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Abstract— We study multi-user massive multiple-input single-
output systems and focus on downlink transmission for PSK
modulation, where the base station employs a large antenna
array with low-cost 1-bit digital-to-analog converters (DACs). The
direct combination of existing beamforming schemes with 1-bit
DACs is shown to lead to an error floor at medium-to-high SNR
regime, due to the coarse quantization of the DACs with limited
precision. In this paper, based on the constructive interference,
we consider both a quantized linear beamforming scheme where
we analytically obtain the optimal beamforming matrix and a
non-linear mapping scheme where we directly design the transmit
signal vector. Due to the 1-bit quantization, the formulated opti-
mization for the non-linear mapping scheme is shown to be non-
convex. The non-convex constraints of the 1-bit DACs are first
relaxed into convex, followed by an element-wise normalization
to satisfy the 1-bit DAC transmission. We further propose a low-
complexity symbol scaling scheme that consists of three stages,
in which the quantized transmit signal on each antenna element
is selected sequentially. Numerical results show that the proposed
symbol scaling scheme achieves a comparable performance to the
optimization-based non-linear mapping approach, while the cor-
responding performance-complexity tradeoff is more favorable
for the proposed symbol scaling method.

Index Terms— Massive MIMO, 1-bit quantization, beam-
forming, constructive interference, Lagrangian, low-complexity
scheme.

I. INTRODUCTION

TOWARDS the fifth generation (5G) and future wireless
communication systems, massive multiple-input multiple-
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output (MIMO) systems [1] have received increasing research
attention in recent years as they are able to greatly improve
the spectral efficiency [2]–[5]. It has also been shown that
low-complexity linear precoding approaches such as zero-
forcing (ZF) [6] and regularized ZF (RZF) [7] achieve
close-to-optimal performance in the massive MIMO regime.
Nevertheless, with a large number of antennas employed
at the BS, a large number of radio frequency (RF) chains
and high-resolution digital-to-analog converters (DACs) are
needed for a fully-digital massive MIMO BS, which makes the
hardware complexity and the corresponding cost prohibitively
high. Moreover, the large number of hardware components
will also result in a significant increase in the power con-
sumption at the BS. All of the above make the fully-digital
massive MIMO difficult to implement in practice. To achieve
a compromise between the performance, hardware complexity
and the consequent power consumption in practical massive
MIMO systems, hybrid analog digital beamforming [8]–[13]
has attracted research interest as a means of reducing the
number of RF chains.

In addition to the hybrid structures, another potential
approach, which is the focus of this paper, is to reduce the cost
and power consumption per RF chain by employing very low-
resolution digital-to-analog converters (DACs) instead of high-
precision DACs. It has been shown in [14]–[16] that the power
consumption of DACs grows exponentially with the resolution
and linearly with the bandwidth in the downlink. In the
traditional MIMO downlink, each transmit signal is generated
by a pair of high-resolution (usually more than 8-bit) DACs
that are connected to the RF chain. However, in the case of
massive MIMO with hundreds of antennas deployed at the BS,
a large number of high-resolution DACs are required, which
poses a significant practical challenge. Therefore, employing
low-resolution DACs, especially 1-bit DACs, can greatly sim-
plify the hardware design for the massive MIMO BSs, and
further reduce the power consumption per RF chain and the
resulting total power consumed at the BS. When 1-bit DACs
are employed, the output signal at each antenna element is
equivalent to the constant-envelope symbol from a QPSK con-
stellation, which enables the use of low-cost power amplifiers
(PAs) and can further reduce the hardware complexity.

In the existing literature, most recent studies have focused
on the performance analysis for massive MIMO uplink with
low-resolution analog-to-digital converters (ADCs), especially
for the 1-bit case [17]–[19], where it is shown that the
number of quantization bits can be reduced while a comparable
performance is still achievable. For the case of downlink
transmission with 1-bit DACs, there have been an increas-
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ing number of studies due to the benefits mentioned
above [16], [20]–[29]. Jacobsson et al. [16] consider
both linear and non-linear precoding methods for 1-bit
DAC downlink transmission, and propose several non-linear
computationally-expensive precoding methods based on semi-
definite relaxation (SDR), squared l∞-norm relaxation and
sphere precoding. In [20] and [21], a simple quantized ZF
scheme is considered, where the transmit signal vector is
obtained by a direct quantization on the ZF-precoded signals.
In [22] and [23], quantized linear beamforming schemes
based on minimum-mean squared error (MMSE) are proposed,
whose performance is shown to be superior to the quantized
ZF scheme in [20]. In [24], a non-linear symbol perturbation
technique is introduced for QPSK modulation in the one-bit
massive MIMO downlink. In [25] and [26], 1-bit downlink
precoding schemes are proposed based on gradient meth-
ods. In [27], a branch-bound search method is proposed for
MIMO downlink transmission with 1-bit quantization, which
is however difficult to implement in massive MIMO due to
the prohibitive complexity of the branch-bound algorithm.
In [28] and [29], an iterative non-linear beamforming scheme
is introduced via a biconvex relaxation approach, where the
proposed scheme directly designs the transmit signal vector
based on the MMSE criterion. Nevertheless, while operating
on a symbol-by-symbol basis, these MMSE-based schemes
may be sub-optimal since they ignore information regarding
the finite alphabet nature of the transmit signals. As an
example, for PSK signals, a more reliable decoding at the
receiver can be obtained by forcing the received signal to
lie deeper within each PSK decision region, farther away
from the nominal constellation point, a process that would
actually increase the mean-squared error (MSE). The methods
in [30]–[35] take advantage of this observation by rotating the
multiuser interference so that it adds constructively with the
desired signal and improves the bit error rate (BER). Moreover,
while there have been studies on downlink beamforming
schemes with 1-bit DACs, most of these existing schemes
either suffer a severe performance degradation [20]–[23]
compared to the unquantized case, or require sophisticated
optimizations and iterative algorithms that are computationally
inefficient [28].

In this paper, we revisit the symbol-level operations required
for massive MIMO downlink transmission with 1-bit DACs
to exploit the formulation of constructive interference. The
symbol-by-symbol precoding operation allows us to observe
the interference from an instantaneous point of view, and
exploit it constructively [30]–[35]. We firstly consider a quan-
tized linear beamforming scheme by constructing a beam-
forming matrix before quantization. Based on the concept
of constructive interference, the optimization aims to max-
imize the distance between the received symbols and the
detection thresholds, which leads to a minimum uncoded
error rate. By mathematically analyzing the optimization prob-
lem with the KKT conditions, it is shown that the optimal
solution is achieved by applying a strict phase rotation for
the constructed problem in the case of massive MIMO.
Due to the operation of the 1-bit quantization, the above
quantized linear scheme is analytically shown to be equiv-

alent to the quantized ZF scheme, which suffers from a
significant performance loss compared to the unquantized
case.

To improve the performance, we then propose a non-linear
mapping scheme where we directly design the quantized
transmit signal vector. Nevertheless, due to the constraint on
the output signals of 1-bit DACs, the resulting optimization
problem is shown to be non-convex. For this non-convex
problem, as in [36] we apply a relaxation on the mathematical
constraint resulting from the use of 1-bit DACs, such that
the relaxed problem becomes convex, and can be efficiently
solved. Then, we apply an element-wise normalization on
the signal vector obtained from the relaxed optimization
to meet the constraint on the output signals of the 1-bit
DACs.

Nevertheless, since the variable of the non-linear optimiza-
tion approach is the transmit signal vector, whose dimension
is equal to the number of transmit antennas, the computational
complexity of the resulting optimization is high in the case of
massive MIMO. Therefore, to enable the practical implemen-
tation of 1-bit DACs, we further propose a low-complexity
symbol scaling scheme based on a coordinate transformation
of the constructive interference problem, where we directly
select the 1-bit DAC output for each antenna element on
a sequential basis, and a relaxation-normalization process is
therefore no longer needed. The proposed symbol scaling
approach consists of three stages: an initialization stage where
we decide the output signals for some antenna elements whose
channel coefficients satisfy certain requirements, an alloca-
tion stage where we sequentially select the output signals
for the residual antenna elements, and a refinement stage
where we check whether the performance with the obtained
signal vector can be further improved based on the greedy
algorithm. Both the ‘Sum-Max’ and the ‘Max-Min’ criteria
are considered in the allocation stage, and the output signal
vector that returns the best performance is then obtained within
the above two criteria. We further study the computational
costs of the proposed optimization-based and symbol scaling
schemes in terms of the floating-point operations required.
Numerical results show that in the case of small-scale MIMO
systems, the proposed symbol scaling scheme achieves the
best performance in terms of the BER. In the case of massive
MIMO, the optimization-based non-linear scheme achieves
an improved performance over existing schemes and better
approaches the performance of the unquantized scheme, while
the proposed symbol scaling algorithm can achieve a compa-
rable performance. In terms of the computational complex-
ity, it is demonstrated that the complexity of the ‘symbol
scaling’ method is lower compared to that of the existing non-
linear 1-bit precoding schemes and an improved performance-
complexity tradeoff is observed, which favors its usefulness in
practice.

We summarize the contributions of the paper below:
1) We propose downlink beamforming schemes for massive

MIMO with 1-bit DACs based on the constructive inter-
ference formulation. We first consider a quantized linear
beamforming scheme, where it is analytically proven
that, in the massive MIMO region, optimality is achieved
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Fig. 1. Massive MIMO downlink system model with 1-bit DACs.

by employing a strict phase rotation due to the favorable
propagation conditions.

2) We then consider a non-linear mapping approach where
we directly optimize the transmit signal vector, which
leads to a non-convex optimization due to the 1-bit
quantization. As in [36], we relax the non-convex con-
straints such that the relaxed problem becomes convex
and can be solved, followed by the normalization on
the obtained signal vector to satisfy the 1-bit DAC
transmission.

3) Based on a coordinate transformation of the constructive
interference formulation, we further propose a low-
complexity symbol scaling scheme where we directly
select the quantized signal on each antenna element
via a three-stage process. It is shown that the sym-
bol scaling approach can achieve a comparable per-
formance to the optimization-based non-linear mapping
scheme.

4) We further study the computational costs of the sym-
bol scaling schemes in terms of the required number
of real-valued multiplications. Compared with existing
algorithms, an improved performance-complexity trade-
off is observed for the proposed symbol scaling methods.

The remainder of this paper is organized as follows.
Section II introduces the system model. Both the proposed
optimization-based quantized linear beamforming scheme and
the non-linear mapping scheme that exploit the construc-
tive interference are presented in Section III. The low-
complexity three-stage symbol scaling method is presented
in Section IV. Section V includes the analysis of the com-
putational complexity for both schemes, and the numerical
results are shown in Section VI. Section VII concludes the
paper.

Notations: a, a, and A denote scalar, vector and matrix,
respectively. (·)T and (·)H denote transposition and conjugate
transposition of a matrix, respectively. card (·) denotes the
cardinality of a set, and sgn [·] is the sign function. j denotes
the imaginary unit, and vec (·) denotes the vectorization oper-
ation. a (k) denotes the k-th entry in vector a, and |·| denotes
the modulus of a complex number or the absolute value of
a real number. �·�F denotes the Frobenius norm, and Cn×n

represents an n× n matrix in the complex set. �(·) and �(·)
denote the real and imaginary part of a complex number,

respectively. I denotes the identity matrix, and el denotes the
l-th column of I.

II. SYSTEM MODEL

We consider a multi-user massive MIMO downlink, where
1-bit DACs are employed at the BS, as depicted in Fig. 1.
As we focus on the transmit-side processing with single-
antenna receivers, ideal ADCs with infinite precision are
assumed to be employed at each receiver. The BS with Nt

transmit antennas is communicating with K single-antenna
users simultaneously in the same time-frequency resource,
where K � Nt. We focus on the transmit beamforming
designs and perfect CSI is assumed, while we also numer-
ically study the performance of the proposed schemes with
imperfect CSI in Section VI. Following the closely-related
literature [20]–[26], [36], the symbol vector is assumed to
be from a normalized PSK constellation. We denote the data
symbol vector as s ∈ CK×1, and the unquantized signal
vector that is formed based on s as x̂T ∈ CNt×1. Then,
the unquantized signal vector x̂T can be expressed as

x̂T = B (H, s), (1)

where B denotes a general linear or non-linear transformation.
When a linear precoding scheme is employed as in Section III-
B, B represents the linear precoding matrix that multiplies s
before quantization, while in the case of non-linear precoding
as in Section III-C or Section IV, B refers to a non-linear
mapping that forms the transmit signals based on s. With
1-bit DACs employed, the output signal vector is then obtained
as

xT = Q (x̂T ), (2)

where Q denotes the 1-bit quantization on both the real and
imaginary part of each entry in x̂T . We denote xn, n ∈
{1, 2, · · · , Nt} as the n-th entry in xT , and in this paper each
xn is normalized to satisfy

xn ∈
�
± 1√

2Nt

± 1√
2Nt

· j
�

, ∀n ∈ N , (3)

where N = {1, 2, . . . , Nt}. The above normalization guaran-
tees that �xT �2F = 1, and we can then express the received
signal vector as

y =
√

P ·HxT + n, (4)
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Fig. 2. Constructive interference and constructive region for QPSK.

where H ∈ CK×Nt denotes the flat-fading Rayleigh channel
with each entry following a standard complex Gaussian distri-
bution, n ∈ CK×1 denotes additive Gaussian distributed noise
with zero mean and covariance σ2 · I, P is the total available
transmit power per antenna, and for simplicity in this paper
we assume uniform power allocation for the antenna array.

III. 1-BIT TRANSMISSION SCHEME BASED ON

CONSTRUCTIVE INTERFERENCE

A. Constructive Interference and Constructive Region

Constructive interference is defined as interference that
pushes the received signals away from the detection thresholds
of the modulation constellation [30]–[32]. The exploitation
of constructive interference was first introduced in [30] to
improve the performance of the ZF precoding scheme, and
was more recently applied to optimization-based approaches
in [31], [32], [35], and [37] based on the constructive region,
where it was further demonstrated that the interfering signals
may not necessarily be strictly aligned with the data sym-
bol. As long as the resulting signals plus interference are
located in the constructive region, the distance to the detection
thresholds is increased, and an improved performance can be
expected [30]. Some applications of the constructive interfer-
ence can be found in [38]–[41]. To illustrate the underlying
concept intuitively, in Fig. 2 we depict the constructive region
for QPSK modulation, where for simplicity and without loss
of generality we focus on one quarter of the constellation.
As can be observed, when the resulting interfered signal ( �OB
in Fig. 2) is located in the constructive region, it is pushed
further away from the detection thresholds. The mathematical
formulation of the optimization problem based on the con-
structive region will be introduced in the following.

B. 1-bit Transmission Scheme - Linear Beamforming

When a linear beamforming scheme is considered,
the unquantized transmit signal vector can be expressed as

x̂T = Ws. (5)

To introduce the proposed scheme, we first decompose the
channel matrix into

H =
�
hT

1 ,hT
2 , · · · ,hT

K

�T
, (6)

where each hk ∈ C1×Nt denotes the channel vector of the
k-th user. Then, the received signal for user k can be obtained
as

yk =
√

P · hkxT + nk

=
√

P · hkQ (Ws) + nk, (7)

where nk is the k-th entry in n. For the proposed quantized
linear approach in this paper, the unquantized beamforming
matrix W assuming infinite-precision DACs is first obtained,
followed by the 1-bit quantization on the resulting transmit
signal vector x̂T .

To formulate the desired optimization problem, let us
first study the analytical constructive interference conditions.
In Fig. 2, we denote �OA = t · sk and note that t = | �OA|
is the objective to be maximized. We assume the node ‘B’
denotes the noiseless received signal (hkWs) that is located
in the constructive region, and we further denote �OB = λksk,
where λk is an introduced complex variable with | �OB| = |λk|.
We can then obtain

�OB = hkWs = λksk. (8)

Based on the fact that �OC and �CB are perpendicular, we can
further obtain

�OC = � (λk) sk, �CB = j · � (λk) sk, (9)

where geometrically the imaginary unit ‘j’ denotes a phase
rotation of 90o along the anti-clockwise direction. As the
nodes ‘O’, ‘A’, and ‘C’ are co-linear, we can then express
�AC as

�AC = [� (λk)− t] sk. (10)

Based on the expressions for �AC and �CB,

tan θAB =
| �CB|
| �AC| =

|� (λk) sk|
|[� (λk)− t] sk| =

|� (λk)|
� (λk)− t

. (11)

In Fig. 2, it is observed that locating node ‘B’ in the construc-
tive region is equivalent to the following condition:

θAB ≤ θt ⇒ tan θAB ≤ tan θt

⇒ |� (λk)|
� (λk)− t

≤ tan θt

⇒ [� (λk)− t] tan θt ≥ |� (λk)| . (12)

ForM-PSK modulation, based on the geometry of the modu-
lation constellation it is easy to obtain the threshold angle θt,
given by

θt =
π

M . (13)

With the above technical details, we can formulate the
optimization for the unquantized linear beamforming. The goal
is to choose the linear precoder W in Eq. (5) to maximize the
distance of the constructive region from the decision boundary,
which is denoted by t = | �OA| in Fig. 2. Mathematically,
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we can formulate the optimization for the unquantized linear
beamforming as

P1 : max
W,t

t

s.t. hkWs = λksk, ∀k ∈ K
[� (λk)− t] tan θt ≥ |� (λk)| , ∀k ∈ K
�Ws�F ≤

√
p0

t ≥ 0 (14)

where K = {1, 2, · · · , K}, and �Ws�F ≤
√

p0 is the instanta-
neous power constraint on the beamformer, as the beamform-
ing is dependent on the data symbols. Due to the existence
of the subsequent 1-bit quantization operation, p0 in P1 can
be any positive value, and this will not have an impact on the
final obtained quantized signal vector xT . P1 is a second-order
cone programming (SOCP) optimization, and we can further
obtain the following proposition in the case of massive MIMO.

Proposition: In the case of massive MIMO where the users’
channels experience independent Rayleigh fading, the favor-
able propagation property HHH ≈ Nt · I holds, and the
optimality conditions for each λk and t of the optimization
problem P1 are obtained as

1) � (λ∗
k) ≈ 0, ∀k ∈ K;

2) t∗ ≈ λ∗
1 ≈ λ∗

2 ≈ · · · ≈ λ∗
K ≈

�
Nt·p0

K .

Proof: We prove the above proposition by analyzing the
optimization problem P1 with the KKT conditions. We firstly
transform P1 into a standard minimization problem, given
by [32]

P2 : min
wi,t
−t

s.t. hk

K�
i=1

wisi − λksk = 0, ∀k ∈ K

|� (λk)| − [� (λk)− t] tan θt ≤ 0, ∀k ∈ K
K�

i=1

sH
i wH

i wisi − p0

K
≤ 0 (15)

where we note that the constraint on t in P1 can be omit-
ted in the above formulation, and we decompose W =
[w1,w2, · · · ,wK ]. We can then express the Lagrangian of
P2 as [42]

L (wi, t, δk, μk, μ0)

= −t +
K�

k=1

δk

�
hk

K�
i=1

wisi − λksk

	

+ μ0

�
K�

i=1

sH
i wH

i wisi − p0

K

	

+
K�

k=1

μk [|� (λk)| − � (λk) tan θt + t · tan θt], (16)

where μ0, δk and μk are the dual variables, and μ0 ≥ 0,
μk ≥ 0, ∀k ∈ K. Based on the Lagrangian in (16), the KKT

conditions for optimality are then obtained as

∂L
∂t

= −1 +
K�

k=1

μk = 0 (17a)

∂L
∂wi

=

�
K�

k=1

δk · hk

	
si + μ0 ·wH

i = 0 (17b)

μ0

�
K�

i=1

sH
i wH

i wisi − p0

K

	
= 0 (17c)

δk

�
hk

K�
i=1

wisi − λksk

	
= 0, ∀k ∈ K

(17d)

μk [|� (λk)| − � (λk) tan θt + t · tan θt] = 0, ∀k ∈ K
(17e)

Based on (17b), it is easily obtained that μ0 
= 0 which with
the fact that μ0 ≥ 0 further leads to μ0 > 0. Then, we can
obtain wH

i as

wH
i = − 1

μ0
·
�

K�
k=1

δkhk

	
si, ∀i ∈ K. (18)

By denoting

ak = −δH
k

μ0
, ∀k ∈ K, (19)

wi can be obtained from (18) and expressed as

wi =

�
K�

k=1

akhH
k

	
sH

i , ∀i ∈ K. (20)

Then, with the expression the each wi, the beamforming
matrix W is obtained in a compact form as

W = [w1,w2, · · · ,wK ]=

�
K�

k=1

akhH
k

	
·�sH

1 , sH
2 , · · · , sH

K

�

=
�
hH

1 ,hH
2 , · · · ,hH

K

�
[a1, a2, · · · , aK ]T

�
sH
1 , sH

2 , · · · , sH
K

�
= HHAsH . (21)

In order to obtain A, we first rewrite (8) in the compact
form

HWs = diag (Ω) s, (22)

where we introduce Ω = [λ1, λ2, · · · , λK ]T . Then, by substi-
tuting (21) into (22), the matrix A can be obtained based on
λk:

HHHAsHs = diag (Ω) s

⇒ A =
1
K
· 
HHH

�−1
diag (Ω) s. (23)

The beamforming matrix W is then obtained as

W =
1
K
·HH



HHH

�−1
diag (Ω) ssH . (24)

Based on the fact that μ0 
= 0, it is obtained from (17c) that
the power constraint of the optimization problem P1 is strictly
active, which further leads to

�Ws�F =
√

p0 ⇒ tr
�
WssHWH



= p0

⇒ sHWHWs = p0. (25)
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Then, by substituting (24) into (25), we obtain

sHdiag


ΩH

� 

HHH

�−1
diag (Ω) s = p0

⇒ ΩHdiag


sH

� 

HHH

�−1
diag (s)Ω = p0

⇒ ΩHTΩ = p0, (26)

where T is defined as

T = diag


sH

� 

HHH

�−1
diag (s). (27)

In the case of massive MIMO with uncorrelated Rayleigh
fading, as Nt →∞, we have [1]

HHH ≈ Nt · I⇒


HHH

�−1 ≈ 1
Nt
· I, (28)

based on which T is further transformed as

T ≈ 1
Nt
· diag



sH

�
diag (s) =

1
Nt
· I. (29)

From the result in (29), (26) can be expanded and further
transformed as

1
Nt
·
�
|λ1|2 + |λ2|2 + · · ·+ |λK |2

�
≈ p0. (30)

To maximize t, as per (12) and (30), it is then easily obtained
that optimality is achieved when each λ∗

k is real and identical,
given by

t∗ ≈ λ∗
1 ≈ · · · ≈ λ∗

K ≈
�

Nt · p0

K
, (31)

which completes the proof. �
By substituting (31) into (24), the optimal beamforming

matrix W∗ can be expressed as

W∗ =

�
Nt · p0

K3
·HH



HHH

�−1
ssH . (32)

Then, with W∗ obtained, the output signal vector with 1-bit
quantization is given as

xT = Q (W∗s)

= Q
��

Nt · p0

K3
·HH



HHH

�−1
ssHs

	

= Q
��

Nt · p0

K
·HH



HHH

�−1
s

	
. (33)

The intuition from the above proposition and (33) is that the
quantized linear scheme based on the constructive interference
is equivalent to the conventional quantized ZF scheme in the
case of massive MIMO with 1-bit quantization, which suffers
from a performance loss compared to the ZF scheme with
ideal DACs [20]. This then motivates the proposed non-linear
mapping approach presented next that achieves improved
performance.

C. 1-bit Transmission Scheme - Non-Linear Mapping

We proceed to introduce the optimization-based non-linear
mapping scheme for massive MIMO with 1-bit DACs. This
approach was first described in [36], and based on the con-
structive interference formulation in [34]. We employ this
approach to further design our low-complexity techniques in
Section IV. The resulting optimization based on constructive
interference can be formulated as

P3 : max
xT ,t

t

s.t. hkxT = λksk, ∀k ∈ K
[� (λk)− t] tan θt ≥ |� (λk)| , ∀k ∈ K
xn ∈

�
± 1√

2Nt

± 1√
2Nt

j

�
, ∀n ∈ N

t ≥ 0 (34)

It is observed that the optimization problem P3 is non-convex
due to the output signal constraint for the 1-bit DACs in (34).
In the following, we adopt a two-step approach.

1) Relaxation: In the first step, we relax the strict modulus
constraint on each xn for both the real and imaginary part, and
the resulting relaxed constraint can be expressed as [16], [36]

|� (xn)| ≤ 1√
2Nt

, |� (xn)| ≤ 1√
2Nt

, ∀n ∈ N . (35)

The optimization problem P3 is then reformulated into a
relaxed version P4, given by

P4 : max
x̂T ,t

t

s.t. hkx̂T = λksk, ∀k ∈ K
[� (λk)− t] tan θt ≥ |� (λk)| , ∀k ∈ K
|� (x̂n)| ≤ 1√

2Nt

, ∀n ∈ N

|� (x̂n)| ≤ 1√
2Nt

, ∀n ∈ N
t ≥ 0 (36)

where we denote x̂n as the n-th entry in the relaxed transmit
signal vector x̂T . The resulting P4 is convex and can be solved
with convex optimization tools.

2) Normalization: The solution obtained from the relaxed
optimization P4 cannot always guarantee equality for the real
and imaginary part of x̂n. To force the constraint of 1-bit
transmission, the elements of the 1-bit DAC output xT are
obtained as

xn =
sgn [� (x̂n)]√

2Nt

+ j · sgn [� (x̂n)]√
2Nt

, ∀n ∈ N , (37)

where sgn [·] is the sign function. We further note that, while
we perform a relaxation on the 1-bit DAC constraint on each
xn in P3, it turns out that most entries of the obtained x̂T

from the relaxed problem P4 already meet the strict-equality
requirement for 1-bit quantization, i.e. only a few entries
of x̂n need to be normalized. To evaluate the deviation of
the relaxed optimization P4 from the original problem P3,
we define n� and n� as the number of entries in the obtained
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TABLE I

η WITH RESPECT TO THE NUMBER OF TRANSMIT ANTENNAS,
K = 4, QPSK, 500 CHANNEL REALIZATIONS

x̂T whose absolute values are smaller than 1√
2Nt

for the real
and imaginary part, respectively. We further introduce

η =
n� + n�

2Nt
(38)

as the ratio of the number of entries that do not satisfy the 1-bit
constraint to the total number of entries in x̂T , and this ratio
therefore represents the deviation of the solution obtained by
the relaxed problem from the original problem. We have 0 ≤
η ≤ 1, and P4 is equivalent to P3 if η = 0. It is also observed
that a smaller value of η means that the relaxed optimization
is closer to the original optimization.

To study this numerically, we present the value of η with
respect to the number of antennas in Table I, where we have
assumed a total number of K = 4 users in the downlink
system, and the result is based on 500 channel realizations.
It is observed that the ratio η decreases with an increase in
the number of transmit antennas, and interestingly we observe
that in the case of massive MIMO where each of the resulting
λk is strictly real, the value of (η� + η�) is always equal
to (2K − 1), which explains why η is decreasing with an
increasing number of antennas at the BS.

IV. PROPOSED LOW-COMPLEXITY

SYMBOL SCALING APPROACH

While the above non-linear mapping scheme can be relaxed
into a convex optimization problem, the corresponding com-
putational complexity is still prohibitively high as the vari-
able dimension is equal to the number of transmit antennas.
Therefore in this section, we propose a three-stage symbol
scaling scheme, which requires much reduced complexity for
a comparable performance. It will be shown in the numerical
results that for small-scale MIMO systems, the low-complexity
scheme even outperforms the optimization-based non-linear
mapping scheme in Section III, since no relaxation or normal-
ization is required for this method.

A. A New Look at the Constructive Interference Criteria

To introduce the proposed symbol scaling scheme, we first
perform a coordinate transformation on the constructive inter-
ference constraint. To be specific, for M-PSK modulations,
each data symbol in the conventional real-imaginary plane can
be expressed as

s(l) = ej·[ 2π
M (l−1)+ π

4 ], l ∈ {1, 2, · · ·M} , (39)

where s(l) denotes the l-th constellation point. Given the
constellation points, the equations that represent the two

Fig. 3. Decomposition along the detection thresholds for 8-PSK.

detection thresholds for a specific constellation point s(l) can
be expressed as

yA
(l) = tan

�
2π

M (l − 1) +
π

4
− π

M
�
· x

= tan
�

2π

M · l +
π

4
− 3π

M
�
· x,

yB
(l) = tan

�
2π

M (l − 1) +
π

4
+

π

M
�
· x

= tan
�

2π

M · l +
π

4
− π

M
�
· x. (40)

For the proposed symbol-scaling methods, without loss of
generality we assume the data symbol for user k is sk = s(l).
We then propose to decompose the constellation points along
their corresponding two detection thresholds, expressed as

sk = s(l) = sAk + sBk , (41)

where sAk is parallel to yA
(l) and sBk is parallel to yB

(l). Accord-
ingly, sAk and sBk can be expressed as

sAk =
ej·( 2π

M ·l+ π
4 − 3π

M )

θ
= A�

k + j · A�
k ,

sBk =
ej·( 2π

M ·l+ π
4 − π

M )

θ
= B�

k + j ·B�
k , (42)

where


A�

k , A�
k

�
and



B�

k , B�
k

�
denote the coordinates of the

bases sAk and sBk in the real-imaginary plane, respectively. The
constant θ is a scaling factor to guarantee that sk = sAk + sBk .
Note that for a normalizedM-PSK modulation, |sk| = 1 and
θ is accordingly obtained as

θ =
���ej·( 2π

M ·l+ π
4 − 3π

M ) + ej·( 2π
M ·l+ π

4 − π
M )

��� . (43)

The above decomposition is also shown geometrically
in Fig. 3, where we employ 8-PSK modulation as an example.
Specifically, for the considered constellation point in Fig. 3,



7566 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 17, NO. 11, NOVEMBER 2018

we obtain �OS = s(1), which further leads to

�OF = sAk =
ej·( 2π

8 ·1+ π
4 − 3π

8 )

θ
=

ej·π
8���ej·π

8 + ej· 3π
8

��� ,

�OG = sBk =
ej·( 2π

8 ·1+ π
4 −π

8 )

θ
=

ej· 3π
8���ej·π

8 + ej· 3π
8

��� . (44)

Then for each k, instead of employing a complex scaling
value λk that is multiplied by sk, with the above formulation
(41)-(43) we introduce a symbol scaling approach where
we decompose (8) along the two corresponding detection
thresholds of sk, given by

hkxT = αA
k sAk + αB

k sBk , (45)

where

αA
k ≥ 0, αB

k ≥ 0, ∀k ∈ K (46)

are scaling factors. We observe that a larger value of αA
k or αB

k

represents a larger distance to the detection threshold, and by
expanding (45) using the coordinate transformation, we can
obtain a generic expression of αA

k and αB
k as a function of the

transmit signal vector, given by (see Appendix)

αA
k =

B�
k h�

k −B�
k h�

k

A�
k B�

k −A�
k B�

k

x�
T −

B�
k h�

k + B�
k h�

k

A�
k B�

k −A�
k B�

k

x�
T ,

αB
k =

A�
k h�

k −A�
k h�

k

A�
k B�

k −A�
k B�

k

x�
T +

A�
k h�

k + A�
k h�

k

A�
k B�

k −A�
k B�

k

x�
T .

(47)

In (47), for simplicity we have employed the following
notation

x�
T = � (xT ), x�

T = � (xT ), h�
k = � (hk),

h�
k = � (hk) . (48)

By further denoting

Ak =
B�

k h�
k −B�

k h�
k

A�
k B�

k −A�
k B�

k

, Bk = − B�
k h�

k + B�
k h�

k

A�
k B�

k −A�
k B�

k

,

Ck =
A�

k h�
k −A�

k h�
k

A�
k B�

k −A�
k B�

k

, Dk =
A�

k h�
k + A�

k h�
k

A�
k B�

k −A�
k B�

k

, (49)

the formulation of (47) is simplified to

αA
k = Akx�

T + Bkx�
T ,

αB
k = Ckx�

T + Dkx�
T . (50)

By defining

Rk =
�
Ak Bk

�
, Ik =

�
Ck Dk

�
, (51)

and

x =
� 


x�
T

�T 

x�

T

�T
�T

,

Λ =
�
αA

1 , . . . , αA
K , αB

1 , . . . , αB
K

�T
, (52)

(50) can be further expressed in a compact form as

Λ = Mx, (53)

where M is given by

M =
�
RT

1 · · · RT
K IT

1 · · · IT
K

�T
. (54)

With the above formulation, we can then construct the
optimization problem as

P5 : max
x,Λ

min
l

αl

s.t. Λ = Mx

αl ≥ 0, ∀l ∈ L
xE

i ∈
�

1√
2Nt

,− 1√
2Nt

�
, ∀i ∈ I (55)

where we have omitted � and � in the expression of the
entries of Λ, and simply denote αl as its l-th entry. In P5,
L = {1, 2, · · · , 2K}, xE

i denotes the i-th entry in x and
I = {1, 2, · · · , 2Nt}. The above optimization problem P5 is
interpreted as follows: we aim to maximize the minimum value
of αl by selecting each xE

i as either 1√
2Nt

or − 1√
2Nt

. With
the above problem formulation, the relaxation-normalization
process on the transmit signals is no longer needed. The
above formulation motivates us to propose the following
low-complexity scheme, which consists of three stages: an
initialization stage, an allocation stage, and a refinement stage,
each presented in detail below.

B. Initialization Stage

In the initialization stage, we directly select the value of xE
i

for some i by simple observation. To achieve this, we firstly
decompose (53) into

Λ =
2Nt�
i=1

mix
E
i , (56)

where

M =
�
m1 m2 · · · m2Nt

�
, (57)

with each mi ∈ C2K×1. Then, we have the following obser-
vation.

Observation: As long as all the entries of mi share the same
sign, then it is optimal to set the sign of the corresponding xE

i

equal to that of mi, as in this case the values of each entry in
Λ are guaranteed to increase.

Then, the corresponding xE
i is obtained as

xE
i =

SGN [mi]√
2Nt

, ∀i ∈ S, (58)

where SGN [a] = 1 only when each entry in the vector has
the same sign, and is equal to 0 otherwise. S denotes the set
that consists of the column indices of M that satisfy the sign-
identity condition. We further introduce a column vector t that
represents a temporary value of Λ, given by

t =
�
i∈V

mix
E
i , (59)

where the set V consists of the column indices of M whose
corresponding xE

i have been allocated a value. We note that
when card (V ) = 2Nt, we have t = Λ.

In the case that no column in M satisfies the sign-identity
condition, in the initialization stage we select only one column,
i.e. card (S) = 1, with the following criterion:

i = arg max
i∈I

�����
2K�
n=1

mi (n)

����� , (60)
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which selects the column that has the maximum effect on the
value of Λ. Then, the value of the corresponding xE

i is set as

xE
i =

sgn
�

2K�
n=1

mi (n)
�

√
2Nt

. (61)

In the initialization stage, we have V = S or
card (V ) = 1. We summarize the algorithm for the initial-
ization stage in Algorithm 1.

Algorithm 1 Initialization Stage
input : s, H
output : t, V
Decompose each sk = sAk + sBk based on modulation type;
Obtain M based on (41)-(53);
Find mi that satisfies the sign-identity condition;
Obtain S;
if S 
= ∅ then

xE
i = sgn(mi)√

2Nt
, ∀i ∈ S;

V = S;
else

Obtain i based on (60), xE
i =

sgn(�mi�1)√
2Nt

;
V = {i};

end if
Calculate t based on (59).

C. Allocation Stage

At this stage we allocate the value of each xE
i for the

residual i that belongs to W , where we define the set W as

W = {i|i ∈ I and i /∈ V} . (62)

W consists of those xE
i whose values have not been allocated

in the initialization stage. In the following allocation stage,
we consider both a ‘Sum-Max’ and a ‘Max-Min’ criteria for
the allocation scheme.

1) Sum-Max: For the allocation scheme based on the ‘Sum-
Max’ criterion, instead of considering a max-min optimization
as in P5, we consider a sum-max optimization where the
objective function is constructed as

F (x) = sum (Λ), (63)

where sum (Λ) returns the sum of the entries in the column
vector Λ. Then, based on (53) the objective can be further
transformed as

F (x) = ux =
2K�
l=1

2Nt�
i=1

mi (l)xE
i , (64)

where u ∈ R1×2Nt is the sum of the entries in each row of M.
Each u (i) denotes the i-th entry in u, given by

u (i) =
2K�
l=1

mi (l). (65)

It is then easy to observe that F (x) is maximized when the
sign of each xE

i is the same as that of u (i), and therefore the
optimal xE

i for the ‘Sum-Max’ criterion is given by

xE
i =

sgn [u (i)]√
2Nt

, ∀i ∈ W . (66)

While the above solution guarantees that the sum of αl is
maximized, it does not specifically consider each value of αl,
which may lead to performance loss. Indeed, it is possible that
the value of one αl can be very small or even negative. This
is the reason why the refinement in Section IV-D is further
introduced. The algorithm for the allocation stage based on
‘Sum-Max’ is summarized in Algorithm 2.

Algorithm 2 Allocation Stage - ‘Sum-Max’
input : V , M
output : xsum−max

Calculate W based on (62);
Calculate u and each u (i) based on (64), (65);
Allocate xE

i = sgn[u(i)]√
2Nt

, ∀i ∈ W ;
Obtain x, denoted as xsum−max.

2) Max-Min: For the ‘Max-Min’ allocation criterion,
in each step we aim to improve the minimum value in Λ as
much as possible. Denoting q as the row index of the minimum
entry in t obtained in the initialization stage, we have

t (q) = min (t), (67)

where min (t) returns the minimum value in t. Subsequently,
we iteratively select mi with the largest absolute value in the
q-th row, given by

i = arg max
i∈W

|mi (q)|, (68)

and the corresponding xE
i is then obtained as

xE
i =

sgn [mi (q)]√
2Nt

. (69)

Then, we update V and t, and based on the updated t we repeat
the above procedure until V = I. This means that each entry
in x has been allocated, and the algorithm for the allocation
stage based on ‘Max-Min’ is summarized in Algorithm 3.

D. Refinement Stage

In the refinement stage, we check whether the performance
based on the obtained signal vector in the allocation stage can
be further improved based on a greedy algorithm. To introduce
the refinement process, we denote the obtained expanded 1-bit
signal vector after the allocation stage as x (obtained based
on either the ‘Sum-Max’ or the ‘Max-Min’ criterion). First,
we sequentially change the sign of one entry (for example xE

i )
in x at a time while fixing the signs of other entries in x, and
denote the modified signal vector as x(i). We then compare
the minimum value in Λ obtained by the modified x(i) with
the minimum value in the original Λ obtained by x(0). The
sign of xE

i is selected as the one that returns a larger minimum
value in Λ. The refinement process is sequentially performed
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Algorithm 3 Allocation Stage - ‘Max-Min’
input : V , M, t
output : xmax−min

while V 
= I do
Calculate W based on (62);
Obtain q that satisfies t (q) = min (t);
Find i = arg max

i∈W
|mi (q)|;

Allocate xE
i = sgn[mi(q)]√

2Nt
;

Update V and t;
end while
Obtain x, denoted as xmax−min.

Algorithm 4 Refinement Stage
input : xsum−max (or xmax−min)
output : xT

Denote x(0) = xsum−max (or xmax−min);
for i = 1 : 2Nt do

Calculate Λ(0) = Mx(0);

Obtain x(i) =
�
xE

1 , . . . , xE
i−1,−xE

i , xE
i+1, . . . , x

E
2Nt

�T
;

Calculate Λ(i) = Mx(i);
if min



Λ(i)

�
> min



Λ(0)

�
then

xE
i ← −xE

i ;
Update x(0);

end if
end for
Obtain xT based on the updated x(0).

for each entry in x(0). The algorithm for the refinement stage
is then shown in Algorithm 4.

The refinement stage is performed for the signal vectors
obtained by both the ‘Sum-Max’ and ‘Max-Min’ criteria
independently. The final output signal vector of the proposed
symbol scaling scheme that generates the best performance is
then selected between the signal vectors obtained with these
two criteria. We note that while it is observed from P5 that
the max-min criterion is a better metric compared to the sum-
max criterion, for the proposed symbol-scaling methods the
refinement process seems to give an advantage to the sum-max
criterion for small-scale MIMO systems, while the opposite is
observed in the case of massive MIMO systems, as will be
illustrated in the numerical results.

E. Algorithm

Based on the above description, the algorithm for the three-
stage symbol scaling scheme is summarized in Algorithm 5,
where the final output signal vector of the proposed symbol
scaling scheme that generates the best performance is selected
from the signal vectors obtained by the ‘Sum-Max’ and ‘Max-
Min’ criteria.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, following [43] and [44], we study the compu-
tational costs of the proposed schemes in terms of the required

Algorithm 5 The Proposed Symbol Scaling Scheme
input : s, H
output : xT

Initialization Stage
Obtain V , M, and t with Algorithm 1;
Allocation Stage
1.‘Sum−Max	 :
Obtain xsum−max with Algorithm 2;
2.‘Max−Min	 :
Obtain xmax−min with Algorithm 3;
Refinement Stage
Update both xsum−max and xmax−min with Algorithm 4;
Calculate Λs = Mxsum−max and Λm = Mxmax−min;
if min (Λs) > min (Λm) then

x = xsum−max;
else

x = xmax−min;
end if
Decompose x =

� 

x�

T

�T 

x�

T

�T
�T

;

Output xT = x�
T + x�

T · j.

number of real-valued multiplications including both the pre-
processing complexity and the per-iteration complexity. As a
reference, we also study the complexity of the exhaustive
search scheme, the non-linear ‘SQUID’ algorithm in [16],
‘C1PO’ and ‘C2PO’ schemes in [29]. For the optimization-
based approach, the complexity is evaluated based on the time
complexity bound introduced in [45].

A. Exhaustive Search

For massive MIMO transmission with 1-bit
quantization, the output signal on each antenna
element has 4 potential values, i.e., each xn ∈�

1√
2

+ j · 1√
2
, 1√

2
− j · 1√

2
,− 1√

2
+ j · 1√

2
,− 1√

2
− j · 1√

2

�
.

The exhaustive search method first searches all the
possible signal combinations and then selects the best
one, which means that there are a total number of 4Nt

signal combinations. For each signal combination, it takes
4KNt real multiplications to compute Λ based on (53),
as M ∈ C2K×2Nt [43]. Therefore, the total number of
required real-valued multiplications for the exhaustive search
scheme considering all the possible combinations is obtained
as

CE = 4KNt · 4Nt = KNt · 22Nt+2. (70)

It is easy to conclude that in the case of massive MIMO,
the exhaustive search scheme is inapplicable due to the over-
whelmingly high computational cost.

B. SQUID

Based on the description in [16], the major complexity for
‘SQUID’ lies in the calculation of

a(t+1)
R

=
�
2b(t)

R
− c(t)

R

�
−QRHR

�
2b(t)

R
− c(t)

R

�
+ dR

(71)
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within each iteration. Accordingly, the pre-processing step for
‘SQUID’ includes the calculation of

QR = HH
R

�
HRHH

R
+

1
2
· I

�−1

∈ R2Nt×2K (72)

and

dR = 2


HH

R
sR −QRHRHH

R
sR

� ∈ R2Nt×1. (73)

Following [46] where it is demonstrated that the com-
putational cost of a complex matrix inverse in the form
of



HHH + 1

2 · I
�−1

with H ∈ CK×Nt (or its equiv-
alent real representation with HR ∈ R2K×2Nt ) is


2
3K3 + 2NtK

2 + 4K2 − 2
3K

�
, we obtain the pre-processing

complexity for ‘SQUID’ as

CPre
SQUID = CQR

+ CdR
=

2
3
K3 + 2NtK

2

+ 4K2 − 2
3
K + 16KNt. (74)

The per-iteration complexity for calculating a(t+1)
R

is dom-

inated by the calculation of QRHR

�
2b(t)

R
− c(t)

R

�
, which

consumes

CIter
SQUID = 4KNt + 4KNt = 8KNt (75)

real-valued multiplications. Finally, we obtain the total com-
putational cost of the ‘SQUID’ algorithm as

CSQUID = CPre
SQUID + NIter

SQUID · CIter
SQUID

=
2
3
K3 + 2NtK

2 + 4K2 − 2
3
K + 16KNt

+ NIter
SQUID · 8KNt. (76)

C. C1PO

Subsequently, we discuss the complexity of ‘C1PO’ pro-
posed in [29] based on biconvex relaxation. According to
the description in [29], the pre-processing step for ‘C1PO’
involves the calculation of

A =

�
I− ssH

�s�22

	
H ∈ CK×Nt ,

Q =
�
I +

1
γ
AHA

�−1

∈ CNt×Nt . (77)

The calculation of A involves


K2 + KNt

�
complex-valued

multiplications, which is equivalent to


4K2 + 4KNt

�
real-

valued multiplications. Accordingly, the corresponding com-
putational cost is obtained as

CPre
C1PO = CA + CQ

=
2
3
N3

t + 2KN2
t + 4N2

t −
2
3
Nt + 4K2 + 4KNt.

(78)

Within each iteration, the major complexity is from the calcu-
lation of

z(t+1) = Qx(t), (79)

which leads to a per-iteration computational cost

CIter
C1PO = 4N2

t . (80)

The final complexity expression for the ‘C1PO’ algorithm
in [28] is obtained as

CC1PO = CPre
C1PO + NIter

C1PO · CIter
C1PO

=
2
3
N3

t + 2KN2
t + 4N2

t −
2
3
Nt + 4K2 + 4KNt

+ NIter
C1PO · 4N2

t . (81)

Compared to the ‘SQUID’ method introduced in [16], gen-
erally we observe that the ‘C1PO’ method is more computa-
tionally expensive, mainly due to the inclusion of a Nt ×Nt

matrix inverse in calculating Q in the pre-processing step.

D. C2PO

We move on to evaluate the complexity of the ‘C2PO’
algorithm proposed in [29], which requires a significantly
lower computational cost than ‘SQUID’ and ‘C1PO’ by
removing the matrix inverse operation in the pre-processing
step. To be more specific, the pre-processing step for ‘C2PO’
only involves the calculation of

v =
HHs
�s�2

∈ CNt×1, (82)

which requires KNt complex-valued multiplications, and is
equivalent to

CPre
C2PO = 4KNt (83)

real-valued multiplications. Within each iteration, the domi-
nant complexity is from the calculation of

z(t+1) = x(t) − τ · H̄γH̄x(t), (84)

where H̄γ ∈ CNt×(K+1) and H̄ ∈ C(K+1)×Nt . Accordingly,
we obtain the per-iteration complexity as

CIter
C2PO = 8 (K + 1)Nt, (85)

and the total complexity for ‘C2PO’ as

CC2PO = CPre
C2PO + NIter

C2PO · CIter
C2PO

= 4KNt + NIter
C2PO · 8 (K + 1) Nt. (86)

By removing the matrix inverse operation, we observe that the
computational cost of ‘C2PO’ is significantly lower compared
to the ‘SQUID’ and ‘C1PO’ methods. However, it will be
shown in the numerical results that the performance of ‘C2PO’
is inferior to ‘C1PO’, ‘SQUID’ and the proposed ‘Symbol
Scaling’ schemes.

E. Symbol Scaling Scheme

In the following, we calculate the computational cost for
each stage of the proposed symbol scaling approach. Similar
to the ‘C2PO’ method, our proposed ‘Symbol Scaling’ scheme
does not require the matrix inverse operation, and the pre-
processing step only involves the construction of M in (54).
Accordingly, the pre-processing complexity is obtained as

CPre
SS = 8KNt. (87)
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Within the algorithm, the major complexity for the ‘sum-max’
criterion is from the calculation of F (x) in (64) and Λ(0) =
Mx(0), and the corresponding complexity is

CS−M
SS = 2Nt + 4KNt. (88)

For the ‘max-min’ criterion, the major computational cost is
from the calculation of q and i. Since card (V) is difficult
to obtain analytically in the initialization stage, we consider
a worst-case complexity where card (V) = 1, and the corre-
sponding complexity is obtained as

CM−M
SS =(2Nt − 1) (2K+2Nt)=4N2

t +4KNt − 2K − 2Nt.

(89)

In the refinement stage, within each iteration we only need to
re-calculate the corresponding mi ·


−xE
i

�
for both criteria,

and the corresponding complexity for the refinement stage is
obtained as

CRef
SS = 4KNt. (90)

Based on the above, we can express the total computational
cost of the proposed ‘Symbol Scaling’ method in terms of the
real-valued multiplications as

CSS = CPre
SS + CS−M

SS + CM−M
SS + 2CRef

SS

= 4N2
t + 24KNt − 2K. (91)

Based on the above analysis, we observe that the required
complexity of our proposed ‘Symbol Scaling’ is comparable
to ‘C2PO’ algorithm, and both are much more computationally
efficient than the ‘C1PO’ and ‘SQUID’ algorithms, since the
matrix inverse operation is avoided.

F. Optimization-Based Non-Linear Mapping P3

For the proposed non-linear mapping scheme, it is difficult
to calculate the required number of multiplications and addi-
tions. Therefore, we resort to [45] and evaluate its complexity
based on the arithmetic complexity.

For this non-convex optimization problem, the complexity
is dominated by solving the relaxed convex problem P4 via the
interior-point method [42]. Based on our reformulated P5 in
Section IV, we first express the equivalent real representation
of P4 in a standard form as

P6 : max
v

cT v

s.t. qlv ≤ 0, ∀l ∈ L
eT

i+1v ≤
1√
2Nt

, ∀i ∈ I

− eT
i+1v ≤

1√
2Nt

, ∀i ∈ I

v =
�
t, xE

1 , xE
2 , · · · , xE

2Nt

�T

c = [1, 0, 0, · · · , 0]T (92)

In P6, ql =
�
1 −m̂l

�
, where m̂l denotes the l-th row of M.

Based on [45], the arithmetic complexity bound of the above
optimization via the interior-point method is given by

CN = (M + N)1.5
N2 ·D(p, ε), (93)

where ε is the accuracy of the solution, N denotes the
dimension of the variable v, and M is the total number of
the constraints in the optimization. Based on the construction
of P6, we obtain

M = 4Nt + 2K, N = 2Nt + 1, (94)

which further leads to the expression of CN as

CN = (6Nt + 2K + 1)1.5(2Nt + 1)2 ·D(p, ε) . (95)

D(p, ε) is the number of digits of accuracy for a solution with
the accuracy ε, and is given by

D(p, ε) = ln
�

Dim (p) + �p�1 + ε2

ε

�
, (96)

where the column vector p represents a permutation vector that
contains the parameters in both the objective function and the
constraints [45]. For our considered problem P6, p is given in
(97), shown at the bottom of next page, which further leads
to

�p�1 = 10Nt + 4K + 2
�

2Nt + �M�1 + 2. (98)

In (96), Dim (p) denotes the dimension of the permutation
vector p, and is accordingly obtained as

Dim (p) = (M + 1) (N + 2) + 2
= (4Nt + 2K + 1) (2Nt + 2) + 2
= 8N2

t + 10Nt + 4KNt + 4K + 4. (99)

Given the expressions for Dim (p) and �p�1, we arrive at the
final expression of the complexity for P6, which is shown in
(100), as shown at the bottom of the next page.

Nevertheless, we note that the obtained complexity expres-
sion of the optimization-based method in (100) may not be
directly comparable to that of the algorithm-based methods
in (76), (81), (86) and (91), as the complexity of the opti-
mization problem is obtained based on the time complexity
bound, while the complexity of the algorithm-based schemes
is obtained based on the exact required number of real oper-
ations.

VI. NUMERICAL RESULTS

In this section we present the numerical results of the pro-
posed approaches based on Monte Carlo simulations. In each
plot, the transmit SNR is defined as θ = P

�
σ2. Both

QPSK and 8-PSK modulations are considered in the numerical
results, and we compare our proposed methods with both
the quantized linear approaches and the non-linear mapping
algorithms. For iterative algorithms, the number of iterations is
chosen to be the smallest value beyond which the performance
of the algorithms does not improve significantly, as illustrated
later in Fig. 8. For clarity, the following abbreviations are used
throughout this section:

1) ‘ZF Unquantized’: Unquantized ZF precoding with
infinite-precision DACs;

2) ‘ZF 1-Bit’: Quantized ZF approach with 1-bit DACs
introduced in [20];

3) ‘MMSE 1-Bit’: MMSE-based quantized linear scheme
in [22];
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Fig. 4. BER vs. transmit SNR, Nt = 8, K = 2, NIter
SQUID = 50,

NIter
C1PO = 20, NIter

C2PO = 20, QPSK.

4) ‘SQUID’: Non-linear ‘SQUID’ method proposed in [16]
based on the squared l∞-norm relaxation with
NIter

SQUID = 50 iterations;
5) ‘C1PO’: Non-linear C1PO algorithm proposed in [29]

with NIter
C1PO = 20 iterations;

6) ‘C2PO’: Non-linear C2PO algorithm proposed in [29]
with NIter

C2PO = 20 iterations;
7) ‘SDR’: Non-linear method proposed in [16] based on

the semidefinite relaxation (SDR);
8) ‘DP’: the direct perturbation technique proposed in [24]

for QPSK modulation;
9) ‘GDM’: the gradient descend method proposed in [25];

10) ‘Constructive’: Proposed non-linear mapping scheme P4

in Section III-B;
11) ‘sum-max’: Proposed symbol scaling approach based

on the ‘sum-max’ allocation scheme with Algorithm 1,
2 and 4;

12) ‘max-min’: Proposed symbol scaling approach based
on the ‘max-min’ allocation scheme with Algorithm 1,
3 and 4;

13) ‘Symbol Scaling’: Proposed symbol scaling method
obtained via Algorithm 5 where we select the best signal
vector out of ‘sum-max’ or ‘max-min’ criteria.

In Fig. 4, we first consider a moderate scale MIMO system
with Nt = 8 transmit antennas at the BS and K = 2 single-
antenna users in the system. For approaches with 1-bit quan-
tization, we observe that the proposed symbol scaling scheme

Fig. 5. BER vs. transmit SNR, Nt = 128, K = 16, NIter
SQUID = 50,

NIter
C1PO = 20, NIter

C2PO = 20, QPSK.

based on Algorithm 5 achieves the best BER performance,
while both the proposed non-linear mapping scheme and
other existing 1-bit precoding algorithms achieve an inferior
performance. This is because both the non-linear mapping
method and the 1-bit approaches in [16] and [29] involve
the relaxation-normalization process. For small-scale MIMO
systems, we can infer that η in (38) will be large, which means
that the deviation of the solution obtained by the relaxation-
normalization process from the solution of the original 1-bit
optimization problem is large, and the normalization process
may lead to further detection errors. For the proposed symbol
scaling scheme, the performance is promising since we directly
select the quantized signal for each antenna element and
therefore no relaxation or quantization is needed.

We then consider a massive MIMO system with Nt = 128
transmit antennas and K = 16 users in Fig. 5, where the SDR-
based approach is not included due to its prohibitive complex-
ity [16]. In the case of massive MIMO, all the schemes can
achieve a lower BER thanks to the large number of antennas
at the BS, and generally non-linear schemes outperform linear
schemes. For approaches with 1-bit DACs, the proposed non-
linear optimizatio-based method ‘Constructive’ achieves the
best BER performance. As for the proposed low-complexity
symbol scaling scheme, by comparing Fig. 4 and Fig. 5,
we can observe that the ‘Max-Min’ criterion is most suit-
able for small-scale MIMO systems, while the ‘Sum-Max’
criterion is more favorable for massive MIMO systems.

p =

⎡
⎢⎢⎢⎣(2K + 4Nt), (2Nt + 1), 1, 1, · · · , 1 !" #

2K

, (−m̂1), (−m̂2), · · · , (−m̂2K) !" #
2K

, 1, · · · , 1 !" #
2Nt

,−1, · · · ,−1 !" #
2Nt

,
1√
2Nt

, · · · , 1√
2Nt !" #

4Nt

⎤
⎥⎥⎥⎦

T

(97)

CN = (6Nt + 2K + 1)1.5(2Nt + 1)2 · ln
�

8N2
t + 20Nt + 4KNt + 2

√
2Nt + 8K + �M�1 + 6 + ε2

ε

�
(100)
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Fig. 6. BER vs. transmit SNR, Nt = 128, K = 8, NIter
SQUID = 50,

NIter
C1PO = 20, NIter

C2PO = 20, 8PSK.

Fig. 7. Analytical computational cost comparison, NIter
SQUID = 50,

NIter
C1PO = 20, NIter

C2PO = 20, K = 8.

Moreover, while we observe around a 2dB SNR loss for
the ‘Symbol Scaling’ approach compared to some existing
1-bit precoding algorithms in the case of massive MIMO,
the corresponding computational cost is also greatly reduced
in this scenario, which is shown in Fig. 7 in the following.

In Fig. 6, we show the performance of different schemes
with Nt = 128 and K = 8 for 8PSK modulation. For
1-bit quantized beamforming approaches, it is observed that
the proposed optimization-based non-linear scheme achieves
the best BER performance. For the symbol scaling approach,
we observe that in the case of 8PSK, only a 1dB SNR
loss is observed compared to the non-linear iterative ‘C1PO’
algorithm. Moreover, when 8PSK is considered, our proposed
‘Symbol Scaling’ algorithm based on CI is more favorable in
terms of BER compared to the low-complexity ‘C2PO’ scheme
in [29].

In Fig. 7, we compare the computational complexity of
each approach in terms of the required number of real mul-
tiplications. It is observed that the computational cost of the

Fig. 8. BER vs. iteration number NIter, Nt = 128, K = 8, ρ = 10dB,
8PSK.

Fig. 9. BER vs. analytical computational costs, K = 8, ρ = 10dB,
NIter

SQUID = 50, NIter
C1PO = 20, NIter

C2PO = 20, 8PSK.

proposed symbol-scaling method based on sum-max requires
the lowest computational cost, while the number of operations
required for the proposed symbol scaling approach is much
smaller than those for the existing 1-bit precoding schemes.
The complexity gains of the proposed symbol scaling approach
therefore favor its practical application, especially for the
‘sum-max’ approach.

To further compare the proposed schemes with existing
1-bit iterative precoding schemes, in Fig. 8 we present the
BER performance with different number of iterations. The
number of iterations does not have an effect on other methods
and therefore the BER for the other methods remains con-
stant. It is observed that the performance of these iterative
schemes improves as NIter increases. Nevertheless, we note
that the improvement becomes less significant with a larger
NIter, where ‘C1PO’, ‘C2PO’ and ‘SQUID’ achieve their best
performance at NIter = 25, NIter = 25 and NIter = 55.

To demonstrate the performance-complexity tradeoff
directly, in Fig. 9 we depict the BER with respect to the
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Fig. 10. Analytical computational costs vs. required transmit SNR for BER
target 10−3, K = 8, NIter

SQUID = 50, NIter
C1PO = 20, NIter

C2PO = 20, 8PSK.

Fig. 11. BER vs. transmit SNR, Nt = 128, K = 16, NIter
SQUID = 50,

NIter
C1PO = 20, NIter

C2PO = 20, QPSK, Imperfect CSI, β = 0.1.

required number of real operations for a range of transmit
antennas from Nt = 32 to Nt = 128, where the number of
users is fixed as K = 8. Fig. 10 presents the complexity
with respect to the required SNR to achieve a given 10−3

target BER for a range of transmit antennas. From both
figures, generally we observe that the proposed CI-based 1-bit
precoding methods required a reduced computational cost.
In terms of the performance and complexity tradeoff, while
the ‘SQUID’, ‘C1PO’, ‘C2PO’ and the proposed ‘Symbol
Scaling’ methods achieve different tradeoffs, we observe that
‘SQUID’ is superior to ‘C1PO’ and ‘Symbol Scaling’ is more
favorable compared to ‘C2PO’.

All the above results are based on the assumption of
perfect CSI. In the following, we numerically investigate the
performance of the proposed approaches with imperfect CSI.
Channel estimation techniques for massive MIMO with 1-bit
quantization is an ongoing topic of research [19], [47], and an
exact model for the imperfect CSI for this scenario is still not
known. Therefore, in the following we employ a generic CSI

model, where the BS only has knowledge of a noisy version
of H, given by

Ĥ =
√

1− δ ·H +
√

δ ·Q. (101)

In (101), Ĥ is the obtained CSI at the BS, and each entry
in Q follows CN (0, 1). The variance of the channel error
is denoted by δ, and is modeled as inversely proportional
to the transmit SNR: δ = β/θ, where β denotes the error
coefficient [16], [31]. The BER result with imperfect CSI is
depicted in Fig. 11, where we observe that the performance
trend is similar to that seen in the earlier figures. The proposed
non-linear mapping method still achieves the best performance
among the schemes with 1-bit quantization in the case of
imperfect CSI, while the proposed low-complexity symbol
scaling approach can achieve a comparable performance with
a greatly reduced computational cost.

VII. CONCLUSION

In this paper, we propose several transmit beamforming
schemes for the massive MIMO downlink with 1-bit DACs
based on the formulation of constructive interference, and
we consider both quantized linear beamforming and non-
linear mapping. With the analysis of the Lagrangian and KKT
conditions, the quantized linear scheme is mathematically
proven to be equivalent to quantized ZF beamforming. For
the proposed non-linear mapping scheme, it is shown to be
non-convex and solved by first relaxing the 1-bit quantization
constraint, followed by a normalization. We further propose a
low-complexity symbol scaling approach, where the quantized
transmit signals are directly obtained. Numerical results reveal
the superiority of the proposed symbol scaling scheme in
small-scale MIMO systems. In the case of massive MIMO,
the performance advantage of the proposed non-linear map-
ping method is validated, while the proposed symbol scaling
scheme achieves a better performance-complexity tradeoff,
which favors its usefulness in practical systems. Our future
work is to consider precoding techniques for 1-bit massive
MIMO transmission with QAM modulations based on inter-
ference exploitation.

APPENDIX

COORDINATE TRANSFORMATION

We employ 8PSK modulation in Fig. 3 as an example to
demonstrate the coordinate transformation, where we focus
on the constellation point s(1) in Fig. 3. Then, in the conven-
tional real-imaginary complex plane, for node ‘B’ in Fig. 3,
we obtain

�OB = hkxT = Br · 1 + Bi · j, (102)

where 1 and j are the bases for the real-imaginary plane,
and we denote (Br, Bi) as the corresponding coordinates.
Accordingly, Br and Bi are obtained as

Br = � (hkxT ) = h�
k x�

T − h�
k x�

T ,

Bi = � (hkxT ) = h�
k x�

T + h�
k x�

T . (103)
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In the plane expanded by the two detection thresholds that
correspond to the constellation point s(1), following (45) �OB
is decomposed into

�OB = hkxT = αA
k sAk + αB

k sBk . (104)

Based on (41) and the fact that αA
k and αB

k are real numbers,
(104) is further transformed into

hkxT = αA
k



A�

k + A�
k · j

�
+ αB

k



B�

k + B�
k · j

�
=



A�

k αA
k + B�

k αB
k

�
+



A�

k αA
k + B�

k αB
k

� · j. (105)

By revisiting (103), we obtain

Br = � (hk)x�
T −� (hk)x�

T = A�
k αA

k + B�
k αB

k ,

Bi = � (hk)x�
T + � (hk)x�

T = A�
k αA

k + B�
k αB

k , (106)

which leads to

αA
k =

B�
k Br −B�

k Bi

A�
k B�

k −A�
k B�

k

=
B�

k

�
h�

k x�
T − h�

k x�
T

�−B�
k

�
h�

k x�
T + h�

k x�
T

�
A�

k B�
k −A�

k B�
k

=
B�

k h�
k −B�

k h�
k

A�
k B�

k −A�
k B�

k

x�
T −

B�
k h�

k + B�
k h�

k

A�
k B�

k −A�
k B�

k

x�
T ,

(107)

and

αB
k =

A�
k Bi −A�

k Br

A�
k B�

k −A�
k B�

k

=
A�

k

�
h�

k x�
T + h�

k x�
T

�−A�
k

�
h�

k x�
T − h�

k x�
T

�
A�

k B�
k −A�

k B�
k

=
A�

k h�
k −A�

k h�
k

A�
k B�

k −A�
k B�

k

x�
T +

A�
k h�

k + A�
k h�

k

A�
k B�

k −A�
k B�

k

x�
T .

(108)

The extension to the constellation points of other PSK modu-
lations can be similarly obtained and is omitted for brevity.
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