Massive-MIMO technology has emerged as a means to achieve 5G's ambitious goals;
mainly to obtain higher capacities and excellent performances without requiring the use of more
spectrum. In this thesis, focused on the uplink direction, we make a study of performance of low
complexity equalization techniques as well as we also approach the impact of the non-linear elements
located on the receivers of a system of this type. For that purpose, we consider a multi-user
uplink scenario through the Single Carrier with Frequency Domain Equalization (SC-FDE)
scheme. This seems to be the most appropriate due to the low energy consumption that it implies,
as well as being less favorable to the detrimental effects of high envelope fluctuations, that is, by
have a low Peak to Average Power Ratio (PAPR) comparing to other similar modulations, such
as the Orthogonal Frequency Division Multiplexing (OFDM). Due to the greater number of antennas
and consequent implementation complexity, the equalization processes for Massive-
MIMO schemes are aspects that should be simplified, that is, they should avoid the inversion of
matrices, contrary to common 4G, with the Zero Forcing (ZF) and Minimum Mean Square Error
(MMSE) techniques. To this end, we use low-complexity techniques, such as the Equal Gain
Combining (EGC) and the Maximum Ratio Combining (MRC). Since these algorithms are not
sufficiently capable of removing the entire Inter-Symbol Interference (ISI) and Inter-User Interference
(IUI), we combine them with iterative techniques, namely with the Iterative Block with
Decision Feedback Equalizer (IB-DFE) to completely remove the residual ISI and IUI. We also
take into account the hardware used in the receivers, since the effects of non-linear distortion can
impact negatively the performance of the system. It is expected a strong performance degradation
associated to the high quantization noise levels when implementing low-resolution Analog to
Digital Converters (ADCs). However, despite these elements with these configurations become
harmful to the performance of the majority of the systems, they are considered a desirable solution
for Massive-MIMO scenarios, because they make their implementation cheaper and more energy
efficient. In this way, we made a study of the impact in the performance by the low-resolution
ADCs. In this thesis we suggest that it is possible to bypass these negative effects by implementing
a number of receiving antennas far superior to the number of transmitting antennas