229 research outputs found

    Limited Feedback in Multiple-Antenna Systems with One-Bit Quantization

    Full text link
    Communication systems with low-resolution analog-to-digital-converters (ADCs) can exploit channel state information at the transmitter (CSIT) and receiver. This paper presents initial results on codebook design and performance analysis for limited feedback systems with one-bit ADCs. Different from the high-resolution case, the absolute phase at the receiver is important to align the phase of the received signals when the received signal is sliced by one-bit ADCs. A new codebook design for the beamforming case is proposed that separately quantizes the channel direction and the residual phase.Comment: Asilomar Conference on Signals, Systems, and Computers 201

    Beamforming in MISO Systems: Empirical Results and EVM-based Analysis

    Full text link
    We present an analytical, simulation, and experimental-based study of beamforming Multiple Input Single Output (MISO) systems. We analyze the performance of beamforming MISO systems taking into account implementation complexity and effects of imperfect channel estimate, delayed feedback, real Radio Frequency (RF) hardware, and imperfect timing synchronization. Our results show that efficient implementation of codebook-based beamforming MISO systems with good performance is feasible in the presence of channel and implementation-induced imperfections. As part of our study we develop a framework for Average Error Vector Magnitude Squared (AEVMS)-based analysis of beamforming MISO systems which facilitates comparison of analytical, simulation, and experimental results on the same scale. In addition, AEVMS allows fair comparison of experimental results obtained from different wireless testbeds. We derive novel expressions for the AEVMS of beamforming MISO systems and show how the AEVMS relates to important system characteristics like the diversity gain, coding gain, and error floor.Comment: Submitted to IEEE Transactions on Wireless Communications, November 200

    Spectral Efficiency of One-Bit Sigma-Delta Massive MIMO

    Get PDF
    We examine the uplink spectral efficiency of a massive MIMO base station employing a one-bit Sigma-Delta ( \Sigma \Delta ) sampling scheme implemented in the spatial rather than the temporal domain. Using spatial rather than temporal oversampling, and feedback of the quantization error between adjacent antennas, the method shapes the spatial spectrum of the quantization noise away from an angular sector where the signals of interest are assumed to lie. It is shown that, while a direct Bussgang analysis of the \Sigma \Delta approach is not suitable, an alternative equivalent linear model can be formulated to facilitate an analysis of the system performance. The theoretical properties of the spatial quantization noise power spectrum are derived for the \Sigma \Delta array, as well as an expression for the spectral efficiency of maximum ratio combining (MRC). Simulations verify the theoretical results and illustrate the significant performance gains offered by the \Sigma \Delta approach for both MRC and zero-forcing receivers

    Massive MIMO 1-Bit DAC Transmission: A Low-Complexity Symbol Scaling Approach

    Get PDF
    We study multi-user massive multiple-input single-output (MISO) systems and focus on downlink transmission, where the base station (BS) employs a large antenna array with low-cost 1-bit digital-to-analog converters (DACs). The direct combination of existing beamforming schemes with 1-bit DACs is shown to lead to an error floor at medium-to-high SNR regime, due to the coarse quantization of the DACs with limited precision. In this paper, based on the constructive interference we consider both a quantized linear beamforming scheme where we analytically obtain the optimal beamforming matrix, and a non-linear mapping scheme where we directly design the transmit signal vector. Due to the 1-bit quantization, the formulated optimization for the non-linear mapping scheme is shown to be non-convex. To solve this problem, the non-convex constraints of the 1-bit DACs are firstly relaxed, followed by an element-wise normalization to satisfy the 1-bit DAC transmission. We further propose a low-complexity symbol scaling scheme that consists of three stages, in which the quantized transmit signal on each antenna element is selected sequentially. Numerical results show that the proposed symbol scaling scheme achieves a comparable performance to the optimization-based non-linear mapping approach, while its corresponding complexity is negligible compared to that of the non-linear scheme.Comment: 15 page

    Performance Evaluation of Low Complexity Massive MIMO Techniques for SC-FDE Schemes

    Get PDF
    Massive-MIMO technology has emerged as a means to achieve 5G's ambitious goals; mainly to obtain higher capacities and excellent performances without requiring the use of more spectrum. In this thesis, focused on the uplink direction, we make a study of performance of low complexity equalization techniques as well as we also approach the impact of the non-linear elements located on the receivers of a system of this type. For that purpose, we consider a multi-user uplink scenario through the Single Carrier with Frequency Domain Equalization (SC-FDE) scheme. This seems to be the most appropriate due to the low energy consumption that it implies, as well as being less favorable to the detrimental effects of high envelope fluctuations, that is, by have a low Peak to Average Power Ratio (PAPR) comparing to other similar modulations, such as the Orthogonal Frequency Division Multiplexing (OFDM). Due to the greater number of antennas and consequent implementation complexity, the equalization processes for Massive- MIMO schemes are aspects that should be simplified, that is, they should avoid the inversion of matrices, contrary to common 4G, with the Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) techniques. To this end, we use low-complexity techniques, such as the Equal Gain Combining (EGC) and the Maximum Ratio Combining (MRC). Since these algorithms are not sufficiently capable of removing the entire Inter-Symbol Interference (ISI) and Inter-User Interference (IUI), we combine them with iterative techniques, namely with the Iterative Block with Decision Feedback Equalizer (IB-DFE) to completely remove the residual ISI and IUI. We also take into account the hardware used in the receivers, since the effects of non-linear distortion can impact negatively the performance of the system. It is expected a strong performance degradation associated to the high quantization noise levels when implementing low-resolution Analog to Digital Converters (ADCs). However, despite these elements with these configurations become harmful to the performance of the majority of the systems, they are considered a desirable solution for Massive-MIMO scenarios, because they make their implementation cheaper and more energy efficient. In this way, we made a study of the impact in the performance by the low-resolution ADCs. In this thesis we suggest that it is possible to bypass these negative effects by implementing a number of receiving antennas far superior to the number of transmitting antennas

    Methods for FPGA pre-processing of data for the ALOFT readout system

    Get PDF
    In 2017 the Airborne Lightning Observatory for FEGS & TGFs (ALOFT) campaign was completed with the goal of studying thundercloud related high energy phenomena, namely Terrestrial Gamma-Ray Flashes (TGFs) and Gamma-ray Glows, and their connections. This was done on a high-altitude airplane flying over the thunderclouds. The campaign observed two gamma-ray glows but no TGFs. A new ALOFT campaign has been confirmed for 2023 and will contain several upgrades and improvements. Some of these improvements includes developing two new detectors that will be added to the instrument, as well as a new readout system based around a ZYNQ-7000 series System on Chip (SoC). Through this thesis, my contribution to this development has been two-folded: 1. Verify that the integrated ZYNQ Serial Peripheral Interface (SPI) controller can be used to interface and configure the Analog to Digital Converters (ADCs) in the new detectors. This involves a) making a converter between the four wire SPI used by the ZYNQ and the three wire SPI used by the ADCs, b) modelling the behaviour of how the ADCs control registers communicate, and c) verify if the ZYNQ SPI controller can transmit the protocols required to configure the ADCs, and that it can access the FPGA part of the ZYNQ SoC. 2. During TGFs the data output of the new detectors far exceeds the ability of the system to send all the raw data to storage, requiring the data to be temporarily buffered. The buffer capacity needed to guarantee that no data is lost, would consume 73% of the total shared buffer capacity available to the FPGA part of the system. This leaves very little available capacity for the remaining detectors and any FPGA modules. In this thesis different approaches to reduce the required buffer requirements has been explored. My work in this thesis shows that: 1. The ZYNQ SPI controller can be used to configure the ADCs by a) showing that the required converter can easily be made in the FPGA part of the ZYNQ, by b) modelling how the ADCs are configured can be created, and by c) testing that the ZYNQ SPI controller is compatible with the protocols used to interact and configure the ADCs. 2. After exploring both real-time analysis of the data on the SoC and compressing the raw data, the safest methods to use is compression. It is also shown that with the compression explored and considered, it is no problem reducing the buffer requirement from 73% to less than 30% of the total shared capacity.Masteroppgåve i fysikkPHYS399MAMN-PHY
    corecore