
Clemson University
TigerPrints

All Theses Theses

12-2007

Odometry Correction of a Mobile Robot Using a
Range-Finding Laser
Thomas Epton
Clemson University, tom.epton@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Robotics Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Epton, Thomas, "Odometry Correction of a Mobile Robot Using a Range-Finding Laser" (2007). All Theses. 248.
https://tigerprints.clemson.edu/all_theses/248

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=tigerprints.clemson.edu%2Fall_theses%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/248?utm_source=tigerprints.clemson.edu%2Fall_theses%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


ODOMETRY CORRECTION OF A MOBILE

ROBOT USING A RANGE-FINDING LASER

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Engineering

by

Thomas Epton

December 2007

Accepted by:

Dr. Adam W. Hoover, Committee Chair

Dr. Richard R. Brooks

Dr. Stanley T. Birchfield



ABSTRACT

Two methods for improving odometry using a pan-tilt range-finding laser is considered. The first

method is a one-dimensional model that uses the laser with a sliding platform. The laser is used to

determine how far the platform has moved along a rail. The second method is a two-dimensional

model that mounts the laser to a mobile robot. In this model, the laser is used to improve the

odometry of the robot. Our results show that one-dimensional model proves our basic geometry is

correct, while the two-dimensional model improves the odometry, but does not completely correct

it.
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CHAPTER 1

INTRODUCTION

This thesis considers the problem of improving odometry using a range-finding laser. An odome-

ter is a device used to estimate the distance traveled by a wheeled vehicle. The distance is measured

mechanically by an encoder that counts the number of revolutions of the wheels (axles). Knowing the

diameter of the wheel, the odometer is able to find the linear distance by multiplying the encoder’s

revolution count by the circumference of the wheel. Odometers are reliable over short distances, but

they accumulate error over time. There are many reasons for this error, such as slippage between the

wheel and the surface being traveled and encoder error. We seek to improve the odometry estimates

using a range-finding laser by mounting the laser on a moving vehicle or platform. The laser is then

used to continuously track a single point using a pan-tilt unit.

An odometer is most commonly used to track the total distance traveled by a motor vehicle. For

this application, the distance estimate from the odometer is usually only used to gauge the general

aging, the amount of usage, and the gas mileage of the vehicle. As long as the running estimate of

the distance traveled is reasonably accurate, the odometer serves its intended purpose.

The motivation for our work is the problem of self-localization. Self-localization refers to the

ability of a wheeled vehicle or moving platform to accurately track its position as it moves through

the world. Maintaining an accurate estimate of position and orientation is vital for automated control

and navigation. In this case, an odometer must be able to provide a much more accurate estimate

of the distance traveled so that it can be used to compute a more accurate estimate of position. The

lack of highly accurate odometers is a major limiting factor for the potential in autonomous vehicles

and mobile robots. Until a wheeled vehicle can accurately maintain its position and orientation, it

will be unable to safely operate in the real world.

1.1 Odometry

Odometry is unreliable because it is subject to many sources of error, which can be categorized

as either systematic or non-systematic [11]. Systematic errors are those that depend on the robot

independent of the environment. Non-systematic errors, on the other hand, are those that depend
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on the environment. Borenstein [2] gives a review of all the different systematic and non-systematic

errors for a mobile robot, as shown in Table 1.1.

Systematic Errors Non-systematic Errors
a) Unequal wheel diameters a) Travel over uneven floors
b) Average of both wheel diameters b) Travel over unexpected

differs from nominal diameter objects on floor
c) Misalignment of wheels c) Wheel-slippage
d) Uncertainty about the d) External forces

effective wheelbase e) Internal forces
e) Limited encoder resolution f) Nonpoint wheel contact
f) Limited encoder sampling rate with the floor

Table 1.1 Summary of Systematic and Non-systematic Errors

1.1.1 Systematic Error

Understanding each of these errors will help explain why odometry error grows over time. First,

we will examine the systematic errors. Unequal wheel diameters on a two-wheel robot do not cause

much trouble, the robot just turns one way or the other. However, on a four-wheel robot, with each

wheel being a drive wheel, the affect of different wheel diameters is far worse. In fact, the odometry

would be quite unpredictable in most cases. Next, if the average of both wheel diameters differs

from the nominal diameter, then this means the encoders are incorrectly converting the number of

revolutions of the wheel to linear distance. A misalignment of the wheels will cause the robot to

drift one way or the other without the robot knowing. An uncertainty about the effective wheelbase

is caused by non- point wheel contact with the floor. This is the encoders assuming a point-contact

with the floor for their distance computations. A limited encoder resolution refers to the number of

samples the encoder takes during a revolution of the wheel. A better estimate of distance can be

achieved by taking more samples per revolution of the wheel. The limited encoder sampling rate

refers to how often the encoder can take a sample. If the sampling rate is slower than the resolution

requires, the encoder will miss samples and will therefore translate to error.

Systematic errors can be limited by improving the technology of the robot. The first three causes

of error can be fixed by improving the physical robot. Ensuring the wheels are the same diameter

will take care of the first two. The third can be taken care of by properly aligning the wheels during

the assembly of the robot. The last three causes are the focus of many groups who are trying to

make better encoders for robots [13][16][10]. Letting the robot know what kind of wheel is being used
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can help remove the amount of uncertainty there is in the effective wheelbase. Making the encoder

resolution higher will increase the accuracy of the encoder. However, the resolution is limited by the

encoder sampling rate. A higher resolution can be obtained by increasing the sampling rate.

1.1.2 Non-Systematic Error

Now, we will examine the environment dependent errors or non-systematic errors. Traveling over

uneven floors causes error because the robot does not have any knowledge of the terrain. It only

knows how much each wheel has turned. The same can be said for traveling over unexpected objects

on the floor. The wheels have to turn more to go over an object than they do to go the same distance

over an unobstructed floor. Wheel-slippage is a major cause of error. This is caused by a number

of factors such as slippery floors, over-acceleration, skidding in fast turns, etc. External forces that

could cause odometry error would be those such as the robot running into an object or an object

hitting the robot, knocking it off the known course. Internal forces that can have the same effect are

those such as a caster wheel. A two-wheel robot will have a caster wheel for balance, and when the

robot changes direction such as from forward to back, the castor wheel turns and pushes the robot

slightly off course. A complement to one of the systematic errors is non-point wheel contact with

the floor. In this case, it is referring to the amount of friction there is between the wheel and the

floor.

The effect from non-systematic errors can be limited by confining the environment. While this

may be feasible in the lab, it is not always the case in the real world. The environment can

be controlled in such applications such as in factories and warehouses where it has become cost

effective to engineer the space around the robot so that it can do its job as efficiently as possible.

This makes up just a small percentage of applications where robots are being designed to work.

Other environments include office areas, outdoors, search and rescue areas, etc. For the most part,

the robot must adapt to the environment instead of the environment adapting to the robot.

These causes for error are unavoidable in most cases; however, the odometer can still be a valuable

tool for self-localization by fusing it with other sensors. By adding another sensor to the robot, the

robot can compensate for the errors from the odometer. Many researchers have taken this approach

to solve the self-localization problem. Some of these are discussed below and then we will present

our approach to this same problem.
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1.2 Previous solutions to improving odometry

1.2.1 Evaluation of odometry error to improve odometry

Several researchers have looked at the odometry error of mobile robots in the hope that if the

errors can be classified and separated, then certain errors can be reduced or eliminated. Wang [18]

looked at this exact problem. In his work, he analyzed the non-systematic errors theoretically and

computed the odometry covariance matrix. Using the covariance matrix, he was able to estimate

the robot’s location from the information provided by the odometry encoders. He was able to do

this by introducing a circular adjustment factor into the estimator.

Martinelli [11][12] developed methods for evaluating the odometry error. His intent for evaluating

the error was to help reduce it and to know the accuracy of the odometry. In these works, he

developed the odometry error model. To compute the global odometry error for a given robot

motion, he divided the trajectory into N small segments. He first modeled the elementary error

associated with a single segment. He then computed the cumulative error on the global path.

Finally, he took the limit as (N → ∞).

Meng and Bischoff [15] developed an algorithm to detect non-systematic errors. Their idea was

that the most common non-systematic error that caused the greatest decrease in accuracy for the

odometry was the wheel-slippage. Because of this, they developed a wheel-slippage detector. Once

they are able to detect a slippage, they would then be able to initiate countermeasures to correct the

pose measurements. Their idea was to track the ratio of the two drive wheels’ displacement increment

over time. While their slippage detector helped with navigation, they came to the conclusion that

odometry alone is not sufficient to track the robot’s long term pose.

Abbas et al. [1] developed a new method for measuring systematic errors in a mobile robot

called the Bi-directional Circular Path Test (BCPT). For their test, the robot is programmed to

drive in two circles: one clockwise, one counter-clockwise. By measuring the radius of each path,

the diameter of the wheels can be determined if they are equal. If the two radii are equal, then the

wheel diameters are equal; however if they are not equal, then the wheel diameters are different.

Based on the ratio of the wheel diameters, the wheelbase can be determined. They argue that by

calculating these two parameters will allow for simple compensations to be made in software to help

eliminate systematic errors.
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1.2.2 New odometers

New odometers do not necessarily refer to a new type of encoder, it can refer to a robot that utilizes

new algorithms and hardware to improve the odometry. This is the case with the OmniMate mobile

robot. Borenstein [2] conducted tests using the OmniMate robot to implement a new method for

detecting and correcting odometry errors without any extra sensors. The method is called internal

position error correction (IPEC), and the OmniMate robot was specifically designed to implement

this method. The key to IPEC is having two mobile robots linked so that they correct each other

as they move, even during fast motion. The basic steps to the IPEC algorithm are as follows. First,

at each sampling interval, the position and orientation of truck A from conventional odometry is

computed. Then the direction of the link that connects the centers of trucks A and B is computed.

Next, the angle between the direction of motion of truck A and the direction of the link is computed;

this is known as the expected angle. Next, the difference between the expected angle and the actual

angle is determined. The orientation of truck A is then corrected by this amount just determined.

Finally, the position and orientation of truck B is computed from the kinematic chain, not from

odometry.

1.2.3 Odometry fused with other sensors

Since knowing the location of a mobile robot is vital for navigation and odometry is unreliable, the

next logical step is to add another sensor to the robot to help correct the odometer. This section

looks at researchers who have tried to solve the self-localization problem by utilizing the odometer

along with another sensor to aid in correcting the odometry.

Chenavier [5] developed a system for an intervention robot for a nuclear site. Since it was

not possible to equip the environment with beacons, they developed a technique using the existing

structure as beacons. The beacons were located using a camera attached to the robot via a steerable

rotating platform. Image processing was used to find suitable structures such as doors, pipes, and

corners. For typical triangulation, it is necessary to be able to observe three beacons simultaneously

to obtain an estimation of pose. Instead of relying on this, they used an extended Kalman filter

with a single observation and the current pose estimation given by the odometer to find the actual

position of the robot.

Maeyama et al. [10] tried improving the odometry by integrating a gyroscope with the robot’s

odometer. The gyroscope was used to detect non-systematic errors. Their method is simple yet
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seemingly effective. They take the difference between the angular rates from the gyroscope and

the odometer. If the robot incurs no non-systematic errors, the difference will be small. In this

case, they are able to measure the drift of the gyroscope using Kalman filtering. They also estimate

the actual angular rate of the robot by fusion of the gyroscope and the odometry data using the

maximum likelihood estimation. However, if the robot incurs an error such as wheel-slippage, the

difference will be large. In this case, the gyroscope data is used to estimate the angular rate of the

robot without any input from the odometer. Their results showed that their algorithm works better

in outdoor environments than indoor due to the bumpy surfaces of travel.

Koshizen et al. [9] developed a mobile robot localization technique that was based on the fusion of

sonar sensors with the odometry. Their purpose was to navigate a mobile robot while avoiding several

static and dynamic obstacles of various forms. Their technique for doing so was an enhancement

on another technique, which they developed previously [8]. This technique is called the Gaussian

Mixture of Bayes with Regularised Expectation Maximization (GMB-REM). The GMB-REM has

four basic steps. First, data is collected from the sonar sensors and is normalized to zero mean

and unit variance. Second, the training data set is formed to predict the probabilistic conditional

distribution using the EM algorithm. The EM algorithm is an iterative technique for maximum

likelihood estimation. The third step is cross validation. In this step, a suitable value for the

regularizing coefficient is found by finding the value that performs the best on a validation set.

The final step is to calculate the probability of the robot’s position. The enhanced version of this

technique, which is described in their work, takes in the odometry estimates as well instead of relying

solely on the sonar data. Their results showed that the new fusion technique out performed their

previous technique which did not use the odometry.

Bouvet and Garcia [3] developed an algorithm for mobile robot localization by fusing an odometer

and an automatic theodolite. Their algorithm is intended for mobile robots equipped with these two

devices. A theodolite is a device for measuring both horizontal and vertical angles for triangulation

purposes. Their method is based on the SIVIA (Set Inverter by Interval Analysis) algorithm. Using

the assumption that the measurement errors are bounded, and an initial set of admissible solutions

is computed. Next, incorrect solutions are eliminated to find the true solution to the localization

problem. This method has the advantage over systems such as GPS in that it is usable under bridges

and close to buildings. However, the calculations can not be performed in real time, and therefore
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limit the capabilities of the system.

Rudolph [16] developed a different technique using the fusion of a gyroscope with the odometry.

In this method, he used the gyroscope as a redundant system for the odometer. This method has

both the gyroscope and the odometer outputting rotary increments. During straight movement,

the rotary increments from the odometer are believed to be true due to gyroscope suffering from

drift. In this case, the gyroscope output is corrected using the odometry information. During rotary

movement, the gyroscope rotary increments are believed to be true due to the uncertainty of the

deviation. The deviation is the difference between the odometry wheel base and the actual wheel

base. In this case the odometry is compensated for by the gyroscope output.

Martinelli et. al. [13][14] estimated the odometry error using different filter algorithms as well as

fusing the odometry with a range-finding laser to develop a simultaneous localization and odometry

error estimation. An augmented Kalman filter is used to estimate the systematic components.

This filter estimates a state containing the robot configuration and the systematic component of

the odometry error. It uses the odometry readings as inputs and the range-finding laser readings

as observations. The non-systematic error is first defined as an overestimated constant. Another

Kalman filter is then used to carry out the estimation of the actual non-systematic error. The

observations for this filter are represented by two previous robot configurations computed by the

augmented Kalman filter. Using this second filter, the systematic parameters are updated regularly

with the values computed by the first filter. In their experiment, they move the robot along a 10m

square area, which a map has been developed for it. The laser is used to measure 36 distances every

time step during the movement. They do not go into any detail of exactly how they aim the laser,

so the meaning of the laser measurements is unclear. For the systematic parameters, their results

show a rapid variation of the estimated value during the first 30m. However, the overall change

never exceed 2 percent after the first 30m. For the non-systematic parameters, they show that the

robot is required to move 100m. The overall change after this distance never exceeds 10 percent.

1.2.4 Non-odometry approaches for self-localization

Howard et al. [7] used a team of robots rather than relying on a single robot. The assumptions his

team made was that each robot was able to measure the relative pose of nearby robots. Using this

measure combined with its measure of its own pose from each robot, they were able to infer the

relative pose of every robot in the team. The good thing about this approach is that the environment
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doesn’t matter. The robots only need to be able to see each other, not some external landmark. The

downside to this approach is that multiple robots are needed, and that they have to be able to see

each other. There are many cases where this is not feasible, such as search and rescue operations.

Georgiev and Allen [6] combined GPS with vision to compensate for the shortcomings of GPS.

GPS works very accurately in open areas; however, in urban areas, tall buildings obstruct the view

to the satellites. This is where the vision was used. They performed some image processing to match

the view of the camera to an already existing map. While this does offer better performance than

GPS alone, there are several drawbacks to this approach. This assumes there is already a map of

the area available. Also, similar structures could be misinterpreted. And, like the previous example,

this approach will not work well in cases such as search and rescue operations.

Vlassis et al. [17] reviewed a similar approach. They looked at how a robot tries to match its

sensory information against an environment model at any instance of time. This is known as a

probabilistic map. The robot uses its current position, its new sensory information, and the prob-

abilistic map to best obtain its current position, and sometimes even update its previous position.

The biggest drawback to this approach is that it requires a map to be already made, and in a lot of

real world applications this is not available.

Calabrese and Indiveri [4] took a completely different route from the rest. In their work, instead of

trying determine the robot’s pose accurately, they sought how to measure the robot’s pose as robust

as possible. They argue that the accuracy will take care of itself as technology becomes better and

therefore the sensors become better. Their approach uses an omni-vision camera mounted on a

mobile robot. An omni-vision camera is a camera that uses a mirror to capture an image a full

360 degrees around the camera. The camera is used to measure the distance from the robot to

landmarks in the real world. Their approach uses only two landmarks rather than the typical three

needed for basic triangulation. The robustness of their work stems directly from this need for only

two landmarks.

1.3 New method for improving odometry

Our method to solve the self-localization problem using a range-finding laser by mounting the laser

on a moving vehicle or platform. The laser is used to continuously track a single point using a

pan-tilt unit. The laser finds a suitable target on a wall when before the robot starts moving. As

the robot moves, the laser is continuously moved using the pan-tilt so that it tracks that target. The
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robot’s odometry-based pose is constantly corrected based on the distance measurements obtained

by the laser. Our technique differs from others’ techniques using a range-finding laser in that ours

does not require a map to be known a priori. In fact, no map is ever needed for our technique. Also,

our technique is based solely on geometry, so computation time is rather low. The assumptions

that we make are that there must be a wall flat enough for the laser to obtain accurate readings

and that the robot is not moving parallel to that wall. This method will not completely correct the

odometry as it is based on the odometry; however, our intent is to improve it. The actual technique

is discussed in great detail in the Methods section.
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CHAPTER 2

METHODS

2.1 Overview

The basic idea to our method is to mount a pan-tilt laser to a moving platform or vehicle to track

a single point as the platform moves. This idea is shown in Figures 2.1 and 2.2. Taking a closer

look at Figure 2.1, we see that the pan-tilt unit turns the laser toward the wall and fires the beam.

The important information obtained from this is the angle at which the pan-tilt is turned and the

distance from the laser to the wall. The platform then moves to some point represented in Figure

2.2. Using the information from part A and by knowing the distance the platform traveled to get

from A to B, then we can determine geometrically how far to turn the laser and what distance we

should expect to receive from the laser when it fires. The laser then turns to the calculated angle

and then fires to measure the actual distance. If the actual distance does not equal the expected

distance, then the platform did not travel the distance reported. The actual position of the platform

is then calculated geometrically using the actual distance measured by the laser. It needs to be

noted that the point being tracked is not a feature point, it is some arbitrary point on the wall.

In this chapter, we develop the geometry and methods to solve this problem. We first develop

methods for a one-dimensional model, where the platform is only allowed to move in a straight line.

For example, this would be the case for a platform moving along a conveyor belt. We develop this

model in order to test the efficacy of our models. We then develop methods for a two-dimensional

model, where the platform is allowed to move in an arbitrary flat space. This model could be used

for problems involving autonomous vehicles and robot motion. We believe our methods could be

extended to a three-dimensional model, but that is beyond the scope of the current work.

2.2 One-Dimension Model

In setting up the one-dimensional case, it is necessary to define certain parameters. Let α be the

angle the platform is moving with respect to the wall. We then let γ be the initial angle the pan-tilt

turns the laser, which is given by the user. This is allowed to be any arbitrary angle as long as it

points the laser toward the wall. Finally, let δ1 be the angle between laser measurements. In our

model, we let this be equal to 20 pan-tilt positions or 0.0185 radians. Two distances d1 and d2
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Figure 2.1 Tracking point on wall (part A)
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Figure 2.2 Tracking point on wall (part B)
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are measured by the laser separated by δ1. A summary of these parameters are given in Table 2.1.

These parameters are used to find the angle of motion (α) as shown in Figure 2.3. This is found

using the equations below.

x

d2 d1

d2
d3

d1

q
qm

a

x

g

Figure 2.3 1D - Finding wall angle

γ initial angle Provided by user
d1 first distance Measured by laser
d2 second distance Measured by laser
δ1 angle between laser measurements 0.0185 radians

Table 2.1 Wall angle calculation variables

First, we let θ be the complementary angle to γ, and θm be the supplementary angle to θ, as

shown by Equations 2.1 and 2.2.

θ =
π

2
− |γ| (2.1)

θm =
π

2
+ γ (2.2)

Given the two measured distances, d1 and d2, and the angle between them, δ1, we can determine

the distance x on the wall between the two laser point locations using Equation 2.3.

x =

√

d1
2 + d2

2 − 2 · d1 · d2 · cos δ1 (2.3)

The inner angles of this smaller triangle are found based on the direction the platform is moving.

Angle δ2 is only needed if the first condition for finding angle δ3 from Equation 2.5 is met. If the

laser and platform are in a position such as that shown in Figure 2.3, then the first condition for δ3
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is not met. Therefore, we do not use the calculation of δ3.

δ2 = arcsin
(d1 sin δ1

x

)

(2.4)

δ3 =

{

π − (δ1 + δ2) ((γ < 0) AND (d2 > d1)) OR ((γ > 0) AND (d1 > d2))

arcsin (d1 sin δ1

x
) otherwise

(2.5)

Once we find δ3, we can then determine the angle of motion, α, using the summation of angles

property of triangles. This is shown in Equation 2.6.

α = π − (θ + δ3) (2.6)

After the angle of motion is determined, the platform then moves some distance m. Based on

this distance, the angle θ and distance d2 are calculated. The angle is the angle at which the pan-tilt

unit should turn so that the laser points back to the original point on the wall. The distance is the

expected distance between the laser and the wall. This is shown by Figure 2.4. A summary of the

known parameters are given in Table 2.2. The equations to calculate θ and d2 are also given below.

x

d1

qqm

a

d2

q1

m

Figure 2.4 1D - Determining pan-tilt angle and expected distance

d1 d1 From wall angle calculations
θm θm From wall angle calculations
m distance moved Provided by user

Table 2.2 Step 1 calculation variables

Based on the known parameters (d1, m, θm), we calculate the expected distance d2 using the law

of cosines as shown in Equation 2.7.

d2 =

√

d1
2 + m2 − 2 · d1 · m · cos θm (2.7)
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Now, using the parameters (d2, m, d1), we calculate the inner angle θ1 by using the law of cosines

again shown by Equation 2.8.

θ1 = arccos
(d2

2 + m2 − d1
2

2 · d2 · m

)

(2.8)

We find the angle θ by knowing that θ and θ1 are complimentary angles, and is found using

Equation 2.9.

θ = θ1 −
π

2
(2.9)

The final step is to determine the actual distance, mact, traveled by the platform. In this step,

the pan-tilt unit moves to angle θ and then the laser measures the actual distance to the wall, dmeas.

Using the parameters in Table 2.3, we calculate the actual distance traveled by the platform. This

step is represented by Figure 2.5. The equations used to calculate mact are shown below.

x

d1

q

qm

a

d2

q1

m

dmeas

b b

h

i

mact

A

B

x

q1

Figure 2.5 1D - Determining the actual distance the platform traveled

d2 expected distance to wall From previous step
m distance moved Provided by user
θ angle to turn pan-tilt From previous step
θ1 complimentary angle to θ From previous step
α angle of motion From previous step

dmeas actual distance to wall Measured by laser

Table 2.3 Step 2 calculation variables

Using the summation of angles property of triangles, the angle β is found based on angles α and
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θ1 as shown in Equation 2.10.

β = π − (α + θ1) (2.10)

Next, the distance along the wall, h, from the intersection of the wall and the direction of motion

line to the original laser point is found. This is calculated by using the law of sines as shown in

Equation 2.11.

h =
d2 sin θ1

sinα
(2.11)

The corresponding distance along the direction of motion, A, is calculated based on the calcula-

tion of h by using the law of cosines as shown in Equation 2.12.

A =

√

h2 + d2
2 − 2 · h · d2 · cosβ (2.12)

The corresponding distances i and B are found in the same manner as h and A. The difference

is that the distances correspond to where the line dmeas intersects the two lines instead of the line

d2 as shown in Figure 2.4. The distances i and B are calculated using Equations 2.13 and 2.14.

i =
dmeas · sin θ1

sin α
(2.13)

B =

√

i2 + dmeas
2 − 2 · i · dmeas · cosβ (2.14)

The distance x is the difference between A and B along the direction of motion. This represents

the difference in the distance the platform supposedly moved and the distance the platform actually

moved. This is shown by Equation 2.15.

x = B − A (2.15)

Finally, the actual distance the platform traveled, mact is found by adding the difference of the

two distances, x, to the distance the platform was supposed to move, m. This is shown by Equation

2.16.

mact = x + m (2.16)

2.3 Two-Dimension Model
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2.3.1 Calibration

To prevent confusion, a distinction in spaces needs to be made. There are two two-dimensional spaces

in which the robot operates. The real world space will be represented by the triplet (x, y, θ). The

robot space, which is internal to the robot and is independent of the real world, will be represented

by the triplet (p, q, α). The method by which robot space is converted to the real world and vice

versa is shown in Figure 2.6.

(0,0)

Robot Coordinate system Conversion:
     Robot coordinates:  (p, q, a)
     World coordinates:  (x, y, q)
Initial Robot Position in world: (x0, y0, q0)
Initial Robot coordinates: (0, 0, 0)

x

y

y0

x0(0,0)

q0

p

q

x

q

a

y

q*sin(90-q0)

p*sin(q0)

q*cos(90-q0)p*cos(q0)

Figure 2.6 Converting between real world space and robot space

To calibrate the robot’s space with the real world space, the laser is fired at 2 adjacent walls to

find the robot’s true position. The walls do not need to be perpendicular; however, it does simplify

the computations. In this experiment, the walls are assumed (and measured) to be perpendicular.

The way this is done is by moving the laser back and forth on the first wall until it finds the

shortest distance between the laser and the wall; this is the perpendicular distance. Then the laser

is turned 90 degrees and finds the distance to the other wall. If the walls are not perpendicular to one

another, this is where extra computation is needed to extract xy-coordinates. The two perpendicular
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distances found are the (x0, y0) coordinates for the real world. The pan-tilt unit gives the robot’s

initial heading. This is due to how everything is physically mounted to each other on the robot. The

laser is mounted to the pan-tilt unit in such a way that it points forward at pan position 0 (straight

forward). The pan-tilt laser combination is mounted to the robot such that the laser points straight

forward on the robot. Based on this, the heading of the robot is the position of the pan-tilt when the

laser finds the x-coordinate during calibration. Now that there is a connection between the robot

space and the real world, converting from one to the other is possible. The conversion from one

space to the other is shown by the equations below.

To convert from (p, q, α) to (x, y, θ), the following equations are used:

θ = θ0 + α (2.17)

x = x0 + p · cos θ0 − q · cos (90 − θ0) (2.18)

y = y0 + p · sin θ0 + q · sin (90 − θ0) (2.19)

Similarly, to convert from (x, y, θ) to (p, q, α), the following equations are used:

α = θ − θ0 (2.20)

q =
y − y0 − x · tan θ0 + tan θ0

tan θ0 · cos (90 − θ0) + sin (90 − θ0)
(2.21)

p =

{

y−y0−q·sin(90−θ0)
sin θ0

(θ0 = 90) OR (θ0 = 270)
x−x0+q·cos(90−θ0)

cos θ0

otherwise
(2.22)

2.3.2 Laser Correction

2.3.2.1 Flatness Check and Angle Computation

When the laser takes a distance measurement from the wall, it does not just take a single measure-

ment. Rather, a series of five measurements are taken, with the center being recorded as the distance

to the wall for further calculations. Each measurement of the five is separated by 10 positions of the

pan-tilt unit. This is equal to about 0.53 degrees (0.00925 radians). There are a couple of reasons

for taking a five measurements rather than just one. The first reason is to make sure the area of

the wall is flat enough; the other is to compute the angle at which the robot is traveling. Making

sure the area is flat is necessary in order to insure the accuracy of the computations. In order to

check for flatness, the five distance measurements along with their respective angles are used. We
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consider each distance and its angle to be a pair. First the x and y coordinates of each pair are

determined. Then the angle and distance (φ, r) from each point to the center point is found. Here,

we will let (d3, θ3) be the center pair. For each of the other points (dn, θn), where n = 1, 2, 4, 5,

we determine their respective (φ, r) measurements. During the calculations, we check whether the

distance from the center point to the n point equals the distance from the n point to the center

point. If they are equal, then we continue. If, however, they are not equal, something has been

calculated incorrectly. It is not a necessary step, but it acts as a simple check for continuity. The

following equations describe how the flatness is determined.

First, we let the xy-coordinates of the center pair (d3, θ3) equal h and i as shown in Equations

2.23 and 2.24.

h = d3 cos θ3 (2.23)

i = d3 sin θ3 (2.24)

Next we determine the xy-coordinates of each pair as shown by Equations 2.25 and 2.26.

j = dn cos θn (2.25)

k = dn sin θn (2.26)

Then we calculate φ for each pair with respect to the center pair. This is shown in Equation

2.27.

φn = arctan
(h − j

k − i

)

(2.27)

We finally calculate the r distance from the nth pair to the center pair as well as from the center

pair to the nth pair as shown in Equations 2.28 and 2.29. These two values should be equal if the

calculations are performed correctly.

r = d3 ∗ cos (θ3 − φn) (2.28)

rn = dn ∗ cos (θn − φn) (2.29)

After we have all the rs and φs calculated, we then find the maximum and minimum of each set.

We find the max and min of the set of φs using Equations 2.30 and 2.31.

φmax = max(φ1, φ2, φ4, φ5) (2.30)

18



φmin = min(φ1, φ2, φ4, φ5) (2.31)

Similarly, we find the max and min of the set of rs using Equations 2.32 and 2.33.

rmax = max(r1, r2, r4, r5) (2.32)

rmin = min(r1, r2, r4, r5) (2.33)

Once we have the maximums and minimums, then we check to see if the area is flat enough.

The area is flat enough if the difference between the maximum and minimum φ is less than some φ-

threshold and if the difference between the maximum and minimum r is less than some r-threshold.

These threshold values are found offline using a trial and error method on known flat and non-flat

surfaces. This flatness check is shown in Equation 2.34, where 0 refers to a non-flat surface and 1

refers to a flat surface.

f =

{

0 (φmax − φmin) > φthreshold OR (rmax − rmin) > rthreshold

1 (φmax − φmin) < φthreshold AND (rmax − rmin) < rthreshold
(2.34)

If the area is flat enough, the next step is to compute the angle of the robot with respect to the

wall, Θ. This process not only finds the angle of the robot’s heading, but it also determines how the

robot is moving, such as toward or away from the wall. This is shown in Figure 2.7. The equations

to find the wall angle and heading are shown below as well. Table 2.5 describes what each choice

means in terms of the direction the robot is moving. A summary of known parameters are given in

Table 2.4.

θ1 angle to first point From flatness check
θ5 angle to fifth point From flatness check
d1 distance to first point From flatness check
d5 distance to fifth point From flatness check
θ3 angle to third (center) point From flatness check

Table 2.4 Robot heading calculation variables

Choice (c) Robot Heading
1 Moving toward wall with wall to the left
2 Moving away from wall with wall to the right
3 Moving away from wall with wall to the left
4 Moving toward wall with wall to the right

Table 2.5 The four headings a robot can take with respect to the wall
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Figure 2.7 Computing the wall angle and heading of the robot
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The angle γ is the angle between the first angle and the fifth angle and is found using Equation

2.35.

γ = |θ1 − θ5| (2.35)

The distance x is the distance along the wall between the first laser point and the fifth laser

point. This distance is calculated using the law of cosines as shown in Equation 2.36.

x =

√

d1
2 + d5

2 − 2 · d1 · d5 · cos γ (2.36)

Next, the inner angle δ2 is calculated using Equation 2.38. The intermediate step of Equation

2.37 is needed only if the first condition of Equation 2.38 is met. This condition depends on how

the robot and laser are oriented with the wall.

δ1 = arcsin
(d1 sin γ

x

)

(2.37)

δ2 =

{

π − (γ + δ1) d5 > d1

arcsin (d5 sin γ
x

) d5 < d1
(2.38)

The angle β is the supplementary angle to δ2 and is found using Equation 2.39.

β = π − δ2 (2.39)

The calculation of angle α depends on if the laser was turned left or right to point to the wall.

If it was turned to the right, then θ3 is positive, and α is calculated using the first condition of

Equation 2.40. If, however, it was turned to the left, then θ3 is negative, and α is calculated using

the second condition of Equation 2.40.

α =

{

π − (β + θ1) θ3 > 0
π − (β + (π − |θ1|)) θ3 < 0

(2.40)

Also determined by how the laser is turned, the choice c is 1 if θ3 is positive, and 2 if θ3 is

negative. This is shown in Equation 2.41.

c =

{

1 θ3 > 0
2 θ3 < 0

(2.41)

If, however, α is less than zero, then the robot is moving in one of the other two directions, and

α needs to be recalculated based on the other two directions the robot can move. Recalculating α

and determining the actual motion of the robot is shown in Equations 2.42 - 2.46.
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First, we recalculate the inner angle δ2 using Equation 2.43 based on different assumptions on

how the robot and laser are oriented. Once again, we only use the intermediate step of Equation

2.42 if the first condition of Equation 2.43 is met.

δ1 = arcsin
(d5 sin γ

x

)

(2.42)

δ2 =

{

π − (γ + δ1) d1 > d5

arcsin (d1 sin γ
x

) d1 < d5
(2.43)

The angle β is still the supplementary angle to δ2 and is found using Equation 2.44.

β = π − δ2 (2.44)

Finally, the angle α is recalculated and the choice c is determined based on if laser is turned left

or right to point toward the wall. This is shown by Equations 2.45 and 2.46.

α =

{

π − (β + (π − θ5)) θ3 > 0
π − (β + |θ5|) θ3 < 0

(2.45)

c =

{

3 θ3 > 0
4 θ3 < 0

(2.46)

After the angle α is calculated, whether it be from Equation 2.40 or from Equation 2.45, the

angle Θ is calculated by knowing that it is the supplementary angle to α. This is shown in Equation

2.47.

Θ = π − α (2.47)

2.3.2.2 Step 1

After calibration, the laser is turned at an arbitrary angle A such that the laser is pointing

somewhere on one of the walls. After the pan-tilt unit stops, the distance to the wall is measured

by the laser. Since this is the first point of the robot’s movement, the xy-coordinates have already

been obtained by the calibration process. The only new information is the angle the pan-tilt unit

turned (A) and the distance the laser measured (d0). This is shown in Figure 2.8.
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Figure 2.8 Finding first distance measurement
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2.3.2.3 Step 2

Now that everything has been initialized, the robot is finally ready to move. The robot moves

either forward or back some distance. When the robot stops, the odometry is recorded and con-

verted from robot coordinates to world coordinates using the conversions from above. Using this

information, we compute the angle, B, at which the pan-tilt should be turned such that the laser

points back to the original point on the wall. We also compute the expected distance, d1, from the

laser to that point on the wall. This process is shown in Figure 2.9. The list of known parameters

is given in Table 2.6, and the equations used to compute B and d1 are given below.

x

y

(0,0)

m1

q0t0

q1t1

d0

d1

A

B d1

x0x1

y0

y1

m1

r1

Figure 2.9 Finding angle and distance based on odometry for forward motion

The angle τ1 is the supplementary angle to θ1 and is found using Equation 2.48.

τ1 = π − θ1 (2.48)

We then find the distance, m1, between the previous point and the current odometry point using

24



(x0, y0) previous location coordinates From previous step
(x1, y1) odometry location coordinates Measured by odometer

A pan-tilt angle for previous distance From previous step
d0 previous distance to wall From previous step
θ0 previous angle of motion From previous step
θ1 odometry angle of motion Measured by odometer

Table 2.6 Step 2 calculation variables

Equation 2.49.

m1 =
√

(x0 − x1)2 + (y0 − y1)2 (2.49)

If the robot moves in the reverse direction, which is not represented by Figure 2.9, we use

Equations 2.50 - 2.54 to solve for B and d1. First, we find the angle ρ1, which is the angle between

the previous point and the current odometry point. This is shown in Equation 2.50.

ρ1 = arcsin
(y0 − y1

m1

)

(2.50)

We then calculate the angle, δ1, which is the difference between τ1 and ρ1. We find this by using

Equation 2.51. This represents the angle difference between the previous point and the current

point.

δ1 = τ1 − ρ1 (2.51)

The inner angle, µ1, between m1 and the expected distance d1, is computed using Equation 2.52.

µ1 = π − A + ((π − θ0) − ρ1) (2.52)

We then compute the expected distance d1 using the law of cosines as shown in Equation 2.53.

d1 =

√

d0
2 + m1

2 − 2 · d0 · m1 · cosµ1 (2.53)

Finally, we calculate the angle B using the distance we just found by once again using the law

of cosines as shown in Equation 2.54.

B = arccos
(d1

2 + m1
2 − d0

2

2 · d1 · m1
+ δ1

)

(2.54)

If, however, the robot moves forward, which is represented in Figure 2.9, we use Equations 2.55

- 2.59 to solve for the pan-tilt angle B and the expected distance d1.
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First, we compute angle, ρ1, between the previous point and the current point using Equation

2.55.

ρ1 = arcsin
(y1 − y0

m1

)

(2.55)

We then compute the difference between the previous angle of motion and ρ1. This is represented

by δ1 and is found using Equation 2.56.

δ1 = (π − θ0) − ρ1 (2.56)

We then compute the expected distance d1 using the law of cosines as shown in Equation 2.57.

d1 =

√

d0
2 + m1

2 − 2 · d0 · m1 · cos (A − δ1) (2.57)

By first finding the inner angle µ1 using Equation 2.58, we can then compute angle B as shown

in Equation 2.59.

µ1 = arccos
(d1

2 + m1
2 − d0

2

2 · d1 · m1

)

(2.58)

B = (π − µ1) + (τ1 − ρ1) (2.59)

After the pan-tilt angle and expected distance (B, d1) are calculated, the pan-tilt unit is then

moved to angle B. At this position, the laser is then used to find the actual distance between the

laser and the wall. As it does this, it also finds the angle at which it says the robot is moving with

respect to the wall. Using this information, the position, (x2, y2), where the laser says the robot is

located is found. This method is shown by Figure 2.10 and is outlined by the equations below. A

summary of known parameters is given in Table 2.7. For this step, we introduce the parameter R.

We let R equal 0 if the robot moves forward, and 1 if the robot moves in the reverse direction.

d2 actual distance Measured by laser
θ2 actual wall angle Measured by laser
R [0,1] Reverse parameter
A previous angle of pan-tilt From previous steps
B current angle of pan-tilt From previous step

(x0, y0) previous point coordinates From previous steps
(x1, y1) odometry point coordinates From previous step

θ0 previous angle of motion From previous steps
θ1 odometry angle of motion From previous step

Table 2.7 Step 2 calculation variables
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Figure 2.10 Finding xy-coordinates of actual location of robot using laser based on odometry
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We first let angle C be the angle we actually turn the pan-tilt unit, which is equal to the previously

calculated angle B, as shown in Equation 2.60.

C = B (2.60)

We then find two supplementary angles to angles we now know. First, the angle τ2 is sup-

plementary to the angle of motion θ2 and is found using Equation 2.61. Second, the angle µ2 is

supplementary to angle C and is found using Equation 2.62.

τ2 = π − θ2 (2.61)

µ2 = π − C (2.62)

Using the summation of angles property for triangles, we can calculate the angle γ2, as shown

by Equation 2.63.

γ2 = π − (µ2 + τ2) (2.63)

We can now find the first coordinate (y2) of our corrected position by using the sine law as shown

by Equation 2.64.

y2 = d2 sin γ2 (2.64)

The only way to associate the laser corrected information to existing information is to make an

assumption based on the odometry information. We either assume that the angle the odometer

returns is correct, or assume that the overall distance the robot traveled based on odometry coordi-

nates is correct. If the first assumption is correct, then the odometry angle and the converted wall

angle found by the laser will be equal. If this is the case, then the following equations are used to

find the x-coordinate. It needs to be noted that this method is not depicted in Figure 2.10.

Using the tangent, we find the distances on the x-axis based on y2 from Equation 2.65 and on

y1 from Equation 2.66. We also know that by making this assumption, τ1 equals τ2.

x12 =
y2

tan τ2
(2.65)

x11 =
y1

tan τ1
(2.66)

We now calculate the difference in x-distance based on whether the robot traveled forward or

backward, as shown in Equation 2.67.

x22 =

{

x12 − x11 R = 0
x11 − x12 R = 1

(2.67)
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Once the difference in x-distance between the odometry position and the laser-corrected position

is known, we can determine the x-coordinate (x2) of the laser-corrected position by using Equation

2.68.

x2 = x1 − x22 (2.68)

If the first assumption is not correct, then we must assume that the overall distance the robot

traveled was correctly computed based on the odometry information. If we assume this, then the

actual position of the robot lies somewhere on a circle of radius m1, centered at the previous position

of the robot (x0, y0). Using the information we’ve already gathered, the actual position on the circle

is where the calculated y-coordinate intersects the circle. It intersects in two locations, one in front

of the robot in the x-direction and one behind the robot in the x-direction. If the robot is moving

forward, the point in front of the robot is used. If, however, the robot is moving in reverse, then the

point behind the robot is used. The equations that calculate the x-coordinate are given here.

If we make this assumption, then we assume that the distance from the previous point to the

laser-corrected point is equal to that from the previous point to the odometry point. This is shown

by Equation 2.69.

m2 = m1 (2.69)

By using the Pythagorean theorem, we can find the x-coordinate (x2) by using Equation 2.70.

Which condition we use is determined by the motion of the robot, whether it moved forward or

reverse.

x2 =

{

x0 −
√

m2
2 − (y0 − y2)2 R = 0

x0 +
√

m2
2 − (y0 − y2)2 R = 1

(2.70)

The method we present here continually moves the robot then repeats step 2. For our experiment,

we moved the robot 49 times so that we have a total of 50 data points counting the starting point.

The results from our experiment are given later.
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CHAPTER 3

EXPERIMENTAL RESULTS

In this chapter, we describe two experiments we performed to test our methods. The first

experiment tests the one-dimensional model. This experiment was performed to test the efficacy of

our methods, meaning it was done to test whether the basic geometry was correct. For this test, we

placed the laser on a pan-tilt unit, and mounted it on a sliding platform. The platform was moved

in a straight line along a rail, and the laser was used to determine how far the platform moved. The

second experiment tests the two-dimensional model. For this experiment, we mounted the pan-tilt

laser to a mobile robot. We allowed the robot to move freely in a flat two-dimensional environment,

and we used the laser to correct the odometry of the robot. We also used the laser to acquire ground

truth position measurements, which we explain in more detail later. These measurements are used

to objectively evaluate the performance of our laser-based odometry corrections.

3.1 Testing apparatus

3.1.1 1D Model

The equipment we use for this part of the experiment is a flat sliding platform, a rail, a pan-tilt unit,

and a range-finding laser. The completely assembled platform is shown in Figure 3.1. The platform

is a square of aluminum plate measuring 30.5 cm x 30.5 cm with two holes drilled in it to mount the

pan-tilt unit. Small felt pads have been adhered to the bottom side of the plate to allow it to slide

smoothly along the rail. The rail was a 1m piece of aluminum angle with cm markings on one side to

show how far the platform slid. The markings ranged from 0cm up to 40cm. The pan-tilt unit is the

Computer Controlled Pan-Tilt Unit (Model PTU-D46-17.5) of DirectedPerception. It operates via

RS-232 using ASCII commands. It has a load capacity of 2.72 kg, speeds up to 300 degrees/second,

and a resolution of 3.086 arc minute (0.0514 degrees). The laser is the MiniLASER from HiTECH

Technologies, Inc. Like the pan-tilt unit, it operates via RS-232 using ASCII commands. It can

measure distances accurately from 0.1m to 100m with natural surfaces. Its accuracy is ±2mm under

defined conditions. This refers to using a planar non-glossy target operating at 20 ◦C. The accuracy

under undefined conditions is from ±3mm to ±5mm. Its resolution is 0.1mm depending on the

target and atmospheric conditions. Its measuring time is between 0.16s to 6s.
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Figure 3.1 One-Dimensional model of pan-tilt unit and range-finding laser
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3.1.2 2D Model

The two-dimensional model replaces the sliding platform with a mobile robot. The mobile robot

is an ActivMedia Inc Pioneer 2 Mobile Robot. It operates via RS-232 communication using the

Saphira client-development software. The robot along with the pan-tilt unit and range-finding laser

are shown mounted together as they were being used in Figure 3.2.

Figure 3.2 Mobile robot with pan-tilt unit and range-finding laser

3.2 Results

3.2.1 1D Model

Our one-dimensional experiment was strictly an efficacy test. We only wanted to know if our theory

held true. Therefore, our testing was not elaborate. For our test, we slid the platform along the

rail a certain distance. We then input a distance to the program, which may or may not be the

match the distance we moved the platform. The program then would compute the actual distance
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the platform moved. Table 3.1 shows our results from our test. The results show that our theory is

correct. We could not extract any meaningful statistics from this data because there is no odometry

information. We were physically moving the platform by hand along a rail that had hand drawn

markings on it. This experiment was just to test to see if our theory worked before we moved on

to the two-dimensional experiment. However, if we wanted to test this 1D model further, we could

attach the platform to a motor that has an encoder to move the platform forward and back to get

actual odometry measurements from it.

Input move amt (cm) Physical move amt (cm) Actual move amt (cm)
10.0 10 10.166
10.0 5 4.653
-10.0 -5 -4.652
20.0 20 21.050
-20.0 -15 -15.395
25.0 5 5.811
-10.0 -1 -0.588
1.0 10 10.178
10.0 -5 -5.012
20.0 3 3.626

Table 3.1 Listing of 1D Test Results

3.2.2 2D Model

Our two-dimensional experiment took place in the corner of our lab. The floor was carpeted and

each of the two walls was a different type of surface. One wall had a plastic corrugated board

taped to the wall, the other wall was just the wall surface. The two walls were only needed to get

an actual position of the robot for comparison purposes. All the calculations were based on the

measurements obtained from the plastic board covered wall. For the test, we programmed the robot

to move forward and back 49 times so that we would have a total of 50 positions counting the initial

position. This process was repeated 10 times. For 5 of these, the first movement of the robot was

forward. For the other 5, the first movement was backward.

The data returned as three sets of (x,y,θ) points for each step of the robot. The first set was the

odometry position of the robot. The second set was the laser-corrected position, and the third set

was the actual position. Four statistics were drawn from each step. The first was the linear distance

from odometry (x,y) point to the actual (x,y) point. The second was the linear distance from the

laser-corrected (x,y) point to the actual (x,y) point. The third was the difference between the actual
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heading and the odometry heading. Finally, the fourth was the difference between the odometry

heading and the laser-corrected heading. These four statistics were found for each of the 50 steps

of the tests. The average of the 10 tests for each of these four statistics were taken along with the

standard deviation. The two average distance stats were plotted against each other as shown in

Figure 3.3. Likewise, the two average angle stats were plotted against each other in Figure 3.4.
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Figure 3.3 Average Difference in Distance from Actual Position

Figure 3.3 shows the accumulation of error by the odometer represented by the top line of the

plot. The lower line represents the error of the laser-correction algorithm. It shows that while the

laser does not eliminate the error, it does improve the odometry. In actuality, it cuts the error in

half.

Figure 3.4 shows the same accumulation of error by the odometer. The laser-correction, however,

is not as predictable as in the Figure 3.3. The benefit of the laser-corrected angle that can be drawn

from this plot is that it does stay around zero.

3.2.2.1 2D Model - Actual position

In order for us to be able to analyze our two-dimensional model, we had to develop a technique

to measure the actual position of the robot in the real world. We were able to do this by using

two perpendicular walls. Then, the perpendicular distance from each wall to the robot was found
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Figure 3.4 Average Difference in Angle from Actual Position

using the laser. We used the same technique as in the calibration step to find these distances, which

became the xy-coordinates in the real world. Since we needed two walls in order to find the ground

truth position of the robot, we were limited in our selection of operable spaces. It was for this reason

that we only tested the model in one location.

There were ideas of running the robot around the room or up and down the hallway, but neither

of these options allowed for accurate ground-truth measurements to be obtained. Without these

measurements, there would not be a way to compare the odometry location with the laser-corrected

location, which would render those tests inconclusive.

3.2.3 Surface testing

During testing, we found that the laser had different accuracy depending on the surface the laser

was targeting. To determine what kind of effect each surface had, we performed straight line tests

on each of the surfaces that we were using. We found that the laser performed better for the flatter

surfaces. The flatness tests for our surfaces are represented by Figures 3.5, 3.6, 3.7, 3.8, and 3.9.

The two surfaces used to obtain the results above were the plastic board shown by Figure 3.8 and

the wall surface shown by Figure 3.9. Each of these figures shows the readings from the laser with

a best fit line, depicted by the top plot of each figure. The bottom plot of each of these figures is
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the residual plot. The residuals are the distances between the data plot and the line. Also depicted

on this bottom plot is the norm of the residuals. The lower the norm is, the flatter the surface is.
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Figure 3.5 3rd Floor lab (A/C Unit)
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Figure 3.6 3rd Floor lab (plastic board)
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Figure 3.7 Freshly Painted Hallway (Glossy Paint)
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Figure 3.8 2nd Floor lab (plastic board)
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Figure 3.9 2nd Floor lab (wall)
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CHAPTER 4

CONCLUSIONS

4.1 Results Discussion

We have shown that a range-finding laser can be used to improve odometry both in the one-

dimensional model as well as in the two-dimensional model. While the one-dimensional model

was only used as an efficacy test, further experimentation can be performed to show that a laser can

be used to correct odometry for one-dimensional movement. In the two-dimensional case, we were

not able to completely correct the odometry, but we were able to improve it. Our model showed

half the error accumulation that shown by the pure odometry model.

One thing we noticed in our results from each fifty-step test was that there was a definite

oscillation in the error. The odometry as well as our laser corrected model showed this behavior.

What we saw in the data was that there was more error when the robot moved forward than when it

moved in reverse. By taking the average of ten runs, we were able to remove most of the oscillation,

but it can still be seen in the laser-correction error line. What we have not been able to determine

is if this behavior is limited to this particular robot or the environment.

4.2 Future

The basis for this work came from a science fiction idea of vehicles navigating themselves. A vehicle

would be equipped with 10 to 20 of these pan-tilt range-finding lasers, all pointing at different objects.

Some would be tracking the ground, while others track the surrounding vehicles and environment.

As the vehicle moved, the lasers would constantly be finding points, tracking them, and then as

they would be lost, the lasers would lock on to new points. There would then be filters designed to

combine all the data from set of lasers to determine the vehicle’s location with respect to the world

or map, as well as to its surrounding vehicles. The basic priciple for this idea is determining if these

pan-tilt lasers can be used to precisely determine location.
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