38 research outputs found

    Evolutionary design automation for control systems with practical constraints

    Get PDF
    The aim of this work is to explore the potential and to enhance the capability of evolutionary computation in the development of novel and advanced methodologies that enable control system structural optimisation and design automation for practical applications. Current design and optimisation methods adopted in control systems engineering are in essence based upon conventional numerical techniques that require derivative information of performance indices. These techniques lack robustness in solving practical engineering problems, which are often of a multi-dimensional, multi-modal nature. Using those techniques can often achieve neither global nor structural optimisation. In contrast, evolutionary mechanism learning tools have the ability to search in a multi-dimensional, multi-modal space, but they can not approach a local optimum as a conventional calculus-based method. The first objective of this research is to develop a reliable and effective evolutionary algorithm for engineering applications. In this thesis, a globally optimal evolutionary methodology and environment for control system structuring and design automation is developed, which requires no design indices to be differentiable. This is based on the development of a hybridised GA search engine, whose local tuning is tremendously enhanced by the incorporation of Hill-Climbing (HC), Simulated Annealing (SA) and Simplex techniques to improve the performance in search and design. A Lamarckian inheritance technique is also developed to improve crossover and mutation operations in GAs. Benchmark tests have shown that the enhanced hybrid GA is accurate, and reliable. Based on this search engine and optimisation core, a linear and nonlinear control system design automation suite is developed in a Java based platform-independent format, which can be readily available for design and design collaboration over corporate Intranets and the Internet. Since it has also made cost function unnecessary to be differentiable, hybridised indices combining time and frequency domain measurement and accommodating practical constraints can now be incorporated in the design. Such type of novel indices are proposed in the thesis and incorporated in the design suite. The Proportional plus Integral plus Derivative (PID) controller is very popular in real world control applications. The development of new PID tuning rules remains an area of active research. Many researchers, such as Åström and Hägglund, Ho, Zhuang and Atherton, have suggested many methods. However, their methods still suffer from poor load disturbance rejection, poor stability or shutting of the derivative control etc. In this thesis, Systematic and batch optimisation of PID controllers to meet practical requirements is achieved using the developed design automation suite. A novel cost function is designed to take disturbance rejection, stability in terms of gain and phase margins and other specifications into account in-the same time. Comparisons made with Ho's method confirm that the derivative action can play an important role to improve load disturbance rejection yet maintaining the same stability margins. Comparisons made with Åström’s method confirm that the results from this thesis are superior not only in load disturbance rejection but also in terms of stability margins. Further robustness issues are addressed by extending the PID structure to a free form transfer function. This is realised by achieving design automation. Quantitative Feedback Theory (QFTX, method offers a direct frequency-domain design technique for uncertain plants, which can deal non-conservatively with different types of uncertainty models and specifications. QFT design problems are often multi-modal and multi-dimensional, where loop shaping is .the most challenging part. Global solutions can hardly be obtained using analytical and convex or linear programming techniques. In addition, these types of conventional methods often impose unrealistic or unpractical assumptions and often lead to very conservative designs. In this thesis, GA-based automatic loop shaping for QFT controllers suggested by the Research Group is being furthered. A new index is developed for the design which can describe stability, load rejection and reduction of high frequency gains, which has not been achieved with existing methods. The corresponding prefilter can also be systematically designed if tracking is one of the specifications. The results from the evolutionary computing based design automation suite show that the evolutionary technique is much better than numerical methods and manual designs, i.e., 'high frequency gain' and controller order have been significantly reduced. Time domain simulations show that the designed QFT controller combined with the corresponding prefilter performs more satisfactorily

    Comparative Study of Stock Trend Prediction using Time Delay, Recurrent and Probabilistic Neural Networks

    Get PDF
    Three networks are compared for low false alarm stock trend predictions. Short-term trends, particularly attractive for neural network analysis, can be used profitably in scenarios such as option trading, but only with significant risk. Therefore, we focus on limiting false alarms, which improves the risk/reward ratio by preventing losses. To predict stock trends, we exploit time delay, recurrent, and probabilistic neural networks (TDNN, RNN, and PNN, respectively), utilizing conjugate gradient and multistream extended Kalman filter training for TDNN and RNN. We also discuss different predictability analysis techniques and perform an analysis of predictability based on a history of daily closing price. Our results indicate that all the networks are feasible, the primary preference being one of convenienc

    The design and intelligent control of an autonomous mobile robot

    Get PDF
    This thesis presents an investigation into the problems of exploration, map building and collision free navigation for intelligent autonomous mobile robots. The project began with an extensive review of currently available literature in the field of mobile robot research, which included intelligent control techniques and their application. It became clear that there was scope for further development with regard to map building and exploration in new and unstructured environments. Animals have an innate propensity to exhibit such abilities, and so the analogous use of artificial neural networks instead of actual neural systems was examined for use as a method of robot mapping. A simulated behaviour based mobile robot was used in conjunction with a growing cell structure neural network to map out new environments. When using the direct application of this algorithm, topological irregularities were observed to be the direct result of correlations within the input data stream. A modification to this basic system was shown to correct the problem, but further developments would be required to produce a generic solution. The mapping algorithms gained through this approach, although more similar to biological systems, are computationally inefficient in comparison to the methods which were subsequently developed. A novel mapping method was proposed based on the robot creating new location vectors, or nodes, when it exceeded a distance threshold from its mapped area. Network parameters were developed to monitor the state of growth of the network and aid the robot search process. In simulation, the combination of the novel mapping and search process were shown to be able to construct maps which could be subsequently used for collision free navigation. To develop greater insights into the control problem and to validate the simulation work the control structures were ported to a prototype mobile robot. The mobile robot was of circular construction, with a synchro-drive wheel configuration, and was equipped with eight ultrasonic distance sensors and an odometric positioning system. It was self-sufficient, incorporating all its power and computational resources. The experiments observed the effects of odometric drift and demonstrated methods of re-correction which were shown to be effective. Both the novel mapping method, and a new algorithm based on an exhaustive mesh search, were shown to be able to explore different environments and subsequently achieve collision free navigation. This was shown in all cases by monitoring the estimates in the positional error which remained within fixed bounds

    Neural Networks: Training and Application to Nonlinear System Identification and Control

    Get PDF
    This dissertation investigates training neural networks for system identification and classification. The research contains two main contributions as follow:1. Reducing number of hidden layer nodes using a feedforward componentThis research reduces the number of hidden layer nodes and training time of neural networks to make them more suited to online identification and control applications by adding a parallel feedforward component. Implementing the feedforward component with a wavelet neural network and an echo state network provides good models for nonlinear systems.The wavelet neural network with feedforward component along with model predictive controller can reliably identify and control a seismically isolated structure during earthquake. The network model provides the predictions for model predictive control. Simulations of a 5-story seismically isolated structure with conventional lead-rubber bearings showed significant reductions of all response amplitudes for both near-field (pulse) and far-field ground motions, including reduced deformations along with corresponding reduction in acceleration response. The controller effectively regulated the apparent stiffness at the isolation level. The approach is also applied to the online identification and control of an unmanned vehicle. Lyapunov theory is used to prove the stability of the wavelet neural network and the model predictive controller. 2. Training neural networks using trajectory based optimization approachesTraining neural networks is a nonlinear non-convex optimization problem to determine the weights of the neural network. Traditional training algorithms can be inefficient and can get trapped in local minima. Two global optimization approaches are adapted to train neural networks and avoid the local minima problem. Lyapunov theory is used to prove the stability of the proposed methodology and its convergence in the presence of measurement errors. The first approach transforms the constraint satisfaction problem into unconstrained optimization. The constraints define a quotient gradient system (QGS) whose stable equilibrium points are local minima of the unconstrained optimization. The QGS is integrated to determine local minima and the local minimum with the best generalization performance is chosen as the optimal solution. The second approach uses the QGS together with a projected gradient system (PGS). The PGS is a nonlinear dynamical system, defined based on the optimization problem that searches the components of the feasible region for solutions. Lyapunov theory is used to prove the stability of PGS and QGS and their stability under presence of measurement noise

    Workshop on Fuzzy Control Systems and Space Station Applications

    Get PDF
    The Workshop on Fuzzy Control Systems and Space Station Applications was held on 14-15 Nov. 1990. The workshop was co-sponsored by McDonnell Douglas Space Systems Company and NASA Ames Research Center. Proceedings of the workshop are presented

    Aeronautical engineering: A continuing bibliography with indexes (supplement 295)

    Get PDF
    This bibliography lists 581 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in Sep. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Air Force Institute of Technology Research Report 2019

    Get PDF
    This Research Report presents the FY19 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document

    Bibliography of Lewis Research Center technical publications announced in 1993

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1993. All the publications were announced in the 1993 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses
    corecore