected edge {𝑥, 𝑐} where
𝑥 ∈ 𝑋 is a variable that appears in clause 𝑐 ∈ 𝐶 . The variable-clause graph admits a
planar drawing such that (i) the variables are aligned along a virtual horizontal line ℓ𝑋 ,
(ii) positive clauses are drawn as vertices above ℓ𝑋 , and symmetrically (iii)negative

Chapter 10 Level-Planar Drawings with Few Slopes

216

𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7

𝑥5 ∨ 𝑥6 ∨ 𝑥7𝑥1 ∨ 𝑥2 ∨ 𝑥3

𝑥1 ∨ 𝑥4 ∨ 𝑥5

𝑥1 ∨ 𝑥5 ∨ 𝑥7

¬𝑥3 ∨ ¬𝑥4 ∨ ¬𝑥5
¬𝑥2 ∨ ¬𝑥3 ∨ ¬𝑥5

¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥7

𝑥1ℓ𝑋

Figure 10.6: An instance of planar monotone 3-Sat.

clauses are drawn as vertices below ℓ𝑋 . See Fig. 10.6.
Our reduction works by first replacing every vertex that corresponds to a variable

by a variable gadget and every vertex that corresponds to a positive (negative) clause
by a positive (negative) clause gadget. All three gadgets consist of fixed and movable
parts. The fixed parts only admit one level-planar two-slope drawing, whereas the
movable parts admit two or more drawings depending on the choice of slope for some
edges. Second, the gadgets are connected by a common fixed frame. All fixed parts
of the gadgets are connected to the common frame in order to provide a common
point of reference. The movable parts of the gadgets then interact in such a way
that any level-planar two-slope drawing induces a solution to the underlying planar
monotone 3-Sat instance.
The variable gadget consists of a number of connectors arranged around a fixed

horizontal line that connects all variable gadgets along the virtual line of variables ℓ𝑋 .
See Fig. 10.7, where the fixed structure is shaded in gray. Vertices drawn as squares are
fixed, i.e., they cannot change their position relative to other vertices drawn as squares.
Vertices drawn as circles are movable, i.e., they can change their position relative
to vertices drawn as squares. The line of variables ℓ𝑋 extends from the the square
vertices on the left and right boundaries of the drawing. Every connector consists of
two pins: the movable assignment pin and the fixed reference pin. The variable gadget
in Fig. 10.7 features four connectors: two above the horizontal line and two below
the horizontal line. Assignment pins are shaded in yellow and reference pins are
shaded in gray. The relative position of the assignment pin and the reference pin of
one connector encodes the truth assignment of the underlying variable. Moreover,
the reference pin allows the fixed parts of the clause gadgets to be connected to
the variable gadgets and thereby to the common frame. Comparing Fig. 10.7 (a)
and (b), observe how the relative position of the two pins of each connector changes
depending on the truth assignment of the underlying variable. The key structure
of the variable gadget is that the position of the assignment pins of one variable

Complexity of the General Case Section 10.6

217

(a) true true

true true

0 1 2 3 4 5 6 7 13 14 15 1810

0 1 2 8 9 103 11 16 17 18

(b) false false

false false

0 1 2 3 4 5 6 7 13 14 158 16

0 1 2 5 8 9 10 13 16 17 18

Figure 10.7: The variable gadget drawn in the “true” configuration (a) and the “false”
configuration (b).

gadget are coordinated by long edges. In Fig. 10.7, long edges are drawn as thick
lines. Changing the slope of these long edges moves all assignment pins above the
horizontal line in one direction and all assignment pins below the horizontal line in
the reverse direction. In this way, all connectors encode the same truth assignment
of the underlying variable. Note that we can introduce as many connectors as needed
for any one variable.

The positive clause gadget consists of a fixed boundary, a movable wiggle and three
assignment pin endings. See Fig. 10.8, where the fixed boundary is shaded in gray,
the wiggle is highlighted in blue and the assignment pin endings are highlighted
in yellow. The fixed boundary is connected to the reference pin of the variable
gadget that is rightmost among the connected variable gadgets. Because the variable
gadgets are fixed to the common frame, the boundary of the positive clause gadget is
also connected to the common frame. The assignment pin endings are connected to
assignment pins of connectors of the corresponding variable gadgets. The idea of the
positive clause gadget is that the wiggle has to wiggle through the space bounded by
the assignment pin endings on the left and the fixed boundary on the right. Recall
that the assignment pins change their horizontal position depending on the truth
assignment of their underlying variables. The positive clause gadget is designed
so that the wiggle can always be drawn, except for the case when all variables are
assigned to false. See Fig. 10.8 (a)–(c), which shows the three possible situations when
exactly one variable is assigned to true. In any case where at least one variable is
assigned to true the wiggle can be drawn in one of the three ways shown. However,
as shown in Fig. 10.8 (d), the wiggle cannot be drawn in the case where all variables
are assigned to false. The reason for this is that the the assignment pin endings get
so close to the fixed boundary that they leave too little space for the wiggle to be
drawn. This means that some vertices must intersect, for example those shown in

Chapter 10 Level-Planar Drawings with Few Slopes

218

true

false

(a)

false

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 6 7 8 9 10 11 12 130

true

false

(b)

false

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 6 7 8 9 10 11 12 130

false

false

(c)

true

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 6 7 8 9 10 11 12 132

false

false

false

(d) 0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 6 7 8 9 10 11 12 130

Figure 10.8: The positive clause gadget when the drawing when at least one variable
is assigned to true (a–c). No planar drawing exists when all variables are assigned to
false (d), because this leads to intersections, e.g., at the vertices marked in red.

red in Fig. 10.8 (d).
The negative clause gadgets works very similarly. It is drawn below the horizontal

line of variables and it forces at least one of the incident variable gadgets to be
configured as false. See Fig. 10.9 which shows admissible drawings (a–c) and that the
case when all incident variables are configured as true cannot occur (d). Note that
this uses the design of the variable gadget that the assignment and reference pins
below the horizontal line are closer when the variable is assigned to true (i.e., the
inverse situation compared to the situation above the horizontal line).

It is evident that any level-planar two-slope drawing of the resulting graph induces
a solution of the underlying planar monotone 3-Sat problem and vice versa. Note

Complexity of the General Case Section 10.7

219

true

true

false(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 8 9 10 11 12 135

false

true

true(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 8 9 10 11 12 133

true

false

true(c)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 8 9 10 11 12 133

true

true

true(d)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 8 9 10 11 12 133

Figure 10.9: The negative clause gadget when at least one variable is assigned to
false (a–c). No drawing exists when all variables are assigned to true (d), because this
leads to intersections, e.g., at the vertices marked in red. Note the symmetry to the
positive clause gadget in Fig. 10.8.

that the variable gadgets become biconnected when embedded into the common
frame and that the clause gadgets are biconnected by design. Furthermore, all long
edges have length two. We therefore conclude the following.

Theorem 33. _-Drawability is NP-complete even for _ = 2 and biconnected graphs
where all edges have length one or two.

Chapter 10 Level-Planar Drawings with Few Slopes

220

10.7 Conclusion

In this chapter we studied _-drawings, i.e., level-planar drawings with _ slopes. We
model _-drawings of proper level-planar graphs as integer flow networks. This lets
us compute _-drawings and extend connected partial _-drawings in𝑂 (𝑛 log3 𝑛) time.
We extend the duality between integer flows in a primal graph and shortest distances
in its dual to obtain amore powerful distancemodel. This distancemodel lets us find _-
drawings in 𝑂 (𝑛 log2 𝑛/log log𝑛) time, extend not-necessarily-connected partial _-
drawings in 𝑂 (𝑛4/3 log𝑛) time and find simultaneous _-drawings in 𝑂 (_𝑛10/3 log𝑛)
time.
In the non proper case, testing the existence of a 2-drawing becomes NP-hard,

even for biconnected graphs with maximum edge length two. This leaves little room
to extend our polynomial-time algorithms for more general classes of level-planar
graphs.

221

11 Drawing Two Posets

We investigate the problem of drawing two posets of the same ground set so that one
is drawn from left to right and the other one is drawn from the bottom up. The input
to this problem is a directed graph 𝐺 = (𝑉 , 𝐸) and two sets 𝑋,𝑌 with 𝑋 ∪ 𝑌 = 𝐸,
each of which can be interpreted as a partial order of 𝑉 . The task is to find a planar
drawing of𝐺 such that each directed edge in 𝑋 is drawn as an 𝑥-monotone edge, and
each directed edge in 𝑌 is drawn as a 𝑦-monotone edge. Such a drawing is called an
𝑥𝑦-planar drawing.

Testing whether a graph admits an 𝑥𝑦-planar drawing is NP-complete in general.
We consider the case that the planar embedding of 𝐺 is fixed and the subgraph of 𝐺
induced by the edges in 𝑌 is a connected spanning subgraph of 𝐺 whose upward
embedding is fixed. For this case we present a linear-time algorithm that determines
whether 𝐺 admits an 𝑥𝑦-planar drawing and, if so, produces an 𝑥𝑦-planar polyline
drawing with at most three bends per edge.

This chapter extends work initiated as part of Vera Chekan’s bachelor’s the-
sis [Che19] and is based on joint work with Vera Chekan [BC20].

11.1 Introduction

A partial order < over a set𝑉 can be interpreted as a directed graph𝐺 by interpreting
the elements of𝑉 as the vertices of𝐺 , and interpreting the fact 𝑢 < v for 𝑢, v ∈ 𝑉 as a
directed edge from 𝑢 to v in𝐺 . An upward drawing of𝐺 is a bottom-up visualization

Drawing Two Posets

222

of the partial order <. If the drawing is also planar, then it is especially easy to
understand for humans [Pur97]. Testing graphs for upward planarity is NP-hard in
general [GT01], but feasible in linear time for graphs with a single source [BDMT98]
and for graphs with a fixed underlying planar embedding [BDLM94].
More recent research has sought to extend this concept to two directions. The

input to Bi-Monotonicity is an undirected graph whose vertices have fixed
coordinates and the task is to draw each edge as a curve that is both 𝑥-monotone and 𝑦-
monotone while maintaining planarity. This problem isNP-hard in general [KR19]. In
Upward-Rightward Planarity, the question is whether there exists a planar
drawing of a directed graph in which each edge is 𝑥-monotone or 𝑦-monotone. Every
planar directed graph has an upward-rightward straight-line drawing in polynomial
area that can be computed in linear time [Gia+14]. The input to HV-Rectilinear
Planarity is an undirected graph 𝐺 with vertex-degree at most four where each
edge is labeled either as horizontal or as vertical. The task is to find a planar drawing
of𝐺 where each edge labeled as horizontal (vertical) is drawn as a horizontal (vertical)
line segment. This problem is NP-hard in general [DLP19]. Visibility representations
of two planar 𝑠𝑡-graphs using L-shapes have been considered. [ELM16]. In such a
representation, one graph has a horizontal visibility representation using the vertical
parts of the L-shapes, and the other graph has a vertical visibility representation
using the horizontal parts of the L-shapes. Finally, a windrose graph consists of an
undirected graph𝐺 and for each vertex v of𝐺 a partition of its neighbors into four sets
that correspond to the four quadrants around v . A windrose drawing of𝐺 is a drawing
such that for each vertex v of𝐺 each neighbor lies in the correct quadrant and all edges
are represented by curves that are monotone with respect to each axis. Testing graphs
for windrose planarity is NP-hard in general, but there exists a polynomial-time
algorithm for graphs with a fixed underlying planar embedding [Ang+18].
We investigate a new planarity variant called 𝑥𝑦-planarity. Let 𝐺 = (𝑉 , 𝐸) be

a directed graph together with two sets 𝑋,𝑌 with 𝑋 ∪ 𝑌 = 𝐸. In an 𝑥𝑦-drawing
of 𝐺 each directed edge in 𝑋 is drawn as a strictly increasing 𝑥-monotone curve and
each directed edge in 𝑌 is drawn as a strictly increasing 𝑦-monotone curve. Hence,
an 𝑥𝑦-drawing of𝐺 is a left-to-right visualization of the partial order defined by 𝑋
and a bottom-up visualization of the partial order defined by 𝑌 , i.e., it is a drawing
of two posets on the same ground set 𝑉 . A planar 𝑥𝑦-drawing is an 𝑥𝑦-planar
drawing. The study of 𝑥𝑦-planarity has been proposed by Angelini et al. [Ang+18].
Because 𝑥𝑦-planarity generalizes both upward planarity and windrose planarity, we
immediately obtain the following.

Theorem 34. Testing graphs for 𝑥𝑦-planarity is NP-complete.

We therefore consider the restricted case where the planar embedding of𝐺 is fixed,
and the 𝑌 -induced subgraph of 𝐺 is a connected spanning subgraph of 𝐺 whose

Preliminaries Section 11.2

223

upward embedding is fixed. For this case we present a linear-time algorithm that
determines whether 𝐺 admits an 𝑥𝑦-planar drawing. Our algorithm uses several
structural insights. First, in Section 11.3, we provide a new, simple combinatorial
characterization of windrose planar embeddings. From each 𝑥𝑦-planar drawing of𝐺
we can derive an embedded windrose planar graph 𝐺+. Using our combinatorial
characterization of windrose planar embeddings we can simplify 𝐺+. In Section 11.4
we show that in this simplified graph, every edge of the original graph𝐺 corresponds
to one of four windrose planar gadgets. To test 𝐺 for 𝑥𝑦-planarity, we show in
Section 11.5 how to determine in linear time whether there exists a choice of one
gadget for each edge of𝐺 that leads to a windrose planar embedding. In the positive
case our algorithm outputs an 𝑥𝑦-planar drawing on a polynomial-size grid where
each edge has at most three bends. If every windrose planar graph has a straight-line
drawing (an open question), then each edge has at most one bend, which we show to
be optimal.

11.2 Preliminaries

We use standard terminology concerning (upward) planar graph drawings and em-
beddings. Let 𝐺 = (𝑉 , 𝐸) be a connected directed graph. An upward embedding
induces an underlying embedding of 𝐺 by concatenating the left-to-right order of
incoming edges and the reversed left-to-right order of outgoing edges into one
counter-clockwise cyclic order around each vertex. An embedding of 𝐺 is bimodal
if the incoming (outgoing) edges appear consecutively around each vertex. The
underlying embedding of an upward embedding is bimodal. Recall that a vertex of 𝐺
is a sink (source) if it is incident only to incoming (outgoing) edges. A vertex that is
neither a source nor a sink of 𝐺 is called an inner vertex. Consider an upward planar
drawing of 𝐺 and its underlying planar embedding E of 𝐺 . Recall that a sink/source
assignment𝜓 : v ↦→ (𝑒, 𝑒 ′) maps each source and sink v to two edges 𝑒, 𝑒 ′ incident to v
so that 𝑒 immediately precedes 𝑒 ′ in counter-clockwise cyclic order of edges incident
to v defined by E . This corresponds to a unique face 𝑓 of E such that 𝑒 immediately
precedes 𝑒 ′ on the facial walk of 𝑓 . Thus, we say that𝜓 assigns v to 𝑓 . The assignment
is upward consistent if𝜓 assigns 𝑛𝑓 + 1 vertices to one face, and 𝑛𝑓 − 1 vertices to all
other faces. The face to which 𝑛𝑓 + 1 vertices are assigned is the outer face. From
an embedding E and a sink/source assignment 𝜓 an upward embedding of 𝐺 can
be obtained by splitting for each sink (source) v the counter-clockwise cyclic order
of edges incident to v defined by E between the two edges 𝑒, 𝑒 ′ with 𝜓 (v) = (𝑒, 𝑒 ′)
to obtain the right-to-left (left-to-right) order of incoming (outgoing) edges. In the
reverse direction, from an upward embedding of 𝐺 a sink/source assignment𝜓 can
be obtained as follows. Assign each sink v to (𝑒, 𝑒 ′) where 𝑒 and 𝑒 ′ are the rightmost

Drawing Two Posets

224

𝑣
𝑤1𝑤2

𝑒2
𝑤2

𝑒1
𝑤1

𝑥𝑣

𝑒1
𝑤1

𝑒2
𝑤2

𝑣

𝑣
𝑤2𝑤1

𝑥

𝑣

𝑤2

𝑤1

𝑒2

𝑒1

𝑣

𝑤2

𝑤1

𝑥

𝑒2

𝑒1

(a) (b) (c) (d) (e) (f)

𝑥 𝑥 𝑥
𝑓 ′

𝑓 ′ 𝑓 ′

𝑓 ′
𝑓 ′ 𝑓 ′

Figure 11.1: Reducing the size of the block-cutvertex tree by augmenting the graph
given a cut-vertex v if v is (a) a sink, (b) a source, or (c) an inner vertex.

and leftmost incoming edge incident to v , respectively. Assign each source v to (𝑒, 𝑒 ′)
where 𝑒 and 𝑒 ′ are the leftmost and rightmost outgoing edge incident to v , respec-
tively. Thus, upward embeddings are equivalent to planar embeddings together with
a sink/source assignment. The following was observed by Bertolazzi et al. [BDLM94]
for biconnected graphs, we provide a straight-forward extension to simply-connected
graphs.

Lemma 74. Let𝐺 be a connected directed acyclic graph together with an embedding E .
There exists an upward planar embedding of𝐺 whose underlying embedding is E if and
only if E is planar and bimodal, and it admits an upward consistent assignment.

Proof. Bertolazzi et al. have proven the statement for biconnected graphs [BDLM94].
We extend it to simply connected graphs by induction over the number of maximal bi-
connected components of𝐺 . If there is one such component the result of Bertolazzi et
al. applies. If𝐺 consists of a single vertex or a single edge, the statement holds trivially.
Let v be a cutvertex of 𝐺 . Then there exist two edges 𝑒1 = {v, 𝑤1} and 𝑒2 = {v, 𝑤2}
incident to v such that 𝑒1 immediately follows 𝑒2 in the counter-clockwise order of
edges around v and 𝑤1 and 𝑤2 belong to different maximal biconnected components
of 𝐺 .
Let Γ be an upward planar drawing of 𝐺 with underlying embedding E . Let 𝑓 be

a face such that 𝑒1 and 𝑒2 appear consecutively on its facial walk. Moving closely
along 𝑒1 and 𝑒2 in 𝑓 , insert a new vertex 𝑥 and connect it to 𝑤1 and 𝑤2 as shown in
Figure 11.1. Note that this case distinction can be made on the basis of Γ, although
it could not be made solely on the basis of E . This separates 𝑓 into one face of
size four (shaded in blue), and another face 𝑓 ′ (shaded in yellow). Let 𝐺 ′ denote
the graph obtained in this way, and let Γ′ denote the drawing obtained in this way.
In 𝐺 ′ the vertices 𝑤1 and 𝑤2 belong to the same maximal biconnected component.
Thus, 𝐺 ′ has at least one less maximal biconnected component than 𝐺 . By induc-
tion, the underlying planar embedding E ′ of Γ′ then admits an upward consistent
assignment𝜓 ′. By construction of the gadgets the number of face sources and face
sinks of 𝑓 equals the number of face sources and face sinks of 𝑓 ′, respectively. To

Combinatorial View of Windrose Planarity Section 11.3

225

obtain an upward consistent assignment 𝜓 of E define 𝜓 : v ↦→ (𝑒2, 𝑒1) if and only
if𝜓 ′ : v ↦→ ({𝑥, 𝑤2}, {𝑥, 𝑤1}).
Now assume that E admits an upward consistent assignment𝜓 . Repeat a similar

argument as above. This time, the case distinction is made not based on Γ, but
based on𝜓 , obtaining an upward consistent assignment𝜓 ′ of E ′. By induction there
exists an upward planar embedding U ′ of 𝐺 ′ whose underlying embedding is E ′.
Removing 𝑥 from U ′ gives an upward planar embedding U of 𝐺 whose underlying
embedding is E . □

11.3 Combinatorial View of Windrose Planarity

A windrose graph is a directed graph 𝐺 whose edges are labeled as either north-west
(NW) or north-east (NE). A windrose drawing of 𝐺 is an upward drawing of 𝐺 where
all NW (NE) edges decrease (increase) monotonically along the 𝑥-axis. In this way,
the neighbors of each vertex are partitioned into the four quadrants of the plane
around v . An upward planar embedding of𝐺 is windrose planar if it is induced by a
windrose planar drawing of 𝐺 . Let U be an upward planar embedding of 𝐺 and let v
be a vertex of 𝐺 . We say U is windrose consistent at v if (i) the NW edges precede the
NE edges in the left-to-right order of outgoing edges incident to v , and (ii) the NE
edges precede the NW edges in the left-to-right order of incoming edges incident
to v . We say that U is windrose consistent if it is windrose consistent at all vertices
of 𝐺 and show the following.

Lemma 75. Let 𝐺 be a directed graph together with an upward planar embedding U .
Then U is a windrose planar embedding of 𝐺 if and only if U is windrose consistent.

Proof. If U is a windrose planar embedding then U is windrose consistent. For the
reverse direction, assume that U is windrose consistent. We show that U is windrose
planar by induction over the number of NW edges in 𝐺 . Every upward planar graph
admits a straight-line drawing [DT88]. If 𝐺 contains no NW edge, first vertically
stretch such a straight-line drawing so that all slopes lie in the interval (𝜋/4, 3𝜋/4),
then rotate the stretched drawing so that all slopes lie in the interval (0, 𝜋/2) to
obtain a windrose planar drawing of 𝐺 . For the inductive step, the idea is to find an
NW edge in𝐺 that can be relabeled as NE, where the result is a graph𝐺 ′ such that U
is a windrose consistent embedding of 𝐺 ′. To this end, construct an edge dependency
graph𝐷 = (𝐸,𝐴) as follows. The edges of𝐺 are the nodes of𝐷 . Construct the directed
arcs of𝐷 as follows. For each vertex v of𝐺 , consider the outgoing edges 𝑒+1 , 𝑒+2 , . . . , 𝑒+𝑚
in the left-to-right order prescribed by U . For 1 ≤ 𝑖 < 𝑚 add the arc (𝑒+𝑖 , 𝑒+𝑖+1)
to 𝐷 . Moreover, consider the incoming edges 𝑒−1 , 𝑒−2 , . . . , 𝑒−𝑛 in the left-to-right order
prescribed by U . For 1 ≤ 𝑖 < 𝑛 add the arc (𝑒−𝑖+1, 𝑒

−
𝑖) to 𝐷 . Consider an upward

Drawing Two Posets

226

Γ′ Γ

𝑢

𝑣

𝑢

𝑣

𝑝
𝑞

𝑠

𝑡

Δ

Y

Figure 11.2: Transforming a windrose planar drawing Γ′ of 𝐺 ′ into a windrose
planar drawing Γ of 𝐺 .

planar straight-line drawing Γ of 𝐺 . An arc (𝑒, 𝑓) of the dependency graph 𝐷 can be
interpreted as the edge 𝑒 having a greater slope than the edge 𝑓 in Γ. This directly
implies that 𝐷 is acyclic. The edge dependency graph 𝐷 contains no arc from an NE
edge to an NW edge by construction. Thus, if𝐺 contains an NW edge, there exists an
NW edge 𝑒 whose predecessors are all NW edges and whose successors in 𝐷 are all
NE edges. Let 𝐺 ′ denote the graph obtained from 𝐺 by relabeling 𝑒 as NE. Observe
that U is a windrose consistent upward planar embedding of 𝐺 ′. We show how to
transform a windrose planar drawing Γ′ of 𝐺 ′ whose upward embedding is U into a
windrose planar drawing Γ of 𝐺 whose upward embedding is U . We may assume
that the vertices are in general position. Otherwise, this can be achieved by slightly
perturbing the vertices in the drawing. See Figure 11.2. By convention, we draw NW
edges in blue and NE edges in green.
For Y > 0 construct a 𝑦-monotone curve 𝑐 in Γ′ as follows; see the red curve in

Figure 11.2. The curve 𝑐 extends vertically down infinitely from the point below 𝑢

at distance Y. It contains the left half-circle of radius Y centered at 𝑢. It contains the
horizontal segment from the highest point p of the half-circle up to the point 𝑞 where
it meets 𝑒 . Symmetrically, 𝑐 extends vertically up infinitely from the point above v at
distance Y. It contains the right half-circle of radius Y centered at v . It contains the
horizontal segment from the lowest point of the half-circle 𝑡 up to the point 𝑠 where
it meets 𝑒 . Finally, 𝑐 follows 𝑒 from 𝑞 to 𝑠 . There exists an Y > 0 so that (i) 𝑐 intersects
no vertex, (ii) the circles of radius Y around 𝑢 and v intersect only line segments that
have that vertex as an endpoint, and (iii) the segments from p to 𝑞 and from 𝑠 to 𝑡 do
not intersect any edge, except for 𝑒 . For property (i), note that the vertices have been
assumed to be in general position in Γ′. For property (ii), recall that edges are drawn
as finite polygonal chains. For property (iii), observe that all predecessors of 𝑒 in 𝐷

are NW edges.
Shift the area to the right of 𝑐 further right by an offset Δ so that 𝑢 lies to the

From 𝒙𝒚-Drawings to Windrose Drawings Section 11.4

227

right of v . Then 𝑢 and v can be connected by an NW edge. The segments between 𝑢
and the intersection points on the circle of radius Y centered at 𝑢 can be drawn as
straight-line segments, preserving their monotonicity with respect to the 𝑥-axis. The
same holds true for the segments whose endpoint is v . Finally, 𝑐 may intersect edges
on the vertical segments below 𝑢 and above v . Because of property (i) shifting creates
intermediate horizontal segments which can be made non-horizontal by slightly
perturbing their endpoints. □

11.4 From 𝒙𝒚-Drawings to Windrose Drawings

Let 𝐺 = (𝑉 , 𝐸) be a directed graph together with sets 𝑋,𝑌 such that 𝑋 ∪ 𝑌 = 𝐸.
Define 𝐺 |𝑌 as the subgraph of 𝐺 induced by the edges in 𝑌 . Further, let Γ denote
an 𝑥𝑦-drawing of𝐺 . Recall that edges are drawn as finite polygonal chains. Define𝐺+

as the graph obtained from 𝐺 by subdividing the edges of 𝐺 at each bend in Γ such
that each directed edge (𝑢, v) of 𝐺+ corresponds to an upward straight-line segment
from 𝑢 to v (𝑢 is below v) in Γ. Label (𝑢, v) as NW (NE) if the corresponding segment
decreases (increases) along the 𝑥-axis. Then𝐺+ is a windrose graph together with a
windrose planar drawing Γ+. Let E+ denote the windrose planar embedding induced
by Γ+.

11.4.1 Simplifying Windrose Planar Embeddings

Each edge (𝑢, v) of 𝐺 in 𝑌 corresponds to a path (𝑢 = 𝑦1, 𝑦2, . . . , 𝑦𝑛 = v) in 𝐺+.
For 1 ≤ 𝑖 < 𝑛 the edge connecting 𝑦𝑖 and 𝑦𝑖+1 is oriented from 𝑦𝑖 to 𝑦𝑖+1 and is
either an NE edge or an NW edge. We can simplify 𝐺+and E+. Similarly-labeled
edges (𝑦𝑖 , 𝑦𝑖+1), (𝑦 𝑗 , 𝑦 𝑗+1) with 1 ≤ 𝑖 < 𝑗 < 𝑛 can be replaced by one edge (𝑦𝑖 , 𝑦 𝑗+1)
with the same label. We argue that the arising embedded graph is still windrose
planar. First, the order of labels around vertices 𝑦𝑖 and 𝑦 𝑗+1 has not been changed,
and the remaining vertices have not been affected, as a result the embedding is still
windrose consistent. Second, we show that the embedding is still upward planar. This
is directly implied by two facts. First, vertices 𝑦𝑖+1, . . . , 𝑦 𝑗 are neither sources nor
sinks. And second, the sink/source assignment of 𝑦𝑖 and 𝑦 𝑗+1 has not been changed.
Thereby the number of face sources and face sinks and the number of sources and
sinks assigned to every face also stay the same. Since E+ is upward consistent, then
the simplified embedding is upward consistent, too. By Lemma 75, the simplified
embedding admits a windrose planar drawing (it is also an 𝑥𝑦-planar drawing of 𝐺).
We can repeat this, until every edge (𝑢, v) ∈ 𝑌 is represented with either a single
edge, or with two edges with different labels. In the following, we want that every
gadget consists of exactly two edges. For this purpose, if the path from 𝑢 to v consists

Drawing Two Posets

228

H𝑦

2H𝑦

1 = H𝑥
1 H𝑦

3 H𝑦

4 H𝑥
3 H𝑥

4

𝑢

𝑣

𝑢

𝑣 𝑣

𝑢

𝑣

𝑢 𝑢 𝑣

𝑢 𝑣
𝑤

𝑤
𝑤 𝑤

𝑤

𝑤

H𝑥
2

𝑣

𝑢
𝑤

Figure 11.3: The gadgets H𝑥
1 , . . . ,H𝑥

4 and H𝑦

1 , . . . ,H
𝑦

4 that are used to represent
an 𝑥-monotone edge and an 𝑦-monotone edge (𝑢, v), respectively. NW (NE) edges
are drawn in blue (green).

of a single edge, we subdivide it into two edges with the same label. See Figure 11.3
for the four possible gadgets H𝑦

1 , . . . ,H
𝑦

4 .
Each edge (𝑢, v) of 𝐺 in 𝑋 corresponds to a path (𝑢 = 𝑥1, 𝑥2, . . . , 𝑥𝑛 = v) in 𝐺+.

For 1 ≤ 𝑖 < 𝑛 the edge connecting 𝑥𝑖 and 𝑥𝑖+1 in 𝐺+ is either a NE edge oriented
from 𝑥𝑖 to 𝑥𝑖+1, or an NW edge oriented from 𝑥𝑖+1 to 𝑥𝑖 . Again, we can simplify E+.
For 1 < 𝑖 < 𝑛 if the edges connecting 𝑥𝑖−1 and 𝑥𝑖 , and 𝑥𝑖 and 𝑥𝑖+1 are oriented in the
same direction they also are similarly labeled and the same argument as above can
be used to replace 𝑥𝑖 and its incident edges by an edge connecting 𝑥𝑖−1 and 𝑥𝑖+1. Now
consider the case that for 1 ≤ 𝑖 ≤ 𝑛 − 3 the edges 𝑒1 = (𝑥𝑖 , 𝑥𝑖+1) and 𝑒3 = (𝑥𝑖+2, 𝑥𝑖+3)
are labeled as NE and the edge 𝑒2 = (𝑥𝑖+1, 𝑥𝑖+2) is labeled as NW. Because Γ is an 𝑥𝑦-
drawing, the sink/source assignment induced by E+ assigns 𝑥𝑖+1 to (𝑒2, 𝑒1) and 𝑥𝑖+2
to (𝑒2, 𝑒3) (in terms of upward planarity as defined in Section 11.2). Replacing the
vertices 𝑥𝑖+1, 𝑥𝑖+2 and their incident edges by a single edge (𝑥𝑖 , 𝑥𝑖+3) labeled as NE
reduces the number of face sinks by one and it reduces the number of face sources
of both incident faces by one. The number of assigned face sinks and face sources
is also reduced by one. Thereby, the sink/source assignment is still consistent and
the embedding is upward planar. Together with the arguments for edges of 𝐺 in 𝑌

this shows that the simplified embedding remains a windrose planar embedding. See
Figure 11.3 for the four possible gadgets H𝑥

1 , . . . ,H𝑥
4 .

Let𝐺∗ and E∗ denote the simplified windrose graph and windrose planar embed-
ding. Every windrose planar drawing of𝐺∗ with embedding E∗ induces an 𝑥𝑦-planar
drawing Γ′ of 𝐺 such that Γ and Γ′ induce the same planar embedding of 𝐺 and the
same upward planar embedding of𝐺 |𝑌 . Note that𝐺∗ is obtained from𝐺 by replacing
(i) each edge of 𝐺 in 𝑋 \ 𝑌 with a gadget in H𝑥 , (ii) each edge of 𝐺 in 𝑌 \ 𝑋 with a
gadget in H𝑦 , and (iii) each edge of𝐺 in 𝑋 ∩𝑌 with the (unique) gadget in H𝑥 ∩ H𝑦

(where H𝑥 = {H𝑥
1 ,H𝑥

2 ,H𝑥
3 ,H𝑥

4 } and H𝑦 = {H𝑦

1 ,H
𝑦

2 ,H
𝑦

3 ,H
𝑦

4 }). We say that a win-
drose graph obtained from 𝐺 by such a gadget replacement is derived from 𝐺 . A
windrose planar embedding of a graph derived from 𝐺 induces a planar embedding
of 𝐺 and an upward planar embedding of 𝐺 |𝑌 . We have shown the following.

Lemma 76. Let 𝐺 = (𝑉 , 𝐸) be a directed graph with sets 𝑋,𝑌 such that 𝑋 ∪ 𝑌 = 𝐸.

From 𝒙𝒚-Drawings to Windrose Drawings Section 11.4

229

Y𝑣
𝑒1
𝑒2
𝑒3
𝑒4𝑒5 𝑒6

𝑒2
𝑒3
𝑒4
𝑒5𝑒6 𝑒1

𝑒1
𝑒2

(a) (b) (c)

𝐷 𝐷

𝐷 ′ 𝐷 ′

𝐷 𝐷

(d) (e)

Figure 11.4: Two 𝑥𝑦-drawings that have the same cyclic order of edges around the
boundary of 𝐷 and assignment of line segments to quadrants, but distinct upward
planar embeddings (a, b). Edges in 𝑋 are drawn in red, edges in 𝑌 are drawn in black.
The 𝑥𝑦-drawing (a) can be locally modified to obtain a special 𝑥𝑦-drawing (c) that
admits no such ambiguities. Modifying a drawing where Property (2) does not hold
true works symmetrically (d, e).

This graph admits an 𝑥𝑦-planar drawing with planar embedding E of 𝐺 and upward
planar embedding U of 𝐺 |𝑌 if and only if there exists a derived graph 𝐺∗ of 𝐺 with a
windrose planar embedding that induces E and U .

11.4.2 Special Windrose Planar Embeddings

Inspired by Lemma 76, part of the approach to test 𝐺 for 𝑥𝑦-planarity will be to use
Lemma 74 to test for every edge 𝑒 ∈ 𝑋 and each gadget H𝑥

𝑖 ∈ H𝑥 whether replacing 𝑒
with H𝑥

𝑖 leads to an upward planar embedding of 𝐺 |𝑌 + 𝑒 . If all edges incident to 𝑒
lie in the same quadrant, it is not right away possible to derive the upward planar
embedding of 𝐺 |𝑌 + 𝑒 just from the upward planar embedding of 𝐺 |𝑌 and the gadget
choice H𝑥

𝑖 . For an example, consider Figure 11.4 (a, b). Even though 𝑒1 might be
replaced by the same gadget the sink assignment of𝐺 |𝑌 + 𝑒1 in (a) is𝜓 : v ↦→ (𝑒4, 𝑒1),
whereas in (b) it is𝜓 : v ↦→ (𝑒1, 𝑒3). To prevent such ambiguities, we introduce the
notion of special 𝑥𝑦-drawings.
In any 𝑥𝑦-planar drawing Γ of 𝐺 there exists some Y > 0 so that the disk 𝐷 of

radius Y centered at v does not contain any vertex other than v , intersects only edges
incident to v , and does not contain any point where an edge bends. A counter-
clockwise traversal of the boundary of 𝐷 gives four (possibly empty) linear orders
of the edges in each quadrant. We say that Γ is special if for each vertex v of 𝐺
the following four properties hold true. (1) If v has only incoming edges in 𝑋 and
incoming edges in 𝑌 , then the first edge in the southwestern quadrant is in 𝑌 . (2)
If v has only incoming edges in 𝑋 and outgoing edges in 𝑌 , then the last edge in the
northwestern quadrant is in 𝑌 . (3) If v has only outgoing edges in 𝑋 and incoming
edges in 𝑌 , then the last edge in the southeastern quadrant is in 𝑌 . (4) If v has only
outgoing edges in 𝑋 and outgoing edges in 𝑌 , then the first edge in the northeastern

Drawing Two Posets

230

quadrant is in 𝑌 .
If the drawing Γ is not special, then we can modify it locally around each vertex

where one of the four properties does not hold to obtain a special drawing. Consider
the case that v is a vertex of 𝐺 that has only incoming edges in 𝑋 and 𝑌 but the
first edge in the southwestern quadrant is not in 𝑌 , i.e., Property (1) does not hold
true for v . See Figure 11.4 (a). Introduce two new bends on each edge 𝑒1, 𝑒2, . . . , 𝑒𝑛
in 𝑋 that precede the first edge in 𝑌 in the southwestern quadrant so that the line
segments incident to v lie in the northwestern quadrant. This preserves the 𝑥-
monotonicity of the drawing and ensures Property (1). See Figure 11.4 (c) for the
modified drawing, where Property (1) holds true (consider the smaller disk 𝐷 ′). The
other three properties can be ensured symmetrically; see Figure 11.4 (d, e) for an
example of how to ensure Property (2).

Note how in the special windrose drawings in Figure 11.4 (c, e) for each red edge 𝑒
the upward planar embedding of 𝐺 |𝑌 + 𝑒 can be derived just from the upward planar
embedding of𝐺 |𝑌 and the gadget choice H𝑥

𝑖 for 𝑒 . A windrose planar embedding is
special if it is derived from a special 𝑥𝑦-planar drawing. Observe that simplifying the
windrose planar embedding as explained in the previous section does not alter edges
incident to non-subdivision vertices. Therefore, Lemma 76 can be strengthened to
special windrose planar embeddings as follows.

Lemma 77. Let 𝐺 = (𝑉 , 𝐸) be a directed graph with sets 𝑋,𝑌 such that 𝑋 ∪ 𝑌 = 𝐸.
This graph admits an 𝑥𝑦-planar drawing with planar embedding E of 𝐺 and upward
planar embedding U of 𝐺 |𝑌 if and only if there exists a derived graph 𝐺∗ of 𝐺 together
with a special windrose planar embedding that induces E and U .

Because every windrose planar graph admits a polyline drawing in polynomial
area with at most one bend per edge [Ang+18] we immediately obtain the following.

Corollary 10. Every 𝑥𝑦-planar graph admits a polyline drawing in polynomial area
with at most three bends per edge.

If every embedded windrose planar graph admitted a straight-line drawing, then
every 𝑥𝑦-planar graph would admit a polyline drawing with at most one bend per
edge. Not every 𝑥𝑦-planar graph admits an 𝑥𝑦-planar straight-line drawing; see
Figure 11.5. Lemma 77 also motivates our approach of testing 𝐺 for 𝑥𝑦-planarity by
testing whether there exists a replacement of the edges of𝐺 with gadgets that respects
the given planar and upward planar embeddings and yields a special windrose planar
embedding.

An 𝒙𝒚-Planarity Testing Algorithm Section 11.5

231

𝑢 𝑣

Figure 11.5: An 𝑥𝑦-planar graph that does not admit an 𝑥𝑦-planar straight-line
drawing.

11.5 An 𝒙𝒚-Planarity Testing Algorithm

Let𝐺 be a directed graph together with edge sets𝑋,𝑌 and let 𝑒 be an edge in𝑋 . Define
the gadget candidate set H(𝑒) as the subset of H𝑥 = {H𝑥

1 ,H𝑥
2 ,H𝑥

3 ,H𝑥
4 } that contains

eachH𝑥
𝑖 ∈ H𝑥 so that the embeddingU+H𝑥

𝑖 is an upward planar embedding of𝐺 |𝑌 +𝑒 .
Recall that Lemma 77 justifies that we can limit our considerations to windrose planar
embeddings that are special, which lets us unambiguously derive the upward planar
embedding U + H𝑥

𝑖 of 𝐺 |𝑌 + 𝑒 from the fixed upward planar embedding U of 𝐺 |𝑌
and the gadget choice H𝑥

𝑖 for 𝑒 . This is needed to test for upward planarity using
Lemma 74. For 𝑒 ∈ 𝑋 the gadget candidate set H(𝑒) can be computed by tentatively
replacing 𝑒 with eachH𝑥

𝑖 and then running the upward planarity test for fixed upward
embeddings. In fact, this can even be done in overall linear time for all edges in 𝑋 .
To this end, choose for each face 𝑓 of U some vertex v and let v1, v2, . . . , v𝑘 denote the
facial walk of 𝑓 . Traverse the facial walk of 𝑓 once to compute for each 1 ≤ 𝑖 ≤ 𝑘 the
number of face sources on the path v1, v2, . . . , v𝑖 , and the number of sources and sinks
of𝐺 on the path v1, v2, . . . , v𝑖 assigned to 𝑓 . This is possible in linear time for all faces
of U . Now consider the insertion of some edge (v𝑎, v𝑏) ∈ 𝑋 into 𝑓 , splitting 𝑓 into
two faces 𝑓1, 𝑓2. Using the previously calculated values, it can be checked in constant
time whether 𝑓1 and 𝑓2 are upward consistent in the sense of Lemma 74. Together
with the previous argument we conclude the following.

Lemma 78. The gadget candidate sets for all edges in 𝑋 can be computed in linear
time.

11.5.1 Finding a Windrose Planar Derived Graph

For each edge 𝑒 of𝐺 add the variables 𝑒NE, 𝑒NW, 𝑒SW, 𝑒SE, and add the clause¬𝑥∨¬𝑦 for
each pair 𝑥, 𝑦 of distinct such variables. This means that every edge of𝐺∗ is assigned
to at most one quadrant. Make sure that every edge of 𝐺∗ is assigned to at least one
quadrant as follows. Let (𝑢, v) be an edge of 𝐺 and let 𝑤 denote the vertex of the
gadget in𝐺∗ that replaces (𝑢, v). If (𝑢, v) ∈ 𝑋 , then add the clauses (𝑢, 𝑤)NE∨(𝑢, 𝑤)SE

so that (𝑢, v) exits 𝑢 in the east, and (𝑤, v)NW ∨ (𝑤, v)SW so that (𝑢, v) enters v from

Drawing Two Posets

232

𝑒1

𝑒𝑖

𝜎

𝑒𝑖

𝑒1
𝜎

(a) (b)

𝑒1

𝑒𝑖

𝑒1

𝑒𝑖

(c) (d)

𝑣
𝑣𝑣𝑣

NW NE

SW SE

NE

SE

NW

SW

Figure 11.6: The situation around a vertex v that has both an outgoing edge 𝑒1 and
an incoming edge 𝑒𝑖 in 𝑌 (a, b). An example of a vertex v that has only incoming
edges in 𝑋 and 𝑌 (c, d). Here 𝑒1 and 𝑒𝑖 are the leftmost and rightmost edges with
respect to the fixed upward embedding.

the west. Next, if (𝑢, v) ∈ 𝑌 , then add the clauses (𝑢, 𝑤)NE ∨ (𝑢, 𝑤)NW so that (𝑢, v)
exits 𝑢 in the north, and (𝑤, v)SW ∨ (𝑤, v)SE so that (𝑢, v) enters v from the south.
Placing the edges of 𝐺∗ into quadrants induces a unique gadget that replaces

each edge of 𝐺 . Let 𝑒 = (𝑢, v) be an edge of 𝐺 . Each gadget H𝑥
𝑖 ∉ H(𝑒) places the

edge (𝑢, 𝑤) in quadrant p and the edge (𝑤, v) in quadrant 𝑞. Moreover, include the
clause ¬((𝑢, 𝑤)p ∧ (𝑤, v)𝑞) = ¬(𝑢, 𝑤)p ∨¬(𝑤, v)𝑞 , this would prevent the gadget H𝑥

𝑖

from being induced. Because no other gadget places the edge (𝑢, 𝑤) in quadrant p
and (𝑤, v) in 𝑞 adding this clause does not prevent any other gadget from being
induced. Add such a clause for each gadget H𝑥

𝑖 ∉ H(𝑒).
The last step is to ensure windrose consistency at each vertex v of 𝐺∗. Use the

combinatorial criterion from Lemma 75. Since we consider gadgets with a prescribed
assignment at 𝑤, we implicitly ensure that the embedding is windrose consistent
around such vertices (see Figure 11.3). Let v be a non-subdivision vertex of 𝐺∗, i.e., v
is also a vertex of 𝐺 . Consider the case that v has incoming and outgoing edges
in 𝑌 . Let 𝜎 = 𝑒1, 𝑒2, . . . , 𝑒𝑖 , . . . , 𝑒𝑛, 𝑒1 denote the counter-clockwise cyclic order of
edges incident to v in 𝐺∗ such that 𝑒1 is a subdivision edge of an outgoing edge
in 𝑌 and 𝑒𝑖 is a subdivision edge of an incoming edge in 𝑌 . To achieve windrose
consistency the edges must be labeled as NE, then NW, then SW and finally SE in the
sequence 𝑒1, . . . , 𝑒𝑖 . This can be ensured with the constraints

𝑒NW
𝑗 ⇒ ¬𝑒NE

𝑗+1

𝑒SW
𝑗 ⇒ ¬𝑒NW

𝑗+1 and 𝑒SW
𝑗 ⇒ ¬𝑒NE

𝑗+1

𝑒SE
𝑗 ⇒ ¬𝑒SW

𝑗+1 and 𝑒SW
𝑗 ⇒ ¬𝑒NW

𝑗+1 and 𝑒SW
𝑗 ⇒ ¬𝑒NE

𝑗+1

for 1 ≤ 𝑗 < 𝑖; see Figure 11.6 (a). Similarly, in 𝑒𝑖 , . . . , 𝑒𝑛, 𝑒1 edges must be labeled as
SW, then SE, then NE and finally NW; see Figure 11.6 (b). A symmetric argument
holds for vertices of 𝐺 that have both incoming and outgoing edges in 𝑋 .
The remaining case consists of four subcases where v has only incoming or only

outgoing edges in 𝑌 , and only incoming or only outgoing edges in 𝑋 . Consider the

An 𝒙𝒚-Planarity Testing Algorithm Section 11.5

233

𝑔2

𝑣𝑣
𝑓1

𝑓2

𝑔1

𝑔2

𝑓1
ℎ

𝑣
𝑢

𝑣′
𝑣′

𝑢
𝑣

𝑢 ′𝑢 ′

(a) (b) (c) (d) (e)𝐴

𝐵
𝐷

𝑣′
𝑢 ′

𝑢
𝑣

𝐵

𝐶
𝐷

𝑤
𝑤′

Figure 11.7: Proof of Lemma 79. If 𝑓1, 𝑓2, 𝑓 ′1 , 𝑓 ′2 are upward planar, then so is ℎ (a–c).
The case of adjacent edges reduces to the case of independent edges (d, e).

case that v has only incoming edges in 𝑌 and only incoming edges in 𝑋 (the other
cases are symmetric); see Figure 11.6 (c, d). Let 𝜎 = 𝑒1, 𝑒2, . . . , 𝑒𝑖 , . . . , 𝑒𝑛, 𝑒1 be the
counter-clockwise cyclic order of edges incident to v in 𝐺∗ such that 𝑒1 and 𝑒𝑖 are
subdivision edges of the leftmost and rightmost incoming edges in 𝑌 in the fixed
upward planar embedding of 𝐺 |𝑌 . Add the constraints 𝑒SE

𝑗 ∨ 𝑒SW
𝑗 and 𝑒SE

𝑗 ⇒ 𝑒SE
𝑗+1

for 1 ≤ 𝑗 < 𝑖 , the constraint 𝑒SE
𝑖 ⇒ 𝑒NW

𝑖+1 , and, because we seek special embeddings,
the constraints 𝑒NW

𝑗 ⇒ 𝑒NW
𝑗+1 for 𝑖 < 𝑗 < 𝑛.

11.5.2 Correctness

Every windrose graph derived from 𝐺 induces a solution of the 2-Sat instance.
Every solution of the 2-Sat instance induces a windrose graph 𝐺∗ derived from 𝐺

together with a windrose planar embedding. For each edge 𝑒 ∈ 𝑋 a solution to the
2-Sat instance induces a replacement gadget H𝑥

𝑖 so that U +H𝑥
𝑖 is an upward planar

embedding of 𝐺 |𝑌 + 𝑒 . The final component to our 𝑥𝑦-planarity test is to show that
even though we tested the gadget candidates individually, the fact that the 2-Sat
instance is satisfiable implies that inserting for each edge in 𝑋 its replacement gadget
leads to an upward planar embedding of 𝐺∗.

Lemma 79. Let 𝐺 = (𝑉 , 𝐸) be a directed graph with sets 𝑋,𝑌 such that 𝑋 ∪ 𝑌 = 𝐸.
Let E be an embedding of 𝐺 and let U be an upward planar embedding of 𝐺 |𝑌 . If the
corresponding 2-Sat instance is satisfiable, then the embedding U∗ of the graph 𝐺∗

induced by a solution of this instance is upward planar.

Proof. We show that U∗ is upward planar inductively by showing that inserting
the gadgets one by one preserves upward planarity. Edges that are inserted into
different faces of U can be treated separately. First, consider two independent
edges 𝑒 = {𝑢, v}, 𝑒 ′ = {𝑢 ′, v ′} (directed appropriately) in 𝑋 that are inserted into
the same face 𝑓 of U ; see Figure 11.7. Because E is planar the endpoints of 𝑒 and 𝑒 ′
do not alternate. Let 𝑢,𝐴, v, 𝐵,𝑢 ′,𝐶, v ′, 𝐷 denote the facial walk of 𝑓 , where 𝐴, 𝐵,𝐶, 𝐷
are sets of vertices. The solution of the 2-Sat instance prescribes gadgets H𝑥

𝑖 ,H𝑥
𝑗

that are inserted for 𝑒, 𝑒 ′, respectively. Let 𝑤 and 𝑤 ′ denote the subdivision vertex
of H𝑥

𝑖 and H𝑥
𝑗 , respectively. Inserting H𝑥

𝑖 for 𝑒 splits 𝑓 into two faces 𝑓1, 𝑓2 such that

Drawing Two Posets

234

the facial walk of 𝑓1 is 𝑢,𝐴, v, 𝑤 and the facial walk of 𝑓2 is 𝑢, 𝑤, v, 𝐵,𝑢 ′,𝐶, v ′, 𝐷 ; see
Figure 11.7 (a). Similarly, inserting H𝑥

𝑗 for 𝑒 ′ splits 𝑓 into two faces 𝑔1, 𝑔2 such that
the facial walk of 𝑔1 is 𝑢 ′, 𝑤 ′, v ′, 𝐷,𝑢,𝐴, v, 𝐵 and the facial of 𝑔2 is 𝑢 ′,𝐶, v ′, 𝑤 ′; see Fig-
ure 11.7 (b). Finally, inserting both H𝑥

𝑖 and H𝑥
𝑗 splits 𝑓 into three faces, namely 𝑓1, 𝑔2

and a face ℎ whose facial walk is 𝑢, 𝑤, v, 𝐵,𝑢 ′, 𝑤 ′, v ′, 𝐷 ; see Figure 11.7 (c). From the
construction of the gadget candidate sets we know that 𝑓 , 𝑓1, 𝑓2, 𝑔1, 𝑔2 are all upward
consistent. We are left to show that ℎ is upward consistent as well. To this end, we
use Lemma 74.

Let z be some face of an upward embedding and let 𝑍 be a set of vertices on the
facial walk of z . For the scope of this proof, let𝜓 (𝑍, z) denote the number of sources
and sinks in 𝑍 assigned to z . We have the following.

𝜓 (𝑓) = 𝜓 (𝐵 ∪ 𝐷, 𝑓) + 𝜓 (𝐴, 𝑓) + 𝜓 (𝐶, 𝑓) + 𝜓 ({𝑢, v}, 𝑓) + 𝜓 ({𝑢 ′, v ′}, 𝑓)
(11.1)

𝜓 (𝑓2) = 𝜓 (𝐵 ∪ 𝐷, 𝑓2) +𝜓 (𝐶, 𝑓2) +𝜓 ({𝑢, v, 𝑤}, 𝑓2) +𝜓 ({𝑢 ′, v ′}, 𝑓2)

= 𝜓 (𝐵 ∪ 𝐷, 𝑓) + 𝜓 (𝐶, 𝑓) + 𝜓 ({𝑢, v, 𝑤}, 𝑓2) + 𝜓 ({𝑢 ′, v ′}, 𝑓) (11.2)

𝜓 (𝑔1) = 𝜓 (𝐵 ∪ 𝐷,𝑔1) +𝜓 (𝐴,𝑔1) +𝜓 ({𝑢, v}, 𝑔1) +𝜓 ({𝑢 ′, v ′, 𝑤 ′}, 𝑔1)

= 𝜓 (𝐵 ∪ 𝐷, 𝑓) + 𝜓 (𝐴, 𝑓) + 𝜓 ({𝑢, v}, 𝑓) + 𝜓 ({𝑢 ′, v ′, 𝑤 ′}, 𝑔1) (11.3)

𝜓 (ℎ) = 𝜓 (𝐵 ∪ 𝐷,ℎ) +𝜓 ({𝑢, v, 𝑤}, ℎ) +𝜓 ({𝑢 ′, v ′, 𝑤 ′}, ℎ)

= 𝜓 (𝐵 ∪ 𝐷, 𝑓) + 𝜓 ({𝑢, v, 𝑤}, 𝑓2) + 𝜓 ({𝑢 ′, v ′, 𝑤 ′}, 𝑔1) (11.4)

Observe that equations (11.2)–(11.4) only hold because the upward embedding U
of 𝐺 |𝑌 is fixed and the edges 𝑒, 𝑒 ′ are independent. Adding (11.2) and (11.3) and then
subtracting (11.1) gives (11.4) (gray terms remain, terms of the same color cancel out
each other). This shows𝜓 (ℎ) = 𝜓 (𝑓2) +𝜓 (𝑔1) −𝜓 (𝑓).

Again, let z be some face of an upward embedding and let 𝑍 be a set of vertices on
the facial walk of z . For the scope of this proof, let 𝑛(𝑍, z) denote the number of face

An 𝒙𝒚-Planarity Testing Algorithm Section 11.5

235

sources of z in 𝑍 . We have the following.

𝑛𝑓 = 𝑛(𝐵 ∪ 𝐷, 𝑓) + 𝑛(𝐴, 𝑓) + 𝑛(𝐶, 𝑓) + 𝑛({𝑢, v}, 𝑓) + 𝑛({𝑢 ′, v ′}, 𝑓) (11.5)

𝑛𝑓2 = 𝑛(𝐵 ∪ 𝐷, 𝑓2) + 𝑛(𝐶, 𝑓2) + 𝑛({𝑢, v, 𝑤}, 𝑓2) + 𝑛({𝑢 ′, v ′}, 𝑓2)

= 𝑛(𝐵 ∪ 𝐷, 𝑓) + 𝑛(𝐶, 𝑓) + 𝑛({𝑢, v, 𝑤}, 𝑓2) + 𝑛({𝑢 ′, v ′}, 𝑓) (11.6)

𝑛𝑔1 = 𝑛(𝐵 ∪ 𝐷,𝑔1) + 𝑛(𝐴,𝑔1) + 𝑛({𝑢, v}, 𝑔1) + 𝑛({𝑢 ′, v ′, 𝑤 ′}, 𝑔1)

= 𝑛(𝐵 ∪ 𝐷, 𝑓) + 𝑛(𝐴, 𝑓) + 𝑛({𝑢, v}, 𝑓) + 𝑛({𝑢 ′, v ′, 𝑤 ′}, 𝑔1) (11.7)

𝑛ℎ = 𝑛(𝐵 ∪ 𝐷,ℎ) + 𝑛({𝑢, v, 𝑤}, ℎ) + 𝑛({𝑢 ′, v ′, 𝑤 ′}, ℎ)

= 𝑛(𝐵 ∪ 𝐷, 𝑓) + 𝑛({𝑢, v, 𝑤}, 𝑓2) + 𝑛({𝑢 ′, v ′, 𝑤 ′}, 𝑔1) (11.8)

Similarly, adding (11.6) and (11.7) and then subtracting (11.5) gives (11.8), which
shows that 𝑛ℎ = 𝑛𝑓2 + 𝑛𝑔1 − 𝑛𝑓 . Let 𝑘 = 1 if 𝑓 is the outer face and let 𝑘 = −1 if 𝑓 is
an inner face. Lemma 74 gives

𝜓 (𝑓) = 𝑛𝑓 + 𝑘 (11.9)
𝜓 (𝑓2) = 𝑛𝑓2 + 𝑘 (11.10)
𝜓 (𝑔1) = 𝑛𝑔1 + 𝑘. (11.11)

Adding (11.10) and (11.11) and then subtracting (11.9) gives

𝜓 (𝑓2) +𝜓 (𝑔1) −𝜓 (𝑓) = 𝑛𝑓2 + 𝑛𝑔1 − 𝑛𝑓 + 𝑘,

which, together with𝜓 (ℎ) = 𝜓 (𝑓2) +𝜓 (𝑔1) −𝜓 (𝑓) and 𝑛ℎ = 𝑛𝑓2 + 𝑛𝑔1 − 𝑛𝑓 as shown
above, gives𝜓 (ℎ) = 𝑛ℎ + 𝑘 . This shows that ℎ is upward consistent in the sense of
Lemma 74.

The same idea extends to the case of faces that are bounded by gadgets correspond-
ing to more than two independent edges. The case of adjacent edges reduces to the
case of independent edges by subdividing for each edge (𝑢, v) ∈ 𝑋 the edges of the
gadget that replace (𝑢, v) and treating the subdivision edges incident to 𝑢 and v as
edges in 𝑌 ; see Figure 11.7 (d, e). The choice of each gadget specifies the direction of
the edges incident to 𝑢 and v , and, possibly, the assignment of 𝑢 and v to a face. □

Lem. 79 gives that U∗ is upward planar. The clauses of the 2-Sat instance are
designed such that (i) U∗ is windrose consistent by Lem. 75, i.e., U∗ is windrose
planar, and (ii) U∗ is special. Lem. 77 gives that 𝐺 is 𝑥𝑦-planar if and only if the
2-Sat instance is satisfiable. To compute an 𝑥𝑦-planar drawing of 𝐺 , use the linear-
time windrose-planar drawing algorithm of Angelini et al. [Ang+18] to compute a
windrose planar drawing of 𝐺∗, which induces an 𝑥𝑦-planar drawing of 𝐺 .

Drawing Two Posets

236

Theorem 35. Let 𝐺 = (𝑉 , 𝐸) be a directed graph together with subsets 𝑋,𝑌 of its
edges 𝐸 such that 𝑋 ∪ 𝑌 = 𝐸, a planar embedding E of 𝐺 and an upward planar
embedding U of𝐺 |𝑌 . It can be tested in linear time whether there exists an 𝑥𝑦-planar
drawing of 𝐺 whose underlying planar embedding is E and whose underlying upward
planar embedding restricted to 𝐺 |𝑌 is U . In the positive case, such a drawing can be
computed in linear time as well.

11.6 Conclusion

We introduced and studied the concept of 𝑥𝑦-planarity which is particularly suitable
to draw two posets on the same ground set, one from bottom to top and the other from
left to right. Every 𝑥𝑦-planar drawing of a graph𝐺 induces a derived windrose planar
graph 𝐺∗, which implies that every 𝑥𝑦-planar graph admits a polyline drawing in
polynomial area with at most three bends per edge. Because 𝑥𝑦-planarity generalizes
both upward planarity and windrose planarity, 𝑥𝑦-planarity testing is NP-complete
in general. We considered the case that the upward part𝐺 |𝑌 is a connected spanning
subgraph of𝐺 whose upward embedding U is fixed, and that the planar embedding E
of 𝐺 is fixed as well. For this case, we have given a linear-time 𝑥𝑦-planarity test-
ing algorithm. It uses the connection to derived windrose planar graphs, a novel
combinatorial view of windrose planarity and a careful analysis of upward planar
embeddings and windrose planar embeddings.

237

12 Conclusion

and Open Problems

In this thesis, we contributed to the study of planarity variants for directed graphs.
The level planarity testing algorithms in Part I clear up some of the problems of the
existing approaches and handle the case when the embedding of the input graph is
fixed. In Part II we developed data structures that represent level planar and upward
planar embeddings and use them to efficiently solve constrained embedding problems.
Finally, in Part III, we introduced new drawing styles for directed planar graphs that
go beyond the well-established notions of level planarity and upward planarity and
developed algorithms to compute such drawings.

Part I. We started with Chapter 3, where we found that level planarity testing with
fixed embedding is feasible in linear time. A key tool to achieve this is our untangling
lemma, which relies on fixed 𝑦-coordinates of the vertices. In contrast, radial upward
and upward planarity with fixed embedding (i.e., the cyclic order of edges around each
vertex is fixed) can only be solved in 𝑂 (𝑛 log3 𝑛) and 𝑂 (𝑛3/2) time, respectively. It is
an open question whether these problems can be solved in linear time. One attempt
could be to see whether it is possible to make the faces of a directed graph with
fixed planar embedding small by inserting new edges without affecting its upward
planarity with respect to the fixed planar embedding. This would require a more
precise understanding of the interactions between planarity and upward planarity.
In Chapter 4, we have shown equivalence of the correctness of a 2-Sat formula-

tion of level planarity and a Hanani-Tutte-style topological characterization of level
planarity. This constitutes a complete correctness proof separate from the one due to
Randerath et al., whose completeness has been doubted by some authors [FPSŠ13].

Chapter 12 Conclusion and Open Problems

238

Moreover, using a Hanani-Tutte-style topological characterization of radial level
planarity, we have shown that this equivalence carries over to radial level planarity.
This yields a novel very simple 2-Sat formulation of radial level planarity. Unfortu-
nately, both algorithms are simply tests, so they do not output (radial) level planar
embeddings. Can they be extended to output such an embedding? We note that
the disputed proof due to Randerath et al. works precisely in this way, namely by
translating a satisfying assignment of the 2-Sat into a level planar embedding.

In Chapter 5, we presented a linear-time (radial) level-planarity testing algorithm.
It follows the same well-established general approach as previous research, but differs
in some key parts. In particular, we discard the PQ-tree in favor of the more modern
PC-tree, which we then augment to keep track of apices instead of just spaces. In
our opinion, our algorithm is the first one that comes with a convincing proof of
correctness. Indeed, we treat an important case which we believe Bachmaier et
al. [BBF05] have missed. This would make our algorithm the first correct linear-
time algorithm for radial level planarity testing and radial level planar embedding.
Although our algorithm is more simple than the previously existing ones, it is still
far from trivial. It would be interesting to see a working implementation of our
algorithm as a witness to its practicality.

Part II. In this part, we approached constrained embedding problems from two an-
gles. Our first approach was to augment PC-trees to be able to handle partial orders of
their leaves, which lets us find partial and constrained level-planar embeddings. This
approach is limited to single-source level graphs. It would be interesting to consider
whether this approach can be extended to the general case with multiple sources. We
have shown that the general multi-source case is NP-hard, so a polynomial-time algo-
rithm is unlikely to exist. However, the problem might be fixed-parameter tractable,
e.g., with respect to the number of sources and sinks of the input graph. One idea for
such an algorithm would be to combine our partial level planarity algorithm with
our linear-time level planarity testing algorithm. For example, it could be feasible to
keep track of several apex candidates between each pair of leaves 𝑥 ⊲ 𝑦 of the PC-tree,
and testing multiple such candidates during one merge operation.

Our second approach to handle constrained embedding problems was to develop
SPQR-tree-like embedding representations for biconnected single-source level-planar
graphs and upward-planar graphs. These representations offer two major advantages
over PC-trees. One, they enable a global view on all level planar or upward planar
embeddings of a graph. Two, they can be used almost as drop-in replacements
to translate existing constrained embedding algorithms from the planar setting to
the level planar and upward planar settings with only very few modifications. We
have provided multiple examples of such straight-forward translations. It would

Conclusion and Open Problems Chapter 12

239

be interesting to see whether SPQR-tree-like embedding representations also exist
for other planarity variants. For instance, it seems possible that the UP-tree could
be restricted to an SPQR-tree-like embedding representation for windrose planarity
using our characterization of windrose planarity from Chapter 11.

Part III. In the third part, we introduced and studied three new drawing styles for
directed graphs. We have shown that testing for multilevel planarity, a generalization
of level planarity where vertices are not constrained to exactly one level but rather
to sets of levels, is NP-hard for many cases. The hardness reductions strongly rely on
the fact that our definition of multilevel planarity requires each vertex to be placed at
integer 𝑦-coordinates. An alternative definition of multilevel planarity could instead
constrain the 𝑦-coordinate of each vertex to lie within a real interval. Would such a
definition allow for efficient algorithms for more general cases?
In Chapter 10, we have studied level planar drawings with few slopes. For two

slopes, this is a loose level-planar equivalent of the popular orthogonal drawing style
for planar graphs. Finally, in Chapter 11 we have generalized the concept of upward
planarity from one direction to two directions under the name 𝑥𝑦-planarity. For
this planarity variant, we have presented an efficient algorithm that covers the case
when rightward edges are inserted into a graph with fixed upward planar embedding.
It would be interesting to see whether the requirement that the upward planar
embedding be fixed could be weakened to only fixing the planar embedding. This
would once more require a better understanding of the interplay between planarity
and upward planarity.

241

Bibliography

[AB19] Patrizio Angelini and Michael A. Bekos. Hierarchical Partial Pla-
narity. In Algorithmica volume 81:6, pages 2196–2221, 2019. doi:
10.1007/s00453-018-0530-6.
Cited on page 132.

[ABBG11] Christopher Auer, Christian Bachmaier, Franz-Josef Brandenburg, and
Andreas Gleißner. Classification of Planar Upward Embedding. In
GraphDrawing - 19th International Symposium, GD 2011, Eindhoven, The
Netherlands, September 21-23, 2011, Revised Selected Papers. Ed. by Marc
J. van Kreveld and Bettina Speckmann. Volume 7034 of Lecture Notes in
Computer Science, pages 415–426. Springer, 2011. doi: 10.1007/978-
3-642-25878-7_39.
Cited on page 24.

[ABR14] Patrizio Angelini, Thomas Bläsius, and Ignaz Rutter. Testing Mutual
duality of Planar graphs. In Int. J. Comput. Geom. Appl. volume 24:4,
pages 325–346, 2014. doi: 10.1142/S0218195914600103.
Cited on page 11.

[ADDF17] Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, and Fab-
rizio Frati. Strip Planarity Testing for Embedded Planar Graphs.
In Algorithmica volume 77:4, pages 1022–1059, 2017. doi: 10.1007/
s00453-016-0128-9.
Cited on pages 20, 26.

https://doi.org/10.1007/s00453-018-0530-6
https://doi.org/10.1007/978-3-642-25878-7_39
https://doi.org/10.1007/978-3-642-25878-7_39
https://doi.org/10.1142/S0218195914600103
https://doi.org/10.1007/s00453-016-0128-9
https://doi.org/10.1007/s00453-016-0128-9

Bibliography

242

[ADP11] Patrizio Angelini, Giuseppe Di Battista, and Maurizio Patrignani. Find-
ing a Minimum-depth Embedding of a Planar Graph in 𝑶 (𝒏4)
Time. In Algorithmica volume 60:4, pages 890–937, 2011. doi: 10.
1007/s00453-009-9380-6.
Cited on pages 132, 158.

[Ang+12] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrig-
nani, and Ignaz Rutter. Testing the simultaneous embeddability of
two graphs whose intersection is a biconnected or a connected
graph. In J. Discrete Algorithms volume 14, pages 150–172, 2012. doi:
10.1016/j.jda.2011.12.015.
Cited on pages 108, 151, 153.

[Ang+15a] Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio
Frati, Maurizio Patrignani, and Ignaz Rutter. Testing Cyclic Level
and Simultaneous Level Planarity. In CoRR volume abs/1510.08274,
2015. arXiv: 1510.08274. url: http://arxiv.org/abs/1510.08274.
Cited on pages 107, 108.

[Ang+15b] Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio
Frati, and Vincenzo Roselli. The importance of being proper: (In
clustered-level planarity and 𝑻 -level planarity). In Theor. Comput.
Sci. volume 571, pages 1–9, 2015. doi: 10.1016/j.tcs.2014.12.019.
Cited on pages 107, 178.

[Ang+15c] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek,
Jan Kratochvíl, Maurizio Patrignani, and Ignaz Rutter. Testing Pla-
narity of Partially EmbeddedGraphs. InACMTrans. Algorithms vol-
ume 11:4, pages 32:1–32:42, 2015. doi: 10.1145/2629341.
Cited on pages 1, 107, 132, 151, 152, 158, 172, 177.

[Ang+16] Patrizio Angelini, Steven Chaplick, Sabine Cornelsen, Giordano Da
Lozzo, Giuseppe Di Battista, Peter Eades, Philipp Kindermann, Jan
Kratochvíl, Fabian Lipp, and Ignaz Rutter. Simultaneous Orthogo-
nal Planarity. In Graph Drawing and Network Visualization - 24th
International Symposium, GD 2016, Athens, Greece, September 19-21,
2016, Revised Selected Papers. Ed. by Yifan Hu and Martin Nöllenburg.
Volume 9801 of Lecture Notes in Computer Science, pages 532–545.
Springer, 2016. doi: 10.1007/978-3-319-50106-2_41.
Cited on pages 132, 203.

https://doi.org/10.1007/s00453-009-9380-6
https://doi.org/10.1007/s00453-009-9380-6
https://doi.org/10.1016/j.jda.2011.12.015
https://arxiv.org/abs/1510.08274
http://arxiv.org/abs/1510.08274
https://doi.org/10.1016/j.tcs.2014.12.019
https://doi.org/10.1145/2629341
https://doi.org/10.1007/978-3-319-50106-2_41

Bibliography

243

[Ang+18] Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Valentino
Di Donato, Philipp Kindermann, Günter Rote, and Ignaz Rutter. Win-
drose Planarity: Embedding Graphs with Direction-Constrained
Edges. In ACM Trans. Algorithms volume 14:4, pages 54:1–54:24, 2018.
doi: 10.1145/3239561.
Cited on pages 222, 230, 235.

[Ang+20] Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio
Frati, Maurizio Patrignani, and Ignaz Rutter. Beyond level planarity:
Cyclic, torus, and simultaneous level planarity. In Theor. Comput.
Sci. volume 804, pages 161–170, 2020. doi: 10.1016/j.tcs.2019.11.
024.
Cited on pages 59, 178, 204.

[Ark+04] Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Martin L. De-
maine, Joseph S. B. Mitchell, Saurabh Sethia, and Steven Skiena.When
can you fold a map? In Comput. Geom. volume 29:1, pages 23–46,
2004. doi: 10.1016/j.comgeo.2004.03.012.
Cited on page 26.

[Bac04] Christian Bachmaier. Circle Planarity of Level Graphs. PhD thesis.
Universität Passau, 2004.
Cited on page 62.

[Ban+19] Michael J. Bannister, William E. Devanny, Vida Dujmovic, David Epp-
stein, and David R. Wood. Track Layouts, Layered Path Decom-
positions, and Leveled Planarity. In Algorithmica volume 81:4,
pages 1561–1583, 2019. doi: 10.1007/s00453-018-0487-5.
Cited on page 178.

[BBF05] Christian Bachmaier, Franz-Josef Brandenburg, and Michael Forster.
Radial Level Planarity Testing and Embedding in Linear Time.
In J. Graph Algorithms Appl. volume 9:1, pages 53–97, 2005. doi: 10.
7155/jgaa.00100.
Cited on pages v, 2, 4, 21, 34, 62, 63, 107, 178, 238.

[BBJR19] Lukas Barth, Guido Brückner, Paul Jungeblut, and Marcel Radermacher.
Multilevel Planarity. In WALCOM: Algorithms and Computation -
13th International Conference, WALCOM 2019, Guwahati, India, Febru-
ary 27 - March 2, 2019, Proceedings. Ed. by Gautam K. Das, Partha
Sarathi Mandal, Krishnendu Mukhopadhyaya, and Shin-Ichi Nakano.
Volume 11355 of Lecture Notes in Computer Science, pages 219–231.
Springer, 2019. doi: 10.1007/978-3-030-10564-8_18.
Cited on page 177.

https://doi.org/10.1145/3239561
https://doi.org/10.1016/j.tcs.2019.11.024
https://doi.org/10.1016/j.tcs.2019.11.024
https://doi.org/10.1016/j.comgeo.2004.03.012
https://doi.org/10.1007/s00453-018-0487-5
https://doi.org/10.7155/jgaa.00100
https://doi.org/10.7155/jgaa.00100
https://doi.org/10.1007/978-3-030-10564-8_18

Bibliography

244

[BBJR21] Lukas Barth, Guido Brückner, Paul Jungeblut, and Marcel Raderma-
cher. Multilevel Planarity. In J. Graph Algorithms Appl. volume 25:1,
pages 151–170, 2021. doi: 10.7155/jgaa.00554. url: https://doi.org/10.7155/jgaa.00554.
Cited on page 177.

[BC20] Guido Brückner and Vera Chekan. Drawing Two Posets. In CoRR vol-
ume abs/2010.12928, 2020. arXiv: 2010.12928.
Cited on pages 21, 221.

[BDLM94] Paola Bertolazzi, Giuseppe Di Battista, Giuseppe Liotta, and Carlo
Mannino. Upward Drawings of Triconnected Digraphs. In Algo-
rithmica volume 12:6, pages 476–497, 1994. doi: 10.1007/BF01188716.
Cited on pages 10, 21, 24, 30, 31, 157, 178, 185, 199, 222, 224.

[BDMT98] Paola Bertolazzi, Giuseppe Di Battista, Carlo Mannino, and Roberto
Tamassia. Optimal Upward Planarity Testing of Single-Source
Digraphs. In SIAM J. Comput. volume 27:1, pages 132–169, 1998. doi:
10.1137/S0097539794279626.
Cited on pages 157, 162, 166, 167, 169, 171, 178, 182, 183, 185, 186, 188, 199, 222.

[Bek+18] Michael A. Bekos, Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta,
and Fabrizio Montecchiani.Universal Slope Sets for Upward Planar
Drawings. In Graph Drawing and Network Visualization - 26th Inter-
national Symposium, GD 2018, Barcelona, Spain, September 26-28, 2018,
Proceedings. Ed. by Therese C. Biedl and Andreas Kerren. Volume 11282
of Lecture Notes in Computer Science, pages 77–91. Springer, 2018.
doi: 10.1007/978-3-030-04414-5_6.
Cited on page 203.

[BHR19] Guido Brückner, Markus Himmel, and Ignaz Rutter. An SPQR-Tree-
Like Embedding Representation for Upward Planarity. In Graph
Drawing and Network Visualization - 27th International Symposium, GD
2019, Prague, Czech Republic, September 17-20, 2019, Proceedings. Ed. by
Daniel Archambault and Csaba D. Tóth. Volume 11904 of Lecture Notes
in Computer Science, pages 517–531. Springer, 2019. doi: 10.1007/
978-3-030-35802-0_39.
Cited on pages 108, 132, 157.

https://doi.org/10.7155/jgaa.00554
https://doi.org/10.7155/jgaa.00554
https://arxiv.org/abs/2010.12928
https://doi.org/10.1007/BF01188716
https://doi.org/10.1137/S0097539794279626
https://doi.org/10.1007/978-3-030-04414-5_6
https://doi.org/10.1007/978-3-030-35802-0_39
https://doi.org/10.1007/978-3-030-35802-0_39

Bibliography

245

[BKM19] Guido Brückner, Nadine Davina Krisam, and Tamara Mchedlidze.
Level-Planar Drawings with Few Slopes. In Graph Drawing and
Network Visualization - 27th International Symposium, GD 2019, Prague,
Czech Republic, September 17-20, 2019, Proceedings. Ed. by Daniel
Archambault and Csaba D. Tóth. Volume 11904 of Lecture Notes in
Computer Science, pages 559–572. Springer, 2019. doi: 10.1007/978-
3-030-35802-0_42.
Cited on page 201.

[BKR13] Thomas Bläsius, Stephen G. Kobourov, and Ignaz Rutter. Simultane-
ous Embedding of Planar Graphs. In Handbook on Graph Drawing
and Visualization. Ed. by Roberto Tamassia. Chapman and Hall/CRC,
2013, pages 349–381.
Cited on pages 1, 108, 132, 158, 203.

[BKR18] Thomas Bläsius, Annette Karrer, and Ignaz Rutter. Simultaneous
Embedding: Edge Orderings, Relative Positions, Cutvertices. In
Algorithmica volume 80:4, pages 1214–1277, 2018. doi: 10 . 1007 /
s00453-017-0301-9.
Cited on pages 108, 153, 170.

[BL76] Kellogg S. Booth and George S. Lueker. Testing for the Consecutive
Ones Property, Interval Graphs, and Graph Planarity Using PQ-
Tree Algorithms. In J. Comput. Syst. Sci. volume 13:3, pages 335–379,
1976. doi: 10.1016/S0022-0000(76)80045-1.
Cited on pages 15, 113.

[BLR16] Thomas Bläsius, Sebastian Lehmann, and Ignaz Rutter. Orthogonal
graph drawing with inflexible edges. In Comput. Geom. volume 55,
pages 26–40, 2016. doi: 10.1016/j.comgeo.2016.03.001.
Cited on page 158.

[BM04] John M. Boyer and Wendy J. Myrvold. On the Cutting Edge: Sim-
plified O(n) Planarity by Edge Addition. In J. Graph Algorithms
Appl. volume 8:3, pages 241–273, 2004. doi: 10.7155/jgaa.00091.
Cited on page 1.

[BM90] Daniel Bienstock and Clyde L. Monma. On the Complexity of
Embedding Planar Graphs To Minimize Certain Distance
Measures. In Algorithmica volume 5:1, pages 93–109, 1990. doi:
10.1007/BF01840379.
Cited on page 132.

https://doi.org/10.1007/978-3-030-35802-0_42
https://doi.org/10.1007/978-3-030-35802-0_42
https://doi.org/10.1007/s00453-017-0301-9
https://doi.org/10.1007/s00453-017-0301-9
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1016/j.comgeo.2016.03.001
https://doi.org/10.7155/jgaa.00091
https://doi.org/10.1007/BF01840379

Bibliography

246

[BMW06] János Barát, Jirí Matousek, and David R. Wood. Bounded-Degree
Graphs have Arbitrarily Large Geometric Thickness. In Electron.
J. Comb. volume 13:1, 2006. doi: 10.37236/1029.
Cited on page 203.

[Bor+17] Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum,
and Christian Wulff-Nilsen.Multiple-Source Multiple-Sink Maxi-
mum Flow in Directed Planar Graphs in Near-Linear Time. In
SIAM J. Comput. volume 46:4, pages 1280–1303, 2017. doi: 10.1137/
15M1042929.
Cited on pages 25, 207, 208.

[BR15] Thomas Bläsius and Ignaz Rutter. Disconnectivity and relative posi-
tions in simultaneous embeddings. In Comput. Geom. volume 48:6,
pages 459–478, 2015. doi: 10.1016/j.comgeo.2015.02.002.
Cited on page 108.

[BR16] Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-Ordering
with Applications to Constrained Embedding Problems. In
ACM Trans. Algorithms volume 12:2, pages 16:1–16:46, 2016. doi:
10.1145/2738054.
Cited on page 108.

[BR17] Guido Brückner and Ignaz Rutter. Partial and Constrained Level
Planarity. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel
Porta Fira, January 16-19. Ed. by Philip N. Klein, pages 2000–2011. SIAM,
2017. doi: 10.1137/1.9781611974782.130.
Cited on pages 34, 105, 132, 151, 152, 153, 158, 178, 203.

[BR20] Guido Brückner and Ignaz Rutter. An SPQR-Tree-Like Embedding
Representation for Level Planarity. In 31st International Sympo-
sium on Algorithms and Computation, ISAAC 2020, December 14-18,
2020, Hong Kong, China (Virtual Conference). Ed. by Yixin Cao, Siu-
Wing Cheng, and Minming Li. Volume 181 of LIPIcs, pages 8:1–8:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi: 10.
4230/LIPIcs.ISAAC.2020.8.
Cited on page 131.

[BR21] Guido Brückner and Ignaz Rutter.Radial Level Planarity with Fixed
Embedding. In J. Graph Algorithms Appl. volume 25:1, pages 353–366,
2021. doi: 10.7155/jgaa.00561.
Cited on page 19.

https://doi.org/10.37236/1029
https://doi.org/10.1137/15M1042929
https://doi.org/10.1137/15M1042929
https://doi.org/10.1016/j.comgeo.2015.02.002
https://doi.org/10.1145/2738054
https://doi.org/10.1137/1.9781611974782.130
https://doi.org/10.4230/LIPIcs.ISAAC.2020.8
https://doi.org/10.4230/LIPIcs.ISAAC.2020.8
https://doi.org/10.7155/jgaa.00561

Bibliography

247

[Bra14] Franz-Josef Brandenburg.Upward planar drawings on the standing
and the rolling cylinders. In Comput. Geom. volume 47:1, pages 25–
41, 2014. doi: 10.1016/j.comgeo.2013.08.003.
Cited on page 107.

[BRS18] Guido Brückner, Ignaz Rutter, and Peter Stumpf. Level Planarity:
Transitivity vs. Even Crossings. In Graph Drawing and Network
Visualization - 26th International Symposium, GD 2018, Barcelona, Spain,
September 26-28, 2018, Proceedings. Ed. by Therese C. Biedl and Andreas
Kerren. Volume 11282 of Lecture Notes in Computer Science, pages 39–
52. Springer, 2018. doi: 10.1007/978-3-030-04414-5_3.
Cited on pages 33, 63, 107, 157.

[Brü16] Guido Brückner. Extending Partial Planar Drawings of Level
Graphs. MA thesis. Karlsruhe Institute of Technology, 2016.
Cited on page 105.

[BRW16] Thomas Bläsius, Ignaz Rutter, and DorotheaWagner.Optimal Orthog-
onal Graph Drawing with Convex Bend Costs. In ACM Trans. Al-
gorithms volume 12:3, pages 33:1–33:32, 2016. doi: 10.1145/2838736.
Cited on pages 1, 131, 158.

[CD95] M. Chandramouli and A. A. Diwan. Upward Numbering Testing
for Triconnected Graphs. In Graph Drawing, Symposium on Graph
Drawing, GD '95, Passau, Germany, September 20-22, 1995, Proceedings.
Ed. by Franz-Josef Brandenburg. Volume 1027 of Lecture Notes in
Computer Science, pages 140–151. Springer, 1995. doi: 10 . 1007 /
BFb0021798.
Cited on page 20.

[CFK19] Steven Chaplick, Radoslav Fulek, and Pavel Klavík. Extending partial
representations of circle graphs. In J. Graph Theory volume 91:4,
pages 365–394, 2019. doi: 10.1002/jgt.22436.
Cited on page 108.

[CGMW09] Markus Chimani, Carsten Gutwenger, Petra Mutzel, and Christian
Wolf. Inserting a vertex into a planar graph. In Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2009, New York, NY, USA, January 4-6, 2009, pages 375–383. SIAM, 2009.
url: http://dl.acm.org/citation.cfm?id=1496770.1496812.
Cited on page 132.

https://doi.org/10.1016/j.comgeo.2013.08.003
https://doi.org/10.1007/978-3-030-04414-5_3
https://doi.org/10.1145/2838736
https://doi.org/10.1007/BFb0021798
https://doi.org/10.1007/BFb0021798
https://doi.org/10.1002/jgt.22436
http://dl.acm.org/citation.cfm?id=1496770.1496812

Bibliography

248

[CH16] Markus Chimani and Petr Hlinený. Inserting Multiple Edges into
a Planar Graph. In 32nd International Symposium on Computational
Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA. Ed. by Sándor
P. Fekete and Anna Lubiw. Volume 51 of LIPIcs, pages 30:1–30:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi: 10.
4230/LIPIcs.SoCG.2016.30.
Cited on page 132.

[Che19] Vera Chekan. Upward-Rightward-Prescribed Planarity. Karlsruhe
Institute of Technology, 2019.
Cited on page 221.

[Chi+13] Markus Chimani, Carsten Gutwenger, Michael Jünger, GunnarW. Klau,
Karsten Klein, and Petra Mutzel. The Open Graph Drawing Frame-
work (OGDF). In Handbook on Graph Drawing and Visualization. Ed.
by Roberto Tamassia. Chapman and Hall/CRC, 2013, pages 543–569.
Cited on page 61.

[Cho34] Chaim Chojnacki. Über wesentlich unplättbare Kurven im drei-
dimensionalen Raume. In Fundamenta Mathematicae volume 23:1,
pages 135–142, 1934.
Cited on pages 1, 34.

[CNAO85] Norishige Chiba, Takao Nishizeki, Shigenobu Abe, and Takao Ozawa.
A Linear Algorithm for Embedding Planar Graphs Using PQ-
Trees. In J. Comput. Syst. Sci. volume 30:1, pages 54–76, 1985. doi:
10.1016/0022-0000(85)90004-2.
Cited on pages 101, 135.

[DD11] Will Durant and Ariel Durant. The Age of Louis XIV: The Story of
Civilization. Simon and Schuster, 2011.
Cited on page 178.

[DDF20] Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Extend-
ing upward planar graph drawings. In Comput. Geom. volume 91,
page 101668, 2020. doi: 10.1016/j.comgeo.2020.101668.
Cited on pages 108, 158.

[DESW07] Vida Dujmovic, David Eppstein, Matthew Suderman, and David R.
Wood. Drawings of planar graphs with few slopes and segments.
In Comput. Geom. volume 38:3, pages 194–212, 2007. doi: 10.1016/j.
comgeo.2006.09.002.
Cited on pages 1, 203.

https://doi.org/10.4230/LIPIcs.SoCG.2016.30
https://doi.org/10.4230/LIPIcs.SoCG.2016.30
https://doi.org/10.1016/0022-0000(85)90004-2
https://doi.org/10.1016/j.comgeo.2020.101668
https://doi.org/10.1016/j.comgeo.2006.09.002
https://doi.org/10.1016/j.comgeo.2006.09.002

Bibliography

249

[DETT99] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tol-
lis. Graph Drawing: Algorithms for the Visualization of Graphs.
Prentice-Hall, 1999. isbn: 0-13-301615-3.
Cited on page 199.

[DF09] Giuseppe Di Battista and Fabrizio Frati. Efficient 𝑪-Planarity Testing
for Embedded Flat Clustered Graphs with Small Faces. In J. Graph
Algorithms Appl. volume 13:3, pages 349–378, 2009. doi: 10.7155/
jgaa.00191.
Cited on page 177.

[DJKR14] Giordano Da Lozzo, Vít Jelínek, Jan Kratochvíl, and Ignaz Rutter. Pla-
nar Embeddings with Small and Uniform Faces. In Algorithms and
Computation - 25th International Symposium, ISAAC 2014, Jeonju, Korea,
December 15-17, 2014, Proceedings. Ed. by Hee-Kap Ahn and Chan-Su
Shin. Volume 8889 of Lecture Notes in Computer Science, pages 633–
645. Springer, 2014. doi: 10.1007/978-3-319-13075-0_50.
Cited on page 158.

[dK12] Mark de Berg and Amirali Khosravi. Optimal Binary Space Parti-
tions for Segments in the Plane. In Int. J. Comput. Geom. Appl. vol-
ume 22:3, pages 187–206, 2012. doi: 10.1142/S0218195912500045.
Cited on pages 121, 126, 195, 215.

[DLP18] Walter Didimo, Giuseppe Liotta, and Maurizio Patrignani. Bend-
Minimum Orthogonal Drawings in Quadratic Time. In Graph
Drawing and Network Visualization - 26th International Symposium,
GD 2018, Barcelona, Spain, September 26-28, 2018, Proceedings. Ed.
by Therese C. Biedl and Andreas Kerren. Volume 11282 of Lecture
Notes in Computer Science, pages 481–494. Springer, 2018. doi:
10.1007/978-3-030-04414-5_34.
Cited on page 158.

[DLP19] Walter Didimo, Giuseppe Liotta, and Maurizio Patrignani. HV-
planarity: Algorithms and complexity. In J. Comput. Syst. Sci. vol-
ume 99, pages 72–90, 2019. doi: 10.1016/j.jcss.2018.08.003.
Cited on page 222.

[dM12] Hubert de Fraysseix and Patrice Ossona de Mendez. Trémaux trees
and planarity. In Eur. J. Comb. volume 33:3, pages 279–293, 2012. doi:
10.1016/j.ejc.2011.09.012.
Cited on page 1.

https://doi.org/10.7155/jgaa.00191
https://doi.org/10.7155/jgaa.00191
https://doi.org/10.1007/978-3-319-13075-0_50
https://doi.org/10.1142/S0218195912500045
https://doi.org/10.1007/978-3-030-04414-5_34
https://doi.org/10.1016/j.jcss.2018.08.003
https://doi.org/10.1016/j.ejc.2011.09.012

Bibliography

250

[DN88] Giuseppe Di Battista and Enrico Nardelli. Hierarchies and planarity
theory. In IEEE Trans. Syst. Man Cybern. volume 18:6, pages 1035–1046,
1988. doi: 10.1109/21.23105.
Cited on pages 2, 62, 101, 107, 108, 109, 110, 113, 142, 150.

[DR18] Giordano Da Lozzo and Ignaz Rutter. Approximation Algorithms
for Facial Cycles in Planar Embeddings. In 29th International Sym-
posium on Algorithms and Computation, ISAAC 2018, December 16-19,
2018, Jiaoxi, Yilan, Taiwan. Ed. by Wen-Lian Hsu, Der-Tsai Lee, and
Chung-Shou Liao. Volume 123 of LIPIcs, pages 41:1–41:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi: 10 . 4230 /
LIPIcs.ISAAC.2018.41.
Cited on page 158.

[DSW07] Vida Dujmovic, Matthew Suderman, and David R. Wood.Graph draw-
ings with few slopes. In Comput. Geom. volume 38:3, pages 181–193,
2007. doi: 10.1016/j.comgeo.2006.08.002.
Cited on page 203.

[DT88] Giuseppe Di Battista and Roberto Tamassia. Algorithms for Plane
Representations of Acyclic Digraphs. In Theor. Comput. Sci. vol-
ume 61, pages 175–198, 1988. doi: 10.1016/0304-3975(88)90123-5.
Cited on pages 135, 182, 187, 225.

[DT89] Giuseppe Di Battista and Roberto Tamassia. Incremental Planarity
Testing (Extended Abstract). In 30th Annual Symposium on Founda-
tions of Computer Science, Research Triangle Park, North Carolina, USA,
30 October - 1 November 1989, pages 436–441. IEEE Computer Society,
1989. doi: 10.1109/SFCS.1989.63515.
Cited on pages 1, 132, 158.

[DT90] Giuseppe Di Battista and Roberto Tamassia. On-Line Graph Algo-
rithms with SPQR-Trees. In Automata, Languages and Programming,
17th International Colloquium, ICALP90, Warwick University, England,
UK, July 16-20, 1990, Proceedings. Ed. by Mike Paterson. Volume 443
of Lecture Notes in Computer Science, pages 598–611. Springer, 1990.
doi: 10.1007/BFb0032061.
Cited on pages 1, 132, 158.

[DT96] Giuseppe Di Battista and Roberto Tamassia.On-LineMaintenance of
Triconnected Components with SPQR-Trees. In Algorithmica vol-
ume 15:4, pages 302–318, 1996. doi: 10.1007/BF01961541.
Cited on pages 1, 132, 158.

https://doi.org/10.1109/21.23105
https://doi.org/10.4230/LIPIcs.ISAAC.2018.41
https://doi.org/10.4230/LIPIcs.ISAAC.2018.41
https://doi.org/10.1016/j.comgeo.2006.08.002
https://doi.org/10.1016/0304-3975(88)90123-5
https://doi.org/10.1109/SFCS.1989.63515
https://doi.org/10.1007/BFb0032061
https://doi.org/10.1007/BF01961541

Bibliography

251

[EFK09] Alejandro Estrella-Balderrama, J. Joseph Fowler, and Stephen G.
Kobourov. On the Characterization of Level Planar Trees by
Minimal Patterns. In Graph Drawing, 17th International Symposium,
GD 2009, Chicago, IL, USA, September 22-25, 2009. Revised Papers.
Ed. by David Eppstein and Emden R. Gansner. Volume 5849 of Lec-
ture Notes in Computer Science, pages 69–80. Springer, 2009. doi:
10.1007/978-3-642-11805-0_9.
Cited on page 2.

[EIS76] Shimon Even, Alon Itai, and Adi Shamir. On the Complexity of
Timetable and Multicommodity Flow Problems. In SIAM J. Com-
put. volume 5:4, pages 691–703, 1976. doi: 10.1137/0205048.
Cited on page 215.

[ELM16] William S. Evans, Giuseppe Liotta, and Fabrizio Montecchiani. Simul-
taneous visibility representations of plane st-graphs using L-
shapes. In Theor. Comput. Sci. volume 645, pages 100–111, 2016. doi:
10.1016/j.tcs.2016.06.045.
Cited on page 222.

[Est+07] Alejandro Estrella-Balderrama, Elisabeth Gassner, Michael Jünger, Mer-
ijam Percan, Marcus Schaefer, and Michael Schulz. Simultaneous
Geometric Graph Embeddings. In Graph Drawing, 15th Interna-
tional Symposium, GD 2007, Sydney, Australia, September 24-26, 2007.
Revised Papers. Ed. by Seok-Hee Hong, Takao Nishizeki, and Wu Quan.
Volume 4875 of Lecture Notes in Computer Science, pages 280–290.
Springer, 2007. doi: 10.1007/978-3-540-77537-9_28.
Cited on page 108.

[FB04] Michael Forster and Christian Bachmaier. Clustered Level Planarity.
In SOFSEM 2004: Theory and Practice of Computer Science, 30th Con-
ference on Current Trends in Theory and Practice of Computer Science,
Merin, Czech Republic, January 24-30, 2004. Ed. by Peter van Emde Boas,
Jaroslav Pokorný, Mária Bieliková, and Julius Stuller. Volume 2932 of
Lecture Notes in Computer Science, pages 218–228. Springer, 2004.
doi: 10.1007/978-3-540-24618-3_18.
Cited on page 178.

https://doi.org/10.1007/978-3-642-11805-0_9
https://doi.org/10.1137/0205048
https://doi.org/10.1016/j.tcs.2016.06.045
https://doi.org/10.1007/978-3-540-77537-9_28
https://doi.org/10.1007/978-3-540-24618-3_18

Bibliography

252

[FCE95] Qing-Wen Feng, Robert F. Cohen, and Peter Eades. Planarity for
Clustered Graphs. In Algorithms - ESA '95, Third Annual European
Symposium, Corfu, Greece, September 25-27, 1995, Proceedings. Ed. by
Paul G. Spirakis. Volume 979 of Lecture Notes in Computer Science,
pages 213–226. Springer, 1995. doi: 10.1007/3-540-60313-1_145.
Cited on page 158.

[FK07] J. Joseph Fowler and Stephen G. Kobourov. Minimum Level Non-
planar Patterns for Trees. In Graph Drawing, 15th International
Symposium, GD 2007, Sydney, Australia, September 24-26, 2007. Revised
Papers. Ed. by Seok-Hee Hong, Takao Nishizeki, and Wu Quan. Vol-
ume 4875 of Lecture Notes in Computer Science, pages 69–75. Springer,
2007. doi: 10.1007/978-3-540-77537-9_10.
Cited on page 2.

[FPS16] Radoslav Fulek, Michael J. Pelsmajer, and Marcus Schaefer. Hanani-
Tutte for Radial Planarity II. In Graph Drawing and Network Vi-
sualization - 24th International Symposium, GD 2016, Athens, Greece,
September 19-21, 2016, Revised Selected Papers. Ed. by Yifan Hu and
Martin Nöllenburg. Volume 9801 of Lecture Notes in Computer Sci-
ence, pages 468–481. Springer, 2016. doi: 10.1007/978-3-319-50106-
2_36.
Cited on pages iv, 4, 33, 35, 59, 63.

[FPS17] Radoslav Fulek, Michael J. Pelsmajer, and Marcus Schaefer. Hanani-
Tutte for Radial Planarity. In J. Graph Algorithms Appl. volume 21:1,
pages 135–154, 2017. doi: 10.7155/jgaa.00408.
Cited on pages iv, 2, 4, 33, 35, 63, 107.

[FPSS11] Radoslav Fulek, Michael J. Pelsmajer, Marcus Schaefer, and Daniel
Stefankovic. Hanani-Tutte and Monotone Drawings. In Graph-
Theoretic Concepts in Computer Science - 37th International Workshop,
WG 2011, Teplá Monastery, Czech Republic, June 21-24, 2011. Revised
Papers. Ed. by Petr Kolman and Jan Kratochvíl. Volume 6986 of Lecture
Notes in Computer Science, pages 283–294. Springer, 2011. doi: 10.
1007/978-3-642-25870-1_26.
Cited on page 132.

https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/978-3-540-77537-9_10
https://doi.org/10.1007/978-3-319-50106-2_36
https://doi.org/10.1007/978-3-319-50106-2_36
https://doi.org/10.7155/jgaa.00408
https://doi.org/10.1007/978-3-642-25870-1_26
https://doi.org/10.1007/978-3-642-25870-1_26

Bibliography

253

[FPSŠ13] Radoslav Fulek, Michael J. Pelsmajer, Marcus Schaefer, and Daniel
Štefankovič. Hanani–Tutte, Monotone Drawings, and Level-
Planarity. In Thirty Essays on Geometric Graph Theory. Ed. by János
Pach, pages 263–287. New York, NY: Springer New York, 2013. isbn:
978-1-4614-0110-0. doi: 10.1007/978-1-4614-0110-0_14.
Cited on pages iv, 2, 4, 33, 35, 36, 63, 107, 157, 237.

[FR06] Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative
weight edges, shortest paths, and near linear time. In J. Comput.
Syst. Sci. volume 72:5, pages 868–889, 2006. doi: 10.1016/j.jcss.
2005.05.007.
Cited on page 213.

[FT20] Radoslav Fulek and Csaba D. Tóth. Atomic Embeddability, Clus-
tered Planarity, and Thickenability. In Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City,
UT, USA, January 5-8, 2020. Ed. by Shuchi Chawla, pages 2876–2895.
SIAM, 2020. doi: 10.1137/1.9781611975994.175.
Cited on page 108.

[Gab83] Harold N. Gabow. An Efficient Reduction Technique for Degree-
Constrained Subgraph and Bidirected Network Flow Problems.
In Proceedings of the 15th Annual ACM Symposium on Theory of Com-
puting, 25-27 April, 1983, Boston, Massachusetts, USA. Ed. by David S.
Johnson, Ronald Fagin, Michael L. Fredman, David Harel, Richard M.
Karp, Nancy A. Lynch, Christos H. Papadimitriou, Ronald L. Rivest,
Walter L. Ruzzo, and Joel I. Seiferas, pages 448–456. ACM, 1983. doi:
10.1145/800061.808776.
Cited on pages 21, 22.

[GHKR14] Luca Grilli, Seok-Hee Hong, Jan Kratochvíl, and Ignaz Rutter. Draw-
ing Simultaneously Embedded Graphs with Few Bends. In Graph
Drawing - 22nd International Symposium, GD 2014, Würzburg, Ger-
many, September 24-26, 2014, Revised Selected Papers. Ed. by Christian A.
Duncan and Antonios Symvonis. Volume 8871 of Lecture Notes in
Computer Science, pages 40–51. Springer, 2014. doi: 10.1007/978-3-
662-45803-7_4.
Cited on page 108.

https://doi.org/10.1007/978-1-4614-0110-0_14
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1137/1.9781611975994.175
https://doi.org/10.1145/800061.808776
https://doi.org/10.1007/978-3-662-45803-7_4
https://doi.org/10.1007/978-3-662-45803-7_4

Bibliography

254

[Gia+14] Emilio Di Giacomo, Walter Didimo, Michael Kaufmann, Giuseppe Li-
otta, and Fabrizio Montecchiani. Upward-rightward planar draw-
ings. In 5th International Conference on Information, Intelligence, Sys-
tems and Applications, IISA 2014, Chania, Crete, Greece, July 7-9, 2014.
Ed. by Nikolaos G. Bourbakis, George A. Tsihrintzis, and Maria Virvou,
pages 145–150. IEEE, 2014. doi: 10.1109/IISA.2014.6878792.
Cited on page 222.

[GJ75] M. R. Garey and David S. Johnson. Complexity Results for Mul-
tiprocessor Scheduling under Resource Constraints. In SIAM J.
Comput. volume 4:4, pages 397–411, 1975. doi: 10.1137/0204035.
Cited on page 122.

[GJ77] M. R. Garey and David S. Johnson. Two-Processor Scheduling
with Start-Times and Deadlines. In SIAM J. Comput. volume 6:3,
pages 416–426, 1977. doi: 10.1137/0206029.
Cited on page 191.

[GLM15] Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani.Draw-
ing Outer 1-planar Graphs with Few Slopes. In J. Graph Algorithms
Appl. volume 19:2, pages 707–741, 2015. doi: 10.7155/jgaa.00376.
Cited on page 203.

[GLM18] Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani.Draw-
ing subcubic planar graphs with four slopes and optimal angular
resolution. In Theor. Comput. Sci. volume 714, pages 51–73, 2018. doi:
10.1016/j.tcs.2017.12.004.
Cited on page 203.

[GLM20] Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. 1-
bend upward planar slope number of SP-digraphs. In Comput.
Geom. volume 90, page 101628, 2020. doi: 10.1016/j.comgeo.2020.
101628.
Cited on page 203.

[GM00] Carsten Gutwenger and Petra Mutzel. A Linear Time Implementa-
tion of SPQR-Trees. In Graph Drawing, 8th International Symposium,
GD 2000, Colonial Williamsburg, VA, USA, September 20-23, 2000, Pro-
ceedings. Ed. by Joe Marks. Volume 1984 of Lecture Notes in Computer
Science, pages 77–90. Springer, 2000. doi: 10.1007/3-540-44541-
2_8.
Cited on pages 150, 170.

https://doi.org/10.1109/IISA.2014.6878792
https://doi.org/10.1137/0204035
https://doi.org/10.1137/0206029
https://doi.org/10.7155/jgaa.00376
https://doi.org/10.1016/j.tcs.2017.12.004
https://doi.org/10.1016/j.comgeo.2020.101628
https://doi.org/10.1016/j.comgeo.2020.101628
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1007/3-540-44541-2_8

Bibliography

255

[GMW05] Carsten Gutwenger, Petra Mutzel, and RenéWeiskircher. Inserting an
Edge into a Planar Graph. In Algorithmica volume 41:4, pages 289–
308, 2005. doi: 10.1007/s00453-004-1128-8.
Cited on pages 1, 131, 132.

[GT01] Ashim Garg and Roberto Tamassia. On the Computational Com-
plexity of Upward and Rectilinear Planarity Testing. In SIAM
Journal on Computing volume 31:2, pages 601–625, 2001. doi: 10.1137/
S0097539794277123.
Cited on pages 21, 34, 178, 181, 191, 222.

[GT85] Harold N. Gabow and Robert Endre Tarjan. A Linear-Time Algo-
rithm for a Special Case of Disjoint Set Union. In J. Comput. Syst.
Sci. volume 30:2, pages 209–221, 1985. doi: 10.1016/0022-0000(85)
90014-5.
Cited on pages 69, 101, 153, 171.

[Has01] S. Mehdi Hashemi. Digraph embedding. In Discret. Math. vol-
ume 233:1-3, pages 321–328, 2001. doi: 10.1016/S0012- 365X(00)
00249-1.
Cited on page 24.

[Has81] Refael Hassin. Maximum Flow in (𝒔, 𝒕) Planar Networks. In Inf.
Process. Lett. volume 13:3, page 107, 1981. doi: 10.1016/0020-0190(81)
90120-4.
Cited on page 208.

[HH07] Martin Harrigan and Patrick Healy. Practical Level Planarity Test-
ing and Layout with Embedding Constraints. In Graph Drawing,
15th International Symposium, GD 2007, Sydney, Australia, September
24-26, 2007. Revised Papers. Ed. by Seok-Hee Hong, Takao Nishizeki,
and Wu Quan. Volume 4875 of Lecture Notes in Computer Science,
pages 62–68. Springer, 2007. doi: 10.1007/978-3-540-77537-9_9.
Cited on pages 2, 34, 107, 178.

[HJL13] Bernhard Haeupler, Krishnam Raju Jampani, and Anna Lubiw. Test-
ing Simultaneous Planarity when the Common Graph is 2-
Connected. In J. Graph Algorithms Appl. volume 17:3, pages 147–
171, 2013. doi: 10.7155/jgaa.00289.
Cited on page 155.

[HK04] Patrick Healy and Ago Kuusik. Algorithms for multi-level graph
planarity testing and layout. In Theor. Comput. Sci. volume 320:2-3,
pages 331–344, 2004. doi: 10.1016/j.tcs.2004.02.033.
Cited on page 2.

https://doi.org/10.1007/s00453-004-1128-8
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1016/S0012-365X(00)00249-1
https://doi.org/10.1016/S0012-365X(00)00249-1
https://doi.org/10.1016/0020-0190(81)90120-4
https://doi.org/10.1016/0020-0190(81)90120-4
https://doi.org/10.1007/978-3-540-77537-9_9
https://doi.org/10.7155/jgaa.00289
https://doi.org/10.1016/j.tcs.2004.02.033

Bibliography

256

[HKL04] Patrick Healy, Ago Kuusik, and Sebastian Leipert. A characterization
of level planar graphs. In Discret. Math. volume 280:1-3, pages 51–63,
2004. doi: 10.1016/j.disc.2003.02.001.
Cited on pages 2, 190.

[HKRS97] Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and Sairam
Subramanian. Faster Shortest-Path Algorithms for Planar Graphs.
In J. Comput. Syst. Sci. volume 55:1, pages 3–23, 1997. doi: 10.1006/
jcss.1997.1493.
Cited on page 213.

[HL96] Michael D. Hutton and Anna Lubiw. Upward Planar Drawing of
Single-Source Acyclic Digraphs. In SIAM J. Comput. volume 25:2,
pages 291–311, 1996. doi: 10.1137/S0097539792235906.
Cited on pages 132, 157, 159, 160, 161, 178.

[HM03] Wen-Lian Hsu and Ross M. McConnell. PC trees and circular-ones
arrangements. In Theor. Comput. Sci. volume 296:1, pages 99–116,
2003. doi: 10.1016/S0304-3975(02)00435-8.
Cited on pages iv, 4, 14, 15, 99.

[HME06] Seok-Hee Hong, Brendan D. McKay, and Peter Eades. A Linear Time
Algorithm for ConstructingMaximally Symmetric Straight Line
Drawings of Triconnected Planar Graphs. In Discret. Comput.
Geom. volume 36:2, pages 283–311, 2006. doi: 10.1007/s00454-006-
1231-5.
Cited on pages 1, 131.

[HN13] Patrick Healy and Nikola S. Nikolov. Hierarchical Drawing Algo-
rithms. In Handbook on Graph Drawing and Visualization. Ed. by
Roberto Tamassia. Chapman and Hall/CRC, 2013, pages 409–453.
Cited on pages 106, 202.

[Hof17] Udo Hoffmann. On the Complexity of the Planar Slope Number
Problem. In J. Graph Algorithms Appl. volume 21:2, pages 183–193,
2017. doi: 10.7155/jgaa.00411.
Cited on page 203.

[HP95] Lenwood S. Heath and Sriram V. Pemmaraju. Recognizing Leveled-
Planar Dags in Linear Time. InGraph Drawing, Symposium on Graph
Drawing, GD '95, Passau, Germany, September 20-22, 1995, Proceedings.
Ed. by Franz-Josef Brandenburg. Volume 1027 of Lecture Notes in
Computer Science, pages 300–311. Springer, 1995. doi: 10 . 1007 /
BFb0021813.
Cited on pages 2, 62.

https://doi.org/10.1016/j.disc.2003.02.001
https://doi.org/10.1006/jcss.1997.1493
https://doi.org/10.1006/jcss.1997.1493
https://doi.org/10.1137/S0097539792235906
https://doi.org/10.1016/S0304-3975(02)00435-8
https://doi.org/10.1007/s00454-006-1231-5
https://doi.org/10.1007/s00454-006-1231-5
https://doi.org/10.7155/jgaa.00411
https://doi.org/10.1007/BFb0021813
https://doi.org/10.1007/BFb0021813

Bibliography

257

[HP99] Lenwood S. Heath and Sriram V. Pemmaraju. Stack and Queue Lay-
outs of Directed Acyclic Graphs: Part II. In SIAM J. Comput. vol-
ume 28:5, pages 1588–1626, 1999. doi: 10.1137/S0097539795291550.
Cited on page 2.

[HR92] Lenwood S. Heath and Arnold L. Rosenberg. Laying out Graphs
Using Queues. In SIAM J. Comput. volume 21:5, pages 927–958, 1992.
doi: 10.1137/0221055.
Cited on page 178.

[HRK97] S. Mehdi Hashemi, Ivan Rival, and Andrzej Kisielewicz. The Complex-
ity of Upward Drawings on Spheres. In Order volume 14, pages 327–
363, 1997. doi: 10.1023/A:1006095702164.
Cited on page 21.

[HT08] Bernhard Haeupler and Robert Endre Tarjan. Planarity Algorithms
via PQ-Trees (Extended Abstract). In Electron. Notes Discret.
Math. volume 31, pages 143–149, 2008. doi: 10 . 1016 / j . endm .

2008.06.029. url: https://doi.org/10.1016/j.endm.2008.06.029.
Cited on page 1.

[HT73] John E. Hopcroft and Robert Endre Tarjan.Dividing a Graph into Tri-
connected Components. In SIAM J. Comput. volume 2:3, pages 135–
158, 1973. doi: 10.1137/0202012.
Cited on pages 1, 132, 150, 158, 170.

[HT74] John E. Hopcroft and Robert Endre Tarjan. Efficient Planarity Test-
ing. In J. ACM volume 21:4, pages 549–568, 1974. doi: 10.1145/321850.
321852.
Cited on pages 1, 21, 61.

[HT84] Dov Harel and Robert Endre Tarjan. Fast Algorithms for Find-
ing Nearest Common Ancestors. In SIAM J. Comput. volume 13:2,
pages 338–355, 1984. doi: 10.1137/0213024.
Cited on page 153.

[Hu69] Te Chiang Hu. Integer Programming and Network Flows. Reading,
MA: Addison-Wesley, 1969, Reading, MA.
Cited on page 208.

[IS79] Alon Itai and Yossi Shiloach. Maximum Flow in Planar Networks.
In SIAM J. Comput. volume 8:2, pages 135–150, 1979. doi: 10.1137/
0208012.
Cited on page 208.

https://doi.org/10.1137/S0097539795291550
https://doi.org/10.1137/0221055
https://doi.org/10.1023/A:1006095702164
https://doi.org/10.1016/j.endm.2008.06.029
https://doi.org/10.1016/j.endm.2008.06.029
https://doi.org/10.1016/j.endm.2008.06.029
https://doi.org/10.1137/0202012
https://doi.org/10.1145/321850.321852
https://doi.org/10.1145/321850.321852
https://doi.org/10.1137/0213024
https://doi.org/10.1137/0208012
https://doi.org/10.1137/0208012

Bibliography

258

[Jän+15] Stefan Jänicke, Annette Geßner, Greta Franzini, Melissa Terras, Si-
mon Mahony, and Gerik Scheuermann. TRAViz: A Visualization
for Variant Graphs. In Digit. Scholarsh. Humanit. volume 30:Suppl-1,
pages i83–i99, 2015. doi: 10.1093/llc/fqv049.
Cited on page 201.

[Jel+09] Eva Jelínková, Jan Kára, Jan Kratochvíl, Martin Pergel, Ondrej Suchý,
and Tomás Vyskocil. Clustered Planarity: Small Clusters in Cy-
cles and Eulerian Graphs. In J. Graph Algorithms Appl. volume 13:3,
pages 379–422, 2009. doi: 10.7155/jgaa.00192.
Cited on page 177.

[JKR13] Vít Jelínek, Jan Kratochvíl, and Ignaz Rutter. A Kuratowski-type
theorem for planarity of partially embedded graphs. In Comput.
Geom. volume 46:4, pages 466–492, 2013. doi: 10.1016/j.comgeo.
2012.07.005.
Cited on pages 107, 158, 177.

[JL02] Michael Jünger and Sebastian Leipert. Level Planar Embedding in
Linear Time. In J. Graph Algorithms Appl. volume 6:1, pages 67–113,
2002. doi: 10.7155/jgaa.00045.
Cited on pages 2, 62, 63, 107, 132, 157, 178, 199.

[JL10] Krishnam Raju Jampani and Anna Lubiw. Simultaneous Interval
Graphs. In Algorithms and Computation - 21st International Sympo-
sium, ISAAC 2010, Jeju Island, Korea, December 15-17, 2010, Proceedings,
Part I. Ed. by Otfried Cheong, Kyung-Yong Chwa, and Kunsoo Park.
Volume 6506 of Lecture Notes in Computer Science, pages 206–217.
Springer, 2010. doi: 10.1007/978-3-642-17517-6_20.
Cited on page 108.

[JL12] Krishnam Raju Jampani and Anna Lubiw. The Simultaneous Repre-
sentation Problem for Chordal, Comparability and Permutation
Graphs. In J. Graph Algorithms Appl. volume 16:2, pages 283–315, 2012.
doi: 10.7155/jgaa.00259.
Cited on page 108.

[JLM97] Michael Jünger, Sebastian Leipert, and Petra Mutzel. Pitfalls of Using
PQ-Trees in Automatic Graph Drawing. In Graph Drawing, 5th
International Symposium, GD '97, Rome, Italy, September 18-20, 1997,
Proceedings. Ed. by Giuseppe Di Battista. Volume 1353 of Lecture Notes
in Computer Science, pages 193–204. Springer, 1997. doi: 10.1007/3-
540-63938-1_62.
Cited on pages 2, 62.

https://doi.org/10.1093/llc/fqv049
https://doi.org/10.7155/jgaa.00192
https://doi.org/10.1016/j.comgeo.2012.07.005
https://doi.org/10.1016/j.comgeo.2012.07.005
https://doi.org/10.7155/jgaa.00045
https://doi.org/10.1007/978-3-642-17517-6_20
https://doi.org/10.7155/jgaa.00259
https://doi.org/10.1007/3-540-63938-1_62
https://doi.org/10.1007/3-540-63938-1_62

Bibliography

259

[JLM98] Michael Jünger, Sebastian Leipert, and Petra Mutzel. Level Planarity
Testing in Linear Time. In Graph Drawing, 6th International Sym-
posium, GD'98, Montréal, Canada, August 1998, Proceedings. Ed. by
Sue Whitesides. Volume 1547 of Lecture Notes in Computer Science,
pages 224–237. Springer, 1998. doi: 10.1007/3-540-37623-2_17.
Cited on pages 2, 21, 34, 62, 107, 120, 132.

[Jun17] Paul Jungeblut. On Interval Planar Graphs. Karlsruhe Institute of
Technology, 2017.
Cited on page 177.

[Kam01] Henry Kamen. Philip V of Spain: The King Who Reigned Twice.
Yale University Press, 2001.
Cited on page 178.

[KKKW12] Pavel Klavík, Jan Kratochvíl, Tomasz Krawczyk, and Bartosz Walczak.
Extending Partial Representations of Function Graphs and Per-
mutation Graphs. In Algorithms - ESA 2012 - 20th Annual European
Symposium, Ljubljana, Slovenia, September 10-12, 2012. Proceedings. Ed.
by Leah Epstein and Paolo Ferragina. Volume 7501 of Lecture Notes in
Computer Science, pages 671–682. Springer, 2012. doi: 10.1007/978-
3-642-33090-2_58.
Cited on page 108.

[KKOS15] Pavel Klavík, Jan Kratochvíl, Yota Otachi, and Toshiki Saitoh. Extend-
ing partial representations of subclasses of chordal graphs. In
Theor. Comput. Sci. volume 576, pages 85–101, 2015. doi: 10.1016/j.
tcs.2015.02.007.
Cited on page 108.

[Kla+17a] Pavel Klavík, Jan Kratochvíl, Yota Otachi, Ignaz Rutter, Toshiki Saitoh,
Maria Saumell, and Tomás Vyskocil. Extending Partial Represen-
tations of Proper and Unit Interval Graphs. In Algorithmica vol-
ume 77:4, pages 1071–1104, 2017. doi: 10.1007/s00453-016-0133-z.
Cited on page 108.

[Kla+17b] Pavel Klavík, Jan Kratochvíl, Yota Otachi, Toshiki Saitoh, and Tomás
Vyskocil. Extending Partial Representations of Interval Graphs.
In Algorithmica volume 78:3, pages 945–967, 2017. doi: 10.1007/
s00453-016-0186-z.
Cited on pages 108, 114.

https://doi.org/10.1007/3-540-37623-2_17
https://doi.org/10.1007/978-3-642-33090-2_58
https://doi.org/10.1007/978-3-642-33090-2_58
https://doi.org/10.1016/j.tcs.2015.02.007
https://doi.org/10.1016/j.tcs.2015.02.007
https://doi.org/10.1007/s00453-016-0133-z
https://doi.org/10.1007/s00453-016-0186-z
https://doi.org/10.1007/s00453-016-0186-z

Bibliography

260

[KMS18] Philipp Kindermann, Wouter Meulemans, and André Schulz. Exper-
imental Analysis of the Accessibility of Drawings with Few
Segments. In J. Graph Algorithms Appl. volume 22:3, pages 501–518,
2018. doi: 10.7155/jgaa.00474.
Cited on page 203.

[KMW14] Kolja B. Knauer, Piotr Micek, and Bartosz Walczak. Outerplanar
graph drawings with few slopes. In Comput. Geom. volume 47:5,
pages 614–624, 2014. doi: 10.1016/j.comgeo.2014.01.003.
Cited on page 203.

[KPP13] Balázs Keszegh, János Pach, and Dömötör Pálvölgyi. Drawing Planar
Graphs of Bounded Degree with Few Slopes. In SIAM J. Discret.
Math. volume 27:2, pages 1171–1183, 2013. doi: 10.1137/100815001.
Cited on page 203.

[KPPT08] Balázs Keszegh, János Pach, Dömötör Pálvölgyi, and Géza Tóth. Draw-
ing cubic graphs with at most five slopes. In Comput. Geom. vol-
ume 40:2, pages 138–147, 2008. doi: 10.1016/j.comgeo.2007.05.003.
Cited on page 203.

[KR19] Boris Klemz and Günter Rote. Ordered Level Planarity and Its Rela-
tionship to Geodesic Planarity, Bi-Monotonicity, and Variations
of Level Planarity. InACMTrans. Algorithms volume 15:4, pages 53:1–
53:25, 2019. doi: 10.1145/3359587.
Cited on pages 34, 107, 110, 178, 222.

[Kri18] Nadine Davina Krisam.Drawing of Level Planar Graphswith Fixed
Slopes. Karlsruhe Institute of Technology, 2018.
Cited on page 201.

[KS81] Richard M. Karp andMichael Sipser.MaximumMatchings in Sparse
Random Graphs. In 22nd Annual Symposium on Foundations of Com-
puter Science, Nashville, Tennessee, USA, 28-30 October 1981, pages 364–
375. IEEE Computer Society, 1981. doi: 10.1109/SFCS.1981.21.
Cited on page 31.

[KT06] Jon M. Kleinberg and Éva Tardos.Algorithm design. Addison-Wesley,
2006. isbn: 978-0-321-37291-8.
Cited on page 207.

[Kur30] Casimir Kuratowski. Sur le problème des courbes gauches en
Topologie. In Fundamenta Mathematicae volume 15, pages 271–283,
1930. doi: 10.4064/fm-15-1-271-283.
Cited on page 1.

https://doi.org/10.7155/jgaa.00474
https://doi.org/10.1016/j.comgeo.2014.01.003
https://doi.org/10.1137/100815001
https://doi.org/10.1016/j.comgeo.2007.05.003
https://doi.org/10.1145/3359587
https://doi.org/10.1109/SFCS.1981.21
https://doi.org/10.4064/fm-15-1-271-283

Bibliography

261

[KW17] Tomasz Krawczyk and Bartosz Walczak. Extending Partial Rep-
resentations of Trapezoid Graphs. In Graph-Theoretic Concepts
in Computer Science - 43rd International Workshop, WG 2017, Eind-
hoven, The Netherlands, June 21-23, 2017, Revised Selected Papers. Ed. by
Hans L. Bodlaender and Gerhard J. Woeginger. Volume 10520 of Lec-
ture Notes in Computer Science, pages 358–371. Springer, 2017. doi:
10.1007/978-3-319-68705-6_27.
Cited on page 108.

[Lei98] Sebastian Leipert. Level Planarity Testing and Embedding in Lin-
ear Time. PhD thesis. Universität zu Köln, 1998.
Cited on pages 62, 101, 182, 187.

[LLMN13] William Lenhart, Giuseppe Liotta, Debajyoti Mondal, and Rahnuma
Islam Nishat. Planar and Plane Slope Number of Partial 2-Trees.
In Graph Drawing - 21st International Symposium, GD 2013, Bordeaux,
France, September 23-25, 2013, Revised Selected Papers. Ed. by Stephen
K. Wismath and Alexander Wolff. Volume 8242 of Lecture Notes in
Computer Science, pages 412–423. Springer, 2013. doi: 10.1007/978-
3-319-03841-4_36.
Cited on page 203.

[Mac37] Saunders Mac Lane. A Structural Characterization of Planar
Combinatorial Graphs. In Duke Mathematical Journal volume 3:3,
pages 460–472, 1937. doi: 10.1215/S0012-7094-37-00336-3.
Cited on pages 1, 132, 158.

[MNR16] Tamara Mchedlidze, Martin Nöllenburg, and Ignaz Rutter. Extending
Convex Partial Drawings of Graphs. In Algorithmica volume 76:1,
pages 47–67, 2016. doi: 10.1007/s00453-015-0018-6.
Cited on pages 108, 203.

[MS09] Carol A. Meyers and Andreas S. Schulz. Integer equal flows. In Oper.
Res. Lett. volume 37:4, pages 245–249, 2009. doi: 10.1016/j.orl.2009.
03.006.
Cited on page 215.

[MW10] Shay Mozes and Christian Wulff-Nilsen. Shortest Paths in Planar
Graphs with Real Lengths in 𝑶 (𝒏 log2 𝒏/log log 𝒏) Time. In Algo-
rithms - ESA 2010, 18th Annual European Symposium, Liverpool, UK,
September 6-8, 2010. Proceedings, Part II. Ed. by Mark de Berg and Ulrich
Meyer. Volume 6347 of Lecture Notes in Computer Science, pages 206–
217. Springer, 2010. doi: 10.1007/978-3-642-15781-3_18.
Cited on page 212.

https://doi.org/10.1007/978-3-319-68705-6_27
https://doi.org/10.1007/978-3-319-03841-4_36
https://doi.org/10.1007/978-3-319-03841-4_36
https://doi.org/10.1215/S0012-7094-37-00336-3
https://doi.org/10.1007/s00453-015-0018-6
https://doi.org/10.1016/j.orl.2009.03.006
https://doi.org/10.1016/j.orl.2009.03.006
https://doi.org/10.1007/978-3-642-15781-3_18

Bibliography

262

[NN20] Soeren Nickel and Martin Nöllenburg. Towards Data-Driven Multi-
linear Metro Maps. In Diagrammatic Representation and Inference -
11th International Conference, Diagrams 2020, Tallinn, Estonia, August
24-28, 2020, Proceedings. Ed. by Ahti-Veikko Pietarinen, Peter Chapman,
Leonie Bosveld-de Smet, Valeria Giardino, James E. Corter, and Sven
Linker. Volume 12169 of Lecture Notes in Computer Science, pages 153–
161. Springer, 2020. doi: 10.1007/978-3-030-54249-8_12.
Cited on page 203.

[Nöl14] Martin Nöllenburg. A Survey on Automated Metro Map Layout
Methods. In Schematic Mapping Workshop. Essex, UK, Apr. 2014.
Cited on page 203.

[Pap94] Achilleas Papakostas. Upward Planarity Testing of Outerplanar
Dags. In Graph Drawing, DIMACS International Workshop, GD '94,
Princeton, New Jersey, USA, October 10-12, 1994, Proceedings. Ed. by
Roberto Tamassia and Ioannis G. Tollis. Volume 894 of Lecture Notes
in Computer Science, pages 298–306. Springer, 1994. doi: 10.1007/3-
540-58950-3_385.
Cited on page 178.

[Pat06] Maurizio Patrignani.OnExtending a Partial Straight-line Drawing.
In Int. J. Found. Comput. Sci. volume 17:5, pages 1061–1070, 2006. doi:
10.1142/S0129054106004261.
Cited on pages 108, 203.

[Pat13] Maurizio Patrignani. Planarity Testing and Embedding. In Hand-
book on Graph Drawing and Visualization. Ed. by Roberto Tamassia.
Chapman and Hall/CRC, 2013, pages 1–42.
Cited on page 61.

[PCJ97] Helen C. Purchase, Robert F. Cohen, and Murray I. James. An Exper-
imental Study of the Basis for Graph Drawing Algorithms. In
ACM J. Exp. Algorithmics volume 2, page 4, 1997. doi: 10.1145/264216.
264222.
Cited on page 106.

[Pla76] C. R. Platt. Planar lattices and planar graphs. In J. Comb. Theory, Ser.
B volume 21:1, pages 30–39, 1976. doi: 10.1016/0095-8956(76)90024-
1.
Cited on page 157.

https://doi.org/10.1007/978-3-030-54249-8_12
https://doi.org/10.1007/3-540-58950-3_385
https://doi.org/10.1007/3-540-58950-3_385
https://doi.org/10.1142/S0129054106004261
https://doi.org/10.1145/264216.264222
https://doi.org/10.1145/264216.264222
https://doi.org/10.1016/0095-8956(76)90024-1
https://doi.org/10.1016/0095-8956(76)90024-1

Bibliography

263

[PP06] János Pach and Dömötör Pálvölgyi. Bounded-Degree Graphs can
have Arbitrarily Large Slope Numbers. In Electron. J. Comb. vol-
ume 13:1, 2006. doi: 10.37236/1139.
Cited on page 203.

[PT04] János Pach and Géza Tóth.Monotone drawings of planar graphs.
In J. Graph Theory volume 46:1, pages 39–47, 2004. doi: 10.1002/jgt.
10168.
Cited on page 34.

[PT11] János Pach and Géza Tóth.Monotone drawings of planar graphs.
In CoRR volume abs/1101.0967, 2011. arXiv: 1101.0967.
Cited on page 34.

[Pur02] Helen C. Purchase.Metrics for Graph Drawing Aesthetics. In J. Vis.
Lang. Comput. volume 13:5, pages 501–516, 2002. doi: 10.1006/jvlc.
2002.0232.
Cited on page 203.

[Pur97] Helen C. Purchase. Which Aesthetic has the Greatest Effect on
Human Understanding? In Graph Drawing, 5th International Sym-
posium, GD '97, Rome, Italy, September 18-20, 1997, Proceedings. Ed. by
Giuseppe Di Battista. Volume 1353 of Lecture Notes in Computer Sci-
ence, pages 248–261. Springer, 1997. doi: 10.1007/3- 540- 63938-
1_67.
Cited on page 222.

[Ran+01] Bert Randerath, Ewald Speckenmeyer, Endre Boros, Peter L. Hammer,
Alexander Kogan, KazuhisaMakino, Bruno Simeone, and Ondrej Cepek.
A Satisfiability Formulation of Problems on Level Graphs. In
Electron. Notes Discret. Math. volume 9, pages 269–277, 2001. doi:
10.1016/S1571-0653(04)00327-0.
Cited on pages iv, 2, 3, 4, 33, 34, 35, 41, 59, 63, 107, 132, 157.

[Sah74] Sartaj Sahni. Computationally Related Problems. In SIAM J. Com-
put. volume 3:4, pages 262–279, 1974. doi: 10.1137/0203021.
Cited on page 215.

[Sch13] Marcus Schaefer. Toward a Theory of Planarity: Hanani-Tutte
and Planarity Variants. In J. Graph Algorithms Appl. volume 17:4,
pages 367–440, 2013. doi: 10.7155/jgaa.00298.
Cited on pages 107, 109.

https://doi.org/10.37236/1139
https://doi.org/10.1002/jgt.10168
https://doi.org/10.1002/jgt.10168
https://arxiv.org/abs/1101.0967
https://doi.org/10.1006/jvlc.2002.0232
https://doi.org/10.1006/jvlc.2002.0232
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1016/S1571-0653(04)00327-0
https://doi.org/10.1137/0203021
https://doi.org/10.7155/jgaa.00298

Bibliography

264

[SH99] Wei-Kuan Shih and Wen-Lian Hsu. A New Planarity Test. In Theor.
Comput. Sci. volume 223:1-2, pages 179–191, 1999. doi: 10.1016/S0304-
3975(98)00120-0.
Cited on pages 1, 15.

[Sri+02] K. Srinathan, Pranava R. Goundan, M. V. N. Ashwin Kumar, R. Nandaku-
mar, and C. Pandu Rangan. Theory of Equal-Flows in Networks. In
Computing and Combinatorics, 8th Annual International Conference, CO-
COON 2002, Singapore, August 15-17, 2002, Proceedings. Ed. by Oscar H.
Ibarra and Louxin Zhang. Volume 2387 of Lecture Notes in Computer
Science, pages 514–524. Springer, 2002. doi: 10.1007/3-540-45655-
4_55.
Cited on page 215.

[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda.Methods for
Visual Understanding of Hierarchical System Structures. In IEEE
Trans. Syst. Man Cybern. volume 11:2, pages 109–125, 1981. doi: 10.
1109/TSMC.1981.4308636.
Cited on page 106.

[Tam87] Roberto Tamassia. On Embedding a Graph in the Grid with the
Minimum Number of Bends. In SIAM J. Comput. volume 16:3,
pages 421–444, 1987. doi: 10.1137/0216030.
Cited on pages 1, 131.

[Tut66] William Thomas Tutte. Connectivity in Graphs. University of
Toronto Press, 1966.
Cited on pages 1, 132, 158.

[Tut70] William T. Tutte. Toward a Theory of Crossing Numbers. In Journal
of Combinatorial Theory volume 8:1, pages 45–53, 1970.
Cited on pages 1, 34.

[Ver90] Yves Colin de Verdière. Sur un nouvel invariant des graphes et un
critère de planarité. In J. Comb. Theory, Ser. B volume 50:1, pages 11–
21, 1990. doi: 10.1016/0095-8956(90)90093-F.
Cited on page 1.

[Wag37] Klaus Wagner. Über eine Eigenschaft der ebenen Komplexe. In
Mathematische Annalen volume 114, pages 570–590, 1937. doi: 10.
1007/BF01594196.
Cited on page 1.

[War62] Stephen Warshall. A Theorem on Boolean Matrices. In J. ACM vol-
ume 9:1, pages 11–12, 1962. doi: 10.1145/321105.321107.
Cited on page 114.

https://doi.org/10.1016/S0304-3975(98)00120-0
https://doi.org/10.1016/S0304-3975(98)00120-0
https://doi.org/10.1007/3-540-45655-4_55
https://doi.org/10.1007/3-540-45655-4_55
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1137/0216030
https://doi.org/10.1016/0095-8956(90)90093-F
https://doi.org/10.1007/BF01594196
https://doi.org/10.1007/BF01594196
https://doi.org/10.1145/321105.321107

Bibliography

265

[Wik19] Wikipedia contributors.War of the Spanish Succession family tree
template — Wikipedia. Online, accessed February 20th, 2019. 2019.
url: https://w.wiki/qpx.
Cited on page 178.

https://w.wiki/qpx

	Table of Contents
	Introduction
	Contribution

	Terminology
	Level Planarity Testing
	Radial Level Planarity with Fixed Embedding
	Introduction
	Preliminaries
	Radial Upward Planarity
	Level Planarity with Fixed Embedding
	Conclusion

	Level-Planarity: Transitivity vs. Even Crossings
	Introduction
	Preliminaries
	Level-Planarity
	Radial Level-Planarity
	A Constraint System for Radial Level-Planarity
	Modified Star Form
	Constraint System and Assignment for bold0mu mumu G+G+G+G+G+G+
	From a Satisfying Assignment to a Hanani-Tutte Drawing
	From a Hanani-Tutte Drawing to a Satisfying Assignment

	Conclusion

	Level Planarity Testing: A Unified Approach
	Introduction
	Preliminaries
	Regularization
	Star Form
	Redrawing

	PC-Trees
	Invariant Properties
	Grow
	Tree Operation Contract
	Prune
	Tree Operation Update
	Unary Bundle
	General Bundle
	Many v-Singular Components
	Independent Merging
	Interdependent Merging

	Disjoint Connected Components
	Implementation in Linear Time
	Conclusion

	Constrained Embeddings
	Partial and Constrained Level Planarity
	Introduction
	Preliminaries
	Single-Source Graphs
	A Simple Level Planarity Testing Algorithm
	A Polynomial-Time CLP Algorithm
	An Efficient CLP Algorithm

	Complexity of the General Case
	3-Partition Reduction
	Planar Monotone 3-Sat Reduction

	Conclusion

	An SPQR-Tree-Like Embedding Representation for Level Planarity
	Introduction
	Preliminaries
	A Decomposition Tree for Level Planarity
	P-Node Splits
	Arc Processing
	Correctness
	Construction in Linear Time

	Applications
	Partial Level Planarity
	Constrained Level Planarity
	Simultaneous Level Planarity

	Conclusion

	An SPQR-Tree-Like Embedding Representation for Upward Planarity
	Introduction
	Decomposition Trees and Upward Planar Embeddings
	Decompositions and Upward Planar Embeddings
	Decomposition Trees and Upward Planar Embeddings

	UP-Trees
	P-Node Splits
	Arc Contractions
	Computation in Linear Time

	Partial Upward Embedding
	Conclusion

	Custom Drawing Styles
	Multilevel Planarity
	Introduction
	Preliminaries
	Embedded sT-Graphs
	Oriented Cycles
	Hardness Results
	sT-Graphs with Variable Embedding
	Oriented Trees
	Embedded Multi-Source Graphs

	Conclusion

	Level-Planar Drawings with Few Slopes
	Introduction
	Preliminaries
	Flow Model
	Connected Partial Drawings

	Dual Distance Model
	Partial and Simultaneous Drawings
	Partial Drawings
	Simultaneous Drawings

	Complexity of the General Case
	Conclusion

	Drawing Two Posets
	Introduction
	Preliminaries
	Combinatorial View of Windrose Planarity
	From xy-Drawings to Windrose Drawings
	Simplifying Windrose Planar Embeddings
	Special Windrose Planar Embeddings

	An xy-Planarity Testing Algorithm
	Finding a Windrose Planar Derived Graph
	Correctness

	Conclusion

	Conclusion and Open Problems
	Bibliography

