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Abstract 

This dissertation investigates training neural networks for system identification and 

classification. The research contains two main contributions as follow: 

1. Reducing number of hidden layer nodes using a feedforward component 

This research reduces the number of hidden layer nodes and training time of neural networks to 

make them more suited to online identification and control applications by adding a parallel 

feedforward component. Implementing the feedforward component with a wavelet neural network 

and an echo state network provides good models for nonlinear systems. 

The wavelet neural network with feedforward component along with model predictive 

controller can reliably identify and control a seismically isolated structure during earthquake. The 

network model provides the predictions for model predictive control. Simulations of a 5-story 

seismically isolated structure with conventional lead-rubber bearings showed significant 

reductions of all response amplitudes for both near-field (pulse) and far-field ground motions, 

including reduced deformations along with corresponding reduction in acceleration response. The 

controller effectively regulated the apparent stiffness at the isolation level. The approach is also 

applied to the online identification and control of an unmanned vehicle. Lyapunov theory is used 

to prove the stability of the wavelet neural network and the model predictive controller.  

2. Training neural networks using trajectory based optimization approaches 

Training neural networks is a nonlinear non-convex optimization problem to determine the weights 

of the neural network. Traditional training algorithms can be inefficient and can get trapped in 

local minima. Two global optimization approaches are adapted to train neural networks and avoid 

the local minima problem. Lyapunov theory is used to prove the stability of the proposed 

methodology and its convergence in the presence of measurement errors. The first approach 

transforms the constraint satisfaction problem into unconstrained optimization. The constraints 

define a quotient gradient system (QGS) whose stable equilibrium points are local minima of the 

unconstrained optimization. The QGS is integrated to determine local minima and the local 

minimum with the best generalization performance is chosen as the optimal solution. The second 

approach uses the QGS together with a projected gradient system (PGS). The PGS is a nonlinear 

dynamical system, defined based on the optimization problem that searches the components of the 

feasible region for solutions. Lyapunov theory is used to prove the stability of PGS and QGS and 

their stability under presence of measurement noise. 



ii 

 

 

 

 

 

 

 

Acknowledgement 

 

I would like to express my sincerest gratitude to those who have helped me to complete my 

degree. I would like to thank Dr. Mohammed Sami Fadali, my Ph.D. advisor for offering research 

work and his invaluable guidance, encouragement, valuable suggestions and support through these 

years. 

I would like to thank the committee members, Dr. Mohammed Sami Fadali, Dr. Bahram Parvin, 

Dr. Hanif Livani, Dr. Gokhan Pekcan and Dr. Hao Xu for their support in completing this work. 

Last but not the least, my deepest thanks are expressed to my family and friends for their endless 

encouragement and support. 

 

 

 

 

 

 

 

 

 

. 



iii 

 

Table of Contents 
Chapter 1. Introduction .......................................................................................................... 1 

1.1 Background ................................................................................................................... 1 

1.2 Thesis Organization ...................................................................................................... 6 

Chapter 2.Echo State versus Wavelet Neural Networks: Comparison and Application to 

Nonlinear System Identification ............................................................................................ 9 

2.1 Introduction .................................................................................................................. 9 

2.2 Echo State Networks .................................................................................................. 11 

2.3 ESN with Feedforward Term ..................................................................................... 13 

2.4 Wavelet Neural Network ............................................................................................ 14 

2.5 Wavelet Neural Network with Feedforward Term ..................................................... 16 

2.6 Simulation Results ...................................................................................................... 17 

2.6.1 Example 1: Unmanned Vehicle........................................................................... 17 

2.6.2 Example 2: Nonlinear MIMO System ................................................................ 19 

2.7 Conclusion .................................................................................................................. 20 

Chapter 3. Active Neural Predictive Control of Seismically Isolated Structures ................ 21 

3.1 Introduction ................................................................................................................ 21 

3.2 Wavelet Neural Network ............................................................................................ 23 

3.3 Wavelet Neural Network based MPC ........................................................................ 25 

3.3.1 Alternative Controllers ........................................................................................ 27 

3.4 Computational Simulation Model .............................................................................. 28 

3.4.1 Equation of the Motion ....................................................................................... 29 

3.4.2 Ground Motions .................................................................................................. 33 

3.5 Performance of Conventional and Controlled Structure ............................................ 34 

3.6 Conclusion .................................................................................................................. 40 



iv 

 

Chapter 4. Networked Model Predictive Control Using a Wavelet Neural Network 42 

4.1 Introduction ................................................................................................................ 42 

4.2 Networked Control System ........................................................................................ 44 

4.2.1 Stability Analysis ................................................................................................ 47 

4.3 Model Predictive Controller ....................................................................................... 48 

4.3.1 Stability Analysis ................................................................................................ 50 

4.4 Simulation Results ...................................................................................................... 52 

4.4.1 Fixed Network Delay .......................................................................................... 54 

4.4.2 Random Network Delay ...................................................................................... 57 

4.5 Conclusion .................................................................................................................. 60 

Chapter 5. Training Recurrent Neural Networks as a Constraint Satisfaction Problem ...... 61 

5.1 Introduction ................................................................................................................ 61 

5.2 Quotient Gradient System .......................................................................................... 63 

5.3 Neural Networks ......................................................................................................... 66 

5.4 Applying QGS to Neural Network Training .............................................................. 68 

5.5 Stability Analysis ........................................................................................................ 69 

5.6 Simulation Results ...................................................................................................... 72 

5.6.1 Example 1: Nonlinear System ............................................................................. 72 

5.6.2 Example 2: NARMA System .............................................................................. 75 

5.7 Conclusion .................................................................................................................. 78 

Chapter 6.Training Recurrent Neural Networks via Dynamical Trajectory Based 

Optimization ........................................................................................................................ 79 

6.1 Introduction ................................................................................................................ 79 

6.2 Dynamical Trajectory Based Methodology ................................................................ 82 

6.2.1 PGS Phase ........................................................................................................... 83 



v 

 

6.2.2 QGS Phase........................................................................................................... 84 

6.2.3 Finding Decomposition Points ............................................................................ 84 

6.3 Application of Trajectory based Optimization to Neural Network Training ............. 86 

6.4 Stability Analysis ........................................................................................................ 89 

6.5 Simulation Results ...................................................................................................... 92 

6.5.1 Example 1: NARMA system............................................................................... 93 

6.5.2 Example 2: Nonlinear Second Order System ...................................................... 96 

6.6 Conclusion .................................................................................................................. 99 

Chapter 7. Anomaly Classification in Distribution Networks Using a Quotient Gradient 

System ................................................................................................................................ 101 

7.1 Introduction .............................................................................................................. 101 

7.2 QGS-based Neural Network Methodology for Event Classification ....................... 105 

7.2.1 Normal vs Abnormal Events in Distribution Grids ........................................... 105 

7.2.2 QGS-based NN Classification Methodology .................................................... 106 

7.3 Simulation Results .................................................................................................... 110 

7.3.1 IEEE 123 Bus Test System ............................................................................... 110 

7.3.2 PMU Reporting Rate Analysis .......................................................................... 116 

7.3.3 Measurement Noise Analysis ............................................................................ 116 

7.3.4 Number of PMUs .............................................................................................. 117 

7.3.5 Boosting Scenario ............................................................................................. 118 

7.3.6 Comparison with Traditional Neural Networks ................................................ 118 

7.4 Conclusion ................................................................................................................ 119 

Chapter 8. Conclusion and Future Work ........................................................................... 120 

Chapter 9. References ........................................................................................................ 123 

 

 



vi 

 

List of Tables 

Table 1. Identification of unmanned vehicle............................................................................ 18 

Table 2. Identification of MIMO system ................................................................................. 20 

Table 3. Properties of the simulation model ............................................................................ 29 

Table 4. Details of the ground motion records ......................................................................... 33 

Table 5. Normalized response comparisons............................................................................. 39 

Table 6. Mean square identification error ................................................................................ 60 

Table 7. Mean Squared Error ................................................................................................... 73 

Table 8. Mean square error ...................................................................................................... 76 

Table 9. Mean squared error .................................................................................................... 95 

Table 10. Mean squared error .................................................................................................. 97 

Table 11. Classification confusion matrix ............................................................................. 115 

Table 12. Overall classification accuracies for 60 and 120 SPS ............................................ 116 

Table 13. Classification accuracy with boosting scenario ..................................................... 118 

Table 14. Classification accuracy comparison with GA- and EBP-based NN ...................... 119 

 

 

 



vii 

 

Table of Figures 

Figure 1. Echo State Network architecture .............................................................................. 12 

Figure 2. Delay line reservoir with feedback connections (DLRF) ......................................... 13 

Figure 3. Simple cycle reservoir (SCR) ................................................................................... 13 

Figure 4. Wavelet Neural Network .......................................................................................... 14 

Figure 5. ESN/WNN with feedforward term ........................................................................... 16 

Figure 6. Changes in the computational load ........................................................................... 17 

Figure 7. Autonomous Vehicle [36]......................................................................................... 18 

Figure 8. Wavelet Neural Network structure ........................................................................... 24 

Figure 9. Simulation model, (a) LRB isolated, (b) LRB isolated and controlled .................... 28 

Figure 10. Block diagram of the online identification and control scheme ............................. 32 

Figure 11. Response spectra of the selected ground motions .................................................. 34 

Figure 12. Comparison of average maximum response – Near-field ground motions. (a) story 

and base [isolator] displacements, (b) interstory drifts, (c) displacements relative to isolator, 

(d) story and base [isolator level] accelerations, (e) [superstructure] base .............................. 36 

Figure 13. Sample isolator displacement response history comparisons. (a) NF05, (b) NF03 37 

Figure 14. Sample isolator deformation versus isolator/control force deformation response. (a) 

NF05, (b) NF03 ........................................................................................................................ 37 

Figure 15. Sample isolator deformation versus isolator/control force deformation response; 

Cont-C2 case under NF03 ground motion ............................................................................... 38 

Figure 16 . Comparison of average maximum response – Far-field ground motions. (a) story 

and base [isolator] displacements, (b) interstory drifts, (c) displacements relative to isolator, 

(d) story and base [isolator level] accelerations, (e) [superstructure] base .............................. 38 

Figure 17. General scheme of plant and controller .................................................................. 45 

Figure 18 . Probability density function of triangular distribution .......................................... 45 

Figure 19 . Structure of wavelet neural network [61] .............................................................. 46 

Figure 20. Autonomous vehicle [36] ....................................................................................... 53 

Figure 21 . Tracking of a curved line ....................................................................................... 54 

Figure 22. Vehicle Velocity Calculated by Model Predictive controller ................................. 55 

Figure 23 . Steering angle Calculated by Model Predictive controller .................................... 56 

Figure 24 . Tracking error of curved path ................................................................................ 56 



viii 

 

Figure 25. Tracking of a curved line ........................................................................................ 57 

Figure 26. Vehicle velocity ...................................................................................................... 58 

Figure 27. Steering angle ......................................................................................................... 58 

Figure 28. Tracking error for random delay scenario .............................................................. 59 

Figure 29. Artificial neural network structure.......................................................................... 67 

Figure 30. Outputs of the system and the trained neural.......................................................... 73 

Figure 31. Outputs of the system and the trained neural networks .......................................... 74 

Figure 32. Generalization Error ............................................................................................... 75 

Figure 33. Outputs of the system and the trained neural.......................................................... 77 

Figure 34. Outputs of the system and the trained neural network ........................................... 77 

Figure 35. Generalization Error ............................................................................................... 78 

Figure 36. Structure of the recurrent neural network ............................................................... 87 

Figure 37. The output of the system and networks for training data. DTB stands for dynamical 

trajectory based and GA stands for genetic algorithm ............................................................. 94 

Figure 38. The output of the system and networks for test data .............................................. 95 

Figure 39. Generalization error for test data ............................................................................ 96 

Figure 40.  The output of the system and networks for training data. DTB stands for 

dynamical trajectory based and GA stands for genetic algorithm ............................................ 98 

Figure 41. The output of the system and networks for test data .............................................. 98 

Figure 42. Generalization error for test data ............................................................................ 99 

Figure 43. PMU data-driven event classification in distribution systems ............................. 105 

Figure 44. Feature selection process ...................................................................................... 106 

Figure 45. Structure of the neural network ............................................................................ 109 

Figure 46. The modified IEEE 123-bus system ..................................................................... 112 

Figure 47. PMU voltage magnitude of phase a at bus 60 over one second a) malfunctioned 

capacitor bank switching, b) malfunctioned OLTC switching c) abrupt load changing c) 

reconfiguration ....................................................................................................................... 113 

Figure 48. Two-layer NN-based events classification ........................................................... 115 

Figure 49. Overall classification accuracies with different level of noise ............................. 117 

Figure 50. Classification accuracy with different number of installed PMU’s...................... 117 

 



1 

 

Chapter 1. Introduction 

1.1 Background 

Artificial neural networks can approximate any nonlinear system with the desired accuracy and 

have been extensively used for the identification of nonlinear systems [1], [2], [3]. Despite the 

advantages of artificial neural networks in nonlinear system identification, their slow convergence 

rate, multi-layer structure and computational complexity pose considerable difficulties for online 

identification and control of nonlinear systems. To cope with these shortcomings, researchers 

proposed different strategies to reduce the training time of the neural networks. Steck et al. [4] 

argued that parallel implementation of a recursive least squares and a traditional neural network is 

much faster than a multilayer neural network with the Marquardt-Levenberg algorithm. They 

proposed a method that trains neural networks faster than the error back propagation algorithm.  

Zhang and Beneveniste proposed wavelet neural networks as an alternative to traditional neural 

networks for nonlinear system identification [5]. In these wavelet neural networks (WNNs), the 

wavelets may have different scale and shift parameters. They showed that WNNs can approximate 

any nonlinear function, as can neural networks with other basis functions. They also showed that, 

for a given nonlinear system and desired approximation quality, WNNs can have fewer nodes than 

other artificial neural networks. Hence, WNNs are often a better choice for online identification 

and control of nonlinear systems.  

Training neural networks is a nonlinear optimization problem that can be solved using input- 

output measurements of the modeled system. The optimization is usually minimizing a cost 

function of the modeling error. Therefore, after measuring the input-output pairs, a suitable 

optimization approach must be chosen to optimize the cost function and find the weights of the 

neural network. 

It is of fundamental importance to avoid local minima of the cost function, which are a major 

problem for Newton-based methods, and prove the stability of the training approach. Broadly 

speaking, there are two approaches to avoid local minima: 

a) Solving optimization problems with different initial values. 

b) Using global optimization approaches. 
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Multiple initial values do not guarantee finding the global minimum. In contrast, global 

optimization approaches for training neural network eliminate the local minimum issue of Newton-

based methods. However, the stability of the new training method must be guaranteed. In most 

real-world applications, measurements include noise and uncertainties. Measurement noise can 

affect the stability of training method and make it unstable, therefore, training must remain stable 

under measurement noise. Hence, to propose the new training approach three steps are needed: 

1) Adapt the optimization approach to solve neural network training problem. 

2) Prove the stability of proposed method. 

3) Prove the stability of method under presence of measurement noise 

In many system identification applications, the system is not purely nonlinear and exhibits a 

combination of linear and nonlinear behavior. Identification of linear model using nonlinear 

approach is not efficient and leads to increased training time and model complexity. Parallel 

implementation of linear and nonlinear system identification approach, can overcome the 

increased model complexity and reduce the training time significantly in such applications. 

Researchers have proposed a wide variety of schemes for training neural networks [6]. Classic 

methods for training neural networks use gradient based algorithms to solve this optimization 

problem. Rumelhart proposed using the steepest descent algorithm to minimize the error function. 

The method is known as error backpropagation [7]. 

Although error backpropagation is easy to implement, it is not an efficient and reliable 

algorithm. Error backpropagation can get stuck in a local minimum with poor performance [8]. 

Researchers have proposed several approaches, including supervised learning, to overcome the 

local minima issue of the error backpropagation algorithm [8],[9],[10].  

The performance of the error backpropagation algorithm depends on the initial choice of 

network parameters. However, there is no standard theoretical approach to choose appropriate 

initial values. To improve the performance, reliability and convergence rate of error 

backpropagation, researchers have used various methods including an adaptive learning rate, 

adaptation of momentum term, etc. Simulation results show that an adaptive learning rate makes 

error backpropagation more efficient and more robust [11], [12].  

To overcome the deficiencies of gradient based methods, supervised learning algorithms were 

introduced to train and learn the internal structure of neural networks [13],[14],[15]. Moller 
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proposed the scaled conjugate gradient (SCG) algorithm for fast supervised learning [15],[16]. He 

demonstrated that SCG outperforms conjugate gradient algorithms and standard error 

backpropagation and does not have critical user dependent parameters [16]. Conjugate gradient 

methods are easy to implement. Their convergence is faster than error backpropagation, hence they 

are more suitable for large scale problems [17].  

Quasi-Newton methods are an alternative to conjugate gradient methods and are more 

sophisticated. Quasi newton methods rely on an approximation of Hessian matrix. The 

approximation can be close to singular in some cases making the results inaccurate and unreliable 

[18],[19]. 

To overcome the local minima and overfitting issues that reduce the efficiency and 

generalization capability of the neural network, global optimization techniques have been used to 

train the networks [20],[21]. Global optimization techniques can be divided into two major 

approaches, (i) deterministic methods such as cutting plane methods, branch and bound methods, 

interval methods etc., and (ii) stochastic approaches such as genetic algorithms, evolutionary 

programming, simulated annealing etc [22], [23], [24]. Researchers have used both deterministic 

and stochastic global optimization techniques for training neural networks [25], [26], [27]. Hybrid 

approaches are the combination of deterministic and stochastic optimization approaches. Hybrid 

approaches have advantages of deterministic and stochastic approaches and have been successfully 

applied to neural networks training problem [28], [29]. 

Although a wide variety of local, global and hybrid optimization approaches have been used 

for neural network training, there are promising optimization approaches in the mathematics 

literature that have not been exploited for this optimization problem. Quotient gradient system 

(QGS) is a trajectory-based method to find feasible solutions of constraint satisfaction problems. 

QGS searches for the feasible solutions of the CSP along the trajectories of a nonlinear dynamical 

system [30]. Dynamical Trajectory based methodology is another approach which uses trajectories 

of two nonlinear dynamical systems to find connected components of feasible region and search 

the components for local minima of the optimization problem [31]. 

After obtaining neural network models, control strategies must be used to obtain the desired time 

response for a nonlinear system. Model predictive control (MPC) is a well-known control approach 

where the controller predicts future control inputs using its knowledge of the plant dynamics and 
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the desired output [32].  The prediction is typically based on minimizing a performance measure 

such as the error or the control effort [33]. Findeisen and Allgöwer noted that any approach that 

deals with nonlinear systems requires the use of a suitable adaptive strategy to ensure satisfactory 

performance [34]. In many MPC applications, the mathematical model of the system cannot be 

reliably determined. Even in situations where mathematical models are available, there are 

conditions under which model parameters change or unmodeled dynamics are excited rendering 

controllers based on the nominal dynamics ineffective.  This makes it difficult to apply traditional 

MPC approaches and makes model-free methods an attractive alternative [35]. 

Gu and Hu used a WNN for the identification and predictive control of nonlinear systems [36]. 

Their WNN avoids convergence to a local minimum, which commonly occurs with gradient 

descent algorithms. They observed that WNNs simplify determining the number of hidden layer 

nodes and initializing the weights. Sousa et al. used a WNN for robot model identification and 

control and compared their results with those of standard feedforward neural network with back 

propagation. They proved the stability of the closed-loop control system using the second method 

of Lyapunov [37]. Yoo et al. used a self-recurrent wavelet neural network with adaptive learning 

rate as a model identifier [38]. They used their model to design a generalized predictive controller 

for nonlinear systems and proved its closed-loop stability by the Lyapunov method. 

In many control applications, communications between sensor and controller and between 

controller and actuator are through a communication network.  These networked control systems 

are very common in industrial control applications. The network can be private or can be shared 

between several controllers and plants. Using a shared network for several plants and controllers 

results in lower installation costs. In some control applications, the information from one plant is 

necessary to control other plants. Hence, using a shared network can lead to a flexible control 

architecture [39]. 

Although the idea of using a shared network can result in a flexible control architecture, it can 

cause complications in the design because of network delays and data dropouts. Networked 

induced delays are one of the most important effects of the networked control approach. The delays 

are small when the network is private but increase as the traffic of the network increases. Because 

network induced delays can be large enough to make the control system unstable, design 

methodologies for NCS must compensate for these delays. A common and straightforward means 
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of coping with delays is to predict delayed or missing information from plant to controller or from 

controller to actuator [39], [40]. 

Li and Liu used a simplified generalized predictive controller to control a second order system 

over the network [40]. Xue and Liu trained a neural network to calculate the predictive control 

value and predictive feedback to control a system over a network with fixed network delay [41].  

Jinhui and Yuanqing used an output feedback strategy to calculate the control input packets and 

solved the controller design problem using Markovian jump system theory. They showed that the 

packet based approach can cope with the network delay as well as packet loss issue [42]. 

Bianchi et al. used MPC to control traffic over a communication channel with network delay 

and packet loss. They used a buffer to compensate for the network delay and showed that the 

performance of their controller is close to the performance of an ideal controller [43]. Yang et al. 

proposed a predictive output feedback scheme for networked control systems [44]. They presented 

a new technique to compensate for the network delay in discrete time models and formulated the 

system as a Markovian jump system. 

We use a wavelet neural network with feedforward component to identify the models of highly 

nonlinear systems [137], [244]. The feedforward component reduces the number of hidden layer 

nodes and reduces the training time of the neural network making it suited to online identification 

and control applications. Khodabandehlou et al. used wavelet neural network with feedforward 

component and model predictive controller to control the seismically isolated structure during 

earthquake [244]. Their simulation results show that wavelet neural network based predictive 

controller can effectively control the structure during near fault and far field motions. 

Khodabandehlou and Fadali used the wavelet neural network with feedforward component and 

model predictive controller with extended prediction horizon to networked control of an 

autonomous vehicle and proved the stability of the controller using Lyapunov stability theory [61]. 

Their simulation results shows that model predictive controller with extended prediction horizon 

can compensate for the effects of network delay and packet loss and achieve a satisfactory tracking 

performance. 
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1.2 Thesis Organization 

Most real world applications are not purely nonlinear systems and show the combination of 

linear and nonlinear behavior. We use parallel implementation of linear and nonlinear modeling 

to identify the model of a system that demonstrates some linear behavior. The first step uses a 

linear model to model the input-output data of the system and the residual error is calculated. Then 

a wavelet neural network or echo state network is used to map the input data to residual error. The 

resulting network is used for nonlinear system identification application and a model predictive 

controller is designed based on the wavelet neural network model. To address the critical issue of 

the stability of the model and controller, Lyapunov theory is used.  

Chapter 2 examines two popular neural networks that have been successfully utilized in a 

wide variety of applications: echo state networks (ESN) and wavelet neural networks (WNN). It 

introduces innovations in the structure of ESN that result in major improvements in their 

performance.  By adding a feedforward component to the networks, and by tuning their weights 

using recursive least squares, we can drastically reduce the number of hidden layer neurons while 

reducing their error. We demonstrate the improvement in the performance of ESN and compare 

their performance to that of WNN by application to the identification of an un-manned vehicle. 

Different ESN and WNN are utilized to identify the model of the vehicle and examine the effects 

of adding a feedforward term to ESN and WNN. Our results show that, even though both networks 

yield acceptable performance, ESN outperform WNN in terms of accuracy but have a slightly 

higher computational cost. 

Chapter 3 presents an online identification and control scheme for a 5-story benchmark 

structure during earthquake. A WNN is used to identify the structural system and the model 

predictive controller uses a WNN to predict the future outputs of the system. The WNN and the 

model predictive controller are trained by the gradient descent algorithm to minimize performance 

indices. The traditional recursive least squares algorithm trains the feedforward component. Due 

to the general structure of the controller and efficiency of the WNN with feedforward component, 

the controller performance is satisfactory even under the strict condition of fixed learning rate. 

Simulation results demonstrates the efficiency of the proposed control scheme.  

Chapter 4 proposes networked identification and control of unmanned vehicle using wavelet 

neural network and model predictive controller. The controller uses extended prediction horizon 

to reduce the effect of network delay and packet loss on the tracking performance of the controller. 
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The model predictive controller uses the wavelet neural network model to predict the future 

outputs of the system over an extended prediction horizon and calculates the optimal future inputs 

by minimizing a controller cost function using gradient descent algorithm. We apply the proposed 

methodology to the online identification and control of an unmanned autonomous vehicle over a 

communication network with fixed and random delays and packet loss. Simulation results show 

that the controller with extended prediction horizon can effectively control the system in the 

presence of fixed or random network delay and packet loss. Lyapunov theory is used to prove the 

stability of the wavelet neural network with feedforward component and stability of the model 

predictive controller. 

Chapter 5 introduces a new approach to train a fully recurrent artificial neural network by 

solving a constraint satisfaction problem using the quotient gradient method. The quotient gradient 

method is a trajectory-based methodology for global optimization that does not suffer from the 

problem of local minima encountered in Newton based methods. Simulation results show that the 

network trained with the quotient gradient method perform better than traditional error 

backpropagation and genetic algorithm.  The method is also easier to implement in comparison to 

other global optimization techniques such as genetic algorithms. The stability of the proposed 

methodology and its stability in presence of measurement error is proved using Lyapunov theory. 

Chapter 6 proposes a new method to train recurrent neural networks using dynamical 

trajectory based optimization. The optimization method utilizes a projected gradient system (PGS) 

and a quotient gradient system (QGS) to determine the feasible regions of an optimization problem 

and search the feasible regions for local minima. By exploring the feasible regions, local minima 

are identified and the local minimum with the lowest cost is chosen as the global minimum of the 

optimization problem. Lyapunov theory is used to prove the stability of the local minima and their 

stability in the presence of measurement errors. Numerical examples show that the new approach 

provides better results than Newton-based methods 

Chapter 7 applies the quotient gradient system to train a two-stage partially recurrent neural 

network for anomaly classification in power networks.  The classification of anomalies or sudden 

changes in power networks versus normal abrupt changes or switching actions is essential to take 

appropriate maintenance actions that guarantee the quality of power delivery.  This issue has 

increased in importance and has become more complicated with the proliferation of volatile 

resources that introduce variability, uncertainty, and intermittency in circuit behavior that can be 
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observed as variations in voltage and current phasors. This makes diagnostics applications more 

challenging. This study proposes using quotient gradient system (QGS) to train two-stage partially 

recurrent neural network to improve anomaly classification rate in power distribution networks 

using high-fidelity data from micro-phasor measurement units (µPMUs). QGS is a systematic 

approach to finding solutions of constraint satisfaction problems. We transform the µPMUs data 

from the power network into a constraint satisfaction problem and use QGS to train a neural 

network by solving the resulting optimization problem. Simulation results show that the proposed 

supervised classification method reliably distinguishes between different anomalies in power 

distribution networks. Comparison with other neural network classifiers shows that QGS trained 

networks provide significantly better classification. Sensitivity analysis is performed concerning 

the number of µPMUs, reporting rates, noise level and early versus late data stream fusion 

frameworks.  
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Chapter 2. Echo State versus Wavelet Neural Networks: 

Comparison and Application to Nonlinear System 

Identification 

2.1 Introduction 

Artificial neural networks have been proven to be general function approximators. Cybenko 

and Hornik demonstrated that any nonlinear function could be approximated with a three layer 

artificial neural network with desired accuracy [1],[2].However, the multilayer structure of neural 

networks increases their learning time and computational burden. Steck et al. showed that parallel 

implementation of feedforward neural network and recursive least squares can decrease the 

learning time significantly while reducing the number of nodes in the hidden layer [4]. 

In this chapter, we examine the performance to two classes of neural networks: echo state 

networks that are based on reservoir computing, and wavelet networks that use wavelets as their 

activation function. In particular, we are interested in the use of these network for nonlinear system 

identification.  

Reservoir computing (RC) is an increasingly popular approach for processing time series [45]. 

In RC models, the input signal is applied to a reservoir. The reservoir is a random dynamical 

system with recurrent states. The reservoir maps the input to a higher dimensional space, then the 

states of the reservoir are mapped to the desired output. The weights from input to reservoir are 

fixed and the training is only required for the mapping from the states of the reservoir to the outputs 

[46]. Echo state networks (ESN) are among the simplest forms of the reservoir reservoir computing 

models. ESN are recurrent neural networks whose to-output weights are efficiently trained using 

recursive least squares [45], [47]. 

ESN have been successfully used in modeling, guidance, control, and other applications.  Jaeger 

and Haas used ESN to obtain a model for a nonlinear chaotic communication system. They showed 

that the accuracy of predicting a benchmark chaotic time series is improved by a factor of 2400 

over other techniques [48]. 

Bush and Anderson used ESN to approximate the Q-function of a mass-spring-damper system, 

and showed that ESN can approximate the Q-function as well as a feedforward neural network. 
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They argued that ESN is superior to recurrent back propagation neural networks for temporal 

feature generation and mapping [49]. 

Jaeger proposed a nonlinear system identification approach based on echo state networks. He 

used recursive least squares to train the network weights and applied his approach to a tenth order 

NARMA system to show its effectiveness [50]. 

Salmen et al. used an ESN for motor control application. Their simulation and physical 

implementation results showed that the ESN controller is superior to PID controllers in terms of 

reducing oscillations around the desired velocity, squared control error, and time to reach the 

desired velocity [51]. Hartland et al. used ESN for robot navigation behavior acquisition. They 

showed that ESN based control provides better performance than naive non-recurrent perceptron’s 

[46]. Tong et al. applied ESN in a grammatical structure learning problem. They showed that ESN 

can perform word prediction better than bigrams and trigrams [52]. Cernansky et al. proposed a 

simplified ESN that can model the system as well as standard ESN. Their simulation results 

showed that, at least in some tasks, a simple reservoir can achieve comparable results to standard 

ESN [53].  

Rodan and Tino proposed a minimum complexity echo state network for the identification of 

nonlinear models. They showed that a simple deterministic reservoir can perform as well as a 

standard echo state network and that the short term memory capacity of the simplified reservoir 

can be close to optimal. They supported their claim by applying minimum complexity ESN to 

several nonlinear system identification benchmarks [54]. 

In recent years, other neural network models have been proposed for system identification. Rosa 

et al. proposed using deep learning with randomized algorithms for training neural model for 

nonlinear system identification [55], [56],[57]. In their approach, input data is used to decide the 

hidden layers and hidden weights and randomized algorithms are used to decide the output 

weights. Simulation results show that deep learning with randomized algorithm has superior 

performance to classical approaches such as gradient descent algorithm. Another approach is 

kernel methods, such as support vector regression and regularization networks. They construct a 

linear combination of kernel functions to identify the nonlinear model [58]. 

Kandroodi et al. applied artificial neural networks to the identification and predictive control of 

a stirred tank reactor. They applied a multilayer perceptron, a radial basis function network and an 
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Adaptive Neuro-Fuzzy Inference System (ANFIS) for system identification and neural network 

predictive control of a stirred tank reactor [59]. 

Zhang and Benveniste proposed wavelet networks as an alternative to standard back-

propagation neural networks for system identification. They demonstrated that wavelet neural 

networks are general function approximator [5]. 

Ghadirian et al. proposed a fully recurrent wavelet neural network for identification of dynamic 

multi-input-multi-output (MIMO) nonlinear systems. They showed that their fully recurrent 

wavelet neural network has less error and lower convergence time in comparison to other fully 

recurrent neural networks [60]. 

Khodabandehlou and Fadali used wavelet neural network to identify the model of an 

autonomous vehicle and designed a generalized predictive controller based on the wavelet neural 

network model. Their simulation results show that wavelet networks can effectively identify the 

model of a nonlinear system in presence of measurement noise, network delay and packet loss 

[61].  

In this study we propose a modification to and compare the ESN and the wavelet neural 

network.  We add a feedforward parallel component to each networks that enhances their modeling 

capabilities. We explore the performance of the networks in identification of a nonlinear MIMO 

system. Our simulation results show that the added feedforward term can reduce the number of 

hidden nodes in wavelet neural network and reduce the dimension of the reservoir in ESN 

significantly. This increased efficiency is achieved while also reducing the identification errors in 

ESN. 

2.2 Echo State Networks 

ESN are recurrent neural networks that can provide an excellent representation for nonlinear 

dynamics. The architecture of the network is shown in Figure 1. The network has an input layer, 

an output layer and a middle or internal layer known as the reservoir.  At time 𝑘, the network maps 

an input vector 𝒖 (𝑘) = [𝑢1(𝑘), 𝑢2(𝑘),… 𝑢𝑁(𝑘)]
𝑇 to an internal state vector 𝒙 (𝑘) =

[𝑥1(𝑘), 𝑥2(𝑘),… , 𝑥𝑀(𝑘)]
𝑇  with the nonlinear dynamics 
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Figure 1. Echo State Network architecture 

𝒙(𝑘) = 𝑓(𝑊𝒖(𝑘) + 𝑆𝒙(𝑘 − 1)) 
(2.1)  

with input weight matrix 𝑊 = [𝑤𝑖,𝑗]𝑀×𝑁 and state weight matrix 𝑆 = [𝑠𝑖,𝑗]𝑀×𝑀. 𝑓 is the reservoir 

activation function which is usually a sigmoidal function. 𝑊 is fixed with uniformly distributed 

random values. 𝑊 is typically scaled as 𝑊 ← 𝜄𝑊/|𝜆𝑚𝑎𝑥| where |𝜆𝑚𝑎𝑥| is spectral radius of 𝑊 

and 0 < 𝜄 < 1 is a scaling factor [45]. The output of the network is given by 

𝒚(𝑘) = 𝑉𝒙(𝑘) 
(2.2)  

where 𝒚(𝑘) = [𝑦1(𝑘), 𝑦2(𝑘),… , 𝑦𝐽(𝑘)]
𝑇
 and 𝑉 = [𝑣𝑖,𝑗]𝐽×𝑀 is the output weight matrix.  The 

output weights of the ESN can be trained online with the recursive least squares algorithm as well 

as least squares for offline training. If the state weight matrix 𝑆 of the internal units is a full matrix, 

then the reservoir is fully connected and recurrent. In this study we use a standard reservoir, delay 

line reservoir with feedback connection and simple cycle reservoir. Figure 2 and Figure 3 depict 

the structure of the delay line with feedback connection (DLRF) and simple cycle reservoirs 

(SCR). In DLRF, the internal units are arranged in cascade with connection weight 𝑟 and each unit 

is has a feedback connection of weight 𝑏. Internal SCR units are also arranged in cascade with 

connection weight 𝑟 but there is a single feedback loop from the output of the last unit to the first 

unit with weight 𝑟  [54]. 
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Figure 2. Delay line reservoir with feedback connections (DLRF) 

 

Figure 3. Simple cycle reservoir (SCR) 

2.3 ESN with Feedforward Term 

ESN have a simple learning algorithm with fixed input layer and middle layer weights that do 

not need training.  However, the size of reservoir is often a significant disadvantage of ESN. This 

shortcoming can be mitigated by using recursive learning approaches such as recursive least 

squares. In dealing with complex systems, the size of the reservoir may increase drastically. To 

cope with this issue, we add a feedforward term to ESN. The internal unit update equation will be 

the same as (1) but the output equation becomes 

𝒚(𝑘) = 𝑉𝒙(𝑘) + 𝑄𝒖(𝑘) = [𝑉 ⋮ 𝑄] [
𝒙(𝑘)

𝒖(𝑘)
] 

(2.3)  



14 

 

where 𝑄 and 𝑉 are state and input gain matrices respectively. For online training, first we tune the 

𝑄 matrix using recursive least squares as in the standard ESN. To tune the matrix 𝑉, we consider 

the residual 

𝑒𝑟(𝑘) = 𝑦(𝑘) − 𝑄𝑢(𝑘) = 𝑉𝑥(𝑘) (2.4)  

2.4 Wavelet Neural Network 

Wavelet networks are back-propagation networks that use wavelets as the activation function 

in the hidden layer. Because wavelets have two extra parameters that scale and shift their inputs, 

wavelet networks have more flexibility than feedforward neural networks with sigmoidal 

activation functions.  Zhang and Benveniste showed that wavelet networks are general function 

approximators that often have fewer nodes in comparison to neural networks with other basis 

functions [5]. Figure 4 shows the wavelet network architecture. The input output equation of the 

network is 

𝒚 = 𝑆Ψ(𝐴−1(𝑊𝒖 − 𝒃)) (2.5)  

 

Figure 4. Wavelet Neural Network 
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𝑊 is the input weight matrix, 𝑆 is the output layer weight matrix, 𝐴 is a diagonal matrix whose 

diagonal elements are wavelet scale parameters, and 𝒃 is the vector of the shift parameters. Ψ is 

the activation function. 𝒖 is the 𝑁 × 1 network input vector and 𝒚 is the  𝐽 × 1 network output 

vector. With 𝑀 hidden layer nodes, 𝑆,𝑊, 𝐴 and 𝒃 are 𝐽 × 𝑀, 𝑀 ×𝑁, 𝑀 ×𝑀 and 𝑀 × 1 matrices 

respectively. The activation function of each node is of the form 

𝜓𝑎,𝑏 = 𝜓(
𝑡 − 𝑏𝑖
𝑎𝑖𝑖

)  ,1 ≤ 𝑖 ≤ 𝑀 (2.6)  

where 𝜓 is chosen as the Mexican hat wavelet 

𝜓(𝑡) =
2𝜋

1
4

√3
(1 − 𝑡2)𝑒−

𝑡2

2  
(2.7)  

All the network parameters are trained with the error back propagation algorithm. The cost 

function for training the network parameters is the sum of square errors: 

𝐽 =
1

2
∑(�̂�(𝑘) − 𝒚(𝑘))

𝑇

(�̂�(𝑘) − 𝒚(𝑘))

𝐾

𝑘=1

 (2.8)  

where �̂�(𝑘) is the network output vector and 𝒚(𝑘) is the measured output at time step 𝑘. Every 

network parameter is updated by the gradient descent algorithm  

𝜊𝑘+1 = 𝜊𝑘 − 𝛾𝛻𝜊(𝐽) (2.9)  

𝛾 ∈ (0,1] is the learning rate for gradient descent that specifies the convergence speed of the 

algorithm. We define the partial error as 

𝑒𝑦𝑗(𝑘) = �̂�𝑗(𝑘) − 𝑦𝑗(𝑘) (2.10)  

where �̂�𝑗(𝑘) is the 𝑗𝑡ℎ measured output and 𝑦𝑗(𝑘) is the 𝑗𝑡ℎ output of the network at time step 

𝑘, 𝑢𝑘,𝑙 is the 𝑙𝑡ℎ input and 𝑄𝑗,𝑙 is (𝑗, 𝑙) element of 𝑄. The derivative of the cost function with respect 

to each network parameter is 

𝛻𝜊(𝐽) =∑𝑒𝑦𝑗(𝑘)
𝜕�̂�𝑗(𝑘)

𝜕𝜊

𝐽

𝑗=1

 (2.11)  
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2.5 Wavelet Neural Network with Feedforward Term 

Figure 5 shows the structure of the WNN with feedforward term of gain 𝑄. As in the case of 

ESN with RLS, we first establish a linear regression between the network inputs and outputs with 

the RLS algorithm and the partial error defined as 

𝒆𝒓(𝑘) = 𝒚(𝑘) − 𝑄𝒖(𝑘) (2.12)  

 

Figure 5. ESN/WNN with feedforward term 

WNN are trained to learn the behavior of the partial error. The computational complexity of WNN 

and ESN is proportional to the number of hidden layer nodes/reservoir internal units squared, i.e. 

𝑂(𝑀2). The computational complexity of the RLS algorithm is proportional to number of 

measurements squared, i.e. 𝑂(𝑁2). Adding the feedforward term changes the number of internal 

units from 𝑀 to 𝑀𝑛𝑒𝑤 Therefore, adding the feedforward component to both types of networks 

changes the computational complexity of the problem from 𝑂(𝑀2) to 𝑂(𝑀𝑛𝑒𝑤
2 ) + 𝑂(𝑁2). For the 

ESN network we have 𝑀𝑛𝑒𝑤 ≪ 𝑀 and for the WNN number of hidden nodes decreases 

significantly. Assuming 𝑀𝑛𝑒𝑤 = 𝑐𝑀, 𝑐 ≤ 1, the ratio of the computational complexity of the 

network with feedforward term to the computational complexity of the standard network is 𝑐2 +

𝑁2 𝑀2⁄ . Thus, when the number of inputs is much smaller than the number of internal units, the 

computational complexity decreases by the ratio 𝑐2. Figure 6 shows the change in computational 

complexity with 𝑐 and 𝑑 = 𝑁 𝑀⁄ . From Figure 6, it can be concluded that if the number of inputs 

is close to the number of hidden layer nodes, adding a feedforward term to standard network may 

increase the computational burden. However, if the number of inputs is much lower than the 

number of internal units and the system is not highly nonlinear, adding a feedforward term to the 

ESN or WNN can significantly reduce the computational burden 
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Figure 6. Changes in the computational load 

2.6 Simulation Results 

2.6.1 Example 1: Unmanned Vehicle 

As our first example, we use the simplified nonlinear vehicle model of Figure 7 chosen from 

[36].The model has three state variables and two control inputs. The control inputs are the vehicle 

speed 𝑣, and the steering angle 𝛼, and the model is completely controllable with the two inputs. 

The state equation of the system is 

𝒙(𝑘 + 1) = [

𝑥(𝑘 + 1)

𝑦(𝑘 + 1)

𝜃(𝑘 + 1)
] 

= [

𝑥(𝑘) + 𝑇𝑣(𝑘)cos (𝜃(𝑘))cos (𝛼(𝑘))

𝑦(𝑘) + 𝑇𝑣(𝑘)sin(𝜃(𝑘))cos (𝛼(𝑘))

𝜃(𝑘) + 𝑇𝑣(𝑘)sin(𝛼(𝑘))/𝐷

] 

(2.13)  

where 𝑇 is sampling period and 𝐷 is the distance between the two shafts of the vehicle. We assume 

𝐷 to be 3 meters, which is reasonable for a midsize car, and use a sampling period of 1 𝑚𝑠. To 

explore the effect of adding a feedforward term to the ESN and the wavelet neural network, we 
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use both networks to identify the model of un-manned vehicle. In both cases the input to the 

network is 𝒖(𝑘) = [𝑣(𝑘), 𝛼(𝑘), 𝑥(𝑘), 𝑦(𝑘), 𝜃(𝑘)]𝑇. 

All the WNN matrices are initialized with uniformly distributed random numbers except for 𝐴 

which is initially the identity matrix. The learning rate for the gradient descent algorithm is 𝛾 =

0.1. For ESN, we chose 𝑏 = 0.7 and 𝑟 = 0.1. The scaling factor for a standard reservoir is 𝜄 = 0.9. 

The measurement noise is zero-mean white Gaussian noise with covariance 0.01.  

 

Figure 7. Autonomous Vehicle [36] 

Table 1 summarizes the simulation results for the identification of the unmanned vehicle model. 

In the table, SESN stands for ESN with standard reservoir and FF-T stands for Feedforward Term. 

Due to the fixed structure of the reservoir and the untrainable input layer of the ESN, the 

computational complexity and execution time of the ESN with different reservoirs are almost the 

same. The sum of square error (SSE) of the ESN with feedforward term is lower than the SSE 

standard ESN, DLRB and simple cycle reservoir. The SSE of the WNN with a feedforward term 

is higher than the SSE of the standard WNN. The SSE of the WNN with feedforward term can be 

reduced by increasing the number of nodes in the hidden layer at the cost of increased 

computational time. 

Table 1. Identification of unmanned vehicle 

Network 

Type 

Simulation results 

Computational 

Cost 
M N SSE 

WNN 𝑂(𝑀2) 60 5 0.5246 
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Network 

Type 

Simulation results 

Computational 

Cost 
M N SSE 

WNN 

with FF-T 
𝑂(𝑀2) + 𝑂(𝑁2) 10 5 2.1237 

SESN 𝑂(𝑀2) 100 5 2.8801 

SESN 

with FF-T 
𝑂(𝑀2) + 𝑂(𝑁2) 10 5 1.8130 

DLRF 𝑂(𝑀2) 100 5 3.1955 

DLRF 

with FF-T 
𝑂(𝑀2) + 𝑂(𝑁2) 10 5 1.8446 

SCR 𝑂(𝑀2) 100 5 2.1135 

SCR 

with FF-T 
𝑂(𝑀2) + 𝑂(𝑁2) 10 5 1.8230 

 

2.6.2 Example 2: Nonlinear MIMO System 

For our second example, we use the two-input-two-output nonlinear MIMO system [59] 

[
𝑥1(𝑘 + 1)
𝑥2(𝑘 + 1)

] = [
0.5

𝑥1(𝑘)

1+𝑥2(𝑘)2

0.5
𝑥1(𝑘)𝑥2(𝑘)

1+𝑥2(𝑘)2

]+[
𝑢1(𝑘)
𝑢2(𝑘)

] (2.14)  

The network input includes the current and past states, as well as the control input and is given by 

𝒖(𝑘) = [𝑢1(𝑘), 𝑢2(𝑘), 𝑥1(𝑘), 𝑥2(𝑘), 𝑥1(𝑘 − 1), 𝑥2(𝑘 − 1)]
𝑇.  All the network parameters are 

initialized as in the unmanned vehicle example and the measurement noise is assumed to be zero-

mean white Gaussian noise with a variance of 0.02. Table 2 summarizes the results of the 

identification of the nonlinear MIMO model. As in the unmanned vehicle example, adding a 

feedforward term has a smaller effect on the computational load for WNN than for ESN. For all 

networks the number of hidden units, and consequently the computational load, is reduced. The 

reduction is not as drastic as in Example 1. The feedforward term causes an increase in the SSE 

for WNN and a decrease for ESN.  Although the changes are less than those observed in Example 

1, they are still significant.  
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Table 2. Identification of MIMO system 

Network 

Type 

Simulation results 

Computational 

Cost 
M N SSE 

WNN 𝑂(𝑀2) 35 6 0.9327 

WNN 

with FF-T 
𝑂(𝑀2) + 𝑂(𝑁2) 10 6 2. 5733 

SESN 𝑂(𝑀2) 60 6 2.8497 

SESN 

with FF-T 
𝑂(𝑀2) + 𝑂(𝑁2) 20 6 2.1593 

DLRF 𝑂(𝑀2) 60 6 3.8754 

DLRF 

with FF-T 
𝑂(𝑀2) + 𝑂(𝑁2) 20 6 2.8398 

SCR 𝑂(𝑀2) 60 6 2.9503 

SCR 

with FF-T 
𝑂(𝑀2) + 𝑂(𝑁2) 20 6 1.8879 

 

2.7 Conclusion 

This study compares the performance of enhanced ESN and WNN. It proposes adding a 

feedforward term to ESN and to WNN and examines the effect of this modification on the 

performance of the two networks.  In particular, we examine the performance of the two networks 

for nonlinear system identification. For WNN, the feedforward term reduces the number of hidden 

layer nodes but at the cost of an increase in SSE. For ESN with standard, DLRF and simple cycle 

reservoirs, the SSE decreases while the size of reservoir decreases drastically, which leads to a 

much lower computational burden. Our results show that adding a feedforward term to ESN offers 

significant advantages. This can lead to wider applicability of ESN in online system identification 

and control applications in which computational time is a major issue. The results also suggest that 

the reduction in the computational complexity of the ESN and WNN depends on the nonlinear 

dynamics with less reduction for more severe nonlinearities. Future work will explore convergence 

conditions for ESN with a feedforward term and the applicability of ESN to online identification 

and control of unmanned aerial vehicles 
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Chapter 3. Active Neural Predictive Control of Seismically Isolated 

Structures 

3.1 Introduction 

Seismic isolation is recognized as one of the most effective mitigation strategies for structural 

and nonstructural systems [62],[63]. In general, seismic isolation systems shift the fundamental 

period of the isolated structure away from the range of predominant excitation periods, which 

results in reduced acceleration demand. However, as a result of the lengthened period, the base 

displacement of the isolated system becomes larger, and in some cases may lead to instability of 

the isolation system. This issue arises in case of near-field ground motions, which are dominated 

by long velocity pulses. For the case of long period structures, the velocity pulse tends to develop 

large displacements [64]. The pulse displacement is usually associated with the fault-normal 

direction, where high spectral acceleration components are observed in the long period range [65]. 

These long period spectral acceleration components tend to resonate with conventionally isolated 

structures, leading to an excessive base displacement that may destabilize the structure. To 

maintain the isolation deformations to within acceptable limits, two potential alternatives are to 

increase the effective stiffness of the isolation system or to provide additional damping 

mechanisms. However, increasing the stiffness is counterintuitive. For this reason, many of the 

isolation systems provide various sources of damping mechanism to overcome the unacceptably 

large isolation deformations [66],[67]. This damping may be provided by the isolator directly or 

by means of supplemental damping devices. However, increasing the damping capacity of the 

isolated structures by means of supplementary dampers leads to an increase in the superstructure's 

accelerations and inter-story drifts [68]-[70]. In such circumstances, conventional seismic isolation 

systems alone, such as rubber bearings and friction pendulum, may not be the best alternative for 

seismic response mitigation.  

Various alternative hybrid strategies have been proposed and studied analytically and 

experimentally to overcome the shortcomings of the conventional seismic isolation system (e.g. 

large isolator deformations). Some of these strategies combine conventional isolation system with 

actively or semi-actively controllable devices [71],…,[81]. Furthermore, control strategies using 

adaptive neural networks and their application in various types of structural systems, including 

seismically isolated structures, have been extensively studied during the last two decades [82], 
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….,[89] .While varying levels of response reduction have been demonstrated by means of active 

control strategies, there is still a need to develop efficient, consistent and robust techniques to 

address the issues stated earlier.  

Despite the availability of various adaptive control methods, their application requires an 

accurate mathematical model of the system [34]. However, model uncertainty or unmodeled 

dynamics in real-world applications can cause a deterioration in the performance of model-based 

control systems. This makes model-free methods more attractive. Artificial neural networks can 

accurately approximate nonlinear systems and have therefore received considerable attention in 

the identification of nonlinear systems. Han et al. designed a generalized predictive controller for 

a second order nonlinear system based on a feedforward neural network identifier. Their 

simulation results show that neural network control is robust and can meet the design specifications 

[90].     

The main drawbacks of neural networks are their slow convergence rate, multi-layer structure, 

and computational complexity. Zhang and Beneveniste proposed wavelet networks to eliminate or 

mitigate these disadvantages [5].  Wavelet networks use wavelets with different scale and shift 

parameters as activation functions and are thus a good alternative to neural networks for 

identification of nonlinear systems. They also argued that in higher dimensional problems, wavelet 

networks typically have fewer hidden layer nodes than other neural networks.  

The published research on the development and application of wavelet neural network 

controllers and system identification is abundant. Sousa et al. identified the model of a robot using 

a wavelet network and used the identified model to design a dynamic controller [37]. They proved 

the stability of their controller using the second method of Lyapunov. They argued that in spite of 

the difficulty of their design and stability analysis, wavelet network controllers provide more 

flexibility than standard adaptive control approaches. Zayeni and Ahmadi applied a radial wavelet 

network to the identification of nonlinear system [91]. The structure and learning method of their 

network are similar to those of radial basis function networks but their activation functions are 

wavelets. Simulation results show that these networks can identify models of complex nonlinear 

systems. Khodabandehlou and Fadali used wavelet network and generalized predictive controller 

for online identification and networked control of an unmanned vehicle [61]. Their simulation 

results show satisfactory performance under fixed and random network delay. For more 
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publications on the application of wavelet networks to system identification and control, interested 

readers are referred to [88], [92],…,[96]. 

This study proposes a new model predictive controller (MPC) that uses a wavelet neural 

network for output identification of nonlinear dynamics and uses it for MPC control of seismically 

isolated structures. The wavelet neural network includes a back propagation neural network and a 

feedforward term trained using recursive least squares. This configuration reduces the number of 

hidden layer nodes significantly. The computational complexity of the error backpropagation 

algorithm is 𝑂(𝑛3) with n hidden layer nodes. Consequently, reducing n reduces the computational 

complexity of the wavelet neural network drastically and allows its utilization in online 

identification and control. This parallel configuration is, to the best of our knowledge new, and is 

one of the main contributions of this study.  In addition, this study presents the first application of 

this new configuration to seismically isolated structures.The approach is applied computationally 

to the control of a seismically isolated five story structure subjected to ground motions with both 

far-field (FF) and near-field (NF) characteristics. Simulation results demonstrate that significant 

reductions of all response amplitudes were achieved particularly for near-field (pulse) ground 

motions, including reduced deformations along with corresponding reduction in acceleration 

response 

3.2 Wavelet Neural Network 

Model predictive control (MPC) relies on using an accurate system model to predict future 

outputs. In cases where such a model is not available, system identification becomes an essential 

part of model predictive control. In this study, a 3-layer wavelet neural network in parallel with a 

feedforward component trained using the recursive least squares (RLS) algorithm is used to 

identify the model parameters. The RLS algorithm establishes a linear relationship between the 

inputs and outputs and the wavelet neural network minimizes the identification error. Figure 8 

depicts the structure of the wavelet neural network.  
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Figure 8. Wavelet Neural Network structure 

The input-output equation of the network can be expressed as 

�̂�𝑗(𝑘) =∑𝑠𝑗,𝑖

𝐽

𝑖=1

∑𝜓(𝑤𝑖,𝑡 × uNt − 𝑝𝑖)/𝑟𝑖,𝑖)

𝑛

𝑡=1

+∑𝑞𝑗,𝑡

𝑛

𝑡=1

× uNt  ,1 ≤ 𝑗 ≤ 𝐽 (3.1)  

�̂�(𝑘) = [�̂�1(𝑘), �̂�2(𝑘),… , �̂�𝐽(𝑘)]
𝑇
 

(3.2)  

where �̂� is the network output and 𝐮𝑁 = [u𝑁𝑡] is the 𝑛 × 1 network input vector. Assuming that 

the network has 𝐽 outputs and 𝑚 hidden layer nodes, 𝐒 = [𝑠𝑖,𝑗] is a 𝐽 × 𝑚 matrix, 𝐖 = [𝑤𝑖,𝑗] is 

𝑚 × 𝑛 matrix, 𝐩 = [𝑝𝑖] is 𝑚 × 1 vector, and 𝐑 = [𝑟𝑖,𝑗] is a 𝑚 ×𝑚 diagonal matrix whose diagonal 

elements are positive, and off-diagonals are zero and 𝐐 = [𝑞𝑖,𝑗] is 𝐽 × 𝑛 matrix. The activation 

function of the hidden layer nodes,𝜓, is 

𝜓𝑝,𝑟 = 𝜓(
𝑡 − 𝑝

𝑟
) (3.3)  

The activation function is chosen to be the Mexican hat wavelet 

𝜓(𝑡) =
2𝜋

1
4

√3
(1 − 𝑡2)𝑒−

𝑡2

2  (3.4)  

The well-known error back propagation algorithm is used to train the wavelet neural network 

weights while 𝐐 is trained using the RLS algorithm. RLS learns the behavior of the system much 
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faster than the wavelet network and traditional neural networks. Consequently, the wavelet neural 

network learns the behavior of the system faster, which makes the model more appropriate for 

online identification and control. In addition, particularly when the system behaves linearly under 

certain operating conditions, the parallel configuration reduces the number of hidden layer nodes 

drastically, and consequently the training time of the WNN drops significantly. This makes the 

algorithm more efficient for real time applications. The reduction of number of hidden layer nodes 

reduces the model complexity for achieving certain desired approximation accuracy and does not 

sacrifice accuracy to reduce the model complexity. 

The cost function for training the network parameter is assumed to be sum of squared errors 

𝐽(𝑘) =
1

2
∑∑(�̂�𝑗(𝑘) − 𝑦𝑗(𝑘))

2

𝑚

𝑗=1

𝑁

𝑘=1

 (3.5)  

where 𝑦𝑗(𝑘) is the 𝑗th output of the system and �̂�𝑗(𝑘) is the 𝑗th output of the wavelet neural 

network at time step 𝑘. The gradient descent method is used to update the network parameters 

𝜎𝑘+1 = 𝜎𝑘 − 𝛾
𝜕𝐽(𝑘)

𝜕𝜎𝑘
 (3.6)  

where 𝛾 is the gradient descent algorithm learning rate. By defining the partial error as 

𝑒𝑦𝑗(𝑘) =  �̂�𝑗(𝑘) − 𝑦𝑗(𝑘) −∑𝑞𝑗,𝑡u𝑁𝑡

𝑛

𝑡=1

 (3.7)  

The change in each parameter can be calculated using the chain rule as [5][61]. 

𝜕𝐽

𝜕𝜎𝑘
=∑𝑒𝑦𝑗(𝑘)

𝜕�̂�𝑗(𝑘)

𝜕𝜎𝑘

𝐽

𝑗=1

 (3.8)  

3.3 Wavelet Neural Network based MPC 

Predictive control uses an explicit model of the system to predict future outputs of the system 

and uses them to calculate future inputs. It assumes that the inputs and outputs of the system can 

be measured and used to update the network parameters. In each iteration, the controller updates 

the network parameters and uses the wavelet neural network to predict future outputs over a 

prediction horizon 𝑁𝑝, then calculates the future inputs over a control horizon 𝑁𝑢 ≤ 𝑁𝑝 by 

minimizing the cost function 
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𝐽𝑐 = 
1

2
∑∑𝑙𝑗𝑒𝑦𝑗,𝑐(𝑘 + 𝑖)

2

𝑚

𝑗=1

+
1

2

𝑁𝑝

𝑖=1

∑𝜌∆𝐮(𝑘 + 𝑖 − 1)2

𝑁𝑢

𝑖=1

 (3.9)  

where 𝑒𝑦𝑗,𝑐(𝑘 + 𝑖) is the error between desired value and predicted value of the 𝑗th output of the 

system at time 𝑘 + 𝑖 and 𝑙𝑗 is penalty on this error. In the structure model, the desired value for 

acceleration and displacement is zero, therefore minimizing prediction error is equivalent to 

minimize the response of the system. However minimizing acceleration to zero may lead to 

unacceptable control force, therefore cost functions implies a penalty on control force increments 

to limit the control force. ∆𝐮 is the change in the control input and 𝜌 is the penalty on the change 

in the control input. A long control horizon leads to a smooth and small control input but decreases 

the tracking performance. A long prediction horizon leads to smooth control input also but 

decreases the tracking speed. The controller cost function 𝐽𝑐 can be written in terms of the control 

as  

𝐽𝑐 =
1

2
[∑(𝐞𝑦𝑗,𝑐

𝑇 (𝑘 + 1)𝐋𝐞𝑦𝑗,𝑐(𝑘 + 1))

𝐽

𝑗=1

+ 𝜌(𝐇𝐮(𝑘))
𝑇
(𝐇𝐮(𝑘))] (3.10)  

in which 𝐋 is a diagonal matrix with 𝑙𝑗’s as its diagonal elements and 

𝐇 =

[
 
 
 
 
1 0 0 … 0
−1 1 0 … 0
0 −1 1 … 0
0 … ⋱ ⋱ 0
0 … 0 −1 1]

 
 
 
 

 (3.11)  

𝐞𝑦𝑗,𝑐(𝑘 + 1) = 𝐲𝑗𝑑(𝑘 + 1) − �̂�𝑗(𝑘 + 1)  , 1 ≤ 𝑗 ≤ 𝐽 
(3.12)  

where 𝑦𝑗𝑑 is the desired value of the 𝑗th output and �̂�𝑗 is its predicted value as follows: 

𝐲𝑗𝑑(𝑘 + 1) =  [𝑦𝑗𝑑(𝑘 + 1), , … , 𝑦𝑗𝑑(𝑘 + 𝑁𝑝)]
𝑇
  , 1 ≤ 𝑗 ≤ 𝐽 (3.13)  

�̂�𝑗(𝑘 + 1) = [�̂�𝑗(𝑘 + 1),… , �̂�𝑗(𝑘 + 𝑁𝑝)]
𝑇
 , 1 ≤ 𝑗 ≤ 𝐽 

(3.14)  

𝐮(𝑘) = [𝑢(𝑘), 𝑢(𝑘 + 1), … , 𝑢(𝑘 + 𝑁𝑢 −   1)]
𝑇 , 1 ≤ 𝑖 ≤ 𝑚  

(3.15)  

The change in control input can be calculated by optimizing 𝐽𝑐 via gradient descent based on the 

following generalized form 
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𝜕𝐽𝑐
𝜕𝐮(𝑘)

= −∑𝐆𝑦𝑗,𝒖
𝑇 𝐋𝐞𝑦𝑗,𝑐(𝑘 + 1)

𝐽

𝑗=1

 (3.16)  

∆𝐮(k) = (𝐼 + 𝜆𝜌𝐇𝑇)−1 ×
𝜕𝐽𝑐
𝜕𝐮(𝑘)

  𝑎𝑛𝑑  𝐮(𝑘 + 1) = 𝐮(𝑘) + ∆𝐮(k) 
(3.17)  

𝐆𝒚𝒋,𝑢 = [𝑔𝑦𝑗,𝑢(𝑠, 𝑙)]  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑔𝒚𝒋,𝑢(𝑡, 𝑙) = {

𝜕�̂�𝑗(𝑘 + 𝑡)

𝜕𝑢(𝑘 + 𝑙 − 1)
 , 𝑠 ≥ 𝑙

0                            , 𝑠 < 𝑙

 

1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑠 ≤ 𝑁𝑝, 1 ≤ 𝑙 ≤ 𝑁𝑢 

(3.18)  

where 𝜆 is the learning rate of the gradient descent algorithm [61]. All the derivatives are calculated 

using the chain rule 

𝜕�̂�𝑗(𝑘 + 𝑞)

𝜕𝑢(𝑘 + 𝑟)
=

𝜕�̂�𝑗(𝑘 + 𝑞)

𝜕�̂�𝑗(𝑘 + 𝑞 − 1)
×
𝜕�̂�𝑗(𝑘 + 𝑞 − 1)

𝜕�̂�𝑗(𝑘 + 𝑞 − 2)
 × … 

                                                                …×
𝜕�̂�𝑗(𝑘 + 𝑟 + 2)

𝜕�̂�𝑗(𝑘 + 𝑟 + 1)
×
𝜕�̂�𝑗(𝑘 + 𝑟 + 1)

𝜕𝑢(𝑘 + 𝑟)
 

(3.19)  

3.3.1 Alternative Controllers 

A benchmark comparison of the proposed WNN-based controller is demonstrated with respect 

to linear quadratic Gaussian (LQG) and multivariable proportional-integral (PI) controllers. LQG 

control assumes that enough state variables of the structure, that is enough velocities and 

displacements, can be measured to make the system observable. The measurements are fed to a 

Kalman filter which estimates the states and control inputs of the system. In practice, accelerations 

are the only measured variables and velocities and displacements are obtained by integrating the 

accelerations. Integration introduces errors in the inputs to the Kalman filter and reduce the quality 

of LQG control. 

Designing a PI controller for single-input-multi-output systems is a challenging problem. The 

system must be completely controllable whereas the seismically isolated structural model has five 

uncontrollable modes. To overcome this, Kalman decomposition is used to find the controllable 

subsystem of the structure. The controllable subsystem of the structure is a single-input-six-output 

system. A multivariable PI controller is then designed for the controllable subsystem using linear 

quadratic methods. Details of the two controllers are available in [97] and are omitted for brevity. 
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3.4 Computational Simulation Model 

The computational simulation model represents the five-story seismically isolated structure that 

was developed for an experimental program by Kelly and Tsai [98] as shown in Figure 9. The 

model was analyzed as a conventionally isolated structure with lead-rubber bearings (LRB) only, 

and with LRBs coupled with actuators that provide the active control forces. In general, various 

types of devices may be employed in active control. While a specific type has not been assumed 

nor modelled, the most suitable devices in these types of applications may be hydraulic (or 

electrical) actuators. The lumped system properties are summarized in Table 3. The post-yield 

stiffness, 𝑘𝑏, of the isolation system was originally selected so that the fundamental period of the 

structure is 2.5 sec once the lead plug yields. The characteristic strength, 𝑄𝑦, is selected to be 10% 

of the building's weight and the post-yield to pre-yield stiffness ratio, 𝛼, is taken as 8.5%. These 

values were recommended by Ramallo et al. to achieve acceptable control of the base displacement 

without excessive structural accelerations for both moderate and severe seismic events [99]. The 

inherent damping of the structure is assumed to be 2%. 

 

Figure 9. Simulation model, (a) LRB isolated, (b) LRB isolated and controlled 
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Table 3. Properties of the simulation model 

Floor  

Mass 

(kg) 

Stiffness 

Coefficients 

(kN/m) 

Damping 

Coefficients 

(kN.s/m) 

𝑚𝑏

= 6800 
𝑘𝑏 = 232 𝑐𝑏 = 3.74 

𝑚1
= 5897 

𝑘1 = 33732 𝑐1 = 67 

𝑚2

= 5897 
𝑘2 = 29093 𝑐2 = 58 

𝑚3

= 5897 
𝑘3 = 28621 𝑐3 = 57 

𝑚4

= 5897 
𝑘4 = 24954 𝑐4 = 50 

𝑚5

= 5897 
𝑘5 = 19059 𝑐5 = 38 

 

3.4.1 Equation of the Motion 

The all-inclusive equations of motion of the seismically isolated structure (Figure 9) can be 

written as: 

𝐌𝑠�̈�𝑠
𝑡 + 𝐂𝑠�̇�𝑠 + 𝐊𝑠𝐮𝑠 = 𝟎 (3.20)  

𝑚𝑏�̈�𝑏
𝑡 + 𝐹𝑑(𝑐𝑏(𝑡), �̇�𝑏) + 𝐹𝑠(𝛼(𝑡), 𝑢𝑏 , �̇�𝑏 , 𝑧) − 𝐈𝑠

𝑇𝐕𝑠 = 0 (3.21)  

in which 𝐌𝑠, 𝐂𝑠 and 𝐊𝑠 are the mass, damping, and stiffness matrices of the superstructure 

respectively. Equation (20) governs the superstructure motion while (21) defines the base slab 

motion. Furthermore, 𝑚𝑏 is the base slab mass, 𝐹𝑑(𝑐𝑏(𝑡), �̇�𝑏) and 𝐹𝑠(𝛼(𝑡), 𝑢𝑏 , �̇�𝑏 , 𝑧) are the 

damping force and the restoring force of the substructure (isolation level), respectively. It is noted 

that the damping force term 𝐹𝑑 is provided also for cases where additional source of damping at 

the isolation level might be considered. �̈�𝑠, �̇�𝑠 and 𝐮𝑠 are the acceleration, velocity and 

displacement vectors of the superstructure with respect to the base slab, respectively, and �̈�𝑏 ,  �̇�𝑏 

and 𝑢𝑏 are those of substructure with respect to the ground. The superscript, 𝑡 denotes the total 

displacement with respect to a fixed reference. 𝐈𝑠 is the influence array of the superstructure motion 

on the substructure motion and 𝐕𝑠 is the vector of shear forces induced on the superstructure 

𝐕𝒔 = −𝐌𝒔�̈�𝑠
𝑡  (3.22)  

The total displacement vectors can be expressed as 
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𝐮𝑠
𝑡  =  𝐮𝑠  + 𝐈𝑏𝑢𝑏  + 𝐈1𝑢𝑔 (3.23)  

𝑢𝑏
𝑡 = 𝑢𝑏  +  𝐈2𝑢𝑔 (3.24)  

where 𝐈𝑏 is the influence array of the base slab motion on the DOFs of the superstructure, 𝐈1 and 

𝐈2 are the influence arrays of the ground motion on the superstructure and base slab DOFs 

respectively, and 𝑢𝑔 is the total ground displacement. Substituting for 𝐮𝑠
𝑡  and 𝑢𝑏

𝑡  and rearranging, 

the governing equations of motion can be written as 

𝐌𝑠�̈�𝑠   +  𝐂𝑠�̇�𝑠  +  𝐊𝑠𝐮𝑠  =  −𝐌𝑠(𝐈𝑏�̈�𝑏 + 𝐈1�̈�𝑔) (3.25)  

𝒎𝒃�̈��𝒃  +  𝑭𝒅(𝒄𝒃, �̇�𝒃) + 𝑭𝒔(𝜶, 𝒖𝒃, �̇�𝒃, 𝒛)       
= −𝒎𝒃𝐈𝟐�̈�𝒈 − 𝐈𝒔

𝑻𝐌𝒔(�̈�𝒔   +  𝐈𝒃�̈�𝒃  + 𝐈𝟏�̈�𝒈) 

(3.26)  

The restoring force 𝐹𝑠(𝛼, 𝑢𝑏 , �̇�𝑏 , 𝑧) represents the true hysteresis behavior of conventional LRB 

isolation systems. The well-known Bouc-Wen model [100] has been used in this study 

𝐹𝑠  =  𝑘𝑏𝑢𝑏  +  (1 − 𝛼)𝑘𝑒𝑥𝑦𝑧 (3.27)  

�̇�  =  𝐴�̇�𝑏 − 𝛽|�̇�𝑏|𝑧|𝑧|
𝑛−1 − 𝛾�̇�𝑏|𝑧|

𝑛  
(3.28)  

where 𝛼 is the ratio of the post-yield to the pre-yield stiffness of the isolation system, 𝑥𝑦 defines 

the yield displacement of the isolators and 𝑧 is dimensionless parameter that defines the hysteresis 

of the isolation system, and 𝑛, 𝐴, 𝛽 and 𝛾 are constant parameters that control the shape of the 

hysteresis loops. The parameter 𝑧 is found by solving the nonlinear differential equation (2.28). 

For the elastic stiffness to be modeled properly (𝐴 = 𝛽 + 𝛾), and for the unloading to follow the 

elastic stiffness (𝛽 = 𝛾). Equations (2.25) and (2.26) can be written in matrix form 

[
𝐌𝒔 𝐌𝒔𝐈𝒃
𝐈𝑠𝑇𝐌𝑠 𝑚𝑏 + 𝐈𝑠𝑇𝐌𝑠𝐈𝑏

]
⏞              

�̅�

[
�̈�𝑠
�̈�𝑏
] + [

𝐂𝑠 𝟎
𝟎 𝑐𝑏

]
⏞    

�̅�

[
�̇�𝑠
�̇�𝑏
] + [

𝐊𝑠 𝟎
𝟎 𝑘𝑏

]
⏞      

�̅�

[
𝐮𝑠
𝑢𝑏
] 

                                         = [
−𝐌𝑠𝐈1

−𝑚𝑏𝐈2 − 𝐈𝑠
𝑇𝐌𝑠𝐈1

]
⏞            

𝐄𝑔

�̈�𝒈 + [
𝟎
−𝐈𝑐

]
⏞  
𝐄𝑐

𝑓𝑐 

(3.29)  

where Ic is the location matrix of the restoring force of the isolation system and the control force. 

Equation (2.29) can be represented in state-space as 

�̇�  =  𝐀𝐱 +  𝐁𝑓𝑐  +  𝐄�̈�𝑔 (3.30)  

𝐲 =  𝐂𝑦𝐱 + 𝐃𝑦𝑓𝑐  +  𝐄𝑦�̈�𝑔 +  𝐯 (3.31)  
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where 𝐱 =  [𝐮𝑠
𝑇 , 𝑢𝑏 , �̇�𝑠

𝑇 , �̇�𝑏]
𝑇 is the state vector, 𝐲 represents the vector of measurements, and 

𝐯 is the measurement noise. The state matrices are defined as 

𝐀 = [
𝟎 𝑰

−�̃�−𝟏�̃� −�̃�−𝟏�̃�
]   ,        𝐁 = [

𝟎
�̃�−𝟏𝐄𝑐

]  , 𝐄 =  [
𝟎

−�̃�−𝟏𝐄𝑔
] (3.32)  

and 𝐶𝑦; 𝐷𝑦 and 𝐸𝑦 are obtained from the measured state. Assuming that the floor and base slab 

accelerations are measured: 

𝐂𝑦 = [−�̅�−𝟏�̃� −�̅�−𝟏�̃�] , 𝐃𝑦 = [−�̅�
−𝟏𝐄𝑐], 𝐄𝑦 = 𝟎 , �̅� = [

𝐌𝑠 𝟎

𝐈𝑠
𝑇𝐌𝑠 𝑚𝑏

] (3.33)  

In case of passive isolators, (𝑓𝑐  =  (1 − 𝛼)𝑘𝑒𝑥𝑦𝑧) represents the hysteretic behavior, 

otherwise, the control force is superimposed on 𝑓𝑐 . The state of the structure is used to generate 

its input-output data for identification and to update the parameters of the wavelet neural network 

as described earlier. 

The computational simulation of both the uncontrolled (seismically isolated with conventional 

LRBs) and the controlled (with or without LRBs) structure are performed using Matlab/Simulink 

[101]. A block diagram of the online identification and control implementation is shown 

schematically in Figure 10. 

The neural network input vector includes the control force and the history of acceleration. The 

input to the network is defined as 

𝐮𝑁(𝑘) = [𝑓𝑐(𝑘 − 1), 𝐲(𝑘 − 1),… , 𝐲(𝑘 − 10)] (3.34)  

where 𝐲 is a 6x1 vector of accelerations: 

𝐲(k) = [𝑦1(𝑘), 𝑦2(𝑘),… , 𝑦6(𝑘)]
𝑇 (3.35)  
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Figure 10. Block diagram of the online identification and control scheme 

For the simulations in this study, 10 hidden layer neurons and a fixed learning rate of 𝛾 = 0.2 

was specified. Both the prediction horizon 𝑁𝑝  and the control horizon 𝑁𝑢  were set equal to 10. 

The control input weighting factors for different cases investigated were chosen as  = 10-1 for a 

medium-level penalty on the acceleration response, and 𝜌 = 10−4 for high penalty on the 

acceleration response. Since the accelerations of the base isolated structure are almost the same, 

penalty on the output prediction error 𝐿 is assumed to be the identity matrix to impose the same 

penalty on all of the accelerations. The neural network parameters are randomly initialized except 

for setting the matrix R equal to the identity and the vector q equal to zero.  

Because the RLS algorithm can quickly establish a linear relationship between inputs and 

outputs, no pre-tuning is needed on the WNN. However, for real world applications, the number 

of hidden layer nodes can be effectively predetermined using an approximate computational 

simulation model of the structure. 

Last but not the least, for accurate system identification, the excitation should be sufficiently 

large to excite significant modes of vibration of the system, which is always the case for high 

intensity ground motions of interests. However, a key factor that may affect the performance of 

controller implementation is the noise in output measurements. Therefore, the simulations were 

repeated for two cases, with and without measurement noise to demonstrate the robustness of the 
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proposed control strategy in that regard. Robustness with respect to variations in system 

parameters (structural stiffness, isolation properties, etc.) is not considered in this study since the 

nonlinearities are assumed to be only associated with the isolation bearings. However, a more 

comprehensive assessment is part of an ongoing study that investigates full-scale implementation 

of the proposed control strategy, including the effects of variations in system parameters. 

Table 4. Details of the ground motion records 

 EQ 

 ID 
Record Name 𝑀𝑤 

Recording 

Station 

Dur

.(s) 

R 

(km) 

PGA 

   (g) 

 PGV 

(cm/s) 

PGD 

(cm) 

FAR-FIELD (FF) GROUND MOTIONS 

 F01 01-Northridge, 1994  6.7 Beverly Hills-Mul.  23.95   13.3 0.62   40.7  8.56 

 F02 02-Northridge, 1994  6.7 
Canyon Count.-

WLC 
 19.95   26.5 0.48   44.9  12.5 

 F03 03-Duzce, Turkey, 1999  7.1 Bolu  55.85   41.3 0.82   62.1  13.6 

 F04 
06-Imperial Valley, 

1979 
 6.5 El Centro Array 11  39.03   29.4 0.38   42.1  18.6 

 F05 12-Landers, 1992  7.3 Coolwater  27.96   82.1 0.42   42.3  13.8 

 F06 
18-Cape Mendocino, 

1992 
 7.0 Rio Dell Overpass  35.90   22.7 0.55   41.9  19.5 

 F07 
20-Chi-Chi, Taiwan, 

1999 
 7.6 TCU045  89.98   77.5 0.51   40.0  14.3 

NEAR-FIELD (NF) WITH PULSE GROUND MOTIONS 

 N01 
02-Imperial Valley, 

1979 
 6.5 El Centro Array 7  36.80   27.6 0.46   109.3  44.7 

 N02 
04-Superstition Hills, 

1987 
 6.5 Parachute Test Site  22.30   16.0 0.45   111.9  52.8 

 N03 
06-Erzincan, Turkey, 

1992 
 6.7 Erzincan  21.30   9.00 0.52   95.5  27.7 

 N04 09-Northridge, 1994  6.7 Rinaldi Receiving  14.93   10.9 0.83   166.0  28.1 

 N05 10-Northridge, 1994  6.7 
Sylmar - Olive 

View 
 39.90   16.8 0.84   129.4  39.9 

 N06 
12-Chi-Chi, Taiwan, 

1999 
 7.6 TCU065  89.98   26.7 0.81   126.2  92.6 

 N07 
13-Chi-Chi, Taiwan, 

1999 
 7.6 TCU102  89.98   45.6 0.30   112.5  89.2 

3.4.2 Ground Motions 

To illustrate the effectiveness of the proposed WNN-based control implementation, the 

seismically isolated structure is subjected to a series of recorded far-field and near-field ground 
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motions. A total of seven far-field and seven near-field [pulse] type recorded ground motions are 

selected as summarized in Table 4 and 5%-damped acceleration response spectra are plotted in 

Figure 11. The ground motions were selected as a subset of FEMA P695 records [102]. The ground 

motions were neither time-scaled nor amplitude-scaled since the main purpose of the study is to 

provide a relative comparison of achieved controlled response versus conventional seismic 

isolation. Selected ground motions in the near-field [pulse] type group were targeted to have peak 

ground velocities (PGV) greater than 100 cm/s (with one exception; 1992 Erzincan) and peak 

ground acceleration (PGA) to PGV ratios less than 0.7 g/cm/s. For the far-field type ground 

motions, the corresponding targets were PGV≥40 cm/s and PGA/PGV≤1.2 g/cm/s. Whereas both 

[high] PGV and [low] PGA/PGV parameters are considered as “damage” indicators, the average 

PGAs of the two sets of ground motions were selected to be comparable; 0.55g (FF) vs 0.60g (NF). 

 

 

Figure 11. Response spectra of the selected ground motions 

3.5 Performance of Conventional and Controlled Structure 

In the simulation, the only observable responses were assumed to be floor and isolation level 

accelerations as indicated in equations (2.31) through (2.34). Therefore, the penalty factor 𝜌 that 

is used in the minimization of the control cost function 𝐽𝑐 applies to the measured acceleration 

response in equation (2.10). Smaller 𝜌 values imply smaller desired acceleration response. 

Furthermore, WNN-based control does not require real-time simulation of the structure. However, 

a feasible weight 𝜌, learning rate 𝜆 and number of hidden layer nodes 𝑚 can be determined offline 

(tuning) using an approximate simulation model before implementation. This parameters are fixed 

during real time application and the network weights are the only parameters that need to be 
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updated every time step. In this study, first a lower-bound 𝜌 = 10−4 was selected to examine the 

efficacy of the control method to reduce accelerations irrespective of the associated displacements. 

This is referred to as the Cont-C2 case. In an attempt to reduce displacements while maintaining 

accelerations, base shear and foundation shear forces under acceptable limits, a larger 𝜌 = 10−1 

was used. This case is referred to as Cont-C1.  

Thus, the three different cases investigated are: 1) conventional seismically-isolated structure 

with LRBs (Passive), 2) structure with LRBs coupled with control with high penalty on 

acceleration response (Cont-C2; 𝜌 = 10−4), and 3) structure with LRBs coupled with control with 

medium-level penalty on acceleration response (Cont-C1; 𝜌 = 10−1). Each case was subjected to 

both NF and FF ground motions. A summary of the simulation results is presented in Figure 12 

and Figure 16 for the NF and FF ground motions, respectively. These figures present the average 

of maximum (a) floor and base [isolator] displacements, (b) interstory drifts, (c) displacements 

relative to isolator, (d) floor and base accelerations, (e) [superstructure] base shear, and (f) total 

shear force at the foundation level which includes the isolator force and control force for the 

controlled cases. 
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Figure 12. Comparison of average maximum response – Near-field ground motions. (a) story and 

base [isolator] displacements, (b) interstory drifts, (c) displacements relative to isolator, (d) story 

and base [isolator level] accelerations, (e) [superstructure] base 

As can be seen in Figure 12(a-d), the overall displacement response is reduced by an average 

of 40% in the Cont-C1 case with similar reductions in acceleration response along the height of 

the structure in comparison to the Passive case. In particular, the simultaneous reduction in the 

base displacement and the floor accelerations under pulse-type NF ground motions is notable. 

Sample displacement response history comparisons for two of the NF ground motions are shown 

in Figure 13 where the pulse-type nature of the earthquakes is evident. The simulation results 

demonstrate that Cont-C2 implementation reduces the resonance behavior of the seismic isolation 

system induced by long-period ground motions. While the initial displacement pulse was not 

reduced significantly, subsequent larger isolation deformations were mitigated. These response 

reductions are achieved by the control force which effectively regulates the apparent isolation 
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stiffness in real-time (Figure 14). Furthermore, reduced floor accelerations result in lower 

superstructure base shear as well as foundation forces (Figure 12(e) and (d)). 

 

Figure 13. Sample isolator displacement response history comparisons. (a) NF05, (b) NF03 

 

Figure 14. Sample isolator deformation versus isolator/control force deformation response. (a) 

NF05, (b) NF03 
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Figure 15. Sample isolator deformation versus isolator/control force deformation response; Cont-

C2 case under NF03 ground motion 

 

Figure 16 . Comparison of average maximum response – Far-field ground motions. (a) story and 

base [isolator] displacements, (b) interstory drifts, (c) displacements relative to isolator, (d) story 

and base [isolator level] accelerations, (e) [superstructure] base 
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The Cont-C2 case employs a low weight 𝜌 for control input with an objective to completely 

attenuate the acceleration response. As shown in Figure 12, this objective was achieved to the 

extent possible which further resulted in significantly reduced interstory drifts and base shear 

forces, albeit at the expense of larger isolator deformations compared to Cont-C1 and Passive 

cases. In theory, the floor accelerations would tend to zero as the effective stiffness at the base of 

the structure reduces to zero. Our simulations show that WNN control dictates out-of-phase control 

forces with respect to isolator forces, which results in essentially zero effective stiffness in the 

isolation system (Figure 15). 

Similar observations can be made in case of far-field (FF) ground motions. However, WNN-

based control does not lead to significant changes in response quantities when compared to the 

conventional isolated system. This is primarily due to the fact that the passive isolator properties 

were deemed near optimal to achieve small displacements, accelerations, hence small forces, 

particularly for moderate level earthquakes as is the case with the FF ground motions [99]. 

Evidently, the seismic demand on the isolated structure due to FF ground motions is relatively 

insignificant in comparison to NF ground motions (Figure 16). This is confirmed by the present 

study as the average maximum control force in Cont-C2 remained less than 13 kN versus 40 kN 

of isolator force with approximately 8% reduction in base displacements only. Finally, Cont-C2 

implementation resulted in significant reduction of all response quantities except for increased 

base displacements. Clearly, this may be considered a desired outcome as the benefits of reduced 

floor accelerations and interstory drifts outweigh the slight increase in the base displacements for 

certain types of buildings with deformation and acceleration sensitive equipment. 

Table 5. Normalized response comparisons 

 Near-field Far-field 

 Cont-

C1 

Cont-C1 

+ Noise 

Cont-

C2 
LQG PI  Cont-C1 

Cont-C1 

+ Noise 

Cont-

C2 
   LQG PI 

+ve isolator 

displ 
  0.625    0.612    1.383    1.018    0.947    0.868 0.836    1.298    1.304    1.094 

-ve isolator 

displ 
  0.660    0.624    1.012    1.307    1.123    0.860 0.830    1.586    1.278    1.239 

+ve story 

 displ* 
  0.662    0.620    0.122    0.516    0.650    1.027 1.058    0.234    0.339    0.345 

-ve story  

displ* 
  0.678    0.643    0.138    0.613    0.723    1.004 1.015    0.212    0.311    0.356 
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+ve story 

 drift 
  0.760    0.739    0.311    0.516    0.650    1.078 1.099    0.320    0.339    0.345 

-ve story  

drift 
  0.755    0.777    0.251    0.613    0.723    1.023 1.033    0.347    0.311    0.356 

+ve story  

accel 
  0.755    0.778    0.267    0.609    0.719    1.023 1.032    0.348    0.298    0.343 

-ve story 

 accel 
  0.760    0.740    0.312    0.517    0.653    1.078 1.099    0.334    0.323    0.328 

Peak base 

 shear 
  0.643    0.596    0.119    0.613    0.723     0.973 0.987    0.212    0.336    0.356 

Peak found. 

shear 
  0.618    0.560    0.108   0.628    0.738     0.894 0.895    0.199    0.362    0.381 

* Relative to isolators 

To demonstrate the relative efficiency as well as the effect of potential noise in the output 

measurements (acceleration response), additional cases were considered and simulated as listed in 

Table 5. The table summarizes normalized response quantities with respect to the conventional 

passive case. It can be seen that classical LQG and multivariable PI controllers can achieve the 

desired response reduction in general, but fail to reduce deformation response at the isolation 

bearing level. In contrast, the achieved response reductions of all quantities by the Cont-C1 case 

with and without noise are similar, demonstrating the insensitivity of the proposed WNN-based 

controller to the noise in the measurements. 

3.6 Conclusion 

The primary objective of this study was to assess the applicability of the proposed Wavelet 

Neural Network (WNN)-based control to reduce the isolator deformations (base displacements) in 

seismically isolated structures subjected to near-field ground motions. This can be achieved using 

conventional techniques by providing higher levels of damping at the isolation level, but only at 

the expense of increasing floor accelerations and interstory drifts. Clearly, given the uncertainty 

and variability of ground motion characteristics, the control and reduction of both the 

displacements and accelerations require active control. For this purpose, a wavelet neural network 

comprising a wavelet back propagation network in parallel with a feedforward component trained 

using recursive least squares is introduced. The feedforward component significantly reduces the 

number of hidden layer nodes, and provides fast efficient learning. The computational complexity 

of the error backpropagation algorithm is 𝑂(𝑛3) with n hidden layer nodes. Consequently, the 

computational complexity of the wavelet neural network is reduced drastically with the number of 
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hidden layer neurons. Hence, the parallel wavelet network is suited to online identification and 

control. The WNN-based control with MPC was used for online identification and control of a 

nonlinear structural system. The only input to the network was assumed to be monitored floor 

accelerations.  

The efficacy of the method was demonstrated through a series of computational simulations. 

Two control cases that reduce the acceleration response and mitigate deformations were evaluated. 

Both cases demonstrate the effectiveness of WNN-based control in comparison to conventional 

isolation. They also highlight the efficiency and flexibility of the proposed approach to achieve 

multiple performance objectives. All response quantities were significantly reduced for both near-

field (NF) and far-field (FF) ground motions, in particular an average of 40% reduction in isolator 

deformations, with corresponding reductions in floor accelerations, was observed. A comparison 

between the average responses to NF and FF ground motions suggests that one of the control cases 

is capable of reducing large base displacements due to NF ground motions without compromising 

performance under FF ground motions.  

The controller performance was dictated by the established performance objective through a 

penalty factor and WNN learning rate. The controller effectively regulated the apparent stiffness 

at the isolation level. This observed feature of the WNN-based control makes the method a 

desirable hybrid seismic isolation alternative in general, and particularly a good candidate for 

lightweight structural system and equipment isolation. Finally, the proposed control method is fast, 

accurate, and robust, which allows implementation for large-scale dynamic systems. Furthermore, 

controllers that optimize other performance indices (objectives) can be readily implemented to 

provide more targeted response control. 



42 

 

Chapter 4. Networked Model Predictive Control Using a Wavelet 

Neural Network 

4.1 Introduction 

Networked control systems are control systems in which the controller, actuator and sensor are 

connected through a communication network. The shared network connection between different 

components of the control loop yields a flexible architecture and reduced installation and 

maintenance costs [39]. The theory of networked control systems combines control system theory 

and communication theory [39]. Time delay is a salient feature of any digital control system. This 

delay can be due to either plant delay or computational delay [103]. The computational delay can 

adversely affect controller performance or cause closed loop instability [104].  

The control and stability of time-delayed systems has been widely studied [105], and various 

control and optimization algorithms have been proposed to provide satisfactory stable performance 

[106]. Astrom and Wittenmark studied effects of computational delay on digital controller design 

[107].  

Although recent advances in digital processors have mitigated the effects of computational 

delay, network transport delay must still be considered in the design of networked control systems 

[103][108], [109], [110]. Delay switching based methods and parameter uncertainty based 

methods are two other alternatives to deal with the network induced delays [111],[112][113]. The 

approach of [114] uses parameter uncertainty based to deal with network-induced delay and uses 

linear matrix inequalities (LMI) to prove the existence of a stable state feedback controller. Wang 

and Yang [115] model the delay as a Markov chain and model the control loop as a Markov jump 

system then stabilize the closed loop system using an output feedback.   

Although switching based methods for time delay systems are less conservative, they are more 

computationally costly and are difficult to implement [115],[116]. A combination of switching and 

parameter uncertainty approaches is used in [117] to avoid the computational complexity of 

switching based approach and the conservativeness of parameter uncertainty based approach. 

Traditional digital control uses uniform sampling of the measurements over time. Although this 

makes analysis easy, it is not optimal in terms of network traffic [118],[119].  Astrom and 

Bernhardsson proposed an event triggered sampling scheme to decrease the network traffic by 

reducing the number of packets sent over the network [118]. The main idea of event triggered base 
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systems is to obtain a new measurement when the closed loop system does not satisfy desired 

performance criteria [120]. Researchers have proposed different sampling approaches such as 

deadband sampling [121], self-triggered sampling [122]-[124] and error energy sampling [125] to 

optimize the network resource usage. 

Heemels and Donkers used periodic event triggered control for a piecewise linear system and 

for an impulsive system, and analyzed the stability of the controller for both systems [126].  Wang 

et al. proved that a network control system with L1 adaptive controller and event trigger sampling 

scheme can be arbitrarily close to a desired stable reference system under certain conditions [127]. 

Peng and Hong designed 𝐻∞ controller with non-uniform sampling period. They sampled the 

states of the system nonuniformly, modeled the networked control system as a time-delay system, 

and proved the ultimate boundedness of their controller [128]. Another method of designing 𝐻∞ 

controllers based on Markovian modeling of sensor and actuator was presented in [129].  An 

observer based 𝐻∞ controller for continuous time networked control system was presented in 

[130]. A new model for continuous time networked control system was introduced and the 

observer based controller was designed based on a new Lyapunov functional. A method of 

designing an 𝐿2 controller for decentralized event-triggered control system was presented in [24]. 

Wang et al. designed an event triggered model predictive controller for wireless networked 

control [132]. They derived trigger conditions and proved the stability of their controller by 

choosing the objective function of MPC as a Lyapunov function. A networked predictive controller 

to dampen power system inter-area oscillations was presented in [133]. The network predictive 

controller uses a generalized predictive control scheme to calculate the optimal control input for 

constant and random network delay. The stability analysis of a networked control system with a 

predictive-observer based controller was presented in [134]. They proved stability using two 

different Lyapunov functions, a function derived from network conditions, and a common 

quadratic Lyapunov function. 

Cao et al. used a Gaussian process model of the unknown dynamics of a quadrotor with model 

predictive control [135]. Their methodology handles the model uncertainty and is computationally 

efficient. A locally weighted learning model predictive control (LWL-MPC) is presented in [136]. 

The model can effectively learn nonlinear and time varying dynamics online. 

In this study, we use a wavelet neural network with feedforward component for online nonlinear 

system identification. Zhang and Benveniste argued that wavelet neural networks may have fewer 
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nodes that other artificial neural networks [5]. The feedforward component drastically reduces the 

number of hidden layer nodes and consequently reduces the training time of the wavelet neural 

network. The improved computational efficiency of the wavelet networks with feedforward 

component makes it ideal for online identification and control applications [137]. The model 

predictive controller uses wavelet neural network to predict the future outputs of the system over 

an extended prediction horizon and minimizes a cost function to find the optimal control action. 

Lyapunov stability theory is used to prove the stability of the model predictive controller.  

To demonstrate the efficacy of our networked control approach, we apply it to the control of an 

unmanned autonomous vehicle. Two scenarios of fixed and random network delay are simulated. 

Simulation results show that the model predictive controller with extended prediction horizon can 

successfully mitigate the effect of fixed and random network delay. A preliminary version of this 

work was presented in [61], [250]. This paper extends the preliminary work of [61]and adds the 

following: 

 A new formulation of the controller equations which is computationally efficient 

 A proof of the stability of the controller based on the new formulation 

 Improved simulation results with a new network designed that reduces the tracking error. 

4.2 Networked Control System 

A block diagram of networked control of an autonomous vehicle is shown in Figure 17. The 

measurements are sent over the communication channel to the WNN and MPC. Measurements are 

received after a network delay and they may get lost due to packet loss in the communication 

channel.  The WNN weights are updated after receiving the measurement, then the MPC predicts 

the future outputs of the system. Using the predicted outputs and the desired future outputs of the 

system, the controller calculates the future optimal control inputs by minimizing a controller cost 

function. 

Due to network delay, the system does not promptly receive the control input. Hence the 

controller needs to make more predictions to compensate for the effect of delay from sensor to 

controller and controller to actuators. 
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Figure 17. General scheme of plant and controller 

 

Figure 18 . Probability density function of triangular distribution 

We use a feedforward wavelet neural network with one hidden layer and feedforward component 

to identify the model of nonlinear system. The wavelet neural network structure is shown in Figure 

19. The input-output equation of the WNN is described as 

�̂�(𝑘) = 𝑺𝝍(𝒖𝑁) + 𝑸𝒖𝑁(𝑘) (4.1)  

where 𝒖𝑁(𝑘) = [𝑢𝑁1 , … , 𝑢𝑁𝑛]
𝑇
 is the input vector to the network and �̂�(𝑘) =

[�̂�1(𝑘), �̂�2(𝑘),… , �̂�𝐽(𝑘)]
𝑇
 is networks output. 𝑛 is number of inputs to the network and 𝐽 is number 

of network outputs. Activation function of hidden layer nodes are assumed to be Mexican hat 

wavelet 

𝜓𝑖(𝑡𝑖) =
2𝜋

1
4

√3
(1 − 𝑡𝑖

2)𝑒−
𝑡𝑖
2

2  (4.2)  

𝑡𝑖 =
𝒘𝑖
𝑇𝒖𝑁 − 𝑏𝑖
𝑎𝑖,𝑖

, 𝑖 = 1,… ,𝑚 (4.3)  

where 𝑚 is number of hidden layer nodes. With 𝑚 nodes in the hidden layer, 𝑺, 𝑾 and 𝑸 will be 

𝐽 × 𝑚, 𝑚× 𝑛 and 𝐽 × 𝑛 matrices respectively. 𝒃 = [𝑏𝑖]𝑚×1 is vector of shift parameter of wavelets 

and 𝑨 = 𝑑𝑖𝑎𝑔([𝑎1,1, … , 𝑎𝑚,𝑚]) is diagonal matrix whose diagonal elements are scale parameter 

of hidden layer activation functions. 
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Figure 19 . Structure of wavelet neural network [61] 

The feedforward component weights is tuned using well known recursive least squares 

algorithm and the rest of the parameters are tuned using error backpropagation algorithm. Due to 

fast convergence of recursive least squares algorithm no pre tuning is needed for wavelet neural 

network. This makes the network more interesting for online identification and control 

applications. 

The cost function for training wavelet neural network is the sum of squared errors (SSE) 

𝐽𝑁 =
1

2
∑‖�̂�(𝑘) − 𝒚(𝑘)‖2
𝑁

𝑘=1

 (4.4)  

where 𝒚(𝑘) is the vector of measured outputs and �̂�(𝑘) is the output of the WNN. Network 

parameters are updated by the gradient descent algorithm 

𝜎𝑡+1 = 𝜎𝑡 − 𝛾∇𝜎(𝐽𝑁) (4.5)  

𝛾 is the learning rate for gradient descent algorithm with 𝛾 ∈ (0,1]. After training the 

feedforward component using the recursive least squares algorithm, the network modeling error 

can be calculated as 

𝒆𝑦(𝑘) =  �̂�(𝑘) − 𝒚(𝑘) − 𝑄𝒖𝑁(𝑘) (4.6)  

𝒆𝒚(𝑘) = [𝒆𝑦1, … , 𝒆𝑦𝐽]
𝑇

 (4.7)  
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The cost function for training the neural network can be rewritten in terms of the error as 

𝐽𝑁 =
1

2
∑‖𝒆𝑦(𝑘)‖

2
𝑁

𝑘=1

 (4.8)  

The chain rule is used to calculate the gradient of the cost function with respect to the WNN 

parameters 

∇𝜎(𝐽𝑁) = 𝒆𝒚
𝑇(𝑘)𝜕�̂�(𝑘)/𝜕𝜎 (4.9)  

4.2.1 Stability Analysis 

The following proposition provides stability conditions for the learning rate of the WNN. 

Proposition: Suppose that 𝒐𝑡 is a vector of network parameters that affect the 𝑡𝑡ℎ output, 𝒐𝑡 =

[𝑎𝑖, 𝑏𝑖, 𝑤𝑖,𝑗 , 𝑞𝑖,𝑗, 𝑠𝑖,𝑗], and 𝜇 = max
𝑡
‖
𝜕�̂�𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
‖
2

2

  , 𝑡 = 1,2, … , 𝐽, where �̂�𝑡(𝑛) is the 𝑡𝑡ℎ network 

output at time step 𝑛. Then the WNN is stable if the learning rate satisfies 𝛾 < 2/𝜇. 

Proof: 

Lyapunov’s method is used to analyze the stability of the WNN. The positive definite Lyapunov 

function for the WNN is defined as 

𝑉(𝑘) =
1

2
∑𝑒𝑡(𝑘)

2

𝐽

𝑡=1

 (4.10)  

where 𝑒𝑡(𝑛) is the output error of wavelet network. The change in the Lyapunov function can 

be expressed as 

∆𝑉(𝑘) = 𝑉(𝑘 + 1) − 𝑉(𝑘) =
1

2
∑𝑒𝑡(𝑘 + 1)

2 − 𝑒𝑡(𝑘)
2

𝐽

𝑡=1

 

=  ∑∆𝑒𝑡(𝑒𝑡(𝑘) +
1

2
∆𝑒𝑡(𝑘))

𝐽

𝑡=1

 

(4.11)  

𝒐𝑡 is a vector that contains all network parameters that affect the 𝑡𝑡ℎ output, 𝒐𝑡 =

[𝑎𝑖, 𝑏𝑖, 𝑤𝑖,𝑗 , 𝑞𝑖,𝑗, 𝑠𝑖,𝑗] , the output error of the network can be approximated as 

∆𝑒𝑡(𝑘) = 𝑒𝑡(𝑘 + 1) − 𝑒𝑡(𝑘) ≅
𝜕𝑒𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
∆𝒐𝑡(𝑘)  (4.12)  

Using (6), (7) and (24), the change in the Lyapunov function can be rewritten as 
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∆𝑉(𝑘) =∑[
𝜕𝑒𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
]

𝑇

𝛾

𝐽

𝑡=1

𝑒𝑡(𝑘)
𝜕�̂�𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
[𝑒𝑡(𝑘) +

1

2

𝜕𝑒𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
𝛾𝑒𝑡(𝑛)

𝜕�̂�𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
] (4.13)  

𝑒𝑡(𝑘) = 𝑦𝑡(𝑘) − �̂�𝑡(𝑘) results in  
𝜕𝑒𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
= − 

𝜕�̂�𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
 , therefore  ∆𝑉(𝑘) can be expressed as 

∆𝑉(𝑘) =∑𝑒𝑡(𝑘)
2𝛾 [[

𝜕𝑒𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
]

𝑇
𝜕�̂�𝑡(𝑘)

𝜕𝒐𝑡(𝑘)

𝐽

𝑡=1

+
1

2
[
𝜕𝑒𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
]

𝑇
𝜕�̂�𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
𝛾 [
𝜕𝑒𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
]

𝑇
𝜕�̂�𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
] 

(4.14)  

By combining similar terms and the fact that 
𝜕𝑒𝑡(𝑘)

𝜕𝒐𝑡𝑖(𝑘)
= − 

𝜕�̂�𝑡(𝑘)

𝜕𝒐𝑡𝑖(𝑘)
  ,∆𝑉(𝑛) can be simplified to 

∆𝑉(𝑘) = −∑𝑒𝑡(𝑘)
2𝛾 ‖

𝜕�̂�𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
‖
2

2

[1 −
1

2
𝛾 ‖
𝜕�̂�𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
‖
2

2

]

𝐽

𝑡=1

 (4.15)  

For ∆𝑉(𝑛) to be negative definite 

[1 −
1

2
𝛾 ‖
𝜕�̂�𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
‖
2

2

] < 0 (4.16)  

Suppose that 𝜇 = max
𝑡
‖
𝜕�̂�𝑡(𝑘)

𝜕𝒐𝑡(𝑘)
‖
2

2

  , 𝑡 = 1,2, … , 𝐽,  by choosing  𝛾 < 2/𝜇 , the wavelet network will 

be stable. 

4.3 Model Predictive Controller 

To design a model predictive controller, an accurate model of the system is needed. We assume 

that the outputs of the system can be measured in each iteration to update the feedforward 

component and WNN weights. The updated WNN is used to predict the future outputs of the 

system and the MPC uses the predicted outputs to calculate future inputs by minimizing the 

controller cost function. The controller cost function is given by 

𝐽𝑐(𝑘) =  
1

2
∑∑𝜉𝑒𝑦𝑗,𝑐(𝑘 + 𝑖)

2

𝐽

𝑗=1

+
1

2

𝑁𝑝

𝑖=1

∑∑𝜌∆𝑢𝑗(𝑘 + 𝑖 − 1)
2

𝑁𝑢

𝑖=1

𝑛𝑢

𝑗=1

 (4.17)  

where 𝒆𝑦𝑗,𝑐 is the prediction error defined as the error between predicted outputs,  �̂�𝑗(𝑛 + 1), 

and desired outputs 𝒚𝑗𝑑(𝑛 + 1). 
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∆𝑢𝑗(𝑛), 𝑗 = 1,… , 𝑛𝑢 is the increment in the 𝑗th input. 𝜉and 𝜌 are penalty factors on the 𝑗th 

tracking error and the 𝑖th input change, respectively. Both factors are assumed to be in the range 

(0,1]. 𝐽 is the number of outputs and 𝑛𝑢 is the  number of inputs. Small values of 𝜌 lead to smaller 

and smoother control action while large values lead to faster tracking but may cause controller 

instability. Small values of 𝜉 lead to smaller tracking error and larger control action while larger 

values of 𝜉 increase the tracking error while reducing the magnitude of the control input. 𝑁𝑝 is the 

prediction horizon and 𝑁𝑢 is the control horizon. Large values of the prediction horizon lead to 

smoother control action but increase the tracking error while smaller values lead to better tracking 

and larger control input.  

The neural network input, 𝒖𝑁(𝑘), consist previous inputs and output measurements. Hence, it 

can be partitioned as  

𝒖𝑁(𝑘) = [𝒖𝑝
𝑇(𝑘), 𝒚𝑇(𝑘 − 1)]

𝑇
 (4.18)  

By defining the controller error as 𝒆𝑐(𝑘) = �̂�(𝑘) − 𝒚(𝑘) and  

𝒖(𝑘) = [𝒖𝑝
𝑇(𝑘), 𝒖𝑝

𝑇(𝑘 − 1)]
𝑇
 (4.19)  

𝑯 = [𝑰𝑛𝑢×𝑛𝑢 −𝑰𝑛𝑢×𝑛𝑢] 
(4.20)  

where 𝐼𝑛𝑢×𝑛𝑢 is 𝑛𝑢 × 𝑛𝑢 identity matrix, the controller cost function can be rewritten as 

𝐽𝑐(𝑘) =  
1

2
∑𝜉𝒆𝑐

𝑇(𝑘 + 𝑗)𝒆𝑐(𝑘 + 𝑗) +
1

2
∑𝜌(𝑯𝒖(𝑘 + 𝑖 − 1))

𝑇
(𝑯𝒖(𝑘 + 𝑖 − 1))

𝑁𝑢

𝑖=1

𝑁𝑝

𝑗=1

 (4.21)  

To find the optimal value of increment in control input, we need to optimize 𝐽𝑐(𝑘) with respect 

to 𝒖𝑝(𝑘) 

𝜕𝐽𝑐(𝑘)

𝜕𝒖𝑝(𝑘)
=  
1

2
𝜉∑[

𝜕𝒆𝑐(𝑘 + 𝑗)

𝜕𝒖𝒑(𝑘)
]

𝑇

 𝒆𝑐(𝑘 + 𝑗)

𝑁𝑝

𝑗=1

+
1

2
∑𝜌 [

𝜕𝒖(𝑘 + 𝑖 − 1)

𝜕𝒖𝑝(𝑘)
]

𝑇

× 𝑯𝑇𝑯𝒖(𝑘 + 𝑖 − 1)

𝑁𝑢

𝑖=1

 

(4.22)  

Therefore 
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𝜕𝐽𝑐(𝑘)/𝜕𝒖𝑝(𝑘) =  𝜉∑[
𝜕𝒆𝑐(𝑘 + 𝑗)

𝜕𝒖𝒑(𝑘)
]

𝑇

 𝒆𝑐(𝑘 + 𝑗) − 𝑁𝑢𝜌∆𝒖𝑝(𝑘)

𝑁𝑝

𝑗=1

 (4.23)  

using the update equation, ∆𝒖𝑝(𝑘) = −𝜂𝜕𝐽𝑐(𝑘)/𝜕𝒖𝑝(𝑘), and  𝒆𝑐(𝑘) = �̂�(𝑘) − 𝒚(𝑘) we will 

have  

∆𝒖𝑝(𝑘) = −𝜂𝜉(1 − 𝑁𝑢𝜂𝜌)
−𝟏∑[

𝜕�̂�(𝑘 + 𝑗)

𝜕𝒖𝒑(𝑘)
]

𝑇

 𝒆𝑐(𝑘 + 𝑗)

𝑁𝑝

𝑗=1

 (4.24)  

and the total control input is calculated as 

𝒖𝑝(𝑘 + 1) = 𝒖𝑝(𝑘) + ∆𝒖𝑝(𝑘) (4.25)  

The standard solution of this optimization problem calculates ∆𝒖𝑝(𝑘 + 𝑖), 𝑖 = 0,… ,𝑁𝑢 − 1 

then applies ∆𝒖𝑝(𝑘) to system and discards the other calculated values. Our formulation only 

calculates ∆𝒖𝑝(𝑘), which makes the algorithm computationally efficient. 
𝜕�̂�(𝑘+𝑗)

𝜕𝒖𝒑(𝑘)
 can be calculated 

using the chain rule 

𝜕�̂�(𝑘 + 𝑗)

𝜕𝒖𝑝(𝑘)
=
𝜕�̂�(𝑘 + 1)

𝜕𝒖𝑁(𝑘)

𝜕�̂�(𝑘 + 2)

𝜕�̂�(𝑘 + 1)
× …×

𝜕�̂�(𝑘 + 𝑗)

𝜕�̂�(𝑘 + 𝑗 − 1)
 (4.26)  

The derivatives in the chain rule can be calculated as 

𝜕�̂�(𝑘 + 1)

𝜕𝒖𝑝(𝑘)
= [𝑰𝑛𝑝×𝑛𝑝 𝟎𝑛𝑝×𝑛−𝑛𝑝] × [𝑸

𝑇

+𝑾𝑇𝑨−1𝑑𝑖𝑎𝑔 (𝜓′(𝑨−1(𝑾𝒖𝑁(𝑘) − 𝑏))) × 𝑺
𝑇] 

(4.27)  

𝜕�̂�(𝑘 + 𝑗 + 1)

𝜕�̂�(𝑘 + 𝑗)
= [𝟎𝐽×𝑛𝑝 𝑰𝐽×𝐽 𝟎𝐽×𝑛−𝐽−𝑛𝑝]

× [𝑸𝑇+𝑾𝑇𝑨−1𝑑𝑖𝑎𝑔 (𝜓′(𝑨−1(𝑾𝒖𝑁(𝑘 + 𝑗) − 𝒃))) × 𝑺
𝑇] 

(4.28)  

4.3.1 Stability Analysis 

According to proposition 1, the wavelet neural network in convergent, therefore, the 

identification error, which is difference between network output and desired output is bounded. 

We assume that ‖𝒆𝑐(𝑘)‖ < 𝑘𝑒 . Due to convergence of the neural network and bounded derivative 
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of the neural network activation function, 
𝜕�̂�(𝑘+𝑗)

𝜕𝒖𝒑(𝑘)
 is bounded. We assume that ‖

𝜕�̂�(𝑘+𝑗)

𝜕𝒖𝒑(𝑘)
‖ < 𝑘𝑦. 

Using this assumptions and (4.24) 

‖∆𝒖𝑝(𝑘)‖ = ‖𝜂𝜉(1 − 𝑁𝑢𝜂𝜌)
−1∑[

𝜕�̂�(𝑘 + 𝑗)

𝜕𝒖𝑝(𝑘)
]

𝑇

 𝒆𝑐(𝑘 + 𝑗)

𝑁𝑝

𝑗=1

‖

≤ 𝜂𝜉(1 − 𝑁𝑢𝜂𝜌)
−𝟏𝑁𝑝𝑘𝑦𝑘𝑒 

(4.29)  

By defining 𝑷𝑗 =
𝜕�̂�(𝑘+𝑗)

𝜕𝒖𝒑(𝑘)
[
𝜕�̂�(𝑘+1)

𝜕𝒖𝑝(𝑘)
]
𝑇

, 𝑗 = 1, . . , 𝑁𝑝 and  

𝜆𝑚𝑖𝑛 = ( 𝑚𝑖𝑛
𝑗∈{1,..,𝑁𝑝}

𝜆(𝑷𝑗))

2

 (4.30)  

and 

𝜆𝑚𝑎𝑥 = 𝑚𝑎𝑥
𝑗∈{1,…,𝑁𝑝}

𝜆 (
𝜕�̂�(𝑘 + 𝑗)

𝜕𝒖𝒑(𝑘)
) × 𝑚𝑎𝑥 𝜆(𝑷1) (4.31)  

The stability of the model predictive controller is stated as Theorem 1. 

Theorem 1: The wavelet based model predictive controller is stable if 𝜂 <
𝜆min

𝜉𝜆𝑚𝑎𝑥+𝜌𝑁𝑢𝜆𝑚𝑖𝑛
 

Proof: 

consider the discrete Lyapunov function 𝑉(𝑘) =
1

2
𝒆𝑐(𝑘)

𝑇𝑒𝑐(𝑘). 𝑉(𝑘) is a positive define 

function of the states. The change in the Lyapunov function is 

∆𝑉(𝑘) = 𝑉(𝑘 + 1) − 𝑉(𝑘) =
1

2
𝒆𝑐(𝑘 + 1)

𝑇𝒆𝑐(𝑘 + 1) −
1

2
𝒆𝑐(𝑘)

𝑇𝒆𝑐(𝑘)

=
1

2
∆𝒆𝑐(𝑘 + 1)(2𝒆𝑐(𝑘 + 1) + ∆𝒆𝑐(𝑘 + 1)) 

(4.32)  

where ∆𝒆𝑐(𝑘 + 1) = 𝒆𝑐(𝑘 + 1) − 𝒆𝑐(𝑘). Using the approximation  

∆𝒆𝑐(𝑘 + 1) =
𝜕𝒆𝑐(𝑘 + 1)

𝜕𝒖𝑝(𝑘)
∆𝒖𝑝(𝑘) (4.33)  

and the fact that 
𝜕𝒆𝑐(𝑘+1)

𝜕𝒖𝑝(𝑘)
=
𝜕�̂�(𝑘+1)

𝜕𝒖𝑝(𝑘)
, ∆𝑉(𝑘) can be rewritten as  

∆𝑉(𝑘) =
1

2
 [
𝜕�̂�(𝑘 + 1)

𝜕𝒖𝑝(𝑘)
∆𝒖𝑝(𝑘)]

𝑇

(2𝒆𝑐(𝑘 + 1) +
𝜕�̂�(𝑘 + 1)

𝜕𝒖𝑝(𝑘)
∆𝒖𝑝(𝑘)) (4.34)  

Substituting from (4.24) yields 
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∆𝑉(𝑘) =
1

2
 ‖∆𝒆𝑐(𝑘)‖

2

−
𝜂𝜉

(1 − 𝑁𝑢𝜂𝜌)
[
𝜕�̂�(𝑘 + 1)

𝜕𝒖𝑝(𝑘)
∑[

𝜕�̂�(𝑘 + 𝑗)

𝜕𝒖𝒑(𝑘)
]

𝑇

 𝒆𝑐(𝑘 + 𝑗)

𝑁𝑝

𝑗=1

]

𝑇

𝒆𝑐(𝑘 + 1) 

(4.35)  

To have a negative definite ∆𝑉(𝑘) we require 

1

2
 ‖∆𝒆𝑐(𝑘)‖

2 <
𝜂𝜉

(1 − 𝑁𝑢𝜂𝜌)
×∑𝒆𝑐(𝑘 + 𝑗)

𝑇
𝜕�̂�(𝑘 + 𝑗)

𝜕𝒖𝒑(𝑘)
[
𝜕�̂�(𝑘 + 1)

𝜕𝒖𝑝(𝑘)
]

𝑇
𝑁𝑝

𝑗=1

𝒆𝑐(𝑘 + 1) (4.36)  

Using (4.30) 

∑𝒆𝑐(𝑘 + 𝑗)
𝑇
𝜕�̂�(𝑘 + 𝑗)

𝜕𝒖𝒑(𝑘)
[
𝜕�̂�(𝑘 + 1)

𝜕𝒖𝑝(𝑘)
]

𝑇
𝑁𝑝

𝑗=1

𝒆𝑐(𝑘 + 1) ≥ 𝑁𝑝𝜆𝑚𝑖𝑛𝑘𝑒 (4.37)  

And using (4.24) and (4.29) 

‖∆𝒆𝑐(𝑘)‖
2 = (

𝜂𝜉

1 − 𝑁𝑢𝜂𝜌
)
2

×∑𝒆𝑐(𝑘 + 𝑗)
𝑇
𝜕�̂�(𝑘 + 𝑗)

𝜕𝒖𝒑(𝑘)

𝑇

𝑃1
𝑇∑[

𝜕�̂�(𝑘 + 𝑗)

𝜕𝒖𝒑(𝑘)
]

𝑇

× 

𝑁𝑝

𝑗=1

𝑁𝑝

𝑗=1

𝒆𝑐(𝑘 + 𝑗)

= (
𝜂𝜉

1 − 𝑁𝑢𝜂𝜌
)
2

× 𝑘∆ 

(4.38)  

By combining (4.36), (4.37) and (4.38), to have negative definite ∆𝑉(𝑘) we require 

𝜂 <
𝑁𝑝𝑘𝑒𝜆𝑚𝑖𝑛

𝑘∆𝜉 + 𝜌𝑁𝑢𝑁𝑝𝑘𝑒𝜆𝑚𝑖𝑛
 (4.39)  

Using (4.38), the upper bound of 𝑘∆ can be calculated as 

𝑘∆ ≤ 𝑁𝑝𝑘𝑒𝜆𝑚𝑎𝑥 (4.40)  

Therefore, to have negative definite ∆𝑉(𝑘), the upper bound of learning rate is 

𝜂 <
𝜆𝑚𝑖𝑛

𝜉𝜆𝑚𝑎𝑥 + 𝜌𝑁𝑢𝜆𝑚𝑖𝑛
 (4.41)  

 

4.4 Simulation Results 

A simple model of an unmanned autonomous vehicle is presented in Figure 20. The system has 

two control inputs, the speed of autonomous vehicle 𝑣(𝑛) and the steering angle 𝛼(𝑘). The 

dynamics of the autonomous vehicle is completely controllable through the two control inputs. 
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The input-output equation of the vehicle is described by 

𝒙(𝑛 + 1) = [

𝑥(𝑛 + 1)

𝑦(𝑛 + 1)

𝜃(𝑛 + 1)
] = [

𝑥(𝑛) + 𝑇𝑣(𝑛)𝑐𝑜𝑠(𝜃(𝑛)𝑐𝑜𝑠(𝛼(𝑛)))
𝑦(𝑛) + 𝑇𝑣(𝑛)𝑠𝑖𝑛(𝜃(𝑛)𝑐𝑜𝑠(𝛼(𝑛)))
𝜃(𝑛) + 𝑇𝑣(𝑛)𝑠𝑖𝑛(𝛼(𝑛)))/𝐷

] + 𝝎(𝑛) (4.42)  

where 𝑇 is the sampling period, 𝐷 is the vehicle length and 𝝎(𝑛) is white measurement noise. The 

sampling period is chosen as 𝑇 = 5𝑚𝑠 and the vehicle length is assumed to be 𝐷 = 300𝑐𝑚 [61]. 

 

Figure 20. Autonomous vehicle [36] 

To demonstrate the performance of model predictive control using wavelet neural network with 

feedforward component, we apply our networked control methodology to the autonomous vehicle. 

We present two simulations scenarios. In the first scenario, the delay from sensor to model and 

delay form controller to actuator are fixed. This corresponds to the case of a private network for 

the control system. In the second scenario, network delay is random with a triangular probability 

distribution function. In both scenarios, measurement noise is assumed to be Gaussian white noise 

with a variance of 0.1. In both scenarios delayed measurements are discarded. 

In both scenarios, all the network parameters are initialized with random values from a normal 

distribution with variance 0.5 and the WNN is not pretuned. The input to the wavelet neural 

network is 𝒖𝑁(𝑘) = [𝑣(𝑘), 𝛼(𝑘), 𝑥(𝑘), 𝑦(𝑘), 𝜃(𝑘)]
𝑇 and the target output of the wavelet neural 

network is [𝑥(𝑘 + 1), 𝑦(𝑘 + 1), 𝜃(𝑘 + 1)]𝑇. The optimum number of hidden layer nodes was 

found to be 𝑚 = 5. The learning rate of the network parameters is assumed to be 𝛾 = 0.1. In the 

controller cost function, the weight of the control inputs is 𝜌1 = 𝜌2 = 0.1 and the weight of the 

prediction errors is 𝜉𝑗 = 0.01, 𝑗 ∈ {1,… , 𝐽}. A tradeoff between control input magnitude, tracking 
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performance and computational burden is needed to choose appropriate values for 𝑁𝑝 and 𝑁𝑢. In 

this simulations, 𝑁𝑝 = 𝑁𝑢 = 15 was found to yield satisfactory performance. The autonomous 

vehicle is assumed to have a length 𝐷 = 300𝑐𝑚 and the sampling period is chosen as 𝑇𝑠 = 5𝑚𝑠. 

4.4.1 Fixed Network Delay 

In the first scenario, both sensor to controller and controller to actuator network delays are 

assumed to be 0.1𝑠. This is a large delay for a sampling period of 𝑇𝑠 = 5𝑚𝑠 where the MPC 

receives the measurement and the actuator receives the control action after a delay of 20 sampling 

periods. To mitigate the effect of this large network delay, the controller predicts 55 samples and 

uses the last 𝑁𝑝 = 15 samples to calculate the control action. This provides good compensation 

for the network delays, assuming that the prediction accuracy is satisfactory and allows the 

autonomous vehicle to follow the desired trajectory.  

 

Figure 21 . Tracking of a curved line 
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Figure 22. Vehicle Velocity Calculated by Model Predictive controller 

Figure 21. shows a desired curved path together with the vehicle path as it tracks it. Figure 22 

and Figure 23 show the control inputs for the vehicle. The vehicle must increase and decrease its 

speed at the appropriate time to be able to track the desired path. Figure 22 shows that using 

extended prediction and control horizons, controller is able to increase and decrease the velocity 

at the right time to minimize the tracking error. Figure 24 shows the tracking error of the curved 

path. At time 𝑡 = 0, because there is no pretuning on the network parameters, the tracking error is 

large, but as time progresses the controller identifies the model of the system and reduces the 

tracking error. The tracking error after 70 seconds is about 20𝑐𝑚 in the 𝑥 and 𝑦 directions, which 

is small in comparison to vehicle length of 𝐷 = 300𝑐𝑚. The tracking error decreases slowly due 

to large network delay and the online identification process but it asymptotically approaches zero 

after the shown simulation period.  
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Figure 23 . Steering angle Calculated by Model Predictive controller 

 

Figure 24 . Tracking error of curved path 
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4.4.2 Random Network Delay 

In the second scenario, network delay is random with triangular probability density function. 

Thus, only the upper and lower bound of the network delay are known. The packet loss occurs in 

the network. Packet loss and network delay can be combined and considered as a single delay both 

for sensor to MPC or for controller to actuator. Therefore, network parameters are updated every 

𝜏 seconds with 𝜏 having a triangular probability density function. The sum of network delay and 

packet loss follows a triangular probability density function with lower limit of 𝑎 = 0.005, upper 

limit 𝑏 = 0.1, and mode 𝑐 = 0.05. For a sampling period of 𝑇𝑠 = 5𝑚𝑠, the minimum delay both 

from sensor to MPC and from MPC to actuator is at least one sampling period. To compensate for 

the network delay and packet loss in the network, the controller predicts 35 samples beyond the 

current time, which is equal to twice the mean network delay. This improves the tracking 

performance of the controller.  

 

Figure 25. Tracking of a curved line 
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Figure 26. Vehicle velocity 

 

Figure 27. Steering angle 
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Figure 28. Tracking error for random delay scenario 

Figure 25 shows the tracking result for random network delay. The vehicle is not on the desired 

path at the beginning of the simulation but the controller can successfully guide the vehicle toward 

desired path and track it. Since the vehicle is not on the desired track and the WNN was not 

pretuned, there is a big tracking error at 𝑡 = 0. However, the network quickly learns the behavior 

of vehicle and the controller reduces the error. Figure 26 and Figure 27 show the control input 

calculated by the MPC. As in the first scenario, the controller produces smooth control action to 

track the desired path. The vehicle velocity is dependent on the desired path which may require it 

to speed up in some parts and slow down in other parts as shown in Figure 26 Figure 27 shows the 

smooth steering angle calculated by the controller. Figure 28 shows the tracking error for random 

network delay scenario. The final tracking error in the 𝑥 direction is about 𝑒𝑥 = 16𝑐𝑚 and final 

tracking error in 𝑦 direction is 𝑒𝑦 = 18𝑐𝑚. Considering the vehicle length of 𝐷 = 300𝑐𝑚 and 

large network delay and packet loss, the error is acceptable.  

Table 6. shows the mean square identification error of 𝑥,𝑦 and 𝜃. The very small mean square 

identification error shows that the wavelet neural network with feedforward component can 

efficiently identify the model of autonomous vehicle. In the random network delay scenario, packet 
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loss and the initial position error of the vehicle increase the mean square identification error. 

Nevertheless, the error is still very small and the network effectively identifies the model of the 

system.  

Table 6. Mean square identification error 

 𝑥 𝑦 𝜃 

Fixed 

delay 
0.0363 0.0281 0.0152 

Random 

delay 
0.0411 0.0332 0.0211 

 

4.5 Conclusion 

In this study we used model predictive controller along with wavelet neural network with 

feedforward component to online identification and control of nonlinear system. The feedforward 

component reduces the number of hidden layer nodes and accelerates the learning and therefore, 

makes the model more suitable for online identification and control applications. Model predictive 

controller uses the wavelet neural network with feedforward component to predict the future 

outputs of the plant over extended prediction horizon. By optimization of controller cost function 

over extended prediction horizon, controller finds the future control inputs. Simulation results 

show that this methodology can compensate the effect of fixed and random network delay and 

packet loss in the network and provide a satisfactory tracking performance. The Lyapunov theory 

is used to prove the stability of the model predictive controller. Future work will be application of 

the methodology to unmanned aerial vehicle. 
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Chapter 5. Training Recurrent Neural Networks as a Constraint 

Satisfaction Problem 

5.1 Introduction 

After Minsky and Papert showed that two-layer perceptron cannot approximate functions 

generally [138], it took nearly a decade for researchers to show that multilayer feedforward neural 

networks are universal approximators [2]. Since then, neural networks have been successfully used 

in various science and engineering applications ,[138]. However, training and learning the internal 

structure of neural networks has remained a challenging problem for researchers.  

Training neural networks requires solving a nonlinear non-convex optimization problem and 

researchers have proposed different approaches to solving it [6]. Classical optimization methods 

were the first methods used for training neural networks. The most widely used training algorithm 

is error backpropagation which minimizes an error function using the steepest decent algorithm 

[139]. Although error backpropagation is easy to implement, it has all the disadvantages of 

Newton-based optimization algorithms including slow convergence rate and trapping in local 

minima. Local minima can decrease the generalization ability of the neural network [6],[139].  

To cope with these deficiencies, researches proposed other training methods such as supervised 

learning and global optimization approaches [8],[9],[10]. Supervised learning approaches learn the 

internal structure of the neural network while learning internal weights of the neural network. 

Learning the internal structure of the neural network makes these approaches more efficient and 

less reliant on parameters selected by the user [13][14].  

Researchers proposed different supervised learning methods such as the tiling algorithm, 

cascade-correlation algorithm, stepnet, and the scaled conjugate algorithm, among others [14]. 

While in incremental supervised learning approaches network size grows in the training phase 

which may result in over-fitting, some supervised learning approaches prune the over-fitted 

network during training [142],[143],[144],[145]. However, few of these methods have been 

successfully applied to large scale practical problems [14]. This is in contrast to conjugate gradient 

methods which are attractive for large scale problems due to their fast convergence rate [16]. 

Quasi-Newton methods are a sophisticated alternative to conjugate gradient methods for 

supervised learning, although their reliance on exact approximation of the Hessian matrix makes 

them inefficient in some applications [17].  
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Global optimization methods are another alternative to cope with deficiencies of Newton-based 

methods and learn the internal structure of neural networks. Genetic algorithms and simulated 

annealing have been widely used to train neural networks and optimize network structure 

[146],[147]. These approaches assume that the quality of the network is related to network 

topology and parameters. Alopex is another global optimization approach which trains the network 

using the correlation between changes in weights and changes in the error function. Due to local 

computations of the Alopex, it is more suitable for parallel computation [148]. 

Taboo search is another stochastic approach which has been frequently used to train neural 

networks. It can find the optimal or near optimal solution of the optimization problem [149]. 

Implementation of taboo search is easier than most global optimization methods and the method 

is generally applicable to a wide variety of optimization problems [150]. 

Researchers have used a combination of global optimization methods for training neural 

networks. GA-SA is a combination of a genetic algorithm and simulated annealing. GA-SA uses 

a genetic algorithm to make simulated annealing faster to reduce the training time 

[151],[152],[153]. NOVEL is another hybrid approach which uses a trajectory-based method to 

find feasible regions of the solution space and then locates local the minima in the feasible regions 

by local search [154],[155],[156],[157].  

Backpropagation through time is an adaptation of traditional error backpropagation for 

recurrent neural networks [158],[163],[164][165]. Real time recurrent learning is another approach 

to train recurrent neural networks that is effective for training small networks but suffers from 

huge computational complexity in large applications [166]. Martens and Sutskever used Hessian 

free optimization with a damping scheme to effectively train recurrent neural networks [167]. 

Monner proposed generalized long short-Term Memory (LSTM)- as a training algorithm for 

second order recurrent neural networks [168]. The method is applicable to arbitrary second order 

recurrent networks. Lu et al. used low rank factorizations and parameter sharing schemes to train 

recurrent neural networks and showed that their approach effectively reduces the parameters of 

LSTM [169].  

Although global optimization methods have been applied for training neural networks, there 

are other promising global optimization approaches that have not been used for neural network 

training. Quotient gradient method is a trajectory based method to find feasible solutions of 
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constraint satisfaction problems. QGS searches for the feasible solutions of the CSP along the 

trajectories of a nonlinear dynamical system [30]. 

This study exploits QGS to train artificial neural networks by transforming the training data set 

into a CSP, then transforms the resulting CSP to an unconstrained minimization problem. After 

constructing the unconstrained minimization problem, the nonlinear QGS dynamical system is 

defined. Using the fact that the equilibrium points of the QGS are local minima of the 

unconstrained minimization problem, a neural network can be trained by integrating QGS over 

time until it reaches an equilibrium point. The method is easy to implement because constructing 

the nonlinear dynamical system is similar to deriving the equations of the steepest descent 

algorithm. The algorithm finds multiple local minima of the optimization by forward and backward 

integration of the QGS. This provides an easy and straightforward approach to find multiple local 

minima of the optimization problem. However, like other global optimization methods, finding 

local minima takes more time than Newton-based methods. Numerical examples show that QGS 

outperforms error backpropagation and a genetic algorithm and the resulting network has better 

generalization capability. A preliminary version of the study which compares the method with 

error backpropagation was presented in [159].  

Solving optimization problems with different initial points is one of the approaches to cope with 

local minima in Newton-based methods. However, the selected initial points may be in the stability 

region of the same stable equilibrium point, which makes this approach inefficient. QGS uses 

backward integration to escape from the stability region of a stable equilibrium point, then enters 

the stability region of another equilibrium point with forward integration. This allows QGS to 

explore a bigger region in its search for local minima. The simple implementation, along with the 

global optimization property of QGS justify its use as a new training method for artificial neural 

networks. 

 

5.2 Quotient Gradient System 

CSP is an active field of research in artificial intelligence and operations research. Lee and 

Chiang [30], used the trajectories of a nonlinear dynamical system to find the solutions of the CSP. 

This section reviews their work that forms the basis for our new approach to neural network 

training 

Consider a system of nonlinear equality and inequality constraints 
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𝐶I(𝒚) < 0 

𝐶E(𝒚) = 0, 𝒚 ∈ 𝑅
n−l 

(5.1)  

To guarantee the existence of the solution of this CSP, 𝐶I and 𝐶E are assumed to be smooth. The 

CSP can be transformed into the unconstrained optimization problem 

min
𝑥
𝑓(𝒙) =

1

2
‖𝒉(𝒙)‖2, 𝒙 = (𝒚, 𝒔) ∈ 𝑅n (5.2)  

𝒉(𝒙) = [
𝐶I(𝒚) + �̂�

2

𝐶E(𝒚)
] ∈ 𝑅m, �̂�2 = (𝑠1

2, … , 𝑠𝑙
2)T (5.3)  

where the slack variable �̂� has been introduced to transform the inequality constraints to equality 

constraints. The global minimum of (5.2) is the optimal solution of the original CSP. The QGS is 

a nonlinear dynamical system of equations defined based on the constraint set as 

�̇� = 𝐹(𝒙) = −𝛻𝑓(𝒙) ≔ −𝐷𝑥𝒉(𝒙)
T𝒉(𝒙) (5.4)  

Lee and Chiang showed that stable equilibrium points of the QGS are local minimums of 

unconstrained minimization problem (5.2) which are possible feasible solutions of the original 

CSP. A solution of the QGS starting from initial point 𝒙(0) at initial time 𝑡 = 0 is called a 

trajectory or orbit. An equilibrium manifold is a path connected component of 𝐹−1(0). Assuming 

that 𝜙(. , 𝒙): 𝑅 → 𝑅n is an orbit of the QGS, an equilibrium manifold ∑ of the QGS is stable if 

∀𝜖 > 0 there exist 𝛿(𝜖) > 0 such that 

𝒙 ∈ 𝐵δ(∑) ⟹ 𝜙(𝑡, 𝒙) ∈ 𝐵ϵ(∑), ∀𝑡 ∈ 𝑅 (5.5)  

where 𝐵δ(∑) = {𝒙 ∈ 𝑅
n: ‖𝒙 − 𝒚‖ < 𝛿, ∀𝛿 ∈ 𝑅n }. If 𝛿 can be chosen such that 

𝒙 ∈ 𝐵δ(∑) ⟹ lim
t→∞

𝜙(𝑡, 𝒙) ∈ 𝐵ϵ(∑) (5.6)  

the equilibrium manifold is asymptotically stable. An equilibrium manifold ∑ which is not stable 

is unstable. An equilibrium manifold is pseudo-hyperbolic if ∀𝒙 ∈ ∑, the Jacobian of 𝐹(. ) at 𝒙 

has no eigenvalues with a zero real part on the normal space of ∑ at 𝒙 ∈ 𝑅n and there exist 𝜖 > 0 

such that Φ−∞: 𝐵ϵ(∑) → ∑ is locally homeomorphic to projection from 𝑅n to 𝑅l with 𝑙 the 

dimension of the equilibrium manifold. The stability region of the stable equilibrium manifold is 

an open, connected and invariant set and is defined as 

𝐴(∑s) = {𝒙 ∈ 𝑅
𝑛 ∶  lim

t→∞
𝜙(𝑡, 𝒙) ∈ ∑s} (5.7)  

The boundary of a stable equilibrium manifold ∑s is the stability boundary and is denoted by 

𝜕𝐴(∑s). QGS is assumed to satisfy the following assumptions. 
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Assumptions: let ∑s be stable equilibrium manifold of QGS 

(A1) If an equilibrium manifold ∑ has nonempty intersection with 𝜕𝐴(∑s) then ∑ ⊂  𝜕𝐴(∑s) 

(A2) All the equilibrium manifolds on 𝜕𝐴(∑s) are pseudo-hyperbolic and have the same dimension 

(A3) The stable and unstable manifolds of equilibrium manifolds on 𝜕𝐴(∑s) satisfy the 

transversality condition. 

(A4) The function 𝐻 satisfies one of the following 

 (1) ‖𝒉(𝒙)‖ is a proper map 

 (2) For any 𝛾 > 0 and any closed subset 𝐾 of  

{𝒙 ∈ 𝑅n ∶ ‖𝒉(𝒙)‖ ≤ 𝛾, 𝐷𝒉(𝒙)T𝒉(𝒙) ≠ 0}, inf  {‖𝐷𝒉(𝒙)T𝒉(𝒙)‖: 𝒙 ∈ 𝐾} > 0 

where 𝐷𝒉(𝒙) denotes the gradient of 𝒉(𝒙).  

The transversality condition of assumption A3 is defined as follows. Let 𝑀1 and 𝑀2 be manifolds 

in 𝑅n of codimensions 𝑚1 and 𝑚2. We say that 𝑀1 and 𝑀2 intersect transversally if (i)  for every 

�̅� ∈ 𝑀1 ∩𝑀2 there exist an open neighborhood 𝑈�̅� of �̅�, and (ii) a system of functions (ℎ1, … , ℎm1) 

for 𝑀1 ∩ 𝑈x̅ and (𝜌1, … , 𝜌m2) for  𝑀2 ∩ 𝑈x̅ such that the set {𝐷ℎ𝑖(𝒙), 𝐷𝜌𝑗(𝒙), 𝑖 = 1,… ,𝑚1, 𝑗 =

1, … ,𝑚2} is linearly independent for all 𝒙 ∈ 𝑀1 ∩𝑀2 ∩ 𝑈x̅ (Jongen et al. 2001). The following 

theorem assures the stability of QGS and redefines the stability boundary under assumptions A1-

A4. 

Theorem 1 [30]: Let ∑s be a stable equilibrium manifold of QGS and suppose that assumptions 

A1-A4 hold. Then we have the following: 

1) The QGS is completely stable, i.e., every trajectory of QGS converges to an equilibrium 

manifold 

2) Let {∑i: 𝑖 = 1,2, . . } be the set of all equilibrium manifolds on 𝜕𝐴(∑s), then 𝜕𝐴(∑s) =

⋃ 𝑊s(∑i)𝑖   

where 𝑊s(∑) is a stable manifold of pseudo-hyperbolic equilibrium manifold and is 

defined as 

𝑊s(∑) = {𝒙 ∈ 𝑅n ∶  lim
t→∞

𝜙(𝑡, 𝒙) ∈ ∑} (5.8)  

Theorem 2 (Lee & Chiang 2001): Consider the CSP and its associated quotient gradient system. If 

assumptions (A1-A4) hold, then we have the following 

I. Each path component of the solution set of the CSP is a stable equilibrium manifold of the QGS 
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II. If ∑ is a stable equilibrium manifold of the QGS, then ∑ consists of non-isolated local minima 

of the following minimization problem 

min
𝑥∈𝑅n

𝑉(𝒙) (5.9)  

where 𝑉: 𝑅n → 𝑅 is defined as 𝑉(𝒙) =
1

2
‖𝒉(𝒙)‖2 

III. If 𝑛 > 2𝑚 − 1 then ∑ is a component of the solution set of the CSP if and only if ∑ is 
an 𝑛 −𝑚 dimensional stable equilibrium manifold of the QGS 

A stable equilibrium manifold of the QGS may not be in the feasible region of the CSP. In such 

cases, the QGS must escape from this equilibrium manifold and enter the stability region of another 

stable equilibrium manifold. If the new equilibrium manifold is not in the feasible region, this 

process is repeated until the QGS enters the stability region of a feasible equilibrium manifold or 

until it satisfies a stopping criterion. Once a feasible manifold is reached, QGS is integrated over 

time until an equilibrium point is reached. To escape from the basin of attraction of a stable 

equilibrium point, QGS is integrated backward in time until an unstable point is reached.  Thus, 

solving the optimization problem becomes a series of forward and backward integrations of the 

QGS until the stopping criteria is satisfied [248].  

5.3 Neural Networks 

Function approximation is required in many fields of science and engineering. Neural networks 

are general function approximators and have been successfully applied to different function 

approximation applications [6]. Based on the nature of the application, researchers have developed 

different versions of neural networks such as feedforward networks, recurrent neural networks, 

liquid state networks and wavelet networks among the others [161]. 

In this study, we consider a three-layer fully recurrent neural network with smooth activation 

functions. Figure 29 illustrates the internal structure of the neural network.  
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Figure 29. Artificial neural network structure 

The network has input 𝒖(𝑘) = [𝑢1(𝑘) … 𝑢𝑛(𝑘)]
T, internal state  𝒛(𝑘) =

[𝑧1(𝑘) … 𝑧𝑚(𝑘)]
T and output �̂�(𝑘) = [�̂�1(𝑘) … �̂�𝑡(𝑘)]

T. The input-output equation of the 

network is described as 

𝒛(𝑘) = 𝝍(𝑊𝒖(𝑘) + 𝑆𝒛(𝑘 − 1)) 

�̂�(𝑘) = 𝑉 𝒛(𝑘) 
(5.10)  

𝑊, 𝑆 and 𝑉 are network weights matrices whose size is dependent on the number of network 

inputs, outputs and hidden layer nodes. For a network with 𝑛 inputs, 𝑡 outputs and 𝑚 hidden layer 

nodes, 𝑊 ∈ 𝑅𝑚×𝑛, 𝑆 ∈ 𝑅𝑚×𝑚  and 𝑉 ∈ 𝑅𝑡×𝑚 . The cost function for training neural network is 

the traditional sum of squared errors (SSE) 

𝑆𝑆𝐸 =∑𝒆(𝑘)T𝒆(𝑘) = ∑(�̂�(𝑘) − 𝒚(𝑘))
T
(�̂�(𝑘) − 𝒚(𝑘))

𝑁

𝑘=1

𝑁

𝑘=1

 (5.11)  

where �̂�(𝑘)is the network output, 𝒚(𝑘) is the measured output, and 𝑁 is the total number of training 

samples. 
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5.4 Applying QGS to Neural Network Training 

Solving the CSP is equivalent to an unconstrained minimization problem (5.2). QGS is a 

trajectory-based method to find the local minima of (5.2) which are the possible feasible solutions 

of the CSP. To train neural networks using QGS, we consider the training set as equality constraints 

of the CSP and then transform the CSP into unconstrained minimization problem as (5.2) and then 

we use the second part of Li and Chiang’s work which is equilibrium points of QGS are local 

minimums of unconstrained minimization problem. If 𝑁 measurements are available, the CSP can 

be written as 

𝒉(𝒙) = [ℎi(𝒙)], 𝑖 = 1,2, … ,𝑁 

ℎi(𝒙) = 𝑉𝝍(𝑊𝒖(𝑖) + 𝑆𝒛(𝑖 − 1)) − 𝑦(𝑖) 
(5.12)  

The network state vector 𝒙 includes all the network parameters, i. e, all entries of 𝑉,𝑊 and 𝑆. 

More specifically, if we partition 𝑉,𝑊 and 𝑆 as 

𝑉 = [
𝒗1
𝐓

⋮
𝒗m
𝐓
]

𝑡×𝑚

𝑊 = [
𝒘1
𝐓

⋮
𝒘m
𝐓
]

m×n

𝑆 = [
𝒔1
𝐓

⋮
𝒔m
𝐓
]

m×m

 (5.13)  

then 𝒙 is defined as 

𝒙 = [𝑥𝑖]np×1 = [𝒗1, . . , 𝒗m, 𝒘1, … ,𝒘m, 𝒔1, … , 𝒔m]
𝐓  

𝑛𝑝 = 𝑚
2 +𝑚 × (𝑛 + 𝑡) (5.14)  

Since the training set does not contain any inequality constraints, slack variables are not needed. 

Using the training set, the QGS for training the neural network can be defined as 

�̇� = −𝒇(𝑥) = −𝐷x𝒉(𝒙)
T𝒉(𝒙) (5.15)  

Where  

𝐷x𝒉(𝑥) =

[
 
 
 
 
𝜕ℎ1(𝒙)

𝜕𝒙
⋮

𝜕ℎN(𝒙)

𝜕𝒙 ]
 
 
 
 

N×np

 (5.16)  

To train neural network using QGS, we use the fact that the equilibrium points of QGS are local 

minima of the unconstrained minimization problem. Therefore the algorithm needs to find an 

equilibrium point of QGS and then escape from that equilibrium point and move toward another 

equilibrium point of QGS. The first step is to integrate the QGS from a starting point, which need 

not be feasible, to find an equilibrium point. Next, we escape from the stability region of the stable 
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equilibrium point to an unstable point with backward integration of QGS in time. The eigenvalues 

of the Jacobian matrix can be used as a measure of stability and instability. The algorithm continues 

until it cannot find any new equilibrium point or until it satisfies the stopping criterion.   

Because neural network training has equilibrium points which can be considered as zero-

dimensional equilibrium manifolds, assumptions A1, A2 and A3 hold. When the activation 

function of the neural network is a one-one invertible function, ‖𝒉(𝒙)‖ is a proper map. 

Assumption 4 also holds because the QGS is asymptotically stable and ‖𝒉(𝒙)‖ is proper. 

5.5 Stability Analysis 

Any training algorithm must be stable, even in presence of measurement error and uncertainties. 

We use Lyapunov stability theory to prove the asymptotic stability of equilibrium points and their 

asymptotic stability in the presence of measurement errors.  

Theorem 3: The equilibrium points of the quotient gradient system are asymptotically stable 

Proof : Consider the Lyapunov function 

𝑉(𝒙) = 𝒉T(𝒙)𝒉(𝒙) (5.17)  

𝑉(𝒙) is a locally positive definite function of the state that is equal to zero at global optima of the 

optimization problem. Thus, 𝑉(𝒙) is a locally positive definite function in the vicinity of each 

equilibrium point. The derivative of the Lyapunov function along the system trajectories is 

�̇� = (
𝜕𝑉

𝜕𝒙
)
T

�̇� = −𝒉T𝐷𝒉𝐷𝒉T𝒉 = −‖𝐷𝒉T𝒉‖2 (5.18)  

The derivative of the Lyapunov function is negative definite in the vicinity of each equilibrium 

point of the QGS, i.e. in the vicinity of each local minimum of the optimization problem. The 

Jacobian 𝐷𝒉 is positive definite in the vicinity of the equilibrium points because they are minima 

of the cost function.  Therefore, all the equilibrium points of the QGS are locally asymptotically 

stable.                    ∎ 

Under certain conditions, the equilibrium points are exponentially stable as shown in the next 

theorem. 

Theorem 4: The equilibrium points of the QGS are exponentially stable. 

Proof: Consider the Lyapunov function of (5.17). When there is no repeated measurement, 𝐷𝒉 is 

full rank and therefore 𝐷𝒉𝐷𝒉Tis a positive definite matrix. Assume that 𝜎min is the smallest 
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singular value of the positive definite matrix 𝐷𝒉𝐷𝒉T. The derivative of the Lyapunov function 

can be written as 

�̇� = (
𝜕𝑉

𝜕𝒙
)
T

�̇� = −𝒉T(𝒙)𝐷𝒉𝐷𝒉T𝒉(𝒙) ≤ −𝜎min𝒉
T(𝒙)𝒉(𝒙) = −𝜎min‖𝒉(𝒙)‖

2 
(5.19)  

where 𝜎min is the smallest eigenvalue of Therefore �̇� ≤ −𝜎min𝑉 and the equilibrium points of the 

QGS are exponentially stable. With the bounded input and output assumption, (29) yields that 

‖𝐷𝒉‖2 is bounded. Therefore the spectral radius and consequently smallest singular value of 𝐷𝒉 

are finite. 

Measurement errors and noise can make the measurements inaccurate and destabilize the 

system. Fortunately, QGS can tolerate relatively large measurement error. In neural networks, 

measurement errors lead to errors in neural network inputs. Consider the QGS as a function of 𝒙 

and 𝒖, i.e, �̇� = −𝑓(𝒙, 𝒖) and let the measurement errors change 𝒖 to 𝒖 + ∆𝒖. Assuming that ∆𝒖 

is small 

�̇� = −𝒇(𝒙, 𝒖 + ∆𝒖) = −𝒇(𝒙, 𝒖) −
𝜕𝒇(𝒙, 𝒖)

𝜕𝒖
∆𝒖 + 𝐻𝑂𝑇 (5.20)  

where 𝐻𝑂𝑇 denotes higher order terms. For sufficiently small ∆𝒖, we can neglect higher order 

terms and write 

�̇� = −𝒇(𝒙, 𝒖 + ∆𝒖) ≅ −𝒇(𝒙, 𝒖) −
𝜕𝒇(𝒙, 𝒖)

𝜕𝒖
∆𝒖 

= −𝒇(𝒙, 𝒖) + 𝒈(𝒙, 𝒖, ∆𝒖) 

(5.21)  

Assuming that the activation functions of the neural network are continuously differentiable, 𝒈 

will be continuously differentiable and hence 𝒈 is Lipschitz for all 𝑡 > 0 and ∈ 𝑇 ⊂ 𝑅𝑛, with 𝑇 

the domain that contains the equilibrium point. Assume that the perturbation term satisfies the 

linear growth bound 

‖𝒈(𝒙, 𝒖, ∆𝒖)‖ ≤ 𝛾‖𝒙‖, ∀𝑡 ≥ 0, ∀𝒙 ∈ 𝑇 (5.22)  

To find a bound on the perturbation that guarantees stability, we need the following property of 

matrix norms 

Fact: For every 𝐴: 𝐶𝑛 → 𝐶𝑚 
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‖𝐴‖2 ≤ ‖𝐴‖F ≤ √𝑟‖𝐴‖2 (5.23)  

where ‖𝐴‖F is the Frobenius norm of 𝐴 and 𝑟 is its rank. 

Theorem 5: Assume that the input and output of the network are bounded, ‖𝒚‖ ≤ 𝐾y and ‖𝒖‖ ≤

𝐾u, and the corresponding neural network has 𝑛 inputs, 𝑚 hidden layer nodes and we have 𝑁 

measurements. The equilibrium of the perturbed QGS is asymptotically stable if 

𝛾 < 𝑁√𝑁𝑚 [(√𝑚 + √𝐾𝑦(√𝑛𝐾𝑢 +𝑚))

2

] (5.24)  

Proof: Consider the Lyapunov function 𝑉(𝒙) = 𝒉T(𝒙)𝒉(𝒙). The derivative of 𝑉(𝒙) including 

the perturbation is 

�̇� = (−𝒉T𝐷𝒉 + 𝒈T)𝐷𝒉T𝒉 = −‖𝐷𝒉T𝒉‖2 + 𝒈T𝐷𝒉T𝒉 (5.25)  

for a negative definite �̇�, we need 

𝒈T𝐷𝒉T𝒉 < ‖𝐷𝒉T𝒉‖2 (5.26)  

This condition is satisfied if  

‖𝒈‖ < ‖𝐷𝒉T𝒉‖ ≤ ‖𝒉‖ × ‖𝐷𝒉‖ (5.27)  

Using the nonlinearity of (5.12) with a bounded output, 𝒉 satisfies 

‖𝒉‖ ≤ 𝑁(𝑚‖𝒙‖ + 𝐾y) (5.28)  

The Jacobian of the hyperbolic function gives 

‖𝐷𝒉‖F ≤ √𝑁𝑚(1 + √𝑛‖𝒖‖‖𝒙‖ + 𝑚‖𝒙‖) (5.29)  

Using proposition 1 gives the 2-norm bound 

‖𝐷𝒉‖2 ≤ √𝑁𝑚(1 + √𝑛‖𝒖‖‖𝒙‖ + 𝑚‖𝒙‖) (5.30)  

By combining (5.29), (5.27), (5.26) and (5.22) 

𝛾‖𝒙‖ < 𝑁√𝑁𝑚(1 + √𝑛‖𝒖‖‖𝒙‖ + 𝑚‖𝒙‖)(𝑚‖𝒙‖ + 𝐾y) (5.31)  

Using the input bound ‖𝒖‖ ≤ 𝐾𝑢 gives the condition for negative definite �̇� 
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𝛾 < 𝑁√𝑁𝑚 [(√𝑚 + √𝐾y(𝐾u√𝑛 +𝑚))

2

] (5.32)  

5.6 Simulation Results 

To illustrate the effectiveness of QGS for training neural networks, we use a QGS trained 

network for nonlinear system identification and compare the results with a genetic algorithm we 

use the results of [159]. The genetic algorithm optimization uses the MATLAB optimization 

toolbox with a population size of 10000, Roulette selection, adaptive feasible mutation, scattered 

crossover, and top fitness scaling to get the best results. 

5.6.1 Example 1: Nonlinear System 

Our first benchmark system is the second order nonlinear system chosen from [162]. The input-

output equation of the system is described as 

𝑦(𝑘 + 1) =
𝑦(𝑘)𝑦(𝑘 − 1)(𝑦(𝑘) + 0.25)

1 + 𝑦(𝑘)2 + 𝑦(𝑘 − 1)^2
+ 𝑞(𝑘) (5.33)  

𝑞(𝑘) is the system input and 𝑦(𝑘) is the system output. 𝑞(𝑘) 

is zero-mean normally distributed with standard deviation 𝜎 = 0.5. The input to the neural 

network is 𝒖(𝑘) = [𝑞, 𝑞(𝑘 − 1), 𝑦(𝑘),… , 𝑦(𝑘 − 1)]𝑇 and 𝑦(𝑘 + 1) is the target output for 

training. All the initial network parameter values are zero-mean normally distributed with standard 

deviation 𝜎 = 0.5. The optimal number of hidden layer nodes is found to be 𝑚 = 8 and the total 

number of training sets is 𝑁 = 200. The activation function of the neural network is the tangent 

hyperbolic function 

𝜓(𝑥) = tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (5.34)  

After initializing with random initial values, QGS finds 47 local minima of the optimization 

problem. The local minimum with the best generalization capability is the global minimum or 

close to the optimal solution of the optimization problem. 

Table 7 summarizes the mean squared error (MSE) for test data for QGS network, genetic 

algorithm network, and error backpropagation network. The MSE of the QGS network is less than 

the MSE for the genetic algorithm network and both networks outperform the backpropagation 

trained network. Other simulation results that are not included here for brevity, including 
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generalization errors, demonstrate that back propagation gives much worse results than the two 

other networks.  Hence, we do not include back propagation in the remainder of this example. 

Table 7. Mean Squared Error 

Training method QGS GA EBP 

MSE 0.00797 0.0082 0.0187 

Figure 30 shows the outputs of the system, the QGS trained network, and the genetic algorithm 

trained network and Figure 31 shows the same outputs for test data. While the training results is 

the same for both networks, Figure 31 shows that QGS trained network has better generalization 

performance on random input as test data and has smaller generalization error. 

 

Figure 30. Outputs of the system and the trained neural 
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Figure 31. Outputs of the system and the trained neural networks 

Figure 32 shows the generalization error for the QGS trained network and genetic algorithm 

trained network. While both networks have similar performance with the training data as input, 

Figure 32 illustrates that the QGS trained network has better generalization capability in terms of 

maximum generalization error percentage and mean squared error for test data. The average 

absolute generalization error of QGS trained network is 1.05% while average absolute 

generalization error of genetic algorithm trained network is 1.38%. 
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Figure 32. Generalization Error 

5.6.2 Example 2: NARMA System 

Our second benchmark system is a tenth order nonlinear autoregressive moving average 

(NARMA) process [50]. The input-output equation of the system is described as 

𝑦(𝑘 + 1) = 0.3𝑦(𝑘) + .05𝑦(𝑘)∑𝑦(𝑘 − 𝑖)

9

𝑖=1

+ 1.5 × 𝑞(𝑘 − 9)𝑞(𝑘) + 0.1 (5.35)  

𝑞(𝑘) is the system input and 𝑦(𝑘) is the system output. 𝑞(𝑘) is zero-mean normally distributed 

with standard deviation 𝜎 = 0.5. The input to the system is 𝒖(𝑘) = [𝑞(𝑘), … , 𝑞(𝑘 −

9), 𝑦(𝑘),… , 𝑦(𝑘 − 4)]𝑇 and 𝑦(𝑘 + 1) is the target output for training. All the initial network 

parameter values are zero-mean normally distributed with standard deviation 𝜎 = 0.5. The optimal 

number of hidden layer nodes is found to be 𝑚 = 6 and the total number of training sets is 𝑁 =

100. After initializing with random initial values, QGS finds 36 local minima for the optimization 

problem. The local minimum with the best generalization capability is the global minimum or 

close to optimal solution of the optimization problem. 

Table 8 summarizes the MSE for test data for the QGS trained network, the genetic algorithm 

trained network and the error backpropagation trained network. The MSE of QGS is smaller than 
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the MSE for the genetic algorithm trained network. Both networks outperform the error 

backpropagation trained network. As in Example 1, other simulation results are much worse for 

back propagation than for the other two networks and we omit back propagation results for the 

remainder of this example. 

Table 8. Mean square error 

Training 

method 
QGS GA EBP 

MSE 0.0026 0.0038 0.0087 

Figure 33 shows the outputs of the system, the QGS trained network, and the genetic algorithm 

trained network. Figure 34 shows the same outputs for test data. Figure 33 shows that QGS trained 

network has better performance on train data and Figure 34 shows that QGS trained network 

outperforms genetic algorithm trained network on random input as a test data. 

Figure 35 shows the generalization error for the QGS trained network and for the genetic 

algorithm trained network. While both networks have similar performance with the training data 

as input, Figure 34 and Figure 35 show that the QGS trained network has better generalization 

capability. The average absolute generalization error of QGS trained network is 1.45% while 

average absolute generalization error of genetic algorithm trained network is 2.86%. 
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Figure 33. Outputs of the system and the trained neural 

 

Figure 34. Outputs of the system and the trained neural network 
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Figure 35. Generalization Error 

5.7 Conclusion 

In this study, we introduce a new training algorithm for neural network using the QGS. QGS 

uses trajectories of a nonlinear dynamical system to find a local minima of the optimization 

problem. The local minimum with the best generalization capability is the global minimum of the 

optimization problem. Simulation results shows that QGS trained network performs better than 

networks trained using genetic algorithm and error backpropagation. In particular, QGS networks 

have better generalization properties, faster training time in comparison to genetic algorithm and 

are more robust to errors in the inputs.  

In contrast to Newton based methods, QGS does not need multiple initial values to find multiple 

local minima and does not need a huge number of measurements for training. Therefore, QGS is 

particularly suited to applications with a limited number of available input-output measurements.  
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Chapter 6. Training Recurrent Neural Networks via Dynamical 

Trajectory Based Optimization 

6.1 Introduction 

Neural networks are non-parametric models for function approximation. To provide appropriate 

models, neural networks must be trained using a suitable training dataset. Training neural networks 

is by minimization a cost function defined using the output of the network and measurements from 

the modeled system [170]. Classical training approaches use derivatives of the cost function to 

update the weights of the neural network [8]. Unfortunately, classical approaches do not guarantee 

finding the global minimum of the optimization problem and are often trapped in a local minimum. 

Moreover, classical approaches converge slowly and may have poor generalization capability with 

noisy data [171]. 

Researchers have proposed different modifications to the error backpropagation algorithm to 

improve its performance and reliability [172]-[174]. Jaganathan et al. proposed using delta rule 

weight tuning to train artificial neural networks [175]. They used passivity theory to show that 

their weight-tuning algorithm yields a passive neural network. 

Multiplier and constrained learning rate algorithm are two other approaches to avoid instability 

during training neural networks and provide adaptive learning scheme [176],[177]. The algorithms 

are stable and can be applied adaptive control, image restoration, and visual processing. 

The performance of nonlinear system identification with neural networks is dependent on 

network weights and network structure [178]. Hirose et al. proposed a modified backpropagation 

algorithm that learns the number of hidden layer nodes and can escape from local minima, unlike 

Newton-based algorithms [179]. Their simulation results show that their modified error 

backpropagation algorithm converges faster than standard backpropagation.  

Researchers have used model reduction in nonlinear system identification to optimize the 

internal structure of neural networks [178]. Prasad et al. used singular value decomposition to 

remove the redundant nodes of a neural network [180]. Their simulation results show that a pruned 

neural network has equivalent or better generalization capability than over-fitted networks.  Karnin 

used the sensitivity of the error to neural network weights and tracked changes of the network 
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weights during training to efficiently prune an over-fitted network [181]. His approach is relatively 

easy to implement and does not significantly increase computational complexity. 

Evolutionary algorithms such as genetic algorithm are another approach to train neural 

networks. It does not rely on calculating derivatives of the cost function and does not get stuck in 

local minima of the optimization problem [182]. 

Particle swarm optimization (PSO) is another global optimization approach to train artificial 

neural networks that was shown to have superior performance to classical optimization approaches 

[183]. Evolutionary PSO is a derivative of the PSO algorithm that learns the internal structure of 

neural network as well as internal weights [184]. It has superior performance to the original PSO 

algorithm. Simulation results show that IPSONet constructs a compact artificial neural network 

with good generalization capability. Multi-dimensional PSO is another derivative of PSO to obtain 

the optimal structure of the neural network which has fast convergence rate in lower dimensions 

[185], [186]. It was shown to perform better than several other general optimization approaches 

such as basic genetic algorithms and IPSONet [187]. MPANN is a combination of gradient descent 

and a multi-objective evolutionary algorithm for learning the internal structure and internal 

weights of artificial neural networks. It has lower training time than gradient based algorithms. 

PSO-QI combines mechanical quantum concepts with PSO to produce more logical offspring than 

other evolutionary algorithms and has faster convergence time [188]. 

Other algorithms have been proposed to train recurrent artificial neural networks. Bounding 

ellipsoid imposes a bound on the neural network output and the real measurements, and trains the 

network to satisfy the error bound [189]. The algorithm is a stable alternative to traditional methods 

[190]. EBP through time is an improved version of traditional EBP for training recurrent neural 

networks which is faster than evolutionary algorithms such as genetic algorithm but still suffers 

from local optima issue [163],[164][165][191]. Martens and Sutskever used a combination of 

Hessian free optimization together with new damping scheme to train recurrent neural networks 

[167]. Generalized Long-Short Term Memory is an adaptation of Long-Short Term Memory 

(LSTM) which benefits from the efficient local search of LSTM but is applicable to a larger class 

of recurrent neural networks [168]. 

Recursive Bayesian Levenberg-Marquardt was used to train the recurrent neural networks for 

time-series modeling [192]. The algorithm is numerically stable and has superior performance to 
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traditional methods, such as extended Kalman training and Newton based methods [193]. 

Although other approaches, such as Levenberg-Marquadrt [194], multi agent systems [195], dark 

knowledge transfer, [196], and quotient gradient system , [159], have been applied to train the 

artificial neural networks, there are other promising optimization approaches in the mathematics 

literature that can be applied to training neural networks. 

In this study, we use a dynamical trajectory based methodology for training the artificial neural 

networks. The dynamical trajectory based methodology consist of two systems : a Quotient 

gradient system (QGS) which finds the components of the feasible region of the optimization 

problem, and a projected gradient system (PGS) which searches the feasible components for local 

optimal solutions of the optimization problem. By switching between the PGS and QGS phases, 

the algorithm is able to find multiple local minima of the optimization problem and finally finds 

the global optimal or a good suboptimal solution of the optimization problem. 

Unlike Newton-based methods, trajectory based optimization is a global optimization approach 

and does not suffer the local minimum issue.  Furthermore, trajectory based optimization does not 

require a huge number of measurements to find the global optimum and does not have user 

dependent variables. This makes the methodology more desirable than newton based methods 

whose performance depends on learning rates and initial point, better than approaches such as 

particle swarm optimization whose performances depends on initial particles and velocities, and 

better then genetic algorithm whose performance depends on initial population size, mutation and  

crossover functions.   

Although network parameters must remain bounded, training neural networks is usually posed 

as an unconstrained optimization problem. In this study, we include upper and lower bounds on 

the neural network parameters with the minimization of the sum of squared errors and pose neural 

network training as a constrained minimization problem. Then we use trajectory based 

methodology to find components of the feasible region and search those components for local 

minima. The upper and lower bounds can be chosen arbitrarily large to avoid the effect of 

conservative bounds on the optimal solution [252],[253]. 
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6.2 Dynamical Trajectory Based Methodology  

Lee and Chiang proposed a dynamical trajectory based methodology for finding multiple 

optimal solutions of nonlinear programming problems [31]. This section reviews their work. 

Consider the following optimization problem 

min𝑓(𝒙)  s. t.  𝒉(𝒙) = 𝟎 (6.1)  

𝑓(𝒙) is assumed in 𝐶2(𝑅𝑛, 𝑅𝑚) to guarantee the existence of the solution and 𝒉(𝒙) is assumed 

smooth. The more general case can includes inequality constraints as 

min𝑓(𝒙) 
s. t.  ℎ𝑖(𝒙) = 0, 𝑖 ∈ 𝐼 = {1,2, … , 𝑙} 
𝑔𝑗(𝒙) ≤ 0, 𝑗 ∈ 𝐽 = {1,2, … , 𝑠} 

(6.2)  

The inequality constraint can be transformed into equality constraints by introducing positive slack 

variables such as 𝑔𝑗(𝒙) + 𝑠𝑗
2 = 0, 𝑗 ∈ 𝐽. �̅� is called the Kuhn-Tucker point of (1) with Lagrange-

multipliers �̅� = (𝜆1, … , 𝜆𝑚) if it satisfies the Kuhn-Tucker conditions 

∇𝒙𝐿(�̅�, �̅�) = ∇𝑓(�̅�) +∑�̅�𝑖∇𝒉𝑖(�̅�) = 0

𝑚

𝑖=1

 

∇𝜆𝐿(�̅�, �̅�) = 𝒉(𝒙) = 0 

(6.3)  

𝐿(𝒙, 𝝀) = 𝑓(𝒙) + ∑ 𝜆𝑖ℎ𝑖(𝑥)𝑖∈𝐼  is the Lagrangian function of the optimization problem. The 

feasible region is defined as 

𝑀 ∶= {𝑥 ∈ 𝑅𝑛: 𝒉(𝒙) = 0} (6.4)  

The feasible region can be any closed subset of 𝑅n. The feasible region is subject to the following 

assumptions: 

Assumption 1: 

a) (Regularity) At each 𝒙 ∈ 𝑀, {∇ℎ𝑖(𝒙), 𝑖 = 1, … ,𝑚} are    linearly independent. 

b) (Nondegeneracy) At each critical point �̅� ∈ 𝑀, 𝓵𝑇∇𝑥𝑥
2 𝐿(�̅�, 𝝀)𝓵 ≠ 0 for all 𝓵 ≠ 0 satisfying 

∇ℎ𝑖(�̅�)
𝑇𝓵 = 0 for all 𝑖 = 1,2, … ,𝑚. 

c) (Finiteness and Separating Property) 𝑓 has finitely many critical points in 𝑀 at which it attains 

different values of 𝑓. 

Assumption 1 is generically true and when 𝑀 is compact, the optimization problem is 

structurally stable [197],[198].Using the regularity condition together with the implicit function 
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theorem, it can be shown that 𝑀 is an 𝑛 −𝑚 dimensional smooth manifold. 𝑀 may be 

disconnected and nonconcave and is given by the union 

𝑀 =⋃𝑀𝑖
𝑖

 (6.5)  

of disjoint connected components 𝑀𝑖. The dynamical trajectory based method has two main 

components: the projected gradient system (PGS) and the quotient gradient system (QGS). Starting 

from an arbitrary initial point, the QGS finds a feasible component of the feasible region, then the 

PGS finds all the local minima in that component. After finding all the local minima in a particular 

component, we switch to the QGS to escape from that component and reach another component 

of the feasible region. By repeating this process, the methodology finds multiple local minima of 

the minimization problem even if they lie in disjoint regions 𝑀𝑖. 

6.2.1 PGS Phase 

Escaping from one local optimal solution and moving toward another local optimal solution in 

the connected component of the feasible region is an essential part of our method. The PGS is a 

nonlinear dynamical system whose trajectories can be used to escape from one local optimal 

solution and move toward another solution in the current component of the feasible region. The 

PGS is defined as 

�̇� = 𝐹(𝒙) = −∇𝑓proj(𝒙) , 𝒙 ∈ 𝑀 (6.6)  

where ∇𝑓proj(𝒙) is the orthogonal projection of ∇𝑓(𝒙) to the tangent space 𝑇𝑥𝑀 of the constraint 

set 𝑀 at 𝒙. When 𝐷𝒉(𝒙) = 𝜕𝒉(𝒙)/𝜕𝒙 is nonsingular, then ∇𝑓proj(𝒙) = 𝑃𝑟(𝒙)∇𝑓(𝒙) where 

𝑃𝑟(𝒙) = (𝐼 − 𝐷𝒉(𝒙)
𝑇(𝐷𝒉(𝒙)𝐷𝒉(𝒙)𝑇)−1𝐷𝒉(𝒙)) ∈ 𝑅𝑛×𝑛 is the positive semidefinite projection 

matrix for every 𝒙 ∈ 𝑀. Every local optimal solution of (1) is a stable equilibrium point of the 

PGS and every trajectory of the PGS converges to one of its equilibrium points. Therefore, starting 

from any initial point in the stability region of its stable equilibrium, we can reach a local optimal 

solution. Thus, the problem of escaping from one local optimal solution and moving to another 

one reduces to escaping from the stability region of one stable equilibrium and entering the stability 

region of another. To do this, PGS starts from a local optimal solution and proceeds in reverse time 

until it reaches a decomposition point, which is a saddle point. Starting from the decomposition 

point, the algorithm moves towards another local optimal solution. Consequently, PGS finds the 
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multiple local minimums in the connected component of the feasible region. The next step is to 

move from one connected component of the feasible region to another by invoking the QGS phase. 

6.2.2 QGS Phase 

To explore all the components of the feasible region, we must be able to approach a connected 

feasible component then escape from it and approach another one. We use a nonlinear dynamical 

system whose trajectories can be used to approach and escape from connected components of the 

feasible region. The nonlinear dynamical system must have stable equilibrium manifolds that are 

connected feasible components of the feasible region of the optimization problem. The nonlinear 

system we need is the following quotient gradient system (QGS) 

�̇� = −𝐷𝒉(𝒙)𝑇𝐷𝒉(𝒙) (6.7)  

where 𝐷𝒉(𝒙) is the Jacobian of 𝒉 at 𝒙. The right hand side of the QGS equation is the gradient of 

‖𝒉(𝒙)‖2/2. Lee and Chang showed that the feasible components of (1) correspond to stable 

equilibrium manifolds of the QGS and that every trajectory of the QGS converges to one of its 

equilibrium manifolds [31]. Therefore, a connected component of the feasible region is approached 

by integrating QGS from any point in the stability region of its stable equilibrium manifold. 

Similarly to the PGS phase, escaping from a connected feasible component is by integrating the 

QGS in reverse time until approaching a point in an unstable manifold on the stability boundary 

of the stable equilibrium manifold. Then we integrate the QGS forward in time from a point close 

to the unstable equilibrium manifold until we reach another stable equilibrium manifold. By 

alternating between the PGS and QGS phases, all the local minima of the optimization problem 

can be found, and the global minimum can be determined. 

6.2.3 Finding Decomposition Points 

The decomposition point plays a pivotal role in finding local minima because every two 

adjacent local optimal solutions of (1) are connected through an unstable manifold of a 

decomposition point. To define and show how to find a decomposition point, we need several 

definitions.  

A trajectory is the solution of the PGS starting from 𝑥 ∈ 𝑀 at 𝑡 = 0 and is denoted by 

𝜙(. , 𝒙): 𝑅 → 𝑀 ⊂ 𝑅𝑛. 𝒙∗ ∈ 𝑀 is an equilibrium point if 𝐹(𝒙∗) = 0. The equilibrium point 𝒙∗ ∈

𝑀 is said to be hyperbolic if the restriction of Jacobian of 𝐹(. ) at 𝒙∗ to the tangent space 𝑇𝒙∗𝑀 has 

no eigenvalues with zero real part. If the restricted Jacobian of a hyperbolic equilibrium point has 

exactly 𝑘 eigenvalues with positive real parts, it is called a type-k equilibrium point. If all the 
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eigenvalues of the restricted Jacobian have negative real parts, the equilibrium point is called 

stable; otherwise it is unstable. The stable and unstable manifolds of 𝒙∗ are defined as follows 

𝑊s(𝒙∗) = {𝒙 ∈ 𝑀: lim
𝑡→∞

𝜙(𝑡, 𝒙) = 𝒙∗} 

𝑊u(𝒙∗) = {𝒙 ∈ 𝑀: lim
𝑡→−∞

𝜙(𝑡, 𝒙) = 𝒙∗} 
(6.8)  

The stability region of stable equilibrium 𝒙𝑠 is defined as 

𝐴(𝒙𝑠) ≔ {𝒙 ∈ 𝑀: lim
𝑡→∞

𝜙(𝑡, 𝒙) = 𝒙𝑠} (6.9)  

The quasistability region of stable equilibrium 𝒙𝑠 is defined as 𝐴𝑝(𝒙𝑠) = int(𝐴(𝑥𝑠)̅̅ ̅̅ ̅̅ ̅). 𝐴(𝒙𝑠) and 

𝐴𝑝(𝒙𝑠) are open, connected and invariant sets relative to the manifold 𝑀. 

A type-one equilibrium point 𝒙𝑑 on the quasistability boundary 𝜕𝐴𝑝(𝒙𝑠) of a stable equilibrium 

𝒙𝑠 is called a decomposition point. However, not all type-one equilibrium points are 

decomposition points. Assume that 𝑐 = 𝑓(𝒙𝑑), as the objective function value increases from 𝑐 −

휀 to 𝑐 + 휀, the number of path components of the level set 𝑆𝑐 ≔ {𝒙 ∈ 𝑀: 𝑓(𝒙) < 𝑐} decreases by 

one. For 𝒙1 which is a type one equilibrium point but not a decomposition point, when the objective 

function value increases from 𝑓(𝒙1) − 휀 to 𝑓(𝒙1) + 휀, the number of path components of 𝑆𝑐 

remains unchanged (Jongen et al., 1995; Chiang and Ahmed, 1996). 

Suppose that 𝒙 is a local minimum of 𝑓(𝒙) and 𝜆1(𝒙) ≤ 𝜆2(𝒙), … , 𝜆𝑛(𝒙) be the eigenvalues of 

∇2𝑓(𝒙) and suppose that 𝒗𝑗(𝒙) is normalized eigenvector associated with 𝜆𝑗(𝒙).  Since ∇2𝑓(𝒙) is 

symmetric, 𝑃𝑗(𝒙) = 𝒗𝑗(𝒙)𝒗𝑗
𝑇(𝒙) is the orthogonal projection matrix on the eigenspace associated 

with 𝜆𝑗(𝒙). Using the spectral factorization theorem, ∇2𝑓(𝒙) can be rewritten as 

∇2𝑓(𝒙) =∑𝜆𝑗(𝒙)𝑃𝑗(𝒙)

𝑛

𝑗=1

 (6.10)  

Define Γ𝑖(𝒙), 𝑖 = 1, … , 𝑛 as 

Γ𝑖(𝒙) =∑𝑃𝑗(𝒙)

𝑖

𝑗=1

− ∑ 𝑃𝑗(𝒙)

𝑛

𝑗=𝑖+1

 (6.11)  

Define the 𝑖-th order reflected gradient vector field Θ𝑖(𝒙) 

Θ𝑖(𝒙) = Γ𝑖(𝒙)∇𝑓(𝒙)   (6.12)  

Next, we present the algorithm to find decomposition points on 𝜕�̅�(𝒙) using the reflected gradient 

method and store them in 𝛺. 

Algorithm for finding decomposition points: 
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Step 1: Initialization 

Step 1.1: Choose 𝑞 points 𝝔𝑗 , 𝑗 = 1,… , 𝑞 from a neighborhood of the local minimum 𝒙 of 

𝑓(𝒙) 

Step 1.2: Set a sufficiently small number 𝜖 

Step 1.3: Set Ω = 0; 

Step 2: Find decomposition points 

for 𝑗 = 1 to 𝑞 do: 

Step 2.1: Integrate Θ1(𝒙) with the initial condition 𝝔𝑗 until ‖Θ1(𝒙)‖ reaches a local 

minimum, say 𝝔𝑗
∗, or ‖Θ1(𝒙)‖ becomes unbounded. 

Step 2.2: Solve the algebraic equation 𝑓(𝒙) = 0 using initial condition 𝝔𝑗
∗ and find solution 

𝒙𝑗. 

Step 2.3: Check the type of equilibrium point with respect to −∇𝑓(𝒙): 

if 𝒙𝑗 is type-one equilibrium point: 

Compute the unstable eigenvector 𝝑u of 𝐽−∇𝑓(𝒙)(𝒙𝑗); 

Numerically integrate PGS with initial points 𝒙𝑗 − 𝜖𝝑
u and 𝒙𝑗 + 𝜖𝝑

u until it approaches 

the equilibrium points 𝒙1 and 𝒙2. 

if 𝒙1 ≠ 𝒙2, Ω = Ω⋃{𝒙𝑗};  

endif; 

endif; 

 end. 

The algorithm finds two local minima, 𝒙1 and  𝒙2, associated with 𝒙𝑗. The ability of the algorithm 

depends to the convergence of the nonlinear solver and the number of initial points chosen around 

the local minimum 𝒙. When the objective function has certain periodic properties, upper and lower 

bounds on the number of initial points can be found which are dependent to the number of objective 

function variables [199]. 

6.3 Application of Trajectory based Optimization to Neural Network 

Training 

In this study, we use a recurrent neural network with one hidden layer. The structure of the 

network is shown in Figure 36. 
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Figure 36. Structure of the recurrent neural network 

The input-output relation of the network is  

𝒛(𝑘) = 𝝍(𝑊𝒖(𝑘) + 𝐵𝒛(𝑘 − 1)) 

�̂�(𝑘) = 𝑉 𝒛(𝑘) 
(6.13)  

where 𝒖(𝑘) is the input, 𝒛(𝑘) is the internal state, and �̂�(𝑘) is the output of the network. 𝑊, 𝐵 and 

𝑉 are neural network weights matrices and 𝝍(. ) is a vector of hyperbolic tangent functions. 

Assuming that the network has 𝑛 inputs, 𝑚 hidden layer nodes and 𝑡 outputs then 𝑊 ∈ 𝑅𝑚×𝑛 , 

𝐵 ∈ 𝑅𝑚×𝑚,  and 𝑉 ∈ 𝑅𝑡×𝑚 . The cost function for finding the optimal network weights is the sum 

of the squared errors 

SSE =∑𝒆(𝑘)𝑇𝒆(𝑘)

𝑁

𝑘=1

=∑(�̂�(𝑘) − 𝒚(𝑘))
𝑇
(�̂�(𝑘) − 𝒚(𝑘))

𝑁

𝑘=1

 (6.14)  

where 𝒚(𝑘) is the measured output vector, �̂�(𝑘) is the neural network output and 𝑁 is the number 

of training samples. 
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Dynamical trajectory based methodology provides a systematic approach to explore 

components of feasible region of the optimization problem by repeatedly switching between PGS 

and QGS. To define the PGS and QGS we need to partition the weight matrices as follows 

𝑉 = [
𝒗1
𝑇

⋮
𝒗𝑚
𝑇
]

𝑡×𝑚

, 𝑊 = [
𝒘1
𝑇

⋮
𝒘𝑚
𝑇
]

𝑚×𝑛

, 𝐵 = [
𝒃1
𝑇

⋮
𝒃𝑚
𝑇
]

𝑚×𝑚

 (6.15)  

The constraints are defines as the upper and lower bounds on the network parameters. Define 𝒐 as 

the vector containing all the elements of 𝑊,𝐵 and 𝑉 

𝒐 = [𝑜𝑖]𝑛𝑝×1 = [𝒗1, . . , 𝒗𝑚, 𝒘1, … ,𝒘𝑚, 𝒃1, … , 𝒃𝑚]
𝑇  

𝑛𝑝 = 𝑚
2 +𝑚 × (𝑛 + 𝑡) 

(6.16)  

The constraints are defined as 

|𝑜𝑖| ≤ 𝑙𝑖, 𝑖 = 1,… , 𝑛𝑝 (6.17)  

The vector of limits on the parameters is defined as 𝒍 = [𝑙𝑖]𝑛𝑝×1.  By introducing slack variables 

𝒔𝑇 = [𝑠1, … , 𝑠𝑛𝑝], the constraints can be rewritten as 

ℎ𝑖(𝒙) = 𝑜𝑖
2 − 𝑙𝑖

2 + 𝑠𝑖
2 = 0, 𝑖 = 1,… , 𝑛𝑝 (6.18)  

The vector of optimization problem parameters is defined as 

𝒙 = [𝒐 𝒔]𝑇(2×𝑛𝑝)×1 (6.19)  

Since 𝒙 contains all the elements of 𝑊, 𝐵 and 𝑉, the error, the cost function, and the constraints 

are functions of 𝒙 

  SSE = 𝑓(𝒙) 

𝒉(𝑥) = [ℎ𝑖(𝒙)]𝑛𝑝×1 = 𝑥𝑖
2 − 𝑙𝑖

2 + 𝑥𝑛𝑝+𝑖
2 = 0, 𝑖 = 1,… , 𝑛𝑝 

(6.20)  

Then the problem of finding optimal values of network weights can be written as constrained 

optimization problem 

min𝑓(𝒙) 
s. t.  𝒉(𝒙) = 𝟎 

(6.21)  

𝐷𝒉 is defined as 

𝒉(𝒙) = [𝜕ℎ𝑖(𝒙)/𝜕𝒙](𝑛𝑝)×(2×𝑛𝑝)
𝑇  

𝜕ℎ𝑖(𝒙)/𝜕𝒙 = [0,… ,0,2𝑥𝑖, 0, . .0,2𝑥𝑖+𝑛𝑝 , 0, … ,0] 
(6.22)  
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Therefore, all the elements of [𝜕ℎ𝑖(𝒙)/𝜕𝒙] are zero except for the 𝑖𝑡ℎ and (𝑛𝑝 + 𝑖)
𝑡ℎ

 elements. 

𝐷𝒉(𝒙) is a full rank matrix and the PGS and QGS for training the neural network are defined as 

PGS: 

�̇� = −(𝐼 − 𝐷𝒉(𝒙)𝑇(𝐷𝒉(𝒙)𝐷𝒉(𝒙)𝑇)−1𝐷𝒉(𝒙))∇𝑓(𝒙) (6.23)  

QGS: 

�̇� = −𝐷𝒉(𝒙)𝑇𝒉(𝒙) (6.24)  

The process of training neural network using trajectory based method starts with QGS at an 

arbitrary initial point. QGS finds a feasible component of feasible region, say 𝑀𝑖, and then PGS 

starts finding local minima in 𝑀𝑖. After finding a set of local minima in 𝑀𝑖, QGS is invoked again 

to escape from 𝑀𝑖 and move towards another feasible component 𝑀𝑗. By repeating this process 

multiple feasible components of feasible region are located and the algorithm finds a set of local 

optimal solutions of the optimization problem. 

6.4 Stability Analysis 

The stability of the training method is a critical issue for any training algorithm. In addition, 

uncertainties and measurement noise may cause the training algorithm to go unstable and must be 

considered in stability analysis. 

Theorem 1: The equilibrium points of the QGS are asymptotically stable. 

Proof: Consider the Lyapunov function  𝑉(𝒙) = 𝒉𝑇(𝒙)𝒉(𝒙). 𝑉(𝒙) is a locally positive definite 

function of the state that is equal to zero at global optima of the optimization problem. Thus,  𝑉(𝒙) 

is a  locally positive definite function in the vicinity of each equilibrium point. The derivative of 

the Lyapunov function along the system trajectories is 

�̇� = (
𝜕𝑉

𝜕𝒙
)
𝑇

�̇� = −𝒉𝑇𝐷𝒉𝐷𝒉𝑇𝒉 = −‖𝐷𝒉𝑇𝒉‖2 (6.25)  

The derivative of the Lyapunov function is negative definite in the vicinity of each equilibrium 

point of the QGS, which are the local minima of the optimization problem. The Jacobian 𝐷𝒉 is 

positive definite in the vicinity of the equilibrium points because they are minima of the cost 

function.  Therefore, all the equilibrium points of the QGS are locally asymptotically stable. 
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QGS dynamics (6.24) are independent of the neural network input. Measurements errors can 

perturb a neural network and drive it outside the basin of attraction of a stable equilibrium during 

training. However, QGS remains stable in the presence of bounded measurement errors.  

If measurement errors cause the neural network input to change from 𝒖 to 𝒖 + ∆𝒖, then the 

PGS will terminate at a perturbed point, which is then used to initialize the QGS. The perturbed 

QGS initial condition can: (i) lie in the stable region of the previous stable equilibrium point, (ii) 

lie in the stability region of another stable equilibrium point, or (iii) be infeasible. In case (i), the 

QGS goes to the previous component of the feasible region and the algorithm continues. In case 

(ii), the QGS goes to another stable equilibrium point which is in another feasible component but 

will return to the current component in future calls of the QGS. In case (iii), the QGS goes to 

another feasible component. Therefore, measurement noise only affects the order of exploring the 

components of the feasible region. 

𝑃𝑟 = (𝐼 − 𝐷𝒉(𝒙)
𝑇(𝐷𝒉(𝒙)𝐷𝒉(𝒙)𝑇)−1𝐷𝒉(𝒙)) 

𝑃𝑟 = [𝑝𝑟𝑖,𝑗], 𝑝𝑟𝑖,𝑗 = {

∝𝑖, if 𝑖 = 𝑗,  0 ≤∝𝑖≤ 1     

± √1 −∝𝑖
2, if |𝑖 − 𝑗| = 𝑛𝑝

0 , elsewhere                                   

 
(6.26)  

Clearly, the norm of the projection matrix is bounded above as ‖𝑃𝑟‖ ≤ 1. The PGS can be rewritten 

in terms of the projection matrix as 

�̇� = −𝑃𝑟
𝜕

𝜕𝒙
(∑𝒆(𝑘)𝑇𝒆(𝑘)

𝑁

𝑘=1

) = −𝑃𝑟∑(
𝜕𝒆(𝑘)

𝜕𝒙
)

𝑁

𝑘=1

𝑇

𝒆(𝑘) (6.27)  

We now show that the equilibria of the PGS are stable. 

Theorem 2: The equilibrium points of the PGS are asymptotically stable. 

Proof: Consider the Lyapunov function candidate 𝑉(𝒙) = ∑ 𝒆(𝑘)𝑇𝒆(𝑘)𝑁
𝑘=1  where 𝑁 is the number 

of inputs. Note that since 𝒆(𝑘) = �̂�(𝑘) − 𝒚(𝑘) and �̂�(𝑘) is function of 𝒙, 𝒆(𝑘) is a function of 𝒙. 

In addition, 𝒆(𝑘) is zero only at equilibrium points of the PGS, which are local minima of the 

optimization problem and is positive elsewhere. Thus, 𝑉(𝒙) is a positive definite function of 𝒙. 

The derivative of the Lyapunov function along trajectories of PGS is 

�̇� = �̇�𝑇
𝜕𝑉

𝜕𝒙
= �̇�𝑇∑𝐷𝒆(𝑘)𝑇𝒆(𝑘)

𝑁

𝑘=1

 = [∑𝐷𝒆(𝑘)𝑇𝒆(𝑘)

𝑁

𝑘=1

]

𝑇

𝑃𝑟
𝑇 [∑𝐷𝒆(𝑘)𝑇𝒆(𝑘)

𝑁

𝑘=1

] (6.28)  
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where 𝐷𝒆(𝑘) = 𝜕𝒆(𝑘)/𝜕𝒙. Assuming no repeated measurements, 𝐷𝒆(𝑘)𝑇𝒆(𝑘) is a full rank 

matrix and 𝑃𝑟 is positive semidefinite, �̇� is negative semi definite function of the states and is zero 

at local optimal solutions of optimization problem and in the null space of 𝑃𝑟. 𝑃𝑟 is projection 

matrix on the tangent space of the constraint set and since the equilibrium points are in the 

constraint set, there is no equilibrium point in the null space of 𝑃𝑟. Hence, �̇� is negative definite in 

the feasible region except at the equilibrium points where it is zero. By La Salle’s theorem, the 

equilibrium points of the PGS are locally asymptotically stable.                                                    ∎ 

The input to the neural network is a parameter that determines the PGS dynamics, i.e. �̇� =

−𝒄(𝒙, 𝒖).  Therefore, measurement errors can affect the PGS dynamics and make it unstable. If 

measurement errors change the neural network input from a nominal value 𝒖∗ to 𝒖∗ + ∆𝒖, the 

Taylor series expansion in terms of ∆𝒖 is 

�̇� = −𝒄(𝒙, 𝒖) −
𝜕𝒄(𝒙, 𝒖)

𝜕𝒖
∆𝒖 +⋯ = −𝒄(𝒙, 𝒖) + 𝒈(𝒙, 𝒖, ∆𝒖) (6.29)  

Suppose that 𝑈 is subspace of 𝑅𝑛 that contains the equilibrium point 𝒙, i.e. 𝒙 ∈ 𝑈 ⊂ 𝑅𝑛. For a 

smooth activation function, 𝒈(𝒙, 𝒖∗, ∆𝒖) is continuously differentiable and consequently Lipschitz 

in 𝑅𝑛 for all 𝑡 ≥ 0. We assume that 𝒈 satisfies the linear growth bound 

‖𝒈(𝒙, 𝒖∗, ∆𝒖)‖ ≤ 𝛾‖𝒙‖, ∀𝑡 ≥ 0, ∀𝒙 ∈ 𝑈 (6.30)  

The next theorem examines the effect of an input perturbation on the PGS. 

Theorem 3: Given a neural network with 𝑛 inputs, 𝑚 hidden layer nodes, 𝑡 outputs and 𝑁 

measurements. Assume that the network input has the bound ‖𝒖‖ ≤ 𝑘𝑢 and the network output 

has the bound ‖𝒚‖ ≤ 𝑘𝑦. If the perturbed PGS dynamics satisfies the linear growth constraint 

(6.29), then the equilibrium of the perturbed PGS is asymptotically stable if  

𝛾 < 𝑁√𝑁𝑚 [(√𝑚 + √𝑘𝑦(√𝑛𝑘𝑢 +𝑚))

2

] (6.31)  

Proof: Recall that the error 𝒆(𝑘) is a function of 𝒙 and consider the Lyapunov function candidate 

𝑉(𝒙) = 𝒆(𝑘)T𝒆(𝑘). 𝑉(𝒙) is a positive definite function of the states and only becomes zero at 

optimal solutions of the optimization problem. The derivative of 𝑉(𝒙) including the perturbation 

is 
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�̇� = (−𝒆(𝑘)𝑇𝐷𝒆(𝑘)𝑃𝑟
𝑇 + 𝒈𝑇)𝐷𝒆(𝑘)𝑇𝒆(𝑘)

≤ −𝜆min (𝑃𝑟
𝑇) ‖𝐷𝒆(𝑘)𝑇𝒆(𝑘)‖2 + ‖𝒈‖‖𝐷𝒆(𝑘)𝑇𝒆(𝑘)‖ 

(6.32)  

For negative definite �̇�, we need the condition 

‖𝒈‖ < 𝜆𝑚𝑖𝑛 (𝑃𝑟) ‖𝐷𝒆(𝑘)
𝑇𝒆(𝑘)‖ (6.33)  

The projection matrix 𝑃𝑟 satisfies 𝜆(𝑃𝑟) ∈ {0,1} and the trajectories of the PGS do not pass 

through its null space [31],[160]. Hence, we rewrite (6.32) as 

‖𝒈‖ < ‖𝐷𝒆(𝑘)𝑇𝒆(𝑘)‖ (6.34)  

Using (6.13) and the unity upper bound of hyperbolic functions we have the upper bound 

‖�̂�‖ ≤ 𝑁𝑚‖𝒙‖ (6.35)  

For any bounded output, we have 

‖𝒆(𝑘)‖ = ‖�̂� − 𝒚‖ ≤ ‖�̂�‖ + ‖𝒚‖ ≤ 𝑁(𝑚‖𝒙‖ + 𝑘𝑦) (6.36)  

For any bounded input, we have the ‖𝐷𝒆(𝑘)𝑇‖F upper bound 

‖𝐷𝒆(𝑘)𝑇‖F ≤ √𝑁𝑚(1 + √𝑛‖𝒖‖‖𝒙‖ + 𝑚‖𝒙‖) (6.37)  

We now need the following identity: 

∀𝐴 ∈ 𝑅𝑚×𝑛: ‖𝐴‖2 ≤ ‖𝐴‖𝐹 ≤ √𝑟‖𝐴‖2 (6.38)  

where ‖𝐴‖F is the Frobenius norm of 𝐴 and 𝑟 is its rank [200]. 

Using (6.37) gives 

‖𝐷𝒆(𝑘)𝑇‖2 ≤ √𝑁𝑚(1 + √𝑛‖𝒖‖‖𝒙‖ + 𝑚‖𝒙‖) (6.39)  

By combining (6.39), (6.36) and (6.34), we get 

𝛾‖𝒙‖ ≤ √𝑁𝑚(1 + √𝑛𝑘𝑢‖𝒙‖ + 𝑚‖𝒙‖)𝑁(𝑚‖𝒙‖ + 𝑘𝑦) (6.40)  

For negative definite �̇�, we require 

𝛾 < 𝑁√𝑁𝑚 [(√𝑚 + √𝐾𝑦(𝐾𝑢√𝑛 +𝑚))

2

] (6.41)  

∎ 

6.5 Simulation Results 

To demonstrate the performance of the dynamical trajectory based methodology, we apply it to 

the identification of two nonlinear dynamical systems and compare the results to genetic algorithm. 
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While the results for the training data are similar for both approaches, the generalization capability 

of the dynamical trajectory-based approach is better than that of genetic algorithm and EBP. The 

results of EBP from [159] are much worse and are not included for clarity of the figures. We 

compare to EBP only in the mean squared error tables. 

6.5.1 Example 1: NARMA system 

The first example is a 10th order NARMA system chosen from [50]. The nonlinear system 

dynamics is described as 

𝑦(𝑘 + 1) = 0.3𝑦(𝑘) + .05𝑦(𝑘)∑𝑦(𝑘 − 𝑖)

9

𝑖=1

+ 1.5 × 𝑑(𝑘 − 9)𝑑(𝑘) + 0.1 (6.42)  

with input 𝑑(𝑘) and output 𝑦(𝑘). The input is random zero-mean normally distributed with 

standard deviation 𝜎 = 0.5. Thus, the input signal is persistently exciting. The target value for 

neural network training is 𝑦(𝑘 + 1) and the neural network input is 𝒖𝑛(𝑘) = [𝑑(𝑘), … , 𝑑(𝑘 −

9), 𝑦(𝑘),… , 𝑦(𝑘 − 4)]𝑇. 𝑁 = 150 training samples were created, of which 100 samples were used 

as the training data and 50 samples were used to test the generalization capability of the neural 

network. All the network parameters were initialized randomly with zero-mean normal values of 

standard deviation 𝜎 = 1. The optimal number of hidden layer nodes was found by plotting the 

generalization error versus the number of hidden layer nodes and was found to be 𝑚 = 6.  The 

activation function of the hidden layer nodes is 

𝜓(𝑥) = tanh(𝑥) =
exp (𝑥) − exp (−𝑥)

exp(𝑥) + exp (−𝑥)
 (6.43)  

The weights in 𝑉 were constrained to the interval [−10,10], while the elements of 𝑊 and 𝐵 were 

in the interval [−5,5]. The limits on elements of 𝑊 and 𝐵 are smaller to keep the hidden layer 

neurons active. To find decomposition points, 30 initial points around the local minimum were 

created by adding a vector of zero-mean normal random values with standard deviation 𝜎 = 0.01  

and 𝜖 for finding the decomposition points is chosen to be 0.01. After invoking the PGS and QGS 

algorithms repeatedly, we found 6 components of the feasible region and 47 local minima. 

Figure 37 shows the output of the system and the networks for training data and Figure 38 shows 

the output of the system and the networks for test data. Figure 39 shows the generalization error 

for both neural networks. Both Figure 38 and Figure 39 show that the trajectory based trained 

network can learn the dynamic of the system better than genetic algorithm trained network. When 
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the output of the system is very close to zero, a small generalization error leads to a large 

generalization error percent. This can be seen in time steps such as 𝑘 = 10 and 𝑘 = 27 in Figure 

39.  

 

Figure 37. The output of the system and networks for training data. DTB stands for dynamical 

trajectory based and GA stands for genetic algorithm 
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Figure 38. The output of the system and networks for test data 

Table 9. Mean squared error 

Train 

Method 

DTB GA EBP 

MSE 0.0461 0.0715 0.1184 

Excluding this outlier points, the maximum generalization error for dynamical trajectory base 

trained network is 7.4% while the maximum generalization error of genetic algorithm trained 

network is 22% which again indicates the superior performance of this approach for training neural 

networks. Table 9 shows the average mean squared generalization error for different random test 

data sets and shows that dynamical trajectory based training outperforms genetic algorithm and 

EBP trained networks by a large margin. 

In [159], another trajectory based method was used to train this recurrent neural network to 

identify the NARMA system. The method uses QGS trajectories but the QGS dynamics is different 

from the one used in this study. With the same input and number of nodes and number training 

samples, the dynamical trajectory based method has better generalization performance than that of 

[159], and reduces the maximum generalization error from 12.25 to 7.4%. 
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Figure 39. Generalization error for test data 

6.5.2 Example 2: Nonlinear Second Order System 

Our second example is a second order nonlinear system from [162]. The governing equation of 

the system is described as 

𝑦(𝑘 + 1) =
𝑦(𝑘)𝑦(𝑘 − 1)(𝑦(𝑘) + 0.25)

1 + 𝑦(𝑘)2 + 𝑦(𝑘 − 1)2
+ 𝑑(𝑘) (6.44)  

The network input vector is chosen as 𝒖𝑛(𝑘) = [𝑑(𝑘), 𝑑(𝑘 − 1), 𝑦(𝑘), 𝑦(𝑘 − 1)]
𝑇 and the 

number of hidden layer nodes is 𝑚 = 8. As in Example 1, the training set is created using 100 

zero-mean normal distributed samples and the test data is created with 50 samples from the same 

distribution. 

As in Example 1, the PGS and QGS phases are invoked repeatedly to find local minima of the 

optimization problem. QGS locates 5 feasible components and PGS locates 41 local minimums in 

the feasible components. We used the same values as in Example 1 for the number of initial points 

for finding decomposition points and 𝜖.  The local minimum with the best generalization capability 

is chosen as optimal solution of the optimization problem. 

Figure 40 shows the output of the system and the networks for training data. It shows that the 

dynamical trajectory base trained network is able to learn the behavior of the system better than 
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error genetic algorithm trained network.  Figure 41 shows the output of the system and the 

networks for test data and illustrates the superior generalization performance of the dynamical 

trajectory base trained network. Figure 42 shows the generalization error for both neural networks. 

In some samples, the output of the system is close to zero, in such points even small generalization 

error will lead to big generalization error percentage such as 𝑘 = 32 and 𝑘 = 38 in Figure 42. 

Excluding outliers, the maximum generalization error of the dynamical trajectory based method is 

13.3% while the maximum generalization error of the genetic trained network trained network is 

31.2%.  

Table 10 shows the average mean squared generalization error for different random test data 

sets. The table shows that dynamical trajectory based training outperforms genetic algorithm 

trained network by a large margin. Both the trajectory based approach and genetic algorithm 

training have superior performance to EBP trained network. 

Table 10. Mean squared error 

Train 

Method 

DTB GA EBP 

MSE 0.0523 0.0724 0.1297 
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Figure 40.  The output of the system and networks for training data. DTB stands for dynamical 

trajectory based and GA stands for genetic algorithm 

 

Figure 41. The output of the system and networks for test data 
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In [159], we used another trajectory based method to train a recurrent neural network to identify 

the same system. With the same number of hidden nodes and the same input and fewer training 

samples, the dynamical trajectory based method has better generalization performance and reduces 

the maximum generalization error from 18.7% to 13.3%. 

 

Figure 42. Generalization error for test data 

6.6 Conclusion 

This study uses a dynamical trajectory based methodology for training artificial neural 

networks. The methodology provides a systematic approach for finding multiple solutions of 

general nonlinear optimization problems. By invoking PGS and QGS phases repeatedly, the 

algorithm is able to locate multiple feasible components of feasible region and locate the local 

minima in the feasible components. Lyapunov theory was used to prove the stability of the method 

and its stability in presence of measurement error. Calculating PGS is similar to calculation of the 

derivative of the cost function with respect to network variables and is therefore similar to 

calculations of the EBP algorithm. Finding QGS is relatively easy because the constraints on the 

network weights are simple. Thus, the effort required to implement the algorithm is comparable to 
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the effort required to implement EBP. Simulation results show that the dynamical trajectory based 

method provides better performance than genetic algorithm and EBP trained networks. 
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Chapter 7. Anomaly Classification in Distribution Networks Using 

a Quotient Gradient System  

7.1 Introduction 

Due to the frequent disruptive events in power networks, developing a data-driven event 

diagnostics framework for maintaining the regular operation of the system is of paramount 

importance. Establishing such a framework, not only assists system operators in extracting useful 

information such as the cause or location of events, but also aids in other applications, such as 

preventive maintenance. Preventive maintenance saves time, reduces cost, improves safety, avoids 

unexpected outages, and reduces maintenance crew utilization. 

Although disruptive events may not cause immediate equipment failure, they gradually lead to 

permanent failure. Hence, a comprehensive study of disruptive event classification in power 

systems is beneficial and will eventually lead to increasing the life expectancy of critical assets. 

With the expansion in the number of high-fidelity metering devices (i.e., phasor measurement units 

(PMUs) and micro-PMUs (μPMUs)) in power systems, data-driven diagnostics frameworks have 

become feasible for utilities and system operators.  

Event classification using the wavelet transform has been extensively investigated in the 

literature [201]-[204]. In [205], the authors used the wavelet transform and support vector machine 

(SVM) for feature representation and classification of  disruptive events. Masoum et al. proposed 

a novel approach for the detection and classification of disturbances in power systems [208]. The 

distorted signal is first denoised using the discrete wavelet transform (DWT), and the dominant 

features are then fed to a wavelet network classifier. A wavelet-based neural network method for 

detection and classification of disruptive events in power systems was proposed in [209]. In 

general, DWT-based methods are an effective technique for dimensionality reduction. They reduce 

the computational time while preserving the accuracy. The multi-resolution analysis used in DWT 

is achieves quicker data mining and reduces data storage requirements. However, compared to 

other methods, DWT based methods do not perform well in the presence of noise. 

Another approach to the detection and classification of disruptive events it to use support vector 

machines (SVM) [210]-[214]. In [215], [215], two different classification methods are compared. 

The first method represents features using principal component analysis (PCA) to obtain the input 

to a multi-class SVM. In the second method, feature representation and classification use the 
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autoencoders and softmax classifiers, respectively. Although the SVM can handle high 

dimensional data well, it requires a proper choice of the kernel function and suffers from 

overfitting. In addition, its computational complexity increases drastically with the size of the 

training set. 

Fuzzy-based methods for the classification of power quality disturbances were investigated in 

[216]-[219]. Manikandan et al. proposed a new method based on a sparse signal decomposition 

algorithm on hybrid dictionaries for detection and classification of disruptive events [220]. Fuzzy 

methods are particularly useful for pre and post data analysis. However, their drawback is the high 

resource consumption involved [221]. 

Event classification is a significant task that has been extensively investigated within various 

research areas in the literature. Event detection and classification using the S-transform have been 

widely studied in [222]-[225]. Event classification based on S-transform and probabilistic neural 

network (PNN) needs fewer features compared to the wavelet based method and outperforms 

feedforward multilayer (FFML) and learning vector quantization (LVQ) methods [222]. Unlike 

the wavelet transform, the features obtained from the S-transform have physical significance and 

can quantify the disturbances. The time-frequency resolution of S-transform makes it a good 

candidate for event classification. In addition, it results in better accuracy in the presence of noise. 

Using a modular neural network yields better accuracy and requires less training time, compared 

to a single NN [225]. 

In [226], a new approach for event classification and localization in power system was proposed 

based on the hyperbolic S-transform (HS) and radial basis function neural network (RBFNN). The 

HS-transform was applied to the input signal to generate the correspondent time-frequency 

contours, phase contours, and absolute phase components. The extracted numerical indices then 

are fed to RBFNN for classification. In [227], the authors presented a method for disruptive event 

classification using the S-transform and based on genetic algorithm (GA) and PNN. The dominant 

features of the data captured by the S-transform are fed to the PNN for the automatic classification 

of disturbances. Finally, GA is used to optimize the smoothing parameters of the PNN and improve 

the overall classification accuracy. Although this method has some advantages, the performance 

of the genetic algorithm depends on the proper choice of mutation and crossover methods as well 

as the proper choice of initial population, and the method has a very slow convergence rate. Hence, 
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the PNN’s are very slow to train and need much more memory than multilayer perceptron 

networks. 

In [228], an autoencoder based neural network is proposed for the classication of the abnormal 

events in the distribution system,A wide variety of methods are available to train neural networks 

for classification, such as the scaled complex conjugate algorithm [224], improved generalized 

adaptive resonance theory [229], Marquardt Levenberg [230], learning vector quantization 

combined with genetic algorithm [231] and  region growing [232], [245]. Nevertheless, there are 

promising constrained optimization approaches in the mathematics literature that have not been 

used to train neural networks for classification applications.  

In [159], it is shown that an optimization approach, known as the quotient gradient method, 

offers many advantages in training neural networks over conventional approaches. This stems from 

the fact that QGS finds the global minimum of the squared error criterion optimized in neural 

network training rather than the local minima to which other training approaches often converge.  

The method is a trajectory-based methodology that uses trajectories of a nonlinear dynamical 

system, the quotient gradient system (QGS), to find feasible solutions of constrained optimization 

problems [30]. The trajectories of the QGS converge to its equilibrium point, which is also the 

solutions to the optimization problem.  

The quotient gradient method is a systematic approach to find the feasible solutions of the 

constraint satisfaction problems. It transforms the constraint satisfaction problem into an 

unconstrained minimization problem that defines the QGS. The equilibrium points of the QGS are 

local minima of the unconstrained minimization problem as well as the feasible solutions of the 

constraint satisfaction problem. In [159], the authors used the QGS to train a single stage fully 

recurrent neural network for nonlinear system identification and compared the results with those 

of error backpropagation.  

QGS does not have user dependent variables, such as learning rate. Unlike Newton-based 

methods, it does not require a huge number of measurements. Furthermore, QGS is not sensitive 

to the choice of starting point and does not require a considerable amount of memory. These 

advantages make QGS an attractive training approach for neural networks.  

In this paper, we propose the use of QGS to train a two-stage partially recurrent neural network 

for event classification and localization in power distribution networks. We compare the results of 

QGS training with those of genetic algorithm trained networks. Both the underlying theory and 
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extensive simulation results show that QGS consistently outperforms EBP, even after multiple 

initialization to improve EBP results. QGS also outperforms networks trained using genetic 

algorithms. This is because QGS systematically escapes from the stability region of one local 

minimum and moves toward another and can thus search a larger space for local optimal solutions.  

In this study, we propose the use of QGS to train a two-stage partially recurrent neural network 

for event classification and localization in power distribution networks. We compare the results of 

QGS training with those of genetic algorithm trained networks. Both the underlying theory and 

extensive simulation results show that QGS consistently outperforms EBP, even after multiple 

initialization to improve EBP results. QGS also outperforms networks trained using genetic 

algorithms. This is because QGS systematically escapes from the stability region of one local 

minimum and moves toward another and can thus search a larger space for local optimal solutions 

This study proposes a novel disruptive events classification and localization using PMU data in 

distribution grids. The paper considers four different events: (1) malfunctioned capacitor bank 

switching; (2) malfunctioned regulator on-load tap changer (OLTC) switching; (3) grid 

reconfiguration; and (4) normal abrupt load change. The proposed classification algorithm is 

developed using neural networks trained with the quotient gradient method. The contributions of 

the approach are as follows: 

It provides a single framework for event classification and localization in distribution grids 

using PMU data. This is a major simplification over other data-driven methods that separate the 

two steps. 

The proposed classifier is quite resilient in the presence of measurements noise and can 

distinguish classes better than genetic algorithm and EBP trained neural networks. In the presence 

of large measurement noise, the QGS trained network outperforms GA trained network and error 

backpropagation trained network by a significant margin. 

The proposed method is based on a two-stage neural network that improves the classification 

accuracy compared to state-of-the-art NN-based classifiers. The first layer distinguishes the 

malfunctioned capacitor bank switching and reconfiguration events. The second layer 

distinguishes between events that have similar signatures and are much more difficult to separate; 

namely, malfunctioned OLTC and abrupt load changing events. [251]. 
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7.2 QGS-based Neural Network Methodology for Event Classification 

7.2.1 Normal vs Abnormal Events in Distribution Grids 

Disruptive events occur intermittently in power systems interrupting normal operation. Finding 

a mechanism to detect, classify, and localize the source and location of these events prevents 

further damage to equipment and power outages.  

Figure 43 illustrates the whole picture of the proposed event diagnostics framework. High-

resolution metering devices, such as PMUs, are installed at several nodes in distribution systems. 

The data are measured and then transmitted to the data storage and archiving center via 

communication links, such as LTE networks [233].  Finally, post-event processing, including event 

classification and localization, is performed. 

 

Figure 43. PMU data-driven event classification in distribution systems 

Four different events are studied in this paper: i) malfunctioned capacitor bank switching; ii) 

malfunctioned regulator OLTC switching; iii) grid reconfiguration; and iv) normal abrupt load 

change. The first two classes are disruptive events, and the last two are normal events. 

Malfunctioned capacitor bank switching events occur because of failure in the mechanical 

switches of transformers. It takes about one cycle, i.e., 16.67 ms, for a capacitor bank to switch 

[234]. Malfunctioned regulator OLTC switching occurs when the tap changer is dislocated to a 

position and then relocated to its original position.  This disturbance can result from aging and 

degradation of the selector switches in regulators. The on-load tap changer switching takes about 

30-200 ms [235]. In the grid reconfiguration event, one recloser opens at one part of the network, 

and another one closes. Opening and closing distribution reclosers take about five cycles, i.e., 

about 83 ms [236]. The last class is the abrupt load changing occurs due to an increase or decrease 
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in demand in some nodes of the network. In this paper, events are first categorized based on their 

types and then based on their locations. Therefore, each event with a specific type and at a 

particular location is assigned to a class. 

PMUs measure voltage magnitudes (pu), voltage angles (degree), current magnitudes (pu), and 

current angles (degree). For classification, we calculate: (i) the difference between two successive 

PMU samples, i.e., the change in voltage magnitude between two successive samples (|𝑣(𝑛 +

1)| − |𝑣(𝑛)|), (ii) the change in the voltage angle between two successive samples (𝛿𝑣(𝑛 + 1) −

𝛿𝑣(𝑛)), (iii) the change in the current magnitude between two successive samples (|𝑖(𝑛 + 1)| −

|𝑖(𝑛)|), and (iv) the change in the current angle between two successive samples (𝛿𝑖(𝑛 + 1) −

𝛿𝑖(𝑛)). It is assumed that the sequence of events, i.e., the pre- and the during-event sequence is 

identified before initiating the classification process with an algorithm such as [246],[247]. Next, 

the feature matrix is formed using the current magnitude (pu), and current angle (degree) of the 

pre-event and during-event PMU samples along with the difference between the successive pre-

event and during-event samples, as depicted in Figure 44. The feature matrix is the input to the 

neural network for classification 

 

Figure 44. Feature selection process 

7.2.2 QGS-based NN Classification Methodology 

A systems of linearly or nonlinearly constrained equations appears in many fields of 

engineering and science. Lee and Chiang used the trajectories of a nonlinear dynamical system, 

the QGS, to find feasible solutions of the constraint satisfaction problem [30]. This section reviews 

the work of Lee and Chiang. 
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Consider the following constraint satisfaction problem 

𝐶𝐼(𝒚) < 0 

𝐶𝐸(𝒚) = 0, 𝒚 ∈ 𝑅
𝑛−𝑙 

(7.1)  

where 𝐶𝐼(𝒚) is the set of inequality constraints and 𝐶𝐸(𝒚) is the set of equality constraints and 𝒚  

is the vector of unknown variables to be found. To guarantee the existence of the solution, 𝐶𝐼 =

(𝑐1, … , 𝑐𝑙)
𝑇: 𝑅𝑛−𝑙 → 𝑅𝑙 and 𝐶𝐸 = (𝑐𝑙+1, … , 𝑐𝑚)

𝑇: 𝑅𝑛−𝑙 → 𝑅𝑚−𝑙 must be smooth. Lee and Chiang 

argued that the constraint satisfaction problem can be rewritten as the unconstrained minimization 

problem 

min
𝒙
𝑓(𝒙) =

1

2
‖𝒉(𝒙)‖2, 𝒙 = (𝒚, 𝒔) ∈ 𝑅𝑛 (7.2)  

𝒉(𝒙) = [
𝐶𝐼(𝒚) + �̂�

2

𝐶𝐸(𝒚)
] ∈ 𝑅𝑚, �̂�2 = (𝑠1

2, … , 𝑠𝑙
2)𝑇 (7.3)  

where �̂� is set of introduced slack variables needed to transform the inequality constraints to 

equality constraints. Local minima of unconstrained minimization problem are possible feasible 

solutions of the original constrained satisfaction problem. The QGS is a nonlinear dynamical 

system based on the constraints given by 

�̇� = 𝐹(𝒙) = −𝛻𝒇(𝒙) ≔ −𝐷𝒙𝒉(𝑥)
𝑇𝒉(𝒙) (7.4)  

The stable equilibrium points of (4) are local minima of the unconstrained minimization problem, 

which are the possible feasible solutions of the constraint satisfaction problem [30]. To 

characterize the feasible points we need the following definitions. 

A solution of the QGS starting from 𝒙(0) at 𝑡 = 0 is called a trajectory (𝜙(. , 𝒙): 𝑅 → 𝑅𝑛). A 

path connected component of the 𝐹−1(0) is called an equilibrium manifold. Every stable 

equilibrium manifold has a stability region defined as 

𝐴(∑𝑠) = {𝑥 ∈ 𝑅
𝑛 ∶  𝑙𝑖𝑚

𝑡→∞
𝜙(𝑡, 𝑥) ∈ ∑𝑠} (7.5)  

The stability boundary, denoted by 𝜕𝐴(∑𝑠), is the boundary of the stability region of stable 

equilibrium manifold. Moreover, stable equilibrium manifolds of the QGS are path components of 

the solution set of the constraint satisfaction problem. Note that the stable equilibrium manifolds of 

the GQS are not necessarily in the feasible region of the constraint satisfaction problem. In such 

cases, the QGS must escape from the region of attraction of the stable equilibrium manifold and 

enter another stability region. This process must be repeated until the QGS enters the stability region 
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of all stable equilibrium point or until it reaches the stopping criterion. The QGS can reach the 

stability region of the stable equilibrium point by integrating from an initial point, which can be 

infeasible. The QGS can escape from the stability region by integrating backward in time. The 

eigenvalues of the Jacobian matrix of the QGS are a stability measure. Escaping from the stability 

region of local optimal solution and moving toward another local optimal solution enables QGS to 

search a larger space for local optimal solutions without passing one solution twice. Hence, the 

algorithm can find more solutions in comparison to multiple initialization and training with EBP 

algorithm [30],[159]. 

Neural networks have been successfully used in many engineering applications, including 

system identification and pattern recognition among the others. In this study, we use a three-layer 

recurrent neural network with one hidden layer. Figure 45 depicts the internal structure of the 

neural network. 𝒖(𝑘), 𝒛(𝑘) and �̂�(𝑘) are the input, internal state and output vectors of the network 

and are respectively defined as 

𝒖(𝑘) = [𝑢1(𝑘) … 𝑢𝑛(𝑘)]
𝑇 

𝒛(𝑘) = [𝑧1(𝑘) … 𝑧𝑚(𝑘)]
𝑇 

�̂�(𝑘) = [�̂�1(𝑘) … �̂�𝑞(𝑘)]𝑇 

(7.6)  

The governing equation of the network is 

𝒛(𝑘) = 𝝍(𝑊𝒖(𝑘) + 𝑃𝒛(𝑘 − 1)) 

�̂�(𝑘) = 𝑉 𝒛(𝑘) 
(7.7)  

where 𝝍 is the activation function of the hidden layer nodes. The activation function is the tangent 

hyperbolic function 

𝜓(𝑥) = tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (7.8)  

For a network with 𝑛 inputs, 𝑚 hidden layer nodes and 𝑞 outputs, 𝑊 and 𝑉 are 𝑚 × 𝑛 and 𝑞 × 𝑚 

matrices respectively and 𝑃 is, a 𝑚 ×𝑚 diagonal matrix. The cost function for training network s 

the Sum of Squared Errors (SSE) 

𝑆𝑆𝐸 =∑𝒆(𝑘)𝑇𝒆(𝑘) = ∑(�̂�(𝑘) − 𝒚(𝑘))
𝑇
(�̂�(𝑘) − 𝒚(𝑘))

𝑁

𝑘=1

𝑁

𝑘=1

 (7.9)  

where 𝒆(𝑘) is the error between network output, �̂�(𝑘), the target output 𝒚(𝑘), and 𝑁 is the number 

of training samples. 
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Figure 45. Structure of the neural network 

QGS is used to minimize the SSE to find the optimal values of the network weights. QGS 

provides a systematic search method to find the local minima of the unconstrained minimization 

problem of (7.2). To train the neural network using the QGS, we write the training set as the 

equality constraints of (7.1). The resulting minimization problem is to minimize the sum of the 

squared errors and is solved using the QGS. The QGS finds the set of local minima of the 

optimization problem and the local minimum with the lowest cost is the global minimum of the 

minimization problem. If 𝑁 measurement samples are available, the constraints are 

𝒉(𝒙) = [ℎ𝑖(𝒙)], 𝑖 = 1,2, … ,𝑁 

ℎ𝑖(𝑥) = 𝑉𝝍(𝑊𝒖(𝑖) + 𝑃𝒛(𝑖 − 1)) − 𝑦(𝑖) 
(7.10)  

where 𝒙 is the vector of network parameters comprising all the elements of 𝑉 and 𝑊 and nonzero 

elements of 𝑃 with 

= [
𝒗𝟏
𝑻

⋮
𝒗𝒎
𝑻
]

𝑞×𝑚

𝑊 = [
𝒘𝟏
𝑻

⋮
𝒘𝒎
𝑻
]

𝑚×𝑛

𝑃 = 𝑑𝑖𝑎𝑔(𝒑)𝑚×𝑚 (7.11)  
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In (7.11), 𝑑𝑖𝑎𝑔(𝒑) denotes a diagonal matrix with the elements of 𝒑 as its diagonal elements. 

Using (7.11), 𝒙 can be expressed as 

𝒙 = [𝑥𝑖]𝑛𝑝×1 = [𝒗𝟏, . . , 𝒗𝒎, 𝒘𝟏, … ,𝒘𝒎, 𝒑]
𝑻 , 𝒏𝒑 = 𝒎× (𝒏 + 𝒒 + 𝟏) (7.12)  

In addition to the constraints of (7.1), upper and lower bounds are imposed on the network 

parameters. The upper and lower bounds are inequality constraints that can be transformed into 

equality constraints by introducing slack variables. The QGS for training neural network is written 

as 

�̇� = −𝒇(𝒙) = −𝐷𝑥𝒉(𝒙)
𝑇𝒉(𝒙) (7.13)  

Where 

𝐷𝑥𝒉(𝒙) =

[
 
 
 
 
𝜕ℎ1(𝒙)

𝜕𝒙
⋮

𝜕ℎ𝑁(𝒙)

𝜕𝒙 ]
 
 
 
 

𝑁×𝑛𝑝

 (7.14)  

To train neural network using QGS, the feature vector and target values are used to construct the 

constraint set (7.10), then the constraint set is transformed into an unconstrained minimization 

problem. Equation (7.13) defines the QGS for finding local optimal solutions of the unconstrained 

minimization problem. Using the fact that the equilibrium points of QGS are local minima of the 

unconstrained minimization problem, the algorithm finds a QGS equilibrium point and then 

escapes from it and moves towards another QGS equilibrium point. The first step is done by 

integrating the QGS from a starting point, which need not be feasible, until QGS reaches one of 

its equilibrium points. Next, we escape from the stability region of the stable equilibrium point to 

an unstable point with backward integration of QGS in time.  After reaching an unstable point, we 

integrate QGS forward in time to find another stable equilibrium point. The eigenvalues of the 

Jacobian matrix can be used as a measure of stability. The algorithm continues until it cannot find 

any new equilibrium point or until it satisfies the stopping criterion.[159]. 

7.3 Simulation Results 

7.3.1 IEEE 123 Bus Test System 

To validate the performance of the QGS-trained neural network, we use it to classify events in 

the IEEE 123-bus test systems. The modified IEEE 123-bus system is shown in Fig.4. The network 

is composed of 
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 i) four three-phase capacitor banks at buses 51, 57, 83, and 108, 

ii) four voltage regulators at bus 149-150, bus 9-14, bus 25-26, and bus 67-160,  

iii) 91 loads at different buses, 

iv) six normally closed and six normally opened reclosers at several buses. 

The line model used for this system is a “Pi” model with shunt capacitance. The line parameters, 

R, X, and C matrices are properly chosen for the unbalanced system. The loads in the network are 

defined with their nominal active and reactive powers. The loads are modeled with one of the 

following three implementations 

1) Constant active power P and constant reactive power Q  

2) Constant impedance Z 

3) Constant current magnitude I  

The voltage regulator has a control, which can change the line drop compensator setting by 

adjusting R, X, the primary of CT, and the PT ratio. There are 33 different tap positions on the 

regulator that allows for −10% to 10% variation from the nominal value. 

There are five PMUs located on five buses, 1, 13, 18, 60, and 97 for streaming data. The PMU 

located at bus 1 serves as the angle reference for other PMUs. The other four PMUs measure 

voltage at bus 13, 18, 60, and 97 respectively, and current from bus 152 to 13, bus 135 to 13, bus 

160 to 60, and bus 197 to 97, respectively. It is assumed that PMUs only stream the steady-state 

signals and transient states are ignored. Therefore, all the simulations are performed in the steady-

state mode using OpenDSS, a comprehensive electrical power system simulation tool primarily 

developed for distribution systems [238]. The PMUs used in this paper have two reporting rates: 

i) 60 sample per second (SPS), such as SEL 651 [239]; and ii) 120 SPS, such as the μPMUs 

developed at the University of California, Berkeley [240]. 

Figure 47 depicts the PMU voltage magnitude of phase a at bus 60 over one second, 60 samples, 

corresponding to four events, i) a malfunctioned capacitor bank switching at bus 57, ii) a 

malfunctioned OLTC switching of the voltage regulator between bus 149 and 150, iii) an abrupt 

load change at bus 71, and iv) a line reconfiguration  due to opening of S2 and closing S5. In the 

malfunctioned capacitor switching, the capacitor switches off and then switches back on. The 

switching changes the amount of reactive power in the system and, subsequently, causes voltage 

variations in the capacitor bank substation and neighboring substations. In the malfunctioned 

OLTC switching, the tap changer dislocates to an unwanted position and then returns to its original 



112 

 

position. Shifting the position of the tap changer causes a change in the resistance and reactance 

of the regulator and changes the turn ratio of the regulator and the Y-bus of the system. In the 

reconfiguration event, opening one switch and closing another changes the system topology and 

the system Y-bus. This changes the voltage and current in the system. 

 

 

Figure 46. The modified IEEE 123-bus system 
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Figure 47. PMU voltage magnitude of phase a at bus 60 over one second a) malfunctioned 

capacitor bank switching, b) malfunctioned OLTC switching c) abrupt load changing c) 

reconfiguration 

Data-driven event diagnostics methods rely on the availability of historical datasets with event 

information. However, the number of abnormal events with known class type is limited in practice. 

Three main solutions are used to overcome this challenge [241],[242],[243]. The first solution is 

to assume all unknown events as a single class and conduct a supervised event classification based 

on available data. The second is to apply an unsupervised clustering algorithm to detect all the 

events that fall under the same group and then use a supervised classification on the available data. 

The third solution is to simulate all the classes in the power system software, train the data using 

the classifier, then apply it to the test data. Because of insufficient field data for events, this paper 

adopts the third solution. 

To classify the events according to their types and locations, events are divided into 13 different 

classes where each class is labeled with a tag indicating its types and location. For example, if an 
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event is classified as class 2, it is concluded that a malfunctioned capacitor switching occurred at 

bus 51, as shown in Figure 47. If an event is classified as class 7, it is concluded that a 

malfunctioned OLTC switching occurred between buses 25 and 26.  This procedure is followed 

for other classes to label all the classes. 

To create enough experiments for malfunctioned three-phase capacitor bank switching events 

(classes 1 to 4), the capacitor switching are simulated at several loading conditions.  There are total 

of 91 different loads in the network, ten different loading levels ranging from 50% to 140% of the 

average level with 10% increment are simulated. This results in an overall of 910 experiments for 

the capacitor banks switching class. The same number of experiments are obtained for 

malfunctioned OLTC switching events (labeled as classes 5 to 8). For a normal abrupt load change 

(class 9), only one load suddenly changes at a every instant. The abrupt load change is simulated 

based on 5%, 10%, 15%, 20%, and 25% increase or decrease in its power. Therefore, the overall 

number of experiments in class 9 is 910. Finally, for the reconfiguration events, it is assumed that 

one recloser opens and another one closes. We have simulated four different reconfiguration events 

as: (1) S1 opens & S5 closes; (2) S2 opens & S5 closes; (3) S3 opens and S5 closes; and (4) S4 opens 

and S5 closes. An overall number of 910 experiments is simulated for the reconfiguration events 

(classes 10 to 13). The accuracy of the classification is assessed using the following index:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠
 (7.15)  

Preliminary results revealed that classifying between classes 6, 7, 8 and 9 (OLTC switching of 

regulators two, three, four and abrupt load changing) is difficult due to the similarity of their PMU 

data. Therefore, a two-stage neural network for event classification is proposed and shown in 

Figure 48. The extracted feature vector is first fed into the neural network in the first stage. This 

stage distinguishes the capacitor bank switching and the recloser actions versus the remaining 

classes. The second stage classifies the OLTC switching versus the abrupt load changes. The 

optimal number of hidden layer nodes is 𝑚 = 8 for the first network and 𝑚 = 6 for the second 

neural network. All the parameters of networks are initialized with random values from a zero-

mean normal distribution with standard deviation 𝜎 = 0.5. We have 900 samples for each type of 

event. We randomly choose 100 samples from each type of events to train the neural networks 

and use the remaining samples as the evaluation dataset. The QGS finds 15 different local minima 

for the optimization problem. We select the parameter values corresponding to the local minimum 
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with the best generalization capability as the optimal parameters of the neural network. The neural 

network with the optimal parameters is used to classify new events.  

Table 11 shows the confusion matrix where the performance of the trained neural networks is 

evaluated. Class 6, the OLTC switching of the regulator between buses 9 and 14 is correctly 

classified with 88% accuracy and 10% misclassified as class 7 and 2% misclassified as class 5. 

Class 7, the OLTC switching of the regulator between buses 25 and 26 is classified with 84% 

accuracy, while 16% of the events are misclassified as class 6. The classification accuracy of class 

8 is 98% with 2% misclassification as class 9. The classification accuracy of class 9 is 94% with 

6% misclassification as class 8.  The classification accuracies for the remaining classes of 100% 

validates the acceptable performance of the proposed two-layer neural network for event 

classification in distribution grids. The overall classification accuracy is 96%. 

 

Figure 48. Two-layer NN-based events classification 

Table 11. Classification confusion matrix 

Output Class 

T
ar

g
et

 C
la

ss
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 
100

% 
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2 0% 
100

% 
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

3 0% 0% 
100

% 
0% 0% 0% 0% 0% 0% 0% 0% 0%  0% 

4 0% 0% 0% 
100

% 
0% 0% 0% 0% 0% 0% 0% 0% 0% 

5 0% 0% 0% 0% 
100

% 
0% 0% 0% 0% 0% 0% 0% 0% 

6 0% 0% 0% 0% 2% 88% 10% 0% 0% 0% 0% 0% 0% 

7 0% 0% 0% 0% 0% 16% 84% 0% 0% 0% 0% 0% 0% 

8 0% 0% 0% 0% 0% 0% 0% 98% 2% 0% 0% 0% 0% 

9 0% 0% 0% 0% 0% 0% 0% 6% 94% 0% 0% 0% 0% 
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10 0% 0% 0% 0% 0% 0% 0% 0% 0% 
100

% 
0% 0% 0% 

11 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
100

% 
0% 0% 

12 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
100

% 
0% 

13 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
100

% 

 

7.3.2 PMU Reporting Rate Analysis 

To assess the performance of the proposed method with respect to the reporting rate of PMU, 

the number of hidden layer nodes of the first and second neural networks must first be determined. 

In this scenario, the number of hidden layer nodes is 10 for the first neural network and 4 for the 

second. Increasing the PMU reporting rate does not have a significant impact on the classification 

rate but improves the overall classification accuracy by 0.66%. This is because a 60 SPS reporting 

rate is fast enough to capture the events in the grid. Table 12 shows the overall classification 

accuracies for 60 and 120 SPS reporting rates. 

Table 12. Overall classification accuracies for 60 and 120 SPS 

PMU 

reporting rate 
60 sps 120 sps 

Accuracy 96% 96.66% 

7.3.3 Measurement Noise Analysis  

PMU data may include errors or measurement noise. To analyze the effect of measurement 

noise, Gaussian white noise is added to the PMU data stream. The measurement noises with 

standard deviations of 𝜎2 = 0.005, 𝜎2 = 0.01, 𝜎2 = 0.02, and 𝜎2 = 0.05 of the reported phasor 

values are added to the PMU data, and the noisy data is then used to train and evaluate the neural 

networks. Figure 49 shows the overall classification accuracies with noisy data. As it can be seen 

from figure 49, increasing the noise level, decreases the classification accuracy. 
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Figure 49. Overall classification accuracies with different level of noise 

7.3.4 Number of PMUs 

To analyze the impacts of number of installed PMUs on the performnace of the proposed 

method, the neural networks are trained using the data stream from 3 PMUs (PMU 2, 3, 4), 2 

PMUs (PMU 3, 4), and only PMU 4, respectively. Figure 50 shows the overall classification 

accuracies for different numbers of PMUs. The classification accuracy increases with the number 

of PMUs. Fewer PMUs result in fewer features from the grid and decreases the classification 

accuracy. However, with even one PMU the proposed method achieves a limited accuracy level. 

This shows that the proposed data-driven approach can be useful as utilities install PMUs over an 

extended period. 

 

Figure 50. Classification accuracy with different number of installed PMU’s 
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7.3.5 Boosting Scenario 

In the boosting scenario, we add the misclassified data to the training set and retrain the neural 

networks. After training with the new data set, a new set of test data is fed to the neural network, 

the misclassified data is added to training data, and the network is trained again. This process is 

repeated three times and then we test the network with a new test data set. Boosting does not appear 

to have a significant effect on the anomaly classification results and only improves the overall 

accuracy by a modest 0.44%. Table 13 shows the overall classification accuracy with the boosting 

scenario. 

Table 13. Classification accuracy with boosting scenario 

Training 

scenario 
Normal Boosting 

Accuracy 96% 96.44% 

7.3.6 Comparison with Traditional Neural Networks 

To show the effectiveness of the QGS in training neural networks for event classification and 

localization, we compare the overall classification accuracy with those obtained by neural 

networks trained using the classical error backpropagation (EBP) and the genetic algorithm (GA). 

The genetic algorithm training uses the MATLAB optimization toolbox. An initial population size 

of 10000, with top fitness scaling, Roulette selection, adaptive feasible mutation and scattered 

crossover resulted in the best performance for the GA-trained neural network.  

Table 14 shows the results of the three different training methods. The overall classification 

accuracies are calculated with measurement noise variance 𝜎2 = 0.05. The QGS and GA result in 

superior performance compared to backpropagation. This is expected since both methods are 

global optimization approaches. Although, the QGS- and GA-trained network errors are within the 

acceptable range, the QGS-trained network has better generalization capability and outperforms 

the GA-trained network by 6.5%.  

Training with EBP was repeated multiple times to find the network with the best performance. 

Although multiple initialization of EBP can improve the accuracy of the network, both the 

underlying theory and extensive simulation results show that QGS consistently outperforms EBP. 

This is because QGS systematically escapes from the stability region of one local minimum and 

moves toward another and can thus search a larger space for local optimal solutions. 
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Table 14. Classification accuracy comparison with GA- and EBP-based NN 

NN 

Training 

method 

QGS GA EBP 

Accuracy 83.77% 77.33% 70.44% 

7.4 Conclusion 

This study proposed the use of the quotient gradient system (QGS) to train recurrent neural 

networks (NNs) for classifying and localizing events in power distribution networks. The proposed 

algorithm is developed to distinguish two classes of events, malfunctioned capacitor bank 

switching and malfunctioned on-load tap changer (OLTC) switching versus normal recloser 

switching and abrupt load changing. To enhance the accuracy of state-of-the-art events classifiers, 

NNs reformulate a constraint satisfaction problem as an unconstrained minimization problem to 

be solved using the QGS approach. The input data are the phasor measurement units (PMUs) data 

from the grid. The performance of the proposed algorithm is evaluated using the simulation results 

in the IEEE 123-bus system. The sensitivity analysis with respect to the reporting rate and number 

of PMUs, noise level, boosting scenario, and the comparison with genetic algorithm- and error 

backpropagation-based NNs validate the superior performance of the proposed event classification 

and localization method.
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Chapter 8. Conclusion and Future Work 

This dissertation proposes several applications and training methods for artificial neural 

networks. These methods reduce the number of hidden layer nodes in neural networks, which 

makes them more desirable for online identification and control applications. In addition, this 

dissertation proposes using two trajectory based optimization approaches for training neural 

networks. The trajectory-based optimization makes neural network training a systematic and 

simple procedure. 

Chapter 2 proposes the idea of parallel implementation of different neural networks with 

feedforward component for nonlinear system identification. The method is tested on two nonlinear 

systems. Simulation results show that the feedforward component can drastically reduce the 

number of hidden layer nodes without significant increase of the generalization error and in some 

cases; it even reduces the generalization error. Future work on this chapter can be proofing the 

convergence of the echo state network with feedforward component and studying the effect of 

feedforward component on the short time memory of the echo state network. 

In chapter 3, we used wavelet neural network with feedforward component to identify the model 

of 5 story benchmark structure and designed a model predictive controller based on the wavelet 

neural network model. Simulation results show that wavelet neural network based model 

predictive controller can effectively reduce the acceleration and displacements of the base and 

different stories of the structure during near fault and far field ground motions and outperforms 

the traditional PID and LQG controllers. Future work on this subject is using echo state network 

with feedforward component to identify the model of the structure and implementation of the 

model and controller on the test structure. 

Chapter 4 proposes networked control of unmanned vehicle using wavelet neural network and 

model predictive controller. Wavelet neural network is used to identify the model of unmanned 

vehicle in presence fixed and random network delay and packet loss and model predictive 

controller uses the wavelet neural network model to find the future control actions by optimizing 

the controller cost function. The model predictive controller uses extended prediction horizon to 

cope with the network delay and packet loss in the network. Simulation results shows that model 

predictive controller with extended prediction horizon can effectively control the unmanned 

vehicle and calculates the control action to track the desired path. Lyapunov theory is used to prove 
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the convergence of the wavelet neural network and prove the stability of the wavelet neural 

network based model predictive controller. Using different identification method with model 

predictive controller with extended prediction horizon may reduce the tracking error at the end. In 

addition, proving the stability of the controller with random network delay and packet loss is a 

challenging problem. 

 Training neural networks is a non-convex optimization problem. During past decades, various 

local and global optimization approaches is used for training artificial neural networks. Chapter 5 

proposes using quotient gradient method for training artificial neural network. Quotient gradient 

method is a systematic approach for finding possible feasible solution of the constraint satisfaction 

problems. This chapter uses the quotient gradient method to find the local optimal solutions of the 

neural network optimization problem and compares the results with those of Newton based 

optimization methods and genetic algorithm. Simulation results shows that quotient gradient 

method can efficiently train the neural networks and outperforms the gradient descent and genetic 

algorithm for training neural networks. Lyapunov theory is used to prove the stability of the 

quotient gradient system and its stability in presence of the measurement noise. Future work on 

this subject includes application of the methodology for training other types of neural networks 

such as wavelet networks and deep networks. Furthermore, adapting the methodology to learn the 

internal structure of the neural network while training the neural network is interesting subject. 

In most of the optimization problems, the feasible region of the optimization problem is union 

of multiple disjoint components. In such a cases, the optimization approach needs to locate disjoint 

components and search the components for local optimal solutions. Chapter 6 proposes using 

dynamical trajectory based approach for training artificial neural networks. Dynamical trajectory 

based methodology uses trajectories of two nonlinear dynamical systems to locate the disjoint 

components of the feasible region and searching feasible components for local optimal solutions. 

Simulation results shows that trajectory based optimization approach is able to find multiple 

components of the feasible region and finds the local optimal solutions in the disjoint components. 

Furthermore, it shows that trajectory based optimization can effectively train the artificial neural 

network for nonlinear system identification and outperforms the genetic algorithm. Lyapunov 

theory is used to prove the stability of the nonlinear dynamical systems and their stability in 

presence of the measurement noise. Future work on this subject is to use the methodology for 

training other neural networks, adapting methodology to learn the number of hidden layer nodes 



122 

 

while training and combination of the methodology with pruning algorithms to prune the neural 

network after training.  

Anomaly classification and detection is essential for maintenance of the power networks. 

Chapter 7 proposes using quotient gradient system for training of two stage partially recurrent 

neural network for anomaly classification in power networks. The high fidelity data from micro-

phasor measurement units is fed to the neural network as the feature vector and the neural network 

detects the anomaly class based on the feature vector. Simulation results shows that the quotient 

gradient system can efficiently train the neural network for anomaly classification and outperforms 

the gradient descent and genetic algorithm trained networks with significant margin. Future work 

on this subject is to uses quotient gradient system for training feedforward and fully recurrent 

neural networks for anomaly classification. In addition, combination of quotient gradient system 

with fully recurrent neural network and pruning algorithms can be subject of another research on 

this subject. 
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