561 research outputs found

    Wall-Corner Classification Using Sonar: A New Approach Based on Geometric Features

    Get PDF
    Ultrasonic signals coming from rotary sonar sensors in a robot gives us several features about the environment. This enables us to locate and classify the objects in the scenario of the robot. Each object and reflector produces a series of peaks in the amplitude of the signal. The radial and angular position of the sonar sensor gives information about location and their amplitudes offer information about the nature of the surface. Early works showed that the amplitude can be modeled and used to classify objects with very good results at short distances—80% average success in classifying both walls and corners at distances less than 1.5 m. In this paper, a new set of geometric features derived from the amplitude analysis of the echo is presented. These features constitute a set of characteristics that can be used to improve the results of classification at distances from 1.5 m to 4 m. Also, a comparative study on classification algorithms widely used in pattern recognition techniques has been carried out for sensor distances ranging between 0.5 to 4 m, and with incidence angles ranging between 20° to 70°. Experimental results show an enhancement on the success in classification rates when these geometric features are considered

    A Comprehensive Review on Autonomous Navigation

    Full text link
    The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed

    Online Mapping-Based Navigation System for Wheeled Mobile Robot in Road Following and Roundabout

    Get PDF
    A road mapping and feature extraction for mobile robot navigation in road roundabout and road following environments is presented in this chapter. In this work, the online mapping of mobile robot employing the utilization of sensor fusion technique is used to extract the road characteristics that will be used with path planning algorithm to enable the robot to move from a certain start position to predetermined goal, such as road curbs, road borders, and roundabout. The sensor fusion is performed using many sensors, namely, laser range finder, camera, and odometry, which are combined on a new wheeled mobile robot prototype to determine the best optimum path of the robot and localize it within its environments. The local maps are developed using an image’s preprocessing and processing algorithms and an artificial threshold of LRF signal processing to recognize the road environment parameters such as road curbs, width, and roundabout. The path planning in the road environments is accomplished using a novel approach so called Laser Simulator to find the trajectory in the local maps developed by sensor fusion. Results show the capability of the wheeled mobile robot to effectively recognize the road environments, build a local mapping, and find the path in both road following and roundabout

    Odometry Correction of a Mobile Robot Using a Range-Finding Laser

    Get PDF
    Two methods for improving odometry using a pan-tilt range-finding laser is considered. The first method is a one-dimensional model that uses the laser with a sliding platform. The laser is used to determine how far the platform has moved along a rail. The second method is a two-dimensional model that mounts the laser to a mobile robot. In this model, the laser is used to improve the odometry of the robot. Our results show that the one-dimensional model proves our basic geometry is correct, while the two-dimensional model improves the odometry, but does not completely correct it

    Autonomous mobility for an electronic wheelchair

    Get PDF
    Despite the rapid development of medical technologies the health sector does not yet offer any universal remedy for people suffering from permanent impairment of motor functions. Individuals depending on the range of disability require rehabilitation and help to perform the ALDs (activities of daily living). To aid people affected by the impairment and relieve from some duties the ones responsible for helping them the electronic wheelchair was developed. One of the functions of the electronic wheelchair is supposed to be autonomous navigation with speech recognition. The main objective of this project was to extend the existing electronic wheelchair solution with all necessary equipment and software necessary to make the autonomous navigation possible. As a result, a versatile system was created capable of mapping the working space and navigating in both known and unknown dynamic environments. The system allows dynamic obstacle detection and avoidance, basic recovery behaviors and accepts navigation goals provided by speech recognition.A pesar del rápido desarrollo de las tecnologías médicas el sector de la salud todavía no ofrece ningún remedio universal para las personas sufriendo de falta de control motor. Dependiente del rango de discapacidad las personas requieren rehabilitación y ayuda para realizar AC (actividades cotidianas). Para ayudar a las personas afectadas por discapacidad y relevar de algunos deberes la gente que los soporta se desarrolló la silla de ruedas electrónica. Una de las funciones de ya mencionada silla de ruedas debería ser la navegación autónoma con reconocimiento de voz. Entonces el objetivo principal de este proyecto fue extender la solución existente con todo el hardware y software necesarios para que la navegación autónoma sea posible. El proyecto resultado en creación de un sistema versátil capaz de mapear el espacio de trabajo y navegar en entornos también conocidos y desconocidos. El sistema permite detección y evitación dinámica de obstáculos, soporta comportamientos básicos de recuperación y acepta objetivos de navegación proporcionados por el software de reconocimiento de voz

    Distance and Cable Length Measurement System

    Get PDF
    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement

    Recent Developments in Monocular SLAM within the HRI Framework

    Get PDF
    This chapter describes an approach to improve the feature initialization process in the delayed inverse-depth feature initialization monocular Simultaneous Localisation and Mapping (SLAM), using data provided by a robot’s camera plus an additional monocular sensor deployed in the headwear of the human component in a human-robot collaborative exploratory team. The robot and the human deploy a set of sensors that once combined provides the data required to localize the secondary camera worn by the human. The approach and its implementation are described along with experimental results demonstrating its performance. A discussion on the usual sensors within the robotics field, especially in SLAM, provides background to the advantages and capabilities of the system implemented in this research

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    CES-530 - ROS based Multi-sensor Navigation System for a Commercial Wheelchair

    Get PDF
    This report describes an intelligent electric powered wheelchair developed in University of Essex, under the financial support from two EU Research Projects SYSIASS and COALAS. The development of this wheelchair covers a wide range of research activities from multi-modal Human-Machine Interfacing to autonomous navigation. This user manual provides an overview and guidelines to use the wheelchair with autonomous navigation functions. It includes three sections: overview of Hardware parts, overview to Software and a Tutorial that helps the user step-by-step to activate and run the wheelchair without the need of supervision
    corecore