2,237 research outputs found

    Predicting Non-linear Cellular Automata Quickly by Decomposing Them into Linear Ones

    Full text link
    We show that a wide variety of non-linear cellular automata (CAs) can be decomposed into a quasidirect product of linear ones. These CAs can be predicted by parallel circuits of depth O(log^2 t) using gates with binary inputs, or O(log t) depth if ``sum mod p'' gates with an unbounded number of inputs are allowed. Thus these CAs can be predicted by (idealized) parallel computers much faster than by explicit simulation, even though they are non-linear. This class includes any CA whose rule, when written as an algebra, is a solvable group. We also show that CAs based on nilpotent groups can be predicted in depth O(log t) or O(1) by circuits with binary or ``sum mod p'' gates respectively. We use these techniques to give an efficient algorithm for a CA rule which, like elementary CA rule 18, has diffusing defects that annihilate in pairs. This can be used to predict the motion of defects in rule 18 in O(log^2 t) parallel time

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Defect Particle Kinematics in One-Dimensional Cellular Automata

    Full text link
    Let A^Z be the Cantor space of bi-infinite sequences in a finite alphabet A, and let sigma be the shift map on A^Z. A `cellular automaton' is a continuous, sigma-commuting self-map Phi of A^Z, and a `Phi-invariant subshift' is a closed, (Phi,sigma)-invariant subset X of A^Z. Suppose x is a sequence in A^Z which is X-admissible everywhere except for some small region we call a `defect'. It has been empirically observed that such defects persist under iteration of Phi, and often propagate like `particles'. We characterize the motion of these particles, and show that it falls into several regimes, ranging from simple deterministic motion, to generalized random walks, to complex motion emulating Turing machines or pushdown automata. One consequence is that some questions about defect behaviour are formally undecidable.Comment: 37 pages, 9 figures, 3 table

    Entanglement Generation of Clifford Quantum Cellular Automata

    Full text link
    Clifford quantum cellular automata (CQCAs) are a special kind of quantum cellular automata (QCAs) that incorporate Clifford group operations for the time evolution. Despite being classically simulable, they can be used as basic building blocks for universal quantum computation. This is due to the connection to translation-invariant stabilizer states and their entanglement properties. We will give a self-contained introduction to CQCAs and investigate the generation of entanglement under CQCA action. Furthermore, we will discuss finite configurations and applications of CQCAs.Comment: to appear in the "DPG spring meeting 2009" special issue of Applied Physics
    corecore