
UNIVERSITY OF LIVERPOOL

NEURAL NETWORK TECHNIQUES FOR
MODELLING AND LEARNING CONTROL

OF AN UNDERWATER ROBOTIC VEHICLE

by

VASSILIOS S. KODOGIANNIS

Thesis submitted in accordance with the requirements of
the University of Liverpool for the Degree of Doctor in Philosophy.

MAY 1994

Department of Electrical Engineering and Electronics

to my Parents

ices for their support and personal sacrifices

ACKNOWLEDGEMENTS

I am deeply indebted to my thesis advisor Dr. P. J. G. Lisboa for his support and

encouragement throughout the period of this research. Innumerable discussions with
him, have helped me in concentrating the research effort and completing it in a shorter

time-frame.

I wish to thank Prof. J. Lucas for accepting this Ph. D thesis and providing unlimited

access to the resources of his research group. The computing facilities at the

Department of Electrical Engineering and Electronics had been vital in successfully

completing this thesis.

I extend my appreciation to my colleague R. Yu for his kind assistance during the last

period of this research.

Thanks are also due to EU (MAST Initiative, Project No: 0030-C) and NATO, for

providing the financial support throughout the period.

My greatest debt of all, however, is to my parents: I dedicate this Ph. D thesis to them,

yia panta....

111

ABSTRACT

Oceanographic exploration is one of the fast emerging applications of robotics. Since

a vast region of the ocean is still unexplored because of the difficulties in having

manned interventions, robotics is the most suitable alternative. The design of

controllers for Underwater Robotic Vehicles (URVs) is as challenging as for land

based ones. The difficulties in modelling an URV and its hazardous environment

restrict the use of conventional controllers. Artificial neural networks can provide a

general framework for nonlinear modelling and control. This thesis describes the

application of neural networks for the modelling and control of a prototype URV, as

an example of a system containing severe non-linearities. The backpropagation

algorithm is demonstrated successfully on a variety of network architectures. Such

architectures include multilayer perceptrons, recurrent networks and memory neuron

networks. A Model Predictive Control structure, with neural network model is used.

Two architectures are proposed, one-step-ahead and long-range prediction schemes

respectively. These structures are evaluated both in simulation and on-line. The

proposed schemes are shown to provide very satisfactory dynamic response and

tracking characteristics. A hybrid control strategy, which combines neural predictive

with conventional control, is introduced to show the feasibility of combining different

classes of controllers.

IN'

TABLE OF CONTENTS

Notation and Abbreviations ix

1. Introduction 1
1.1 Rationale of the present research

3

1.2 Organisation of the Thesis
6

References ..
7

2. Background and State-of-the-Art 8
2.1 Dynamic Systems

8

2.1.1 Why Nonlinear Control ?
9

2.2 Control of Physical Systems
13

2.2.1 Classical Control
14

2.2.2 Modern Control
15

2.2.3 Intelligent Control
21

2.3 Modelling and Control of URV's
29

2.3.1 Underwater vehicle dynamics
30

2.3.2 Controller architectures for Underwater vehicles 33

References ...
38

3. Artificial Neural Networks 43
3.1 Fundamentals

43

3.1.1 Processing Units
46

N'

3.1.2 Connections between units 46
3.1.3 Activation and output rules 47
3.1.4 Network topologies 48
3.1.5 Information storage 49

3.1.6 Learning Algorithms
.......................... 50

3.1.7 Neural Network Learning Rules
.................. 51

3.2 Multi -layer Feed-forward Networks
..................... 53

3.2.1 The generalised delta rule 54

3.2.2 Working with back-propagation
.................. 58

3.2.3 Deficiencies of back-propagation
................. 62

3.2.4 Optimising the back-propagation network 62

3.2.5 Advanced Algorirhms
......................... 67

3.3 Self-Organising Networks 69

3.4 Reinforcement Learning 72

3.4.1 Associative search 74

3.4.2 Adaptive critic 75

3.5 Concl usions 76

References . .. 77

4. A Neural Network Approach for Identification
of an Underwater Robotic Vehicle 80
4.1 General Features 80

4.2 Vehicle Characteristics 81

4.2.1 A Dynamic Vehicle Model 83

4.3 Networks, Approximation and Modelling
................. 95

4.4 Non-linear System Modelling 97

4.4.1 Modelling Configurations
...................... 100

4.4.2 Identification of Discrete-Time Dynamical Systems
.... 102

4.4.3 Modelling using Multilayer Perceptron Networks 107

4.4.4 Modelling using Radial Basis Functions Networks 115

4.5 Conclusions 119

References .. 119

vi

5. Identification of an Underwater Robotic Vehicle
using Recurrent Neural Networks

................ 122
5.1 Introduction

.................................... 122

5.2 Fully Recurrent Back-propagation Rule
................. 124

5.2.1 Backpropagation Through Time (BPTT)
........... 125

5.2.2 Real-Time Recurrent Learning Rule
.............. 127

5.2.3 Truncated Backpropagation Through Time
.......... 129

5.3 Long Range Predictions using RBFNs
.................. 132

5.4 Spread Encoding Recurrent Networks
.................. 136

5.5 Internal State Recurrent Networks
..................... 142

5.5.1 The Autoregressive Backpropagation Network 142

5.5.2 The Elman Network
......................... 148

5.5.3 Neural Network Identification using Specrtal Functions
. 156

5.6 Conclusions
.................................... 160

References .. 160

6. Control of an Underwater Robotic Vehicle

using Neural Network Approaches 163
6.1 Introduction 163

6.2 Neurocontrol Structures 165

6.3 Predictive Control Strategies 175

6.3.1 Predictive Control using Feedforward Neural Networks
. 175

6.3.2 Predictive Control using Recurrent Neural Networks ... 184

References ..
187

7. Conclusions and Recommendations 190
7.1 Conclusions

190

7.2 Recommendations
192

References ..
194

vii

APPENDIX A

"Aquacube" design 195

APPENDIX B

Published and submitted papers 198

viii

Notation and Abbreviations

The following notation and abbreviations are used in this thesis. Note that vectors are

indicated with a bold font:

URV Underwater Robotic Vehicle

NARX Nonlinear AutoRegressive model with eXogenous inputs

PID Proportional-Integral-Derivative Controller

MRAC Model Reference Adaptive Control

ST Self-Tuning

ANN Artificial Neural Networks

Al Artificial Intelligence

BP Backpropagation learning rule

i (j, k,..) the unit i (j, k,
...)

xP the pth input pattern vector

xP1 the ith element of the pth input pattern vector

iP the input to a set of neurons when input pattern vector p is presented

to the network

IP; the net input of neuron i due to input pattern vector p

OP the output of the network when input pattern vector p was input to the

network

Opi the ith element of the output of the network when input pattern vector

p was input to the network

1X

d' the desired output of the network when input pattern vector p was input

to the network

dP1 the ith element of the desired output of the network when input pattern

vector p was input to the network

aP the activation values of the network when input pattern vector p was

input to the network

aP; the activation values of element i of the network when input pattern

vector p was input to the network

W the matrix of connection weights

w; the weights of the connections which feed into unit i

w; j the weight of the connection from unit j to unit i

F the set of activation functions

F; the activation function associated with unit i

Yj the learning rate associated with weight w; j
9 the biases to the units

e1 the bias input to unit i

U; the threshold of unit i in F;

EP the error in the output of the network when input pattern vector p is

input

the energy of the network

LMS Least Mean Square

$ error signal vector used in BP

MLP Multilayer Perceptron

µ momentum term

ASE Associative Search Element

ACE Adaptive Critic Element

SISO Single Input Single Output

PWM Pulse Width Modulation

T period of the sine-wave signals

FFT Fast Fourier Transform

RAS Random Amplitude Signal

RBF Radial Basis Function

x

(D regression function used in RBFs

ß width of the regression function used in RBFs

c; centre of the gaussian unit i used in RBFs

OLS Orthogonal Least Squares

BPTT Backpropagation through time

RTRL Real Time Recurrent Learning rule

SE Spread Encoding neural network

yf; excitation of node i in a SE architecture

ARNN Autoregressive recurrent neural network (also found as AR)

PRBS Pseudo Random Binary Sequence

MPC Model Predictive Control

MSE Mean-Squared-Error

NP prediction horizon

N� control horizon

damping factor

ß parameter associated with the control part of Eq. 6.2

J cost function associated with the MPC scheme

D delay of the output signal

KP proportional gain in a PI controller

K; Integral gain in a PI controller

a parameter which introduces a difference timescale for changes in the

modified setpoint

0 weight in the output error used in the MPC scheme

X1

CHAPTER 1

Introduction

Central to the operation of modern technology is system regulation and control.

systems from home appliances and automobiles to nuclear reactors and spacecraft

require automatic control systems to maintain their operation.

Most controllers of today are simple in design and are fixed at the time of

development. They suffer from limits on the range of operation, system instability,

improper operation, inefficiency and a multitude of others problems due to their

simple design and lack of adaptability [1.1]. Automatic control researchers are well

aware of these problems and have developed specialised algorithms and techniques to

incorporate more knowledge into control systems. The work, however, is narrow in

focus and has concentrated on specific solutions to precisely defined problems.

Because of the narrow focus and the difficulty in applying the specialised techniques,

many control tasks continue to be solved using very simple controllers. The process

control industry is a good example. Although significant advances in hardware and

control theory have occurred, most systems are still implementing PID (proportional-

integral-derivative) controllers. These controls use 1930s control theory running on

advanced digital hardware.

The main problem with many new techniques is that they require significant

knowledge to be properly implemented. Real-time control of nonlinear systems with

unknown structures or parameters remains an open area of research. Most of the recent

Chapter 1 Introduction

developments in control theory have applied to linear systems with known structures

and parameters. Optimal control techniques, for which a wealth of theory has been

developed [1.2], are directed primarily towards linear systems.
Many different extensions of linear system design techniques have been

studied. For nonlinear systems, the most direct approach is modelling of the plant
dynamics using physical laws in conjunction with off-line experiments to determine

the relationship between the inputs and outputs of the plant. Modelling techniques,

such as fitting linear models to frequency response curves, finite element analysis and

stochastic modelling have been successful at characterising classes of unknown plants.

These techniques have been successful in the control problem when the model

accurately describes the system. The approach is sometimes limited by the

computational complexity of the model or by the inflexibility of the controller when

the plant changes characteristics as the controller operates. Adaptive control, such as

the Model Reference Adaptive Control, has become available to those systems having

such uncertainty. The primary advantage of this approach was that stability of the

adaptive process was guaranteed for a large class of systems.

Although conventional control techniques (both adaptive and non adaptive)

using standard mathematical methods have performed remarkably well, their appeal

tapers off when one is confronted with the control of complex systems characterised

by poor models, high dimensionality of the decision space, distributed sensors,

distributed decision makers, multiple time scales, multiple time constants, high noise

levels, drifting parameters values, stringent performance requirements, non-linearities,

and so on. As a system becomes more complex, so does the complexity associated

with the computation of the control law and the task of implementing the control in

a timely fashion. The trend of control theory, therefore, is intended to develop more

general approaches, which can solve as many applications as possible, even if the

plants are too complex to be modeled with concise mathematical expressions or the

environmental conditions vary too large to be controlled by use of traditional

controllers. The control problem of this kind is no ways a trivial one.

An "intelligent control" method is one that addresses these problems with some

degree of satisfaction. Although, tight definitions are hard to come by, an intelligent

7

Chapter 1 Introduction

system is one that can sense the environment, process the sensor data, and generate

and execute a timely control actions in order to guide the system from an initial state

to a terminal state, while satisfying the constraints and objectives. The greater the

ability to deal with the above problems, the more intelligent is the control system.

When we discuss intelligent control systems, we expect the intelligent control

systems to have reasoning mechanisms with knowledge-based systems such as expert

systems and adaptive controllers to the changing environment. The reasoning

mechanism produces control strategies symbolically for complex and composite tasks

by using knowledge and data base systems after recognition of the environment. As

the reasoning mechanism deals with symbols, whereas the real world is numerical, it

is necessary to classify the data in order to map the numerical sensed data into the

symbolic data for understanding of the process state. However, it is difficult to decide

such rules that classify the numerical data. In expert systems, human experts must

decide these rules by using their domain-dependent knowledge. Moreover, in order to

achieve tasks following the control strategy produced by a reasoning mechanism, it

is necessary for the intelligent control systems to use effective adaptive controller for

servo control.

Furthermore, fuzzy set theory also has potential for intelligent control systems.

It is characterised as an extension of binary Boolean logic, and can be considered as

another powerful tool to model phenomena associated with human thinking and

perception. Fuzzy logic based design for control has several advantages including

simplicity and ease in design. However, as the system complexity increases, it

becomes difficult for the fuzzy logic either to determine right set of rules and

membership functions to describe the system behaviour or to modify existing rules.

In this thesis, an alternative approach is presented which alleviate these difficulties.

1.1 Rationale of the present research

As control methods have found their way into standard practice, they have opened the

door to a wide spectrum of complex applications. Many of them are characterised by

model and/or parametric uncertainty and high disturbance or noise levels. Since the

3

Chapter 1 Introduction

ability of living systems to cope with similar situations is well known, systems

theorists attempted to incorporate such characteristics in artificial systems. As a result,

over the past three decades numerous terms borrowed from psychology and biology,

such as pattern recognition, adaptation, learning and self-organisation, have been

introduced into the systems literature.

Biological information processing systems are some of the most highly

organised structures. They are compact, energy efficient and self-adaptive systems,

which can monitor and control all the body-functions in an optimal way. They

outperform the conventional digital computers in a number of functionalities such as

perception, optimisation, learning and control.

Artificial neural networks try to mimic the biological brain system into

mathematical model. In artificial neural network, a "model" of the brain, connects

many linear or nonlinear neuron models and processes information in a parallel

distributed manner. In conventional Von-Neumann computers, the speed of

computation is limited by the propagation delay of transistors. Because of their

massively parallel nature, neural networks can perform computations at much higher

speed. In addition, the neural networks have many interesting and attractive features.

Learning and self-organisation capabilities are some of these features. Therefore,

neural networks can adapt to changes in data, learning the characteristics of input

signal.

Most neural networks have parameters that control how they learn as they

cycle repeatedly through the training data. The values selected for these parameters

influence how well the trained network performs. Largely due to the adaptive or

empirical nature of the neural network algorithms, parameter choice requires

experimentations, and the results depend in part on the developer's experimental

technique. Finding suitable parameter values by experiment has been an impediment

to the development of these networks, especially because some of the algorithms

consume large amounts of computer time. A single training run can often take hours,

days, or even weeks on workstations. The multiple training runs needed to fully

explore a wide range of possible solutions have been out of the question, forcing

developers to limit problems artificially. Parallel hardware designed especially for the

4

Chapter 1 Introduction

networks removes or reduces this computational barrier, thereby accelerating the

networks' developments.

So why use them? Because they offer valuable characteristics unavailable
together elsewhere. First, they can infer subtle, unknown relationships from data. This

characteristic is useful because gathering data does not require explaining it. Second,

the networks can generalise, meaning they can respond correctly to patterns that are

only broadly similar to the original training patterns. Generalisation is useful because

real-world data is noisy, distorted, and often incomplete. Third, they are nonlinear, that
is, that can solve some complex problems more accurately than linear techniques.

Nonlinear behaviour is common, but can be difficult to handle mathematically. Finally

neural networks are highly parallel. They contain many identical, independent

operations that can be executed simultaneously. This is useful because parallel
hardware can run neural networks quickly, often making them faster than alternative

methods.

Although there is a growing interest in applying neural networks to nonlinear

systems, little work has been reported on using such networks for real-time

applications.

Oceanographic exploration is one of the fast emerging applications of robotics.

Since a vast region of the ocean is still unexplored because of the difficulties in

having manned interventions, robotics is the most suitable alternative. The design of

controllers for Underwater Robotic Vehicles (URVs) is as challenging as for land

based ones. The difficulties in modelling an URV and its hazardous environment

restrict the use of conventional controllers.

Artificial neural networks can provide a general framework for nonlinear modelling

and control. One of the important advantages in using neural networks for the control

applications is that the dynamics of the controlled system need not be completely

known for the design of the controllers. This is very desirable feature in the design of

an underwater vehicle control system.

The current work describes the application of neural networks for the modelling and

control of a prototype URV, as an example of a system containing severe non-

linearities. The goal of this research is to develop practical techniques for stable

5

Chapter 1 Introduction

nonlinear learning control. To meet this goal, two objectives for control of the vehicle

are proposed.

The first objective is to develop accurate model architectures for the prototype

URV. Such architectures include multilayer perceptrons, recurrent networks and

memory neuron networks. The second objective is to develop a technique for

controlling the URV using neural network models. Two architectures are proposed,

one-step-ahead and long-range Model Predictive Control schemes. These structures are

evaluated both in simulation and on-line. A hybrid control strategy, which combines

neural predictive with conventional controller, is introduced to show the feasibility of

combining different classes of controllers.

Two specific issues addressed in the studies are: (i) The complexity of the

network models, in terms of the number of interconnection strengths, with nonlinear

dynamics; and, (ii) The ability of the proposed model predictive control schemes to

provide good tracking performance.

1.2 Organisation of the Thesis

The Thesis is organised into seven chapters. Following the introduction chapter

(Chapter 1), the second chapter gives an overview of dynamic systems and control.

Topics discussed include properties of nonlinear systems and classical, modern and

intelligent control techniques. Chapter 2 also summarises previous studies of different

type controllers in the applications involving underwater robotic vehicles. Artificial

neural networks foundations, properties are the focus of Chapter 3. In Chapter 4, the

mathematical derivation of a linear model of the prototype URV is presented, together

with a NARX neural model capable for one-step-ahead prediction. Chapter 5 presents

the results of studies on backpropagation algorithm as a learning technique for

recurrent and memory neuron network architectures. The proposed Model Predictive

Control schemes are reviewed and analyzed in Chapter 6. Concluding remarks and

final recommendations are provided in Chapter 7. Appendix A gives us some details

of the prototype URV, while Appendix B summarises the papers that have been

produced during this research.

6

Chapter 1

References

Introduction

[1.1] Astrom, K. J., "Toward Intelligent Control", IEEE Control Systems Magazine,
April 1988, pp 60-64.

[1.2] Narendra, K. S. and Parthasarathy, K., "Identification and Control of
Dynamical Systems using Neural Networks", IEEE Trans. Neural Networks,
Vol. 1, No. 1, March 1990, pp 4-27.

7

CHAPTER 2

Background and State-of-the-Art

2.1 Dynamic Systems

A dynamic system refers to a system in motion. The study of dynamic systems is the

investigation of the variations in systems over time. The language of dynamic systems

is the mathematics of differential equations. Thus, the foundations of dynamic system

analysis are the generation and analysis of differential equations.

For control applications, the distinction between linear and nonlinear systems

is important. According to Wylie [2.1], a linear system is defined as:

DEFINITION: "A differential equation is linear if and only if each term of

the equation is of the first degree in its dependent variables or any of its

dependent variable derivatives. "

In comparison, a nonlinear differential equation is simply any differential

equation, which is not linear in the set of all its dependent variables. Real physical

systems in general are nonlinear. Thus, they are a motivation for the study of

nonlinear systems.

Most work in the domain of automatic control has concentrated on linear

systems, mainly for lack of good tools for analysis of nonlinear systems. This is not

as great a drawback as it first appears, considering that any nonlinearity can be

8

Chapter 2 Background and State-of-the-Art

represented as a truncated Taylor series. As long as the system's operation remains

sufficiently close to the state about which equations were linearised, the linear

approximation is adequate. Nevertheless, a fully nonlinear representation is desirable,

and with the wide availability of digital computers this is feasible.

2.1.1 Why Nonlinear Control?

This section describes nonlinear systems and the control of physical systems. A

nonlinear representation of a problem is desirable because actual physical systems are

normally nonlinear. Linear control is a mature subject with a variety of powerful

methods and a long history of successful industrial applications. Thus, it is natural for

one to wonder why so many researchers from such broad areas as aircraft control,

robotics, process control, and biomedical engineering, have recently showed an active

interest in the development and applications of nonlinear control methodologies. Many

reasons can be cited for this interest:

" Improvement of existing control systems: Linear control methods rely on the

key assumption of small range operation for the linear model to be valid. When the

required operation range is large, a linear controller is likely to perform very poorly

or to be unstable, because the nonlinearities in the system cannot be properly

compensated for. Nonlinear controllers, on the other hand, may handle the

nonlinearities in large range operation directly. This point is easily demonstrated in

robot motion control problems. when a linear controller is used to control robot

motion, it neglects the nonlinear forces associated with the motion of the robot links.

The controller's accuracy thus quickly degrades as the speed of motion increases,

because many of the dynamic forces involves, such as coriolis and centripetal forces,

vary as the square of the speed. Therefore, in order to achieve a pre-specified

accuracy in robot tasks such as pick-and-place, the speed of robot motion has to be

kept low. On the other hand, a conceptually simple nonlinear controller, commonly

called computed torque controller, can fully compensate the nonlinear forces in the

robot motion and lead to high accuracy control for a very large range of robot speeds

and a large workspace.

" Analysis of hard nonlinearities: Another assumption of linear control is that

9

Chapter 2 Background and State-of-the-Art

the system model is indeed linearisable. However, in control systems there are many

nonlinearities whose discontinuous nature does not allow linear approximation. These

so-called "hard nonlinearities" include Coulomb friction, saturation, dead-zones,

backlash, and hysteresis, and are often found in control engineering [2.2). Their effects

cannot be derived from linear methods, and nonlinear analysis techniques must be

developed to predict a system's performance in the presence of these inherent

nonlinearities. Because such nonlinearities frequently cause undesirable behaviour of

the control systems, such as instabilities or spurious cycles, their effects must be

predicted and properly compensated for.

*Dealing with model uncertainties: In designing linear controllers, it is

usually necessary to assume that the parameters of the system model are reasonably

well known. However, many control problems involve uncertainties in the model

parameters. This may be due to a slow time variation of the parameters, or to an

abrupt change in parameters. A linear controller based on inaccurate or obsolete values

of the model parameters may exhibit significant performance degradation or even

instability. Nonlinearities can be intentionally introduced into the controller part of a

control system so that model uncertainties can be tolerated. Two classes of nonlinear

controllers for this purpose are robust controllers and adaptive controllers.

" Design Simplicity: Good nonlinear control designs may be simpler and more

intuitive than their linear counterparts. This a priori paradoxical result comes from

the fact that nonlinear controller designs are often deeply rooted in the physics of the

controlled process.

The study of nonlinear analytical techniques is important for a number of

reasons. First, theoretical analysis is usually the least expensive way of exploring a

system's characteristics. Second, simulation, though very important in nonlinear

control, has to be guided by theory. Blind simulation of nonlinear systems is likely to

produce few results or misleading results. This is especially true given the great

richness of behaviour that nonlinear systems can exhibit, depending on initial

conditions and inputs. Third, the design of nonlinear controllers is always based on

analysis techniques. Since design methods are usually based on analysis methods, it

is almost impossible to master the design methods without first studying the analysis

10

Chapter 2 Background and State-of-the-Art

tools. Furthermore, analysis tools also allow us to assess control designs after they

have been made, and, in case of inadequate performance, they may also suggest
directions of modifying the control designs.

It should not come as a surprise that no universal technique has been devised

for the analysis of all nonlinear control systems. In linear control, one can analyse a

system in the time domain or in the frequency domain [2.3]. However, for nonlinear

control systems, none of these standard approaches can be used, since direct solution

of nonlinear differential equations is generally impossible, and frequency domain

transformations do not apply.

While the analysis of stability of nonlinear control systems is difficult, serious

efforts have been made to develop appropriate theoretical tools for it.

One technique is Lyapunov analysis. Basic Lyapunov theory comprises two

methods introduced by Lyapunov, the indirect method and the direct method [2.4].

The indirect method, or linearisation method, states that the stability properties of a

nonlinear systems in the close vicinity of an equilibrium point are essentially the same

as those of its linearised approximation. The method serves as the theoretical

justification for using linear control for physical systems, which are always inherently

nonlinear. The direct method is a powerful tool for nonlinear system analysis, and

therefore the so-called Lyapunov analysis often actually refers to the direct method.

The direct method is a generalisation of the energy concepts associated with a

mechanical system: the motion of a mechanical system is stable if its total mechanical

energy decreases all the time. In using the direct method to analyses the stability of

a nonlinear system, the idea is to construct a scalar energy-like function (a Lyapunov

function) for the system, and to see whether it decreases. The power of this method

comes from its generality. It is applicable to all kinds of control systems, be they

time-varying or time-invariant, finite dimensional or infinite dimensional. Conversely,

the limitation of the method lies in the fact that it is often difficult to find a Lyapunov

function for a given system.

Although Lyapunov's direct method is originally method of stability analysis,

it can be used for other problems in nonlinear control. One important application is

the design of nonlinear controllers. The idea is to somehow formulate a scalar

Chapter 2 Background and State-of-the-Art

positive function of the system states, and then choose a control law to make this

function decrease. A nonlinear control system thus designed will be guaranteed to be

stable. The direct method can also be used to estimate the performance of a control

system and study its robustness [2.5].

Another approximate technique for studying nonlinear systems is the so-called
describing function method [2.6]. The basic idea of the method is to approximate the

nonlinear components in nonlinear control systems by linear "equivalents", and then

use frequency domain techniques to analyse the resulting systems. Unlike Lyapunov

methods, whose applicability to a specific system hinges on the success of the trial

and error search for a Lyapunov function, its application is straightforward for

nonlinear systems satisfying some easy-to-check conditions.

The method is mainly used to predict limit cycles in nonlinear systems. Other

applications include the prediction of subharmonic generation and the determination

of system response to sinusoidal excitation. The method has a number of advantages.

First, it can deal with low order and high order systems with the same straightforward

procedure. Second, because of its similarity to frequency-domain analysis of linear

systems, it is conceptually simple and physically appealing, allowing users to exercise

their physical and engineering insights about the control system. The disadvantages

of the method are linked to its approximate nature, and include the possibility of

inaccurate predictions (false predictions may be made if certain conditions are not

satisfied) and restrictions on the systems to which it applies (for example, it has

difficulties in dealing with systems with multiple nonlinearities).

Thus, the subject of nonlinear control is an important area of automatic control.

Today, robust controllers and adaptive controllers are dealing with the problem of

controlling the output of a nonlinear plant in the presence of parametric or structural

uncertainty. On the other hand, learning basic techniques of nonlinear control analysis

and design can significantly enhance the ability of a control engineer to deal with

practical control problems effectively. It also provides a sharper understanding of the

real world, which is inherently nonlinear. Therefore, there is currently considerable

enthusiasm for the research and application of nonlinear control methods.

12

Chapter 2

2.2 Control of Physical Systems

Background and State-of-the-Art

Control of dynamic systems is the regulation of a system to perform a useful task. The

term automatic control is also commonly used to emphasise that the control is done

by equipment rather than manually.

Control systems are divided into two broad classes; open-loop and closed-loop.

The input to both systems is the set of desired goals, which are determined external

to the automatic controller. Figs. 2.1 and 2.2 illustrate the basic structures of open-

loop and closed-loop control systems respectively.

INPUT
CONTROLLER PLANT

OUTPUT

Figure 2.1: Open-loop control system

Open-loop control requires that the controller contains sufficient knowledge of the

system and its inputs to control the system without measuring the system or plant

output. The closed-loop approach uses information from the output of the plant to

provide control with less a priori knowledge.

INPUT
CONTROLLER PLANT

OUTPUT

Figure 2.2: Closed-loop control system

Closed-loop or feedback control systems are generally better able to accommodate

unexpected disturbances to the system than open-loop controllers.

13

Chapter 2

2.2.1 Classical Control

Background and State-of-the-Art

Classical control techniques were developed in the 1930s. Most of the techniques

concentrate on linear constant coefficient with one input and one output. Common

tools are Laplace and Z-transforms and transfer functions [2.7].

Surprisingly, classical controllers comprise the bulk of the controllers in use

today. The two most common type of controllers are the bang-bang and PID. They

illustrate the level of sophistication of most present controllers.

The best example of a bang-bang controller is the common home thermostat.

In heating mode, if the temperature is below a certain level, the furnace is activated.

Once the temperature is sufficient, the thermostat shuts the furnace off. The main

design constraint is the need for some hysteresis or dead band around the setpoint to

prevent rapid on/off cycling. The primary advantage is low cost and simple operation.

The primary disadvantage is that the system is never exactly at the setpoint due to the

need for a dead band.

The second type is a PID (Proportional-Integral-Derivative) controller. This

controller is generally used where a smooth range of control is available and more

precision is needed than a bang-bang controller can provide. The control action of a

PID, shown in Fig. 2.3, is the weighted sum of the error, the derivative of the error

and the time integral of the error.

se,

Figure 2.3: Proportional-Integral-Derivative Controller

These controllers are used heavily in the process and manufacturing industries. PID

controllers are also used in conjunction with many other controllers. The main

14

Chapter 2 Background and State-of-the-Art

advantages are relatively inexpensive components and the wide familiarity of users

with their operation. The main disadvantages are that selection of the weighting

coefficients can be difficult, and changes in the plant conditions can place the

controller in conditions where the coefficients are inappropriate.

2.2.2 Modern Control

In classical control theory, various design methodologies are used to achieve

performance specifications defines in terms of quantities such as rise and settling time,

gain and phase margin, and bandwidth. Classical methods work well for controlling

linear, single input, single output systems; however, they are ill-suited for controlling

the complex nonlinear, multiple input, multiple output systems that are characteristic

of many real-life control problems. Optimal and adaptive control are some popular

approaches to the control of such systems.

Optimal control theory has been used to solve many such complex nonlinear,

multivariable problems in a variety of industrial settings.

The application of optimal control techniques to a problem requires a clear

description of the desired performance to be achieved. This generally involves the

development of a mathematical description of the process, an understanding and

determination of the constraints on the control system, and the determination of

appropriate performance measures.

In formulating a mathematical model of a process, some initial knowledge of

the physical constraints involved as well as an initial specification of the desired

performance are generally available to assist in determining the accuracy with which

one models the process. The conventional approach is to describe the response of a

process using ordinary differential equations, with accuracy requirements commonly

expressed in the frequency domain. This step involves classification of the system and

determination of observable state information. Once the state and control parameters

are identified, the physical constraints on these values can be analyzed. The physical

constraints on state parameters usually involve the observability of the system which

is highly dependent upon the ability to filter noise from observable states and estimate

unobservable states [2.8]. Control constraints are usually dictated by bandwidth and

15

Chapter 2 Background and State-of-the-. -brt

actuator limitations, as well as controllability issues resulting from unobservable states.
Development of a performance measure for a complex process can provide the

most difficult of challenges for control engineers. The performance measure (or cost
functional) is basically a mathematical description of the physical performance

requirements of a system which when minimised (or maximised) achieves "optimal"

behaviour. In practice, the design of an optimal control system is often an iterative

process, in which the performance measure is altered after observing the actual

performance that is obtained. Common optimisers include dynamic programming,

linear programming, and variational calculus techniques [2.9].

One simple approach to robust control is the so-called sliding control

methodology. Intuitively, it is based on the remark that it is much easier to control lu-

order systems, be they nonlinear or uncertain, than it is to control general n`''- order

systems. Accordingly, a notational simplification is introduced, which, in effect, allows

n`h- order problems to be replaced by equivalent 1s`- order problems, as shown in Fig.

2.4. It is then easy to show that, for the transformed problems, "perfect" performance

can in principle be achieved in the presence of arbitrary parameter inaccuracies.

Figure 2.4: Sliding mode controller

Such performance, however, is obtained at the price of extremely high control activity

16

Chapter 2 Background and State-of-the-Art

[2.10]. This leads us to a modification of the control laws which, given the admissible

control activity, is aimed at achieving an effective trade-off between tracking

performance and parametric uncertainty.

On the other hand, the "family" of adaptive controllers differs from ordinary

controllers in that the controller parameters are variable, and there is mechanism for

adjusting these parameters on-line based on signals in the system. There are two main

approaches for constructing adaptive controllers. One is the so-called model-reference

adaptive control method, and the other is the so-called self-tuning method.

Generally, a model-reference adaptive control system can be schematically

represented by Fig. 2.5. It is composed of four parts: a plant containing unknown

parameters, a reference model for compactly specifying the desired output of the

control system, a feedback control law containing adjustable parameters, and an

adaptation mechanism for updating the adjustable parameters [2.11].

The plant is assumed to have a known structure, although the parameters are

unknown. For linear plants, this means that the number of poles and the number of

zeros are assumed to be known, but their locations are not. For nonlinear plants, this

implies that the structure of the dynamic equations is known, but that some parameters

are not.

Figure 2.5: A model-reference adaptive control system

17

Chapter 2 Background and State-of-the-Art

A reference model is used to specify the ideal response of the adaptive control system

to the external command. Intuitively, it provides the ideal plant response which the

adaptation mechanism should seek in adjusting the parameters. The choice of the

reference model is part of the adaptive control system design. This choice has to

satisfy two requirements. On the one hand, it should reflect the performance

specification in the control tasks, such as rise time, settling time, overshoot or

frequency domain characteristics. On the other hand, this ideal behaviour should be

achievable for the adaptive control system, i. e., there are some inherent constraints on

the structure of the reference model, its order and relative degree, given the assumed

structure of the plant model.

The controller is usually parameterised by a number of adjustable parameters.

The controller should have perfect tracking capacity in order to allow the possibility

of tracking convergence. That is, when the plant parameters are exactly known, the

corresponding controller parameters should make the plant output identical to that of

the reference model. When the plant parameters are not known, the adaptation

mechanism will adjust the controller parameters so that perfect tracking is

asymptotically achieved. If the control law is linear in terms of the adjustable

parameters, it is said to be linearly parameterised. Existing adaptive control designs

normally require linear parameterisation of the controller in order to obtain adaptation

mechanism with guaranteed stability and tracking convergence.

The adaptation mechanism is used to adjust the parameters in the control law.

In MRAC systems, the adaptation law searches for parameters such that the response

of the plant under adaptive control becomes the same as that of the reference model.

Clearly, the main difference from conventional control lies in the existence of this

mechanism. The main issue in adaptation design is to synthesise an adaptation

mechanism which will guarantee that the control system remains stable and the

tracking error converges to zero as the parameters are varied. Many formalism in

nonlinear control can be used to this end, such as Lyapunov theory, hyperstability

theory, and passivity theory.

Usually, in non-adaptive control design, one computes the parameters of the

controllers from those of the plant. If the plant parameters are not known, it is

18

Chapter 2 Background and State-of-the-Art

intuitively reasonable to replace them by their estimated values, as provided by a

parameter estimator. A controller thus obtained by coupling a controller with an on-

line (recursive) parameter estimator is called a self-tuning controller. Fig. 2.6

illustrates the schematic structure of such an adaptive controller. Thus, a self-tuning

controller is a controller which performs simultaneous identification of the unknown

plant.

Figure 2.6: A self-tuning controller

The operation of a self-tuning (ST) controller is as follows: at each time instant, the

estimator sends to the controller a set of estimated plant parameters, which is

computed based on the past plant input u and output y; the computer finds the

corresponding controller parameters, and then computes a control input u based on the

controller parameters and measured signals; this control input u causes a new plant

output to be generated, and the whole cycle of parameter and input updates is

repeated. The controller parameters are computed from the estimates of the plant

parameters as if they were the true plant parameters. This idea is often called the

certainty equivalence principle.

Parameter estimation can be understood simply as the process of finding a set

of parameters that fits the available input-output data from the plant. This is different

from parameter adaptation in MRAC systems, where the parameters are adjusted so

that the tracking errors converge to zero. For linear plants, many techniques are

available to estimate the unknown parameters of the plant. The most popular one is

19

Chapter 2 Background and State-of-the-Art

the least-squares method and its extensions. There are also many control techniques

for linear plants, such as pole-placement, PID, LQR, or H°° designs. By coupling

different control and estimation schemes, one can obtain a variety of self-tuning

regulators. The self-tuning method can also be applied to some nonlinear systems

without any conceptual difference.

In the basic approach to self-tuning control, one estimates the plant parameters

and then computes the controller parameters. Such a scheme is often called indirect

adaptive control, because of the need to translate the estimated parameters into

controller parameters. It is possible to eliminate this part of the computation. We may

reparameterise the plant model using controller parameters (which are also unknown,

of course), and then use standard estimation techniques on such a model. Since no

translation in needed in this scheme, it is called a direct adaptive control scheme.

As described above, MRAC control and ST control arise from different

perspectives, with the parameters in MRAC systems being updated so as to minimise

the tracking errors between the plant output and reference model output, and the

parameters in ST systems being updated so as to minimise the data-fitting error in

input-output measurements. The two methods can also be quite different in terms of

analysis and implementation. Compared with MRAC controllers, ST controllers are

more flexible because of the possibility of coupling various controllers with various

estimators. However, the stability and convergence of self-tuning controllers are

generally quite difficult to guarantee, often requiring the signals in the system to be

sufficiently rich so that the estimated parameters converge to the true parameters. If

the signals are not very rich, the estimated parameters may not be close to the true

parameters, and the stability and convergence of the resulting control system may not

be guaranteed. In this situation, one must either introduce perturbation signals in the

input, or somehow modify the control law. In MRAC systems the stability and

tracking error convergence are usually guaranteed regardless of the richness of the

signals. However, the stability proof is not guaranteed if the model of the system does

not match the actual system [2.12]. This proof, depends on a linear model assumption

for the plant. Moreover, very little is known quantitatively about noise propagation in

this class of adaptive systems. The adaptation mechanism depends on a nonlinear

20

Chapter 2 Background and State-of-the-Art

product term that makes noise analysis extremely difficult in the general case.

2.2.3 Intelligent Control

With the application of classical or modern control techniques to nonlinear systems,

there has been a trade-off between accuracy and simplicity. Although modern control

techniques are developed for systems to perform over larger ranges of uncertainties,

there are still some fundamental limitations in the current techniques. For example,

the computational complexity grows geometrically with the number of unknown

parameters. The trend of control theory, therefore, is intended to develop more

general approaches, which can solve as many applications as possible, even if the

plants are too complex to be modeled with concise mathematical expressions or the

environmental conditions vary too large to be controlled by use of traditional

controllers. The control problem of this kind is in no ways a trivial one.

An "intelligent control" method is one that addresses these problems with some

degree of satisfaction. Although, tight definitions are hard to come by, an intelligent

system is one that can sense the environment, process the sensor data, and generate

and execute a timely control action in order to guide the system from an initial state

to a terminal state, while satisfying the constraints and objectives [2.13]. If the

problem is slowly drifting parameters, adaptive controllers will do. However as a

system is required to perform various functions at different levels of abstraction, as

is the case with hand-eye coordination in robotic controls, it becomes necessary to

coordinate activities like data acquisition, data fusion, knowledge generation and

control.

One avenue for performing this coordination is to use knowledge-based

production systems. One objective of knowledge-based-systems, or expert systems as

they are well known, is to develop computer-based models for problem solving that

are different from physical modelling and parameter estimation. An expert system

attempts to model the knowledge and procedures used by a human expert in solving

problems within a well-define domain. Knowledge representation is a key issue in

expert systems[2.14]. Many different approaches have been attempted, such as

procedural representations, semantic networks, production systems or rules, and

21

Chapter 2 Background and State-of-the-Art

frames. A knowledge-based-systems consists of a knowledge base, an inference

engine, and a user interface.

The knowledge base consists of data and rules. The data can be separated into

facts and goals. The rule base contains production rules which are typically

implemented as a collection of "if
... then ... else" statements. In a control application

the rules represent knowledge about the control and estimation problem that are built

into the system. This includes the appropriate characterisation of the algorithms,

judgemental knowledge on when to apply them, and supervision of the system. The

rules are introduced by the knowledge engineer via a knowledge acquisition system.

The inference engine processes the rules to arrive at conclusions or to specify

goals. It scans the rules according to a strategy, which decides from the current

database which production rules to select next. This can be done according to different

strategies. In forward chaining it is attempted to find all conclusions from a given set

of premises. In backward chaining the rules are traced backward from a given goal

to see if it can be supported by the current premises. The user interface finally, is the

development support that the system gives.

The idea of expert control is to have a collection of algorithms for control,

supervision, and adaptation that are orchestrated by an expert system [2.15]. A block

diagram of such a system is shown in Fig. 2.7.

Supervision
algorithms

Operator Knowledge-
based
system

Identification
algorithms

Control
algorithms Process

Figure 2.7: An expert control system

The system consists of an ordinary feedback loop with a process and a controller.

22

Chapter 2 Background and State-of-the-Art

There is a collection of different algorithms for control, parameter estimation, control

design, diagnosis, and supervision. The algorithms are coordinated by a knowledge-

based system, which decides what algorithm to use when.

However, these systems are brittle in the sense that integration of newly

acquired knowledge is difficult. Additionally, expert systems seem to be sensitive to

incorrect, fuzzy or noisy data and the degree of plant uncertainty in incompleteness,

randomness and ignorance of data, due to process nonlinearities and parameter

variations is a major influence in the controller's performance. Human controllers

derive adaptive experiential linguistic or qualitative models of the process, and

generate qualitative based actions or responses to given situations that are loosely

parameterised by the operating conditions as well as by their perceived experiential

"model". The problem is how to represent and compute processes that are imprecisely

described in a systematic and logical manner.

Zadeh, the originator of fuzzy logic, found that for many complex processes

high levels of precision are unobtainable nor required for effective system operation.

To overcome the need for precise process representation Zadeh [2.16] introduced the

calculus of fuzzy logic, which may be viewed as a parallel representation to

probability theory rather than as an alternative. Fuzzy logic is aimed at modelling the

imprecise models of reasoning, such as common sense reasoning, for uncertain and

complex processes.

Instead of using the ordinary concept of set inclusion, Zadeh introduced a

function that expressed the degree of belonging to a given set as a function taking

values in the range 0 and 1. In fuzzy logic the operation and corresponds to taking the

minimum of the membership functions, the operation or corresponds to taking the

maximum of the membership functions, and not corresponds to the ones complement

of the membership function. Alternative methods of evaluating the and/or functions

have been proposed since. The idea was first applied to control systems in Mamdani

[2.17] and since then a large number of applications using fuzzy logic have also

appeared.

A block diagram of a fuzzy controller is shown in Fig. 2.8. All sensor signals

are converted to linguistic variables in a process called fuzzification. This may be

23

Chapter 2 Background and State-of-the-Art

viewed as a quantization procedure. The number of quantization levels is typically

small, three to seven. For a given value of a real variable, the membership function

expresses the degree of belongingness to each linguistic variable. A measurement thus

gives a degree of coincidence with the linguistic variables chosen to represent it. A

fuzzy control law may be viewed as a state feedback that gives a representation of the

control signal as a fuzzy variable in terms of the state where it is assumed that all

state variables are available as linguistic variables. Typically, fuzzy logic controllers

operate on minimising an error function such as tracking or command error,

formulating the controller output as a nonlinear function of this and its derivatives (for

higher dimensional controllers). The control signal as a linguistic variable is then

mapped into a real number by an operation called defuzzification.

Sensors

Figure 2.8: A fuzzy controller

Actuators

Although the fuzzy logic controller may contain only a finite and incomplete set of

rules that express knowledge in an imprecise manner, the inherent interpolation

properties of fuzzy logic provides a mechanism for accumulating these rules, weighted

according to their individual significance, that each make a contribution to a specific

measure which in addition provides natural interpolation and generalisation between

rules for input/output situations that are not explicitly represented in the rules. As the

fuzzy control law is expressed in terms of the linguistic variables, it is often simple

24

Continuous Linguistic variables Continuous
variables variables

Chapter 2 Background and State-of-the-Art

and transparent. Humans operators may be able to deal with fuzzy controllers easier

than with equivalent algorithmic controllers.

As with expert systems a fundamental weakness with static logic is the

acquisition of the rule base from human experts, frequently leading to incomplete and

conservative control strategies. The autonomous elicitation of the controller rule base

bases upon self-organisation [2.18], has obvious advantages, not only can it derive the

rule base by experiential means, it can also modify its behaviour in response to plant

parametric changes, temporal or spatial.

Unfortunately, the memory requirements for fuzzy logic controllers, either static or

self-organising, grows exponentially with the dimension of system variables used in

the control rule base.

The inflexibility of many industrial robotic systems has been cited as one of

the principle reasons for the reduction in the growth rate of robotic industrial

applications [2.19]. It is anticipated that by introducing learning elements into the

control systems, the plant will become more flexible and better able to deal with

complex, real-world environments. Learning is an integral part of any intelligent

control (IC) system which exists at many levels of abstraction. At the guidance and

servo levels, learning algorithms have been studied in the adaptive control field for

many years [2.20], and these have been complemented by research into adaptive

neural networks. Higher in the IC architecture, learning can be as simple as internally

updating its world model, or complex learning / exploring systems may be used. Each

task requires an appropriate learning system as the problem structures are generally

different. Therefore learning systems should be aimed at particular problems, and

should always use the maximal amount of relevant a priori information.

Within the specific context of dynamic processes, learning may be required since

0 Prior knowledge about the plant's structure is unavailable or only

partially known.

0 The plant may be time-varying.

0 The operational environment us only partially known or time-varying.

0 To improve the performance of the plant over a wide range of operating

conditions.

25

Chapter 2 Background and State-of-the-Art

" To increase the flexibility of the control system.

" Reduced design costs.

although is should always be remembered that other techniques can provide similar

benefits if the problem is structured appropriately.

Learning control techniques generally use a basic model which is inherently

nonlinear. This is an important point, because it enables global plant models to be

constructed, rather than the locally linear models which are used in adaptive control.

Therefore there is no need for the continuous adaptation which is necessary to

compensate for changing operating points once a satisfactory model has been learnt,

but rather a gaining or transferal of knowledge.

Learning algorithms, as it has been listed above, are required to operate in ill-

defined and time-varying environments with a minimum amount of human

intervention. These techniques are typically used to control plants for which a

conventional mathematical analysis is not possible. Recently, research interest has

refocused on using biologically inspired learning algorithms and control architectures,

and this has been part of a wider revival of research activity into Artificial Neural

Networks (ANN) [2.21].

Neural networks are constructed from two primitive elements: processing units

and (directed) connections between units. Each connection has a real-valued weight

associated with it. The unit output is a scalar quantity, usually some monotonic but

nonlinear function of the weighted sum of its inputs. Fig. 2.9 shows a common unit

model.

A primary reason for the interest in neural networks (NN) is the existence of

general-purpose learning rules [2.22]. For widely different applications, the desired

functionality can be achieved without the manual "programming" that conventional

computers require. NN learning rules can be used to develop models of processes, to

adapt to environmental conditions, and to discover useful features implicit in the

received stimuli.

Two types of learning approaches are most relevant for control applications:

supervised and reinforcement learning. Supervised learning is a "learning by

examples" approach. Typically, a "training set" of examples is collected; each training

26

Chapter 2 Background and State-of-the-Art

example consists of an input signal for the network and the corresponding network
"desired output". The most popular algorithm for supervised learning is the

"backpropagation" [2.23]. It adjusts network weights to accomplish an approximation

gradient-descent minimisation of a squared error criterion over the training set.

Xl

x2

xN

= ,f
(ý w1xi)

Figure 2.9: A processing unit for a neural network

In reinforcement learning the evaluative feedback provided to the network during

training is weaker than in supervised learning [2.24]. Reinforcement learning consists

of a stochastic trial-and-error search, and is related to dynamic programming and

stochastic learning automata theory.

In addition to their learning capabilities, ANN provide several features that are

important for control applications:

0 Universal approximation capabilities. NNs can be used to model

arbitrarily complex, highly nonlinear, multidimensional functions.

0 Generalisation and Robustness. Given appropriate training data, a

trained network will not only be able to produce the right outputs for

the training examples, but it will exhibit generalisation: novel inputs

will be processed correctly. Another aspect of generalisation is tolerance

27

Chapter 2 Background and State-of-the-Art

to noise and error: as the input stimuli of a learned network are

corrupted with more and more noise or errors, performance degrades

gracefully, not catastrophically.

0 Fast execution. Once trained, most neural network models are

extremely fast. the training process can be time consuming, but for

applications where the training is conducted off-line this is not an issue.

The highly parallel architecture of neural networks also lends itself to

hardware implementation.

0 Fault tolerance. processing and memory are distributed throughout the

network. Consequently, NNs typically exhibit graceful degradation to

damage. This characteristic considerably facilitates the task of

developing hardware implementations.

0 Dynamic sensitivity analysis. An important and often underappreciated

feature of neural networks is that they are "invertible'. Given any

network state, input/output sensitivities are readily computable. The

sensitivity analysis can be used to adjust input variables so that network

output is minimised or maximised.

We can loosely categorise the large number of control approaches that have been

investigated in the neural networks community into the following six broad classes

[2.24].

" Controller Modelling.

" Process Modelling.

" Inverse process Modelling.

" Reinforcement Learning.

" Neural Controller Development.

" Process Structure and Parameter Identification.

As a computing technology inspired by the brain, neural networks promise to help

achieve a quality of control that has hitherto been the exclusive preserve of biological

organisms.

Both the neural networks and the fuzzy systems have some difficulties. The

neural network can produce the mapping rules from the empirical training sets through

28

Chapter 2 Background and State-of-the-Art

learning, but the mapping rules in the network are not visible and are difficult to

understand. On the other hand, since the fuzzy systems do not have learning

capabilities, it is difficult for the user to determine and to tune in an efficient way the

rules. In order to solve these difficulties, some synthesis techniques have been

proposed and they have been often called Fuzzy Neural Networks (FNN) [2.25].

The fuzzy system and the neural network can be used independently in a

system or either one serves as a preprocessor for the other. For example, one can use

the fuzzy system as a supervisor or a critic for the neural network in order to improve

convergence of learning. There, the learning rate is determined by using fuzzy rules

[2.26]. Alternatively, a fuzzy inference system can be implemented in the framework

of neural networks. By using hybrid learning procedures [2.27], an input/output

mapping, based on both human knowledge (in the form of fuzzy if-then rules) and

stipulated input/output data pairs can be constructed. With a further development, it

is believed that these systems will eventually replace conventional fuzzy decision

systems in a variety of applications, where learning or adaptation of the fuzzy

reasoning process to the environment offers an advantage [2.28].

2.3 Modelling and Control of URV's

A large portion of the earth is covered by seawater and has not been fully explored.

It is obvious, that all kinds of ocean activities ,
including both scientific ocean related

research, and commercial utilisation of ocean resources, will be greatly enhanced by

the development of robotic underwater work systems. During the last few years, the

use of such vehicles has rapidly increased since such a vehicle can be operated in the

deeper and riskier areas where divers cannot reach. Underwater robotic vehicles

(URVs) are performing several challenging functions. Generally, the present URVs can

be classified as

" Large and Medium Work and Support URVs.

" Inspection, Observation, Search, Survey and Light Work URVs.

" Inspection, Observation, Search and Survey URVs.

" Low-cost URVs (under 25,000).

29

Chapter 2 Background and State-of-the-Art

" Very Low-cost URVs (under ¬5,000).

" Military URV systems.

" Custom and Special Purpose URVs.

" Autonomous Underwater Vehicles (AUVs).

However, subsystems in the current vehicles are immature compared to those in on-

land systems and therefore, performance of the vehicles is limited. High technologies

developed for on-land systems cannot be directly adapted to underwater vehicle

systems since such vehicles have different dynamic characteristics from on-land

vehicles, and their operating environment is unstructured.

2.3.1 Underwater vehicle dynamics

The dynamics of URVs are fundamentally nonlinear due to inertia, buoyancy, rigid

body coupling and hydrodynamic effects. The control of such vehicles is often more

difficult in many aspects than aircraft, ships, or submarines. Although, the nonlinear

dynamic behaviour of URVs is somehow similar to the well-known rigid body

vehicle motion of aircraft or submarines, there are a couple of important differences.

0 URVs usually have comparable velocities along all three axes.

Therefore, control techniques that depend on linearisation of the

equations of motion about a single forward operating speed cannot be

used as effectively as they can with aircraft and submarines.

" The high density of water sets URVs and submarines apart from aircraft

because the forces and moments produced by fluid motion are

significant and they cannot be conventionally combined with the forces

and moments produced by vehicle motion to form functions of relative

motion only (except for the special case of a neutrally buoyant vehicle).

Underwater vehicles may not have a streamlined shape, and their dynamics can

change significantly by the addition of extra items of equipment, such as sensor packs

or cameras and by the position and loading of robotic arms. These vehicles undergo

complex multiaxis motions that accentuate nonlinearities and make linear control

techniques difficult to apply [2.29].

Additional inertia terms to rigid body inertia terms must be introduced to

30

Chapter 2 Background and State-of-the-Art

account for the effective mass of surrounding fluid that must be accelerated with the

vehicle, the so called added mass. These added mass coefficients are defined as the

proportionality constants which relate each of the linear and angular accelerations with

each of the hydrodynamic forces and moments they generate. The added mass

coefficient is introduced for the vehicle and each link of the manipulator, in the case

that an arm is fitted on the URV [2.30].

Hydrodynamic coefficients are difficult to obtain and may be poorly known.

Experience suggests that the evaluation of the hydrodynamic properties is expensive

and uncertain, as conventional methods involve semi-empirical body-buildup

techniques and long and expensive tank trials [2.31]. Substantial engineering effort

is then required to derive a model from these results, leading to a prohibitively

expensive model which will be invalid as soon as the vehicle configuration is changed

by the addition of different equipment. Hence there is also the requirement that the

unpredictable changes that occur during day-to-day operation be dealt with by

techniques that do not involve skilled control engineers.

In the range of Reynolds numbers in which vehicles typically operate, flow is

turbulent and drag force is usually described as a force proportional to the square of

the corresponding relative motion of the vehicle [2.32]. Even for simple shapes, drag

coefficients are functions of the Reynolds number, therefore velocity, so the use of

fixed coefficients is always an approximation. Any suitable control technique must

have demonstrable robustness to errors in the model coefficients. Fortunately, it is

usually possible to bound the uncertainty on the coefficients. In the case where, the

URV is fitted with a robotic manipulator arm, the drag force is also computed for each

link of the manipulator. The links experience a rotational drag due to the rotation of

each link.

The resultant force and moment of a thruster configuration consisting of N

thrusters can be expressed as the vector sum of the force and moment from each

individual thruster. The major problem that is encountered in thruster modelling is that

they behave as highly nonlinear actuators. Therefore, the thruster and torque

coefficients cannot be represented as being constant but rather must be expressed as

functions of the above coefficients. Even when a thruster is not moving through the

31

Chapter 2 Background and State-of-the-Art

water, its force-producing behaviour is not simple. It has been shown that in many

cases thrusters act like nonlinear filters that significantly influence closed-loop

behaviour at low speeds and hover. This effect is largely responsible for the

notoriously poor performance of the automatic heading and depth servos for most

URVs.

Inspection and work vehicles are generally designed to be able to move in any

direction. A lack of symmetry can cause nonlinear cross-coupling effects that are very

prominent during multiaxis motions and when working in a current. These effects are

far more pronounced for a URV than for a submarine which usually moves ahead,

turns, or changes depth at constant rates.

The disturbances that act on an URV are difficult to model, measure, or

estimate. A measurement of currents may not be available. The influence of a tether

is difficult to estimate, although in principle it could be measured. Quantitative

indicators of both stability and performance, given estimates of these disturbances,

would be very useful.

In order to use any of the well developed linear design methods for a nonlinear

system, the models must be linearised. For a vehicle that moves predominantly straight

ahead, linearising about several values of forward speed can be a successful approach.

For, a vehicle that can move in any direction, the system should be linearised about

many combinations of speed along multiple axes in order to account for the

complexity of the system. A complexity that can be increased if we take in account

the dynamic interactions caused by manipulator motions, in the case that a robotic

manipulator is mounted on the vehicle.

Since each linearised configuration requires that a separate design problem be

solved, this approach requires a large design effort. For a vehicle able to move in n

degrees of freedom, linearisation produces a system of order 2n if position is to be

controlled. The designer must choose to build a controller for a system of order 2n or

ignore coupling between axes. In addition, the stability of the resulting "gain

scheduled" system may be questionable [2.33].

In summary, high-performance control of underwater vehicles presents

problems not addressed easily using classical or modern linear techniques. The

32

Chapter 2 Background and State-of-the-Art

dynamics of underwater vehicles are described by highly nonlinear high-order systems

with uncertain models and disturbances that are difficult to model or measure. More

recently, alternative approaches have been developed to control nonlinear systems and

to handle uncertainties. Among these, "intelligent techniques" are becoming more

widespread, and this is also reflected in a number of proposals for control of URVs.

2.3.2 Controller architectures for underwater vehicles
The solution of the above control problems has been the subject of considerable

research using different approaches applied to simulated systems, to experimental

systems, and a number of operational vehicles have also been reported.

Yoerger et at. [2.34] propose the use of sliding mode techniques for path following

in studies leading to the construction of the well known JASON vehicle [2.35]. This

is because sliding mode is a conventional control approach which, using a linear

model of the vehicle, is capable of driving the vehicle in a pre-determined control

trajectory and holding it there in the presence of disturbances. Although the method

is robust to imprecise models and parameters variations, the design process needs raw

estimation of the parameters.

As an extension, an adaptive version of sliding control has been tested on a

tethered underwater vehicle [2.36]. Utilising the uncertainty-performance trade-off

explicitly available using sliding techniques, rapid adaptation laws can be formulated

for a wide class of nonlinear systems based on Lyapunov stability considerations [2.5].

In an alternative approach by Yoerger et al. [2.37], a transputer-based

distributed processing control system has been applied to the Hylas vehicle. While

Hylas vehicle was created to serve as an experimental platform in a five meter

cylindrical test tank, and therefore lacks the ruggedness required for ocean operations,

its design mimics that of JASON in all significant control aspects (e. g. centre of

buoyancy-centre of gravity separation, thruster placement, actuator nonlinearities).

Through the use of transputers as distributed controllers in the proposed by the

authors URV, a combined vehicle-manipulator control has been achieved. A proper

transputer network links the necessary sensors with the control system, and therefore

a cheap in cost parallel processing control system has been achieved, without the use

33

Chapter 2 Background and State-of-the-Art

of "smart" intelligent systems and VLSI hardware devices.

In a similar way, Cristi et al. [2.38] suggested the use of sliding modes with

adaptivity, where the sliding surface is based on system state and state estimators

rather than on output error. In some cases is might be desirable to design a control

system based on the measurements of a restricted set of signals. This is typically the

case when one wants to improve the reliability of the system by the design of a

controller which is robust in the presence of failures of some of the sensors. In

contrast to the classic sliding mode techniques which are based on the assumption of

full state feedback, here, the problem of designing a controller is based on the

observed state, and it can be shown that the global stability can still be guaranteed for

a class of nonlinearities of interest. Numerical simulations using a full set of nonlinear

equations of motion show the effectiveness of the proposed technique.

A hierarchical control scheme is described in Goheen et al. [2.39], whereby

higher level controllers direct the action of subordinates by planning the actions for

each actuator, then monitoring their performance under local control. This modular

approach is desirable because it reduces the control problem into a number of separate

tasks which are easier to control individually, and once in the finished vehicle can be

carried out in parallel. This has benefits in terms of the distribution of computational

processing, and simplifies the design and testing of the vehicle control system. There

are, however, a few areas which require attention. Using linearised equations of

motion, the authors indicate that their present system is not suitable for roll and pitch

control and higher-order models incorporating second-order effects might be required.

As an extension to the above technique, multi-input / multi-output self-tuning

controllers have been tested on simulation in the equations of motion for the UMEL

'Seapup' URV [2.40]. Two such schemes are presented; the first is an implicit linear

quadratic on-line self-tuning controller, and the other uses a robust control law based

on a first-order approximation of the open-loop dynamics and on-line recursive

identification. Continuous adaptation is a useful capability, but requires increased

computing power. For strongly nonlinear systems, estimation errors can become very

large when the output is changed rapidly. In this case, the estimation is stopped when

the output is "far away" from its set point. Another option is to use a conventional

34

Chapter 2 Background and State-of-the-Art

self-tuning controller whose estimator has been adjusted to track rapidly. While this

technique is relatively simple, it does require that the level of measurement noise be

relatively small, as an estimator which tracks parameters rapidly has trouble

differentiating between the signal and noise [2.41].

Despite all the precautions that must be taken, self-tuning URVs provide an

advantage over systems with fixed-gain control.

Apart the well known JASON URV, a number of operational vehicles have

been developed in many forms [2.42 - 2.44], adopting in a way classic and modern

control techniques.

In view of the very difficult control problems presented by URVs operation

and to handle uncertainties, "intelligent" techniques have been deployed. Among these,

fuzzy systems and neural networks are becoming more widespread, and this is

reflected in proposals for "intelligent" control of underwater vehicles.

One application involves a fuzzy six degree of freedom flight control system

for the Ocean Voyager, an URV currently under development by the Advanced

Marine Systems Group at Florida University (FAU) [2.45]. The success of Fuzzy

Logic Controllers (FLCs) in controlling nonlinear, complex, and poorly defined

systems prompted that investigation into the use of fuzzy logic and fuzzy decision

making techniques for both low and high level control of URVs. The high level

control problem is to develop an algorithm that will dock a submersible in a confined

space. The low level control problem is to develop a system that controls the

heading, pitch, depth, and speed of the vehicle. In this low level, the controller must

be robust to variations in system response due not only to modelling errors and

nonlinearities but also to coupling effects.

The control system was organised as follows: A simple proportional controller

controls speed. Three separate FLCs each control heading, pitch, and depth. Each

fuzzy controller has two components: a rule-based fuzzy controller and a fuzzily

constrained integrator. The Ocean Voyager was simulated with a highly accurate six

degree of freedom non-linear simulation model developed at FAU. Overall the fuzzy

controller seems to be robust to changes in vehicle speed. Further improvements can

be made by using state space techniques to optimise the fuzzy controllers.

35

Chapter 2 Background and State-of-the-Art

A different, in simulation again, approach involves the so-called self-organising

fuzzy controllers [2.46], where the rules forming the logic knowledge base may

themselves be derived from test data on-line. Self-organising controllers have been

found to be sensitive to signal noise, therefore the solution that has been proposed

involved a combination of fixed rule-base fuzzy controller and an adaptive fuzzy one.

More recently, neural network approaches have been developed to control

underwater vehicles. At present, these approaches can be classified into four groups

with respect to the implementation of the neural controller.

In one of the simplest approaches, a neural network was trained using the

chemotaxis algorithm to mimic the inverse model of a linearised URV model [2.47].

The inverse network then replaced a PID controller as a feedforward controller.

Although that NN controller provided a smoother output than that of the oscillatory

PID output, its mean-squared-error was bigger than that of the PID. As the simulated

designs become practical realities, a major problem arises from the fact that in many

cases it is almost impossible to find an inverse model for the system, therefore the

generality of the proposed method cannot be guaranteed.

Similarly, in some other control strategies an on-line approach of the

feedforward controller is proposed. One of the main difficulties in the "inverse"

approach is the availability of the training signal which can be used in fine-tune in-

line to allow the network to optimise its own control strategy. This is resolved by two

research groups in similar ways. In the first case, the concept of learning with a critic

is used [2.48]. The presented control system does not require any information about

the system dynamics except an upper bound of the inertia terms. In the second case,

the "Alopex" algorithm was applied to train the neural feedforward controller [2.49].

Although due to the stochastic nature of the "Alopex" algorithm a perfect tracking

with zero error may not be possible, both these strategies, in simulation, showed the

effectiveness of the neural net controller in handling time-varying parameters.

An on-line learning control scheme for URVs using feedforward neural

networks is described by Venugopal et al. [2.50]. The dynamics of a simulated model

of an URV are splitting into Single-Input-Single-Output cases. Their technique can

deal with the nonlinear vehicle dynamics directly and no linearisation of the dynamics

36

Chapter 2 Background and State-of-the-Art

is needed for the design of the controller. Although the plant is considered to be

unknown, its inverse Jacobian can be obtained on-line from the incremental inputs and

outputs of the dynamics. This inverse Jacobian then can be used to update on-line a

gain factor which is using to update the network weights with the actual output error.

As the updating is being performed on-line on all of the above methods, when these

methods become realities, the emphasis of controller is concentrated on the noise

effects and from this point of view the robustness of the above techniques to noise is

questionable.

An alternative approach [2.51] uses an associative memory, the CMAC, to

smoothly take over from a constant gain default controller as the network learns to

invert the process dynamics. This was applied to a simulation of an URV model. That

model consisted of two input parameters, the rudder and stern plane deflections and

six output parameters; forward velocity, vertical velocity, pitch angle, side velocity,

roll angle, and yaw angle. It has demonstrated that CMAC could control the URV

model over a desired trajectory, after training had occurred over the trajectory. This

means that, in a real world application, CMAC could be taught a specific path or

trajectory and would be able to control the vehicle along the path. With CMAC's

adaptive learning capabilities, the trajectories trained on could be modified without re-

training. The amount of change possible from a learned trajectory to a new trajectory

before re-training is necessary, is an important area for future research.

Finally, Fuji and Ura [2.52] present one of the first implementation of a

combination of a fuzzy controller and neural network for the pitch control of an

experimental URV using elevators. The fuzzy controller, called the "premature

controller", is used as a start-up controller until the neural network controller learns

the vehicle characteristics. There is a specific learning phase in their control scheme

which necessitates the "premature controller", in order to keep the system in the early

period of operation in "acceptable" bounds.

The Robotics group at Liverpool University has developed a prototype

underwater vehicle in order to validate single-axis classic and modern control

strategies for URVs. A number of methods have been implemented and tested in

simulation and on that prototype vehicle in real conditions, including PID controller,

37

Chapter 2 Background and State-of-the-Art

MRAC, rule-based and fuzzy systems [2.53] [2.54].

Although in simulations, these control schemes performed quite satisfactorily,

the experimental results were rather disappointing. Because of the fact that the forces

due to the water inertia and vehicle buoyancy were not included either in the

calculations of the appropriate control parameters or the construction of the linear

model, the result was that all time when the control signal was below a critical point

these unconsidered forces pushed the vehicle to the surface. Although this problem

was overcome with the inclusion of a positive offset in order to compensate these

forces externally, this was judged to be entirely unsatisfactory from the control point

of view.

References

[2.1] Wylie, C. R. and Barrett, L. C., "Advanced Engineering Mathematics",
McGraw-Hill, 1982.

[2.2] Ogata, K., "Modern Control Engineering", Prentice-Hall, 1990.

[2.3] Schwartzenbach, J. and Gill, K. F., "System Modelling and Control", Edward
Arnorld (Publishers) Ltd, 1979.

[2.4] Astrom, K. J., and Wittenmark, B., "Computer-Controlled Systems", Prentice-
Hall, 1990.

[2.5] Franklin, G. F., Powell, J. D. and Emami-Naeimi, A., "Feedback Control of
Dynamic Systems", Addison-Wesley, 1991.

[2.6] Franklin, G. F., Powell, J. and Workman, M. L., "Digital Control of Dynamic
Systems", Addison-Wesley, 1990.

[2.7] Kuo, B. C., "Automatic Control Systems", Prentice-Hall, 1991.

[2.8] Dorf, R. C., "Modern Control Systems", Addison-Wesley, 1992.

[2.9] White, D. A. and Sofge, D. A., "Handbook of Intelligent Control", Van
Nostrand Reinhold, 1992.

[2.10] Astrom, K. A. and Wittenmark, B., "Adaptive Control", Addison-Wesley,
1989.

38

Chapter 2 Background and State-of-the-Art

[2.11] Wellstead, P. E. and Zarrop, M. B., "Self-Tuning Systems", John Wiley, 1991.

[2.12] Miller III, W. T., Sutton, R. S. and Werbos, P. J. (eds), "Neural Networks for
Control", MIT Press, 1990.

[2.13] Astrom, K. J., "Toward Intelligent Control", IEEE Control Systems Magazine,
April 1988, pp 60-64.

[2.14] Fukuda, T. and Shibata, T., "Adaptation and learning for hierarchical intelligent
control", Proc. IJCNN '91, Singapore, vol 2,1991, pp. 1033-1038.

[2.15] Astrom, K. J., Anton, J. J. and Arzen, K. E., "Expert control", Automatica,
Vol. 22, No. 3,1986, pp 277-286.

[2.16] Zadeh, L. A., "Fuzzy algorithm", Inform. and Control, Vol. 12,1968, pp. 94-
102.

[2.17] Mamdani, E. H., "Applications of fuzzy algorithms for control of simple
dynamic plant", Proc. IEE, Vol. 121, No. 12,1974, pp. 1585-1588.

[2.18] Harris, C. J., Brown, M., "A nonlinear adaptive controller: a comparison
between fuzzy logic control and neurocontrol", IMA J. Math. Control and
Information, Vol. 8,1991, pp-239-265.

[2.19] Jamshidi, M., Vadiee, N. and Ross, T. J. (eds), "Fuzzy Logic and Control",
Prentice-Hall, Englewood Cliffs, 1993.

[2.20] Narendra, K. S., Annaswamy, A. M., "Stable Adaptive Systems", Prentice-Hall,
1990.

[2.21] Maren, A., Harston, C. and Pap R., "Handbook of Neural Computing
Applications", Academic Press, 1990.

[2.22] Lippmann, R. P., "An Introduction to Computing with Neural Nets", IEEE
ASSP Magazine, Vol. 4, No. 2, April 1987, pp. 4-22.

[2.23] Rumelhart, D., McClelland, T. L., (eds), "Parallel Distributed processing:
Explorations in the Microstructure of Cognition. Vol. 1: Foundations", MIT
Press, 1986.

[2.24] Zurada, J. M., "Introduction to Artificial Neural Systems", West Publishing
Co., 1992.

[2.25] Lin, C-T., and Lee, C. S. G., "Neual-Network-Based Fuzzy Logic Control and
Decision System". IEEE Trans. Computers, Vol. 40, No. 12, December 1991,
pp. 1320-1336.

39

Chapter 2 Background and State-of-the-Art

[2.26] Arabshahi, P., Choi, J. J. and Caudell, T. P., "Fuzzy Control of
Backpropagation", Proc. IJCNN '92, Baltimore, Vol. 2,1992, pp. 967-972.

[2.27] Berenji, H. R., "A Reinforcement Learning-Based Architecture for Fuzzy Logic
Control", Int. J. Approx. Reasoning, Vol. 6, No. 2, February 1992, pp. 267-292.

[2.28] Yamaguchi, T., Takagi, T. and Mita, T., " Self-organizing control using fuzzy
neural networks", Int. J. Control, Vol. 56, No. 2,1992, pp. 415-439.

[2.29] Mahesh, H. and Yuh, J., "Control of Underwater Robots in Working Mode",
Proc. IEEE Int. Conf. on Robotics and Automation, Sacramento, Calif., April
1991, pp. 2630-2635.

[2.30] Yuh, J., "Modelling and Control of Underwater Robotic Vehicles", IEEE
Trans. Systems, Man and Cybernetics, Vol. 20, No. 6,1990, pp. 1475-1483.

[2.31] Humphries, D., "Dynamics and hydrodynamics of ocean vehicles", Proc. IEEE
Conf. Oceans '81, Vol. 1,1981, pp. 88-91.

[2.32] Yoerger, D. A., Cooke, J. G. and Slotine, J., "The Influence of Thruster
Dynamics on Underwater Vehicle Behavior and their Incorporation into
Control Systems design", IEEE J. Oceanic Engineering, Vol. 15, no. 3, ! 990,
pp. 167-177.

[2.33] Healey, A. J. and Lienard, D., "Multivariable Sliding mode Control for
Autonomous Diving and Steering of Unmanned Underwater Vehicles", IEEE
J. Oceanic Engineering, Vol. 18, No. 3, July 1993, pp. 327-338.

[2.34] Yoerger, D. A., Slotine, J., "Robust trajectory Control of Underwater Vehicles",
IEEE J. Oceanic Engineering, Vol. 10, no. 4, ! 985, pp. 462-470.

[2.35] Yoerger, D. A., Newman, J. B. and Slotine, J., "Supervisory Control Systems for
JASON ROV", IEEE J. Oceanic Engineering, Vol. 11, no. 3,1986, pp. 392-
399.

[2.36] Yoerger, D. A., Slotine, J., "Adaptive Sliding Control of an Experimental
Underwater Vehicle", Proc. IEEE Int. Conf. on Robotics and Automation,
Sacramento, Calif., 1991, pp. 2746-2751.

[2.37] Mindell, D. A. and Yoerger, D. R., "Transputer-Based Distributed Processing for
Underwater Robotic Vehicle Control", American Control Conf., Vol. 1,1991,
pp. 389-397.

[2.38] Cristi, R., Papoulias, F. A. and Healey, A. J., "Adaptive Sliding Mode Control
of Autonomous Underwater Vehicles in the Dive Plane", IEEE J. Oceanic
Engineering, Vol. 15, No. 3,1990, pp. 152-160.

40

Chapter 2 Background and State-of-the-Art

[2.39] Goheen, K. R., Jefferys, E. R. and Broome, D. R., "Robust self-designing
controllers for underwater vehicles", J. Offshore Mech. Arctic Eng., Vol. 109,
1987, pp. 170-178.

[2.40] Goheen, K. R. and Jefferys, E. R., "On the adaptive control of remotely operated
underwater vehicles", Int. J. Adaptive Control and Signal Processing, Vol. 4,
1990, pp. 287-297.

[2.41] Goheen, K. R. and Jefferys, E. R., "Multivariable self-tuning Autopilots for
Autonomous and Remotely Operated Underwater Vehicles", IEEE J. Oceanic
Eng. vol. 15, No. 3,1990, pp. 144-151.

[2.42] Tsusaka, Y., Ishidera, H. and Itoh, Y., "MURS-300 MK II: A Remote
Inspection System for Underwater Facilities of Hydraulic Power Plants", IEEE
J. Oceanic Engineering, Vol. 11, No. 3,1986, pp. 358-362.

[2.43] Liddle, D., "TROJAN: Remotely Operated Vehicle", IEEE J. Oceanic
Engineering, Vol. 11, No. 3,1986, pp. 364-372.

[2.44] Nomoto, M. and Hattori, M., "A Deep ROV 'DOLPHIN 3K': Design and
Performance Analysis", IEEE J. Oceanic Engineering, Vol. 11, No. 3,1986,
pp. 373-391.

[2.45] Smith, S. M., Rae, G. J. S. and Anderson, D. T., " Applications of Fuzzy logic to
the Control of an Autonomous Underwater Vehicle", Proc. 1st IEEE Int. Fuzzy
Systems Conf., 1992, pp. 1099-1106.

[2.46] Farbrother, H. N., Stacey, B. A and Sutton, R., " Fuzzy Self-Organising Control
of a Remotely Operated Submersible", IEE Proc. Control '91, pp. 499 -504.

[2.47] Johnson, C, Sutton, R. and Roberts, G. N., "Bottom Profiling Control of an
UUV using Neural Networks", IEE Colloquium on 'Control and guidance of
underwater vehicles', December 1993, pp. 3/ 1- 3/15.

[2.48] Yuh, J., "A Neural Net Controller for Underwater Robotic Vehicles", IEEE J.
Oceanic Engineering, Vol. 15, No. 3,1990, pp. 161-166.

[2.49] Venugopal, K. P., Pandya, A. S. and Sudhakar, R., "Alopex algorithm for
adaptive control of dynamical systems", Proc. IJCNN '92, Baltimore, Vol 2,
pp. 875-880.

[2.50] Venugopal, K. P., Sudhakar, R. and Pandya, A. S., "On-line learning control of
autonomous underwater vehicles using feedforward neural networks", IEEE J.
Oceanic Engineering, Vol 17, No. 4,1992, pp. 308-320.

[2.51] Comoglio, R. F. and Pandya, A. S., "CMAC Neural Network Architecture for

41

Chapter 2 Background and State-of-the-Art

Control of an Autonomous Undersea Vehicle", Proc. SPIE Vol 1709,
Applications of Neural Networks III, 1992, pp. 517-527.

[2.52] Fujii, T. and Ura, T., "Development of the motion control systems for AUV
using neural nets", Proc. AUV ' 90, pp. 81-86.

[2.53] Swainston, J. R., "Positional control of underwater vehicles", MSc thesis,
Liverpool University, December 1992.

[2.54] Stephens, M., "Intelligent adaptive control of remotely operated vehicles
(ROVs)", Ph. D Thesis, Liverpool University, March 1994.

42

CHAPTER 3

Artificial Neural Networks

3.1 Fundamentals

For many centuries, one of the goal of humankind has been to develop better

machines. We imagine these machines as performing all cumbersome and tedious

tasks so that we might enjoy a more fruitful life. The era of machine making began

with the discovery of simple machines such as lever, wheel and pulley. Many equally

congenial inventions followed thereafter. Nowadays engineers and scientists are trying

to develop intelligent machines.

The 1980s have shown a renewed interest for artificial neural networks. A first

wave of interest emerged after the introduction of simplified neurons by McCulloch

and Pitts in 1943 [3.1]. These neurons were presented as models of biological neurons

and as conceptual components for circuits that could perform computational tasks.

When Minsky and Papert published their book Perceptrons in 1969 [3.2] in which

they showed the deficiencies of perceptron models, most neural network funding was

redirected and researchers left the field. The interest re-emerged only after some

important theoretical results were attained in the early eighties (most notably the

discovery of error back-propagation), and new hardware developments increased the

processing capacities.

43

Chapter 3 Artificial Neural Networks

The demand for practical applications of artificial intelligence (Al) made

evidence the limitations of previous concepts of hardware and software.
Characteristically, today's computers solve problems that are difficult for humans, but

fail miserably at everyday tasks that humans master without a great deal of effort. This

circumstance, so far, has limited the use of computers to narrow problem areas and
indicates a fundamental difference between Al methods and the operation of biological

nervous systems.

Most computers, until recently, were based on the so-called von Neumann

architecture. They derive their performance from one or only a few central processors

which carry out long sequential programs at extremely high speed. Therefore, signal

propagation times within the computer have already begun to emerge as limiting

factors to further gains in speed. At the same time, efforts to master multifaceted

problem situations, by means of conventional programming techniques lead to

programs of a complexity that can no longer be managed reliably.

A way out of this dilemma requires an abandonment of the von Neumann

architecture used up to now, and instead to apply a large number of computational

processors working in parallel. For the programming of such computers, new kinds

of algorithms are required that must allow a distribution of a computational tasks over

a great number of processors. In order to keep the necessary task of integrating such

algorithms into complex software systems manageable, the algorithms must be error

tolerant and capable of learning [3.3]. These features seem to be realised in biological

brains with nerve cells as processors, which, by technical standards, are slow

computational elements and of only limited reliability, but which on the other hand

are present in huge numbers, processing sensory data and motor tasks concurrently.

In order to make this "biological know-how" available, the interdisciplinary

research area of Neural Computation has developed in the last few years.

A neural network's ability to perform computations is based on the hope that

we can reproduce some of the flexibility and power of the human brain by artificial

means. An artificial neural network (ANN) consists of a pool of simple processing

units which communicate by sending signals to each other over a large number of

weighted connections. A set of major aspects of a parallel distributed model can be

44

Chapter 3

distinguished:

Artificial Neural Networks

"a set of processing units, or neurons;

"a state of activation o for every unit, which also determines the output

of the unit;

0 connections between the units. Generally each connection is defined by

a weight wjj which determines the effect which the signal of unit j has

on unit i;

"a propagation rule, which determines the effective input i; of a unit from

its external inputs;

" an activation function F; which determines the new level of activation

based on the effective input i; (t) and the current state a; (t);

" an external input or offset O for each unit;

"a method for information gathering;

" an environment within which the system must operate, providing input

signals and - if necessary - error signals.

Fig. 3.1 illustrates these basics, some of which will be discussed in the next sections.

Figure 3.1: Basic components of an artificial neural network

45

Chapter 3

3.1.1 Processing units

Artificial Neural Networks

Each unit performs a relatively simple job: receive input from neighbours or external

sources and use this to compute an output signal which is propagated to other units.
Apart from this processing, a second task is the adjustment of the weights. The system
is inherently parallel in the sense that many units can carry out their computation at

the same time.

Within neural systems it is useful to distinguish three types of units: input units

which may receive data from outside the system, output units which send data out of

the system and hidden units whose input and output signals remain within the system

itself.

During operation, units can be updated either synchronously or asynchronously.

With synchronous updating, all units update their activation simultaneously; with

asynchronous updating, each unit has a (usually fixed) probability of updating its

activation at time t, and usually only one unit will be able to do this at a time. In

some cases the latter model has some advantages.

3.1.2 Connections between units
In most cases we assume that each unit provides an additive contribution to the input

of the unit with which it is connected. The total input to unit i is simply the weighted

sum of the separate outputs from each of the connected units plus a bias term 6;.

1j(t)a. (t) + e, (t) (3.1)

j

The contribution for positive w; j is considered as an excitation and for the negative w1

as inhibition. In some cases more complex rules for combining inputs are used, in

which a distinction is made between excitatory and inhibitory inputs. We call units

with a propagation rule (3.1) sigma units.

A different propagation rule, introduced by Feldman and Ballard [3.4], is

known as the propagation rule for the sigma-pi unit:

46

Chapter 3

w (t) 11
a

k(t)
+ ei(t)

jk
(3.2)

Often, the ask are weighted before multiplication. Although these units are not
frequently used, they have their value for implementation of lookup tables.

3.1.3 Activation and output rules
A rule is also needed which gives the effect of the total input on the activation of the

unit. We need a function F; which takes the total input ii(t) and the current activation

a; (t) and produces a new value of the activation of the unit i:

a(t+l) = F(a(t), ii(t)) (3.3)

Often, the activation function is a non-decreasing function of the total input of the

unit:

a(t+l) - F(i(t)) = Fjj: tiv, i(t)a(t) + 8; (t)] (3.4)

although activation functions are not restricted to non-decreasing functions. Generally,

some sort of threshold function is used: a hard limiting threshold function, a sgn

function, or a linear or semi-linear function, or a smoothly limiting threshold as

shown in Fig. 3.2.

"

sgn semi-linear

Artificial Neural Networks

sig m oid

Figure 3.2: Various activation functions for a unit

47

Artificial Neural Networks

ly limiting function often a sigmoid (S-shaped) function like

a= F(ig) =1
1+e-`,

(3.5)

ae applications a hyperbolic tangent is used, yielding output values in

+1]. In some cases, the output of a unit can be a stochastic function of

ut of the unit. In that case the activation is not deterministically

)y the neuron input, but the neuron input determines the probability p that

ta high activation value:

P(a, <-- l) =1
-i IT 1+e

(3.6)

T is a parameter which determines the slope of the probability function.

Jetwork topologies

ire many different ways to connect artificial neurons to large networks. These

nt patterns of interconnections between the neurons are called architectures or

t structures. Such large networks may be able to perform complex tasks which

d be impossible for individual neurons.

The architectures of artificial neural networks can roughly be divided into three

-Te categories:

0

Feedforward networks, where the data flow from input to output units is

strictly feedforward. The data processing can extend over multiple layers of

units, but no feedback connections are present, that is, connections extending

from output of units to inputs of units in the same layer or previous layers.

Recurrent networks, that do contain connections. Contrary to feedforward

networks, the dynamical properties of the networks are important. In some

cases, the activation values of the units undergo a relaxation process such that

the network will evolve to a stable state in which these activations do not

change any more. In other applications, the change of the activation values of

the output neurons are significant, such that the dynamical behaviour

48

Chapter 3 Artificial Neural Networks

constitutes the output of the network.

0 Cellular networks, where regularly spaced special artificial neurons called cells

communicate directly with other neurons only in their nearest neighbourhood.

Similarly to cellular automata [3.5], adjacent cells can interact with each other

by means of mutual lateral interconnections. Cells not connected together can

affect each other indirectly because of the propagation of signals during the

transient (dynamic) regime. Fig. 3.3 illustrate schematically the various

architectures.

X y
110 10 Ni N2 N3

Feedforward representation

Cellular representation

Figure 3.3: Schematic representation of various architectures

3.1.5 Information storage
As a natural result of storing information in weights, the information or knowledge is

distributed. This is one of the most important differences between neural networks

computations and a standard Von Neumann style_digital computer. A standard digital

49

Feedback representation

Chapter 3 Artificial Neural Networks

computer stores information as words or tokens in the memory. Each token is a

concentrated highly specific piece of data. The loss or corruption of even one token

can result in a complete failure of the computer. Instead of focusing data into a token,

a neural network stores the knowledge in a distributed form. The knowledge is stored

across many weights with each weight contributing to many parts of the knowledge.

Thus, the information is stored in the cumulative interaction of many nodes and their

associated weights. In contrast to a Von Neumann architecture, the loss or corruption

of a weight simply degrades the performance of the network and does not result in

failure of the network.

Another important difference is that information in a neural network is stored

in an associative memory instead of an addressed memory. In an associative memory,
data is retrieved by its similarity to the input data. Common digital computers use

addressed memory. Each memory location is given a label, and the contents of the

location are accessed by providing the datum label or address to the memory. In

contrast, when a neural network is presented a possibly incomplete or damaged

version of the desired data, the network locates the most similar data in memory. As

such, some networks are designed simply to be associative memories. In other network

architectures this ability is used to generalise between training examples.

3.1.6 Learning Algorithms

A learning or training algorithms is a core component of most neural networks.

Although a learning algorithm is needed to determine the connection weights, a

primary benefit of the learning algorithm is the mitigation of the knowledge

acquisition bottleneck.

The knowledge acquisition bottleneck is a term coined by the artificial

intelligence community to describe the difficulty of determining the relevant

knowledge and incorporating it into a rule base or expert system. This problem is not

limited to the artificial intelligence community, but it also is a common problem for

scientists and engineers.

A neural network solves the problem in the same way that humans and animals

often solve the problem, by learning from examples. Within this context of learning by

50

Chapter 3 Artificial Neural Networks

example, there are many methods for training a neural network. Neural network
training procedures are divided into the following three categories:

0 Supervised or Associative learning in which the network is trained by

providing it with input and matching output patterns. These input-output pairs

can be provided by an external teacher, or by the system which contains the

network (self-supervised).

0 Unsupervised learning or Self-organisation in which an (output) unit is trained

to respond to clusters of pattern within the input. In this mode the system is

supposed to discover statistically salient features of the input population.

Unlike the supervised learning paradigm, there is no a priori set of categories

into which the patterns are to be classified; rather the system must develop its

own representation of the input stimuli.

0 Reinforcement learning in which input examples are supplied to the network

and a scalar signal of how good the network is performing is used to adjust the

network. Normally, a series of examples is presented, where each input

produces a network response. At the end of the input series, the scalar input

of performance is supplied and the network adjusts itself to improve its

performance.

The difference between supervised learning and reinforcement learning is that

supervised learning has an external teacher to tell the network how to adjust, while

reinforcement learning must decide the proper adjustment from a good/bad signal. No

information on specific improvements in the control signal is provided.

3.1.7 Neural Network Learning Rules

The learning algorithms discussed above result in an adjustment of the weights of the

connections between units, according to some modification rule. Virtually all learning

rules for models of this type can be considered as a variant of the Hebbian learning

rule suggested by Hebb in his classic book "Organization of Behaviour" [3.6]. The

basic idea is that if two units i and j are active simultaneously, their interconnection

must be strengthened. If i receives input from j, the simplest version of Hebbian

learning prescribes to modify the weight w; j with

51

Chapter 3 Artificial Neural Networks

Awiý = ya; a (3.7)

where 'y is a positive constant of proportionality representing the learning rate. Since

its inception, the Hebbian rule needs to be modified to counteract unconstrained

growth of weight values, which takes place when excitations and responses

consistently agree in sign. This corresponds to the Hebbian learning rule with

saturation of the weights at a certain, preset level.

Another common rule uses not the actual activation of unit i but the difference

between the actual and desired activation for adjusting the weights:

Aw, ý = y(d, - (x,)a (3.8)

in which d; is the desired activation provided by a teacher. This is often called the

Widrow-Hoff rule or the delta rule, and will be discussed in more detail in next

sections.

Many variants (often very exotic ones) have been published the last few years

[3.7]. Two of them, arguably the most popular ones can be considered to be the

Correlation learning rule and the Winner-Take-All learning rule. In the first case,

the adjustments for the weights are

Owe.. = ýyd, a (3.9)

This simple rule states that if d; is the desired response due to aj, the corresponding

weight increase is proportional to their product. The rule typically applies to recording

data in memory networks with binary response neurons. It can be interpreted as a

special case of the Hebbian rule with a binary activation function and for a; = d;

.
However, Hebbian learning is performed in an unsupervised environment, while

correlation learning is supervised.

On the other hand, the Winner-Take-All learning rule differs substantially from

any of the rules discussed so far in this section. It can only be demonstrated and

explained for an ensemble of neurons, preferably arranged in a layer of p units. This

rule is an example of competitive learning, and it is used for unsupervised network

training. Typically, winner-take-all learning is used for learning statistical properties

52

Chapter 3 Artificial Neural Networks

of inputs [3.8]. The learning is based on the premise that one of the neurons in the

layer, say the m'th, has the maximum response due to a specific input vector. This

neuron is declared the winner. The individual weight adjustment therefore becomes

sw.. = C(a -w (3.10)

3.2 Multi-layer Feed-forward Networks

There are many different types of neural networks, each of which has a different

architecture, learning method, and performance capabilities. Often, the structure and

dynamics of a network correspond readily to the network's function.

The Perceptron, developed by F. Rosenblatt [3.9], was the first neural network

to emerge. It substantiated the concept of the artificial neuron which is still used

today, where each neuron computes a weighted sum of its inputs, and passes this sum

into a non-linear thresholding function. As this was a single-layer network, the class

of tasks that could be accomplished was very limited.

Minsky and Papert [3.2] showed in 1969 that a two layer feed-forward network

can overcome many restrictions, but did not present a solution to the problem of how

to adjust the weights from input to hidden units. An answer to this question was

presented by Rumelhart, Hinton and Williams in 1986 [3.10], and similar solutions

appeared to have been published earlier [3.11][3.12].

In this section we shall concentrate on supervised learning from example and describe

in detail one of the most widely used learning procedures, the back propagation

algorithm, also called the generalised delta rule.

The central idea behind this solution is that the errors for the units of the

hidden layer are determined by back-propagating the errors of the units of the output

layer. For this reason the method is often called the back-propagation learning rule.

A feed-forward network has a layered structure. Each layer consists of units

which receive their input from units from a layer directly below and send their output

to units in a layer directly above the unit. There are no connections within a layer.

53

Chapter 3 Artificial Neural Networks

The Ni inputs are fed into the first layer of Nh., hidden units. The input units are

merely 'fan-out' units; no processing takes place in these units. The activation of a
hidden unit is a function F; of the weighted inputs plus a bias, as given in Eq. (3.4).

The output of the hidden units is distributed over the next layer of Nh, 2 hidden units,

until the last layer of hidden units, of which the outputs are fed into a layer of No

output units. Fig. 3.4 illustrates this process.

NNN
h, l h, 1-2 h, l-1

Figure 3.4: A multi-layer network with I layers of units

Although back-propagation can be applied to networks with any number of layers, it

has been shown [3.13] that only one layer of hidden units suffices to approximate any

function with finitely many discontinuities to arbitrary precision, provided the

activation functions of the hidden units are non-linear. In most applications a feed-

forward network with a single layer of hidden units is used with a sigmoid activation

function for the units.

3.2.1 The generalised delta rule
An important generalisation of the learning rule, presented by Widrow and Hoff [3.7]

54

Chapter 3 Artificial Neural Networks

as the "least mean square" (LMS) learning or "delta" procedure, has been extended

by Minsky and Papert [3.2] to continuous inputs and outputs. The LMS procedure has

been applied most often with purely linear output units. This procedure finds the

values of all the weights that minimise the error function by a method called gradient

descent. The idea is to make a change in the weight proportional to the negative of

the derivative of the error as measured on the current pattern with respect to each

weight.

Since we are using units with non-linear activation functions, we have to

generalise the delta rule which originally was presented for linear functions to the set

of non-linear activation functions. The activation is a differentiable function of the

total input, given by

di = F(i; ý) (3.11)

in which

ijp =E WiocP + 61. (3.12)
J

To get the correct generalisation of the delta rule, we must set

A wl..
EP (3.13)

aw..
U

The error measure El is defined as the total quadratic error for pattern p at the output

units:

N

EP=1 (din - ap)2

2 i=l

while E=I El is the overall measure of the error. We can write

(3.14)

55

Chapter 3 Artificial Neural Networks

aEp
_

aEp aiip
awii ciii awii

By Eq. (3.12) we see that the second factor is

ai`n
(3.16) ap)

aW.. ii
When we define

P
bp =-Ep (3.17)

ali

we will get an update rule which is equivalent to the delta rule, resulting in a gradient

descent on the error surface if we make the weights changes according to:

Apwlj. = 76, iocjp
(3.18)

The trick is to figure out what b; P should be for each unit i in the network. The

interesting result, which we now derive, is that there is a simple recursive computation

of these b 's which can be implemented by propagating error signals backward

through the network.

To compute 8; P we apply the chain rule to write this partial derivative as the

product of two factors, one factor reflecting the change in error as a function of the

output of the unit and one reflecting the change in the output as a function of changes

in the input. Thus, we have

spaEP aEPaal
ai, p ace, ai, p

Let us compute the second factor. By Eq. (3.11) we see that

(3.19)

56

Chapter 3 Artificial Neural Networks

v (Xi
=F '(i,) (3.20)

aiip

which is simply the derivative of the squashing function F for the ith unit, evaluated

at the net input i1 to that unit. To compute the first factor of Eq. (3.19), we consider

two cases. First, assume that unit i is an output unit of the network. In this case, it

follows from the definition of El that

EP_
-(dip - a) (3.21)

as

which is the same result one can obtain with the standard delta rule. Substituting this

and Eq. (3.20) in Eq. (3.19), we get

8P = (d; ' - ap) F, "(ii') (3.22)

for any output unit i. Secondly, if i is not an output unit, we do not readily know the

contribution of the unit to the output error of the network. However, the error measure

can be written as a function of the net inputs from hidden to output layer; EP = EP (i1 ,
i2P,..., li ...

) and we use the chain rule to write

aE p
No aE p alh

_

No aE pa
Nn

r WhkOCk
aap n=1

alp aaý
n=1

alp aaP k=1
ihh (3.23)

No aE p_Np E
whi -E

ýhW
hi

h=1 aih h=1

Substituting this in Eq. (3.19) yields

N

Sp = F'(ii")t ShWhi

h=1

(3.24)

Eqs. (3.22) and (3.24) give a recursive procedure for computing the b's for all units

in the network, which are then used to compute the weights changes according to Eq.

(3.18). This procedure constitutes the generalised delta rule for a feed-forward network

57

Chapter 3 Artificial Neural Networks

of non-linear units.

3.2.2 Working with back-propagation
The application of the generalised delta rule thus involves two phases: During the first

phase the input is presented and propagated forward through the network to compute

the output values a1 for each output unit. This output is compared with the desired

value, resulting in an error signal b; P for each output unit. The second phase involves

a backward pass through the network during which the error signal is passed to each

unit in the network and appropriate weight changes are calculated.

Weight adjustment with sigmoid activation function. The results from the previous

section can be summarised in three equations:

" The weight of a connection is adjusted by an amount proportional to the

product of an error signal S, on the unit i receiving the input and the output f

the unit j sending this signal along the connection:

Opw1j. = , YS'a! (3.25)

" If the unit is an output unit, the error signal is given by

bn =(d, ý _Opp)F'(i1)
(3.26)

Take as the activation function F the 'sigmoid' function as defined in a

previous section:

di = F(i, p) =1
-i`0

(3.27)
1+e

In this case the derivative is equal to

58

Chapter 3

F'(ii') = aI
ai; p1 +

(1 +eý; P) (1 +eý P)

= aP(1 - ap)

1e -t

Artificial Neural Networks

(3.28)

such that the error signal for an output unit can be written as:

bP = (di' - aei)aei(l - aei) (3.29)

" The error signal for a hidden unit is determined recursively in terms of error

signals of the units to which it directly connects and the weights of those

connections. For the sigmoid activation function:

NN

bp = F' (i/) 5t öhWhi =u (I - ai) t Shwhi (3.30)
h=1 h=1

One important factor about the sigmoid function, or any other similarly shaped

function, is that its derivative is always positive, and is close to 0 for either large

positive or large negative input values to that function. The derivative has its

maximum value when the input to the function is 0. This is important in helping the

back-propagation learning algorithm work effectively. This is because the changes

made to the weights are proportional to the derivative of the activation. If this

derivative is near 0, then the changes are small. This is desirable, because the

derivative is near 0 when the activation value is near 0 or 1, one of the stable states.

When the activation of the neuron is in the middle range, we want to change the

neuron's output a good deal, driving it to produce a value near one the stables states.

The derivative is largest when the activation is in the middle range, and so the change

in the weights is also fairly large. Thus, the transfer function not only gives us smooth

and differentiable behaviour, it actually helps the learning law work the way we want

it to.

Note that as the activation of a neuron approaches either zero or one, the

59

Chapter 3 Artificial Neural Networks

derivative approaches zero. Because the learning of weight change is proportional to

this derivative, a weight may change slower than desired for neurons, which yield

either a large or small activation. This can cause difficulties in training the network.
In summary, the basic back-propagation algorithm can be performed by

realising the following steps:

Step 1: Initialise all synaptic weights to small random values. If the initial

values are too large, the activations functions may saturate from the

beginning and the network will become stuck in a very flat plateau or

a local minimum near the starting point. Usually, the initial values of

weights are chosen as random values uniformly distributed between

(-0.5 / fan-in) and (+0.5 / fan-in), where fan-in of a unit is the number

of units which are fed forward to this unit [3.14].

Step 2: Present an input from the class of learning examples (input/output

pattern) and calculate the actual outputs of all neurons using the present

values of W and the pattern. In general, one form of preprocessing will

be required for the examples. That form is normalisation. That is, either

the value of each example should always be in the interval between 0

and 1, or the total length of each example vector should be some

constant value such as 1. Especially in cases where large input values

are multiplied by a large number of weights (large fan-in) this form of

preprocessing is preferable as it prevents the hidden neuron's saturation.

Step 3: Specify the desired output and evaluate the local error signals for all

layers.

Step 4: Adjust the synaptic weights.

Step 5: Present another input pattern corresponding to the next learning example

and go back to Step 2.

All the training example are presented cyclically until the synaptic weights are

stabilised, i. e. until the error for the entire set is acceptably low and the network

converges. After training a multilayer network, or perceptron as it is well known,

usually has the feature of a generalisation, i. e. it has the ability for proper response

60

Chapter 3 Artificial Neural Networks

to input patterns not presented during the learning process. Such a generalisation is an

important feature of multilayer perceptrons (MLPs).

This somewhat mysterious generalising ability of the MLP can be interpreted

as follows. The MLP performs a non-linear mapping between an input and output

space. The learning of the perceptron can be regarded as synthesizing an

approximation of a multidimensional function which is performing a simple fitting

operation or a hypersurface reconstruction in a multidimensional space to a finite set

of data points (the training examples). From this point of view the generalisation is

nothing more than interpolating the test set on the fitting (or reconstructed)
hypersurface.

Learning rate and momentum. The learning procedure requires that the change in

weight is proportional to aEI / aw. True gradient descent requires that infinitesimal

steps are taken. The constant of proportionality is the learning rate 'y. This learning

parameter should be chosen small to provide minimisation of the total error function

E. However, for small y the learning process becomes very slow. On the other hand,

large values of y correspond to rapid learning, but lead to parasitic oscillations which

prevent the algorithm from converging to the desired solution. Moreover, if the error

function contains many local minima, the network might get trapped in some local

minimum, or get stuck on a very flat plateau. One simple way to improve this learning

algorithm is to smooth the weight changes by overrelaxation [3.15], i. e. by adding the

momentum term:

Ow,
j(t+1) = ySpaj + JJw1j(t) (3.31)

where t indexes the presentation number and p is a constant in the range [0 - 1] which

determines the effect of the previous weight. The second term in Eq. (3.31) may

improve the convergence rate and the steady state performance of the algorithm.

Intuitively, if the previous weight change is large, then adding a fraction of this

amount to the current weight update will accelerate the convergence process.

61

Chapter 3 Artificial Neural Networks

3.2.3 Deficiencies of back-propagation
Despite the apparent success of the back-propagation learning algorithm, there are

some aspects which make the algorithm not guaranteed to be universally useful. Most

troublesome is the long training process. This can be a result of a non-optimum
learning rate and momentum. A lot of advanced algorithms based on back-propagation

learning have some optimised method to adapt this learning rate, as will be discussed

in a next section. Outright training failures generally arise from two sources: network

paralysis and local minima.

Network paralysis. As the network trains, the weights can be adjusted to very large

values. The total input of a hidden unit or output unit can therefore reach very high

(either positive or negative) values, and because of the sigmoid activation function the

unit will have an activation very close to zero or very close to one. As is clear from

Eqs. (3.29) and (3.30), the weight adjustments which are proportional to ajP(l -()

will be close to zero, and the training process can come to a virtual standstill.

Local minima. The error surface of a complex network is full of hills and valleys.

Because of the gradient descent, the network can get trapped in a local minimum

when there is a much deeper minimum nearby. Probabilistic methods can help to

avoid this trap, but they tend to be slow. Another suggested possibility is to increase

the number of hidden units. Although this will work because of the higher

dimensionality of the error space, and the chance to get trapped is smaller, it appears

that there is some upper limit of the number of hidden units which, when exceeded,

again results in the system being trapped in local minima.

3.2.4 Optimising the back-propagation network
During the past several years, researchers have explored many ways to enhance the

performance, maximise likelihood of convergence while learning, and improve the

overall learning rate of the back-propagation neural networks. There are several factors

which have provided an impetus for this work. These include the fact that the basic

back-propagation network often takes a discouragingly long time to learn, and that

sometimes it does not converge at all for a given random set of starting weights. There

are three major ways to improve performance of the back-propagation network:

62

Chapter 3 Artificial Neural Networks

through modifying the structure, the dynamics, or the network training and learning

rules. In this section we shall consider some of these areas and the rest of them will
be discussed in detail in the subsequent chapters at appropriate sections.

Although sigmoid functions are quite often used as activation functions, other
functions can be used as well. In some cases this leads to a formula which is known

from traditional function approximation theories. For example, from Fourier analysis
it is known that any periodic function can be written as an infinite sum of sine and

cosine terms (Fourier series):

f(x) _ (ancosnx + bnsinnx) (3.32)
n =O

We can rewrite this as a summation of sine terms

f(x) = ao +E cnsin(nx + O,
t)

(3.33)
n=l

with cn =
V'(an2

+ bn2) and 6n = arctan (b/a). This can be seen as a feed-forward

network with a single input unit for x; a single output unit for f(x) and hidden units

with an activation function F= sin(i). The factor ao corresponds with the bias of the

output unit, the factors c., correspond with the weights from hidden to output unit; the

phase factor On corresponds with the bias term of the hidden units and the factor n

corresponds with the weights between the input and hidden layer [3.16].

The basic difference between the Fourier approach and the back-propagation

approach is that the in the Fourier approach the "weights" between the input and the

hidden units (these are the factors n) are fixed integer numbers, whereas in the back-

propagation approach these weights can take any value.

When using a back-propagation network, one of the most important

configuration issues is to select the optimal number of neurons in the hidden layers.

This number is not known in advance, and usually is estimated by a trial and error

approach.

One possible approach is to construct a neural network with an excessive

number of hidden units and then some redundant units are removed during the

63

Chapter 3

learning process. All neurons that do not

Artificial Neural Networks

contribute to the solution or give
information nor required at the next layer can be considered as redundant hidden units.
In order to find which hidden units can be removed, the output of all the hidden units
is monitored and analyzed across all the training examples after the network achieves

convergence. If the output of a certain hidden unit is approximately constant for all
training examples this unit can be removed since it does not contribute essentially to

the solution because it is acting as an additional bias to all neurons to which it feeds.

This process of removing the redundant hidden units is called pruning [3.17].

Recently, a heuristic modification of the back-propagation algorithm has been

proposed which varies the number of hidden units dynamically. According to this

modification the data structure is very flexible and allows the following operations:

" Adding or "killing" neuron layers

" Generating or annihilating neurons within each layer

" Modifying the interconnection between neurons in two adjacent layers

As that type of modification is beyond the scope of this thesis.

Although, theoretically, the back-propagation algorithm performs gradient

descent on the total error only if the weights are adjusted after the full set of learning

patterns has been presented, more often than not a single pattern update algorithm is

applied. In this case, a pattern is presented at the input and then all weights are

updated before the next pattern is presented. In the standard way, the batch procedure,

since the weight changes must be accumulated over the entire training set, additional

local storage for each connection is required. In practice the back-propagation batch

learning algorithm usually takes a more sophisticated form than that given by Eq.

(3.31). The change in each weight is often calculated from the formula

Aw,](t+1) bpaj' +µ Aw;
j.
r(t)

- 4w, -'(t) (3.34)
nt-1 p

where n1_1 is the number of processing units (neurons) in the (1-1) layer, and 4 is a

decay factor, with typical values of 10-1 to 10-5, which prevents the algorithm from

generating very large weights[3.18].

In general, the on-line approach has to be used if all training examples are not

64

Chapter 3 Artificial Neural Networks

available before the learning starts and an adaptation to the actual (on-line) stream of
training patterns is desired. Furthermore, the on-line learning algorithm is usually

convenient and more effective than the batch algorithm when the number of the

training examples is very large, since the batch procedure requires auxiliary memory
to accumulate the local updates.

The on-line procedure introduces some randomness (noise) that often may help

in escaping from local minima. On the contrary the standard batch procedure
introduces some inherent averaging filtering due to collecting the total gradient
information before deciding the next step. Although the batch learning algorithm

provides a better estimate of the gradient components and avoids a mutual interference

of the weight changes (caused by different patterns), it does not improve the learning

speed sufficiently to compensate for the additional computational cost. Usually, the

on-line algorithm is faster and more effective than the standard batch procedure,

especially for large-scale classification problems. This can be explained by the fact

that usually many training examples possess redundant information in the sense that

many contributions to the gradient are very similar, and waiting to compute all these

contributions before updating the weights is simply wasteful.

However, for many applications, especially, if high precision mapping is

required, the batch procedure may be the method of choice. Moreover, the batch

approach lends itself to straightforward applications of more sophisticated optimisation

procedures as it can be shown in the next section.

Summarising, the relative effectiveness of the on-line and batch procedure is

dependent on the problem, but the on-line algorithm seems superior in most cases,

especially for large and redundant training sets.

As we have already mentioned the training of MLPs using the standard back-

propagation algorithm is plagued by a slow convergence. There are cases in which the

learning speed is a limiting factor in practical applications of neural networks.

Darken and Moody [3.19] proposed a simple approach called "search-then-

conzverge" strategy. According to this strategy the learning rate is gradually decreasing

during the learning process. In the first phase of learning (called the search phase) the

learning rate is almost constant (i. e. it decreases very slowly) and it is sufficiently

65

Chapter 3 Artificial Neural Net«orks

large. In the second phase of learning (the converge phase) the learning rate
exponentially decreases to zero. Two possible schedules for the learning rate have
been suggested:

1
YO

+k
(3.35) 1

ko

or

1+ck
Yk) _ 7o

k

yo k°
(3.36)

1+c +ko(_)2
yo ko

o

where yo > 0, c>0, ko >>1 (typically 100<_ ko <_ 500) are suitably chosen parameters.

Alternatively, another simple heuristic strategy for the batch learning procedure is to

relate the learning rate with the total error function E. More specific the learning rate

should be increased (typically by multiplying its actual value by a factor a=1.05) if

the total error function E is decreased (i. e. the new error is less than the old error) and

decreased rapidly (typically by multiplying it by a factor b=0.7) if the new error

exceeds the old error by more than a prespecified ration (typically 1.04) [3.20].

After starting with a small learning rate its modifications are described by the

iterative equation

ay 1)
i

y k)
=b,,, (k-1)

if E(W (k)) < E(W ck-1>),

if f ETW)> kE(W (k-1)),

otherwise,

where typical values of the parameters are a=1.05, b =0.7, k=1.04.

(3.37)

66

Chapter 3 Artificial Neural Networks

In order to improve more the performance of the back-propagation algorithm
we may apply the following heuristic proposed by Silva and Almeida [3.21]. There,

each weight has its own learning rate which is adaptively adjusted during the learning

process on the basis of gradient information of the error function E. Therefore, the
learning rate is computed iteratively as

a if f
aE(W"') aE(W (k-'))ý

0
k> awli. awli (3.38) rii

b (k -1), otherwise.

where recommended values of the parameters are:

1.1 <_ a <_ 1.3,0.75 <_ b <_ 0.9 and y; j(0) = 10-1.

According to this algorithm, if the gradient component aE / aw; j has the same sign
in two consecutive steps, the corresponding rate is increased exponentially and, if the

gradient component alternates, the learning rate is decreased.

3.2.5 Advanced Algorithms

Many researchers have devised improvements of and extensions to the basic back-

propagation algorithm described in previous sections. May be the most obvious

improvement is to replace the rather primitive steepest descent method with a

direction set minimisation method, e. g., conjugate gradient minimisation [3.22]. Note

that minimisation along a direction u brings the function f at a place where its

gradient is perpendicular to u (otherwise minimisation along u is not complete).

Instead of following the gradient at every step, a set of n directions is constructed

which are all conjugate to each other such that minimisation along one of these

directions uj does not spoil the minimisation along one of the earlier directions u;, i. e.,

the directions are non-interfering. Thus one minimisation in the direction of u;

suffices, such that n minimisations in a system with n degrees of freedom bring this

system to a minimum, provided that the system is quadratic. This is different from

gradient descent, which directly minimises in the direction of the steepest descent.

Suppose the function to be minimised is approximated by its Taylor series

67

Chapter 3 Artificial Neural Networks

2
f(x) = f(P) +xIx. +1

of I
xx. + ... E Cý P2i, j

axiax

J.
PIJ ii

. == TAx
-b

Tx +c
2

where T denotes transpose, and

f(p) b= -Vf fP [A] =
a2f (3.39)

axýax
p

A is a symmetric positive definite nxn matrix, the Hessian of f at p. The gradient

off is

Vf = Ax -b (3.40)

such that a change of x results in a change of the gradient as

S(VJ) = A(6x) (3.41)

Now, suppose f was minimised along a direction u; to a point where the gradient g; +,
off is perpendicular to u; ,

i. e.,

T
g u; ; +l =0 (3.42)

and a new direction u; +,
is sought. In order to make sure that moving along u; +,

does

not spoil minimisation along u; we require that the gradient off remain perpendicular

to u; , i. e.,

u; gi+2=0 (3.43)

otherwise we would once more have to minimise in a direction which has a

component of u;. Combining Eqs. (3.42) and (3.43), we get

0= UT
T (i+1

- gi+2) = U'5(VJ) = U. Au.
+I

(3.44)

When Eq. (3.44) holds for two vectors u; and u; +, they are said to be conjugate.

68

Chapter 3 Artificial Neural Networks

Now, starting at some point po, the first minimisation direction uo is taken

equal to go = -Of (po), resulting in a new point p,. For i >_ 0, calculate the directions

ui+l = gi+l + /u
i

(3.45)

where y; is chosen to make u; TA ui-1 =0 and the successive gradients perpendicular,

T
g`+ T `+' with gk = -V f ,

pt
for all k>0 (3.46) 7i ýT

gig;

Next, calculate p; +2 = P; +I + k+, u; +, where ki, j is chosen so as to minimise f(p;
+2

using a line minimisation technique like the "Golden Section Search" or the "Brent's

method" [3.23]. The process described above is known as the Fletcher-Reeves method,

but there are many variants which work more or less the same [3.24].

In practice, it is usually necessary to restart the optimisation process

periodically due to the numerical inaccuracy of the results in a search direction and

(or) due to the nonquadratic nature of the problem. The algorithm should be restarted

(by a search in the steepest-descent direction) when a nondescent search direction is

generated. The conjugate gradient method can be regarded as being somewhat

intermediate between the method of steepest-descent and the quasi-Newton methods

in terms of the convergence property and the complexity [3.25]. The advantage of the

conjugate gradient algorithm is its simplicity for estimation of optimal values of the

parameters compared to more advanced algorithms as some quasi-Newton methods.

3.3 Self-Organising Networks

The majority of neural network applications call for supervised training. For each

sample input contained in the training set, the desired outputs are also known. The

inputs and outputs are both presented to the network, and the network learns to

associate them. There are some applications, though, for which "correct" outputs are

not known. Or sometimes we may know the outputs that we would like the network

to learn, but we want to see if the network can learn them on its own. The network

69

Chapter 3 Artificial Neural Networks

must discover for itself any relationships of interest that may exist in the input data.

Our interest is in designing networks that are able to translate the discovered

relationships into outputs. For such applications, unsupervised training is the

appropriate choice.

The most famous neural network model reared toward unsupervised training

is the Kohonen network, named after its inventor, Teuvo Kohonen [3.26]. It relies on

a type of learning called competitive learning. In most other networks models, all

neurons adjust their weights in response to a training presentation. In competitive

learning, the neurons compete for the privilege of learning. Only one, or at most, a

few neurons are allowed to adjust their weights in response to a presentation.

Figure 3.5: Kohonen network

Kohonen networks, also known as self-organisation networks, consist of two layers:

an input layer and an output layer. Each neuron in the input layer is fully connected

to each neuron in the output layer by a connection with an associated weight. The

output layer usually is represented as a two-dimensional array of neurons. Within two

dimensions, obviously, the neurons could be arranged in many ways. Most often, they

70

X1 X2 X3 XN-1

Chapter 3 Artificial Neural Networks

are arranged in either rectangular or hexagonal arrays. Fig. 3.5 illustrates a simple self-

organising network model.

The activation of an output neuron is the dot product of its weights to the

incoming input values. The neuron having maximum activation for a given

presentation is declared the winner. Thus the winning neuron is, in a measurable way,

the closest to the input value and thus represents the input value. Therefore, the input

data, which may have many dimensions, comes to be represented by a two-

dimensional vector which preserves the order of the higher dimensional input data.

This can be thought of as an order-preserving projection of the input space onto the

two-dimensional Kohonen layer. One problem that could arise is that, by chance, one

output neuron can end up representing too much of the input data. To solve the

problem of neuron winning too frequently, the mechanism of a conscience is

introduced [3.27].

Mexican hot function

) Stovepipe hat function

Chef hot function

Figure 3.6: Self-organising activation
functions

71

Distance N
from

winning
neuron

Chapter 3 Artificial Neural Networks

The conscience mechanism depends on keeping a record of how often each output

neuron wins and this information is then used during training to "bias" the distance

measurement. The conscience mechanism helps the output layer achieve another

benefit: The output neurons naturally represent approximately equal information about

the input data. Where the input space has sparse data, the representative output

neurons compact the space. Where the input space has high density, the representative

output neurons spread out to allow finer discrimination. In this way the output layer

is thought to mimic the knowledge representation of biological systems.

Each weight in the neighbourhood of the winning neuron is then adjusted

according to the formula:

w. (t+l) = wi(t) + h(t)[x(t) - w. (t)] (3.47)

where x(t) is the sample presented to the network and h(t) is a learning coefficient.

First, it usually decreases with increasing iterations (time) [3.28]. Second, it can vary

with the distance from the winning neuron, taking on the shape of one of the special

functions which are shown in Fig. 3.6.

As the topology-conserving quality of this network seems to have many

counterparts in biological brains, it does not come as a surprise, that a number of

applications have been derived especially in robotics [3.29].

3.4 Reinforcement Learning

In a previous section supervised training methods have been described in which the

weight adjustments are calculated using a set of "learning samples". These learning

samples can either be given by an external teacher or, in the case that the network is

used to control a system which interacts with the world, be derived from the

interaction of the system with the environment. However, not always such a set of

learning examples is available or can be derived. Often the only information is a

signal which is given when a desired goal has been reached (reward) or when the

system fails (punishment). This reinforcement signal is characterised by the fact that

72

Chapter 3 Artificial Neural Networks

it is less informative than a set of examples (only a correct-false judgement is given)

and that it is often delayed: the success or failure signal which is given at a certain

moment is a result of control signals (networks outputs) in the past. The question is

whether a network can be trained with such poor and delayed training data. A number

of algorithms have been developed that make this form of learning possible.

Specifically, Barto et al. [3.30] have formulated reinforcement learning as a learning

strategy which does not need a set of examples provided by a "teacher". The system

described by Barto explores the space of alternative input-output mappings and uses

an evaluative feedback (reinforcement signal) on the consequences of the control

signal (network output) on the environment. It has been shown that such reinforcement

learning algorithms are implementing on-line, incremental approximation to the

dynamic programming method for optimal control, and are also called heuristic

dynamic programming [3.31].

The basic building blocks in most reinforcement learning schemes are an

Associative Search Element (ASE) which uses a stochastic method to determine the

correct relation between input and output and an Adaptive Critic Element (ACE)

which learns to give a correct prediction of future reward or punishment, as shown in

Fig. 3.7. The external reinforcement signal r can be generated by a special sensor or

be derived from the state vector.

Figure 3.7: Architecture of a reinforcement learning scheme

73

Chapter 3

3.4.1 Associative search

Artificial Neural Networks

In its most elementary form the ASE gives a binary value o(t) (-= 10,1 } as a stochastic
function of an input vector. The total input of the ASE is the weighted sum of the
inputs, with the inclusion of a bias input which is a stochastic variable Z with mean

zero normal distribution:

N

i(t) _ wsj X(t) +Z (3.48)
j=1

The activation function F is a threshold such that

1I ifi(t)>0
O(t) = a(t) _ (3.49)

0 otherwise

For updating the weights, a Hebbian type of learning rule is used. However, the

update is weighted with the reinforcement signal r(t) and an 'eligibility' ej is defined

instead of the product o(t) xx(t) of input and output:

wsi(t+l) = ws. (t) + ocr(t)ei. (t) (3.50)

where a is a learning factor. The eligibility ej is given by

e (t+ l) = bes(t) + (1 - 8)o(t)x((t) (3.51)

with 8 the decay rate of the eligibility. The eligibility is a sort of 'memory'; ej is high

if the signals from the input state unit j and the output unit are correlated over some

time.

Using r(t) in Eq. (3.50) has the disadvantage that learning only takes place

when there is an external reinforcement signal. The problem lies to the fact that as

training progresses, the reinforcement signal r(t) appears less and less. Instead of r(t),

usually a continuous "internal reinforcement" signal r (t) given by the ACE, is used.

In control applications, the input vector is the (n-dimensional) state vector s

of the system. In this case, a "decoder" is used, which divides the range of each of the

input variables s; in a number of intervals. The aim is to divide the input (state) space

in a number of disjunct subspaces, or "boxes" as called by Barto. The input vector

74

Chapter 3 Artificial Neural Networks

can therefore only be in one subspace at a time. The decoder converts the input

vector into a binary values vector x, with only one element equal to one, indicating

which subspace is currently visited.

3.4.2 Adaptive critic
The Adaptive Critic Element (ACE) uses rules from Temporal Difference Learning

[3.32] to define an internal reinforcement signal r which is available for each state of

the system and no longer incidental (just in case of failure) but continuously present.

The basic idea is that for each state xj an evaluation value p(t) = p(xj(t)) has

to be learned by the ACE. This evaluation should be the expectation of the discounted

sum of external reinforcement, and if p(t) is correctly learned then

P(t-1) - r(t) +7P(t) (3.52)

with 0<y<1. By attempting to make prediction of future evolution of the

reinforcement signal, the learning rule produces predictions that tend to be the earliest

possible indictions of eventual reinforcement. The significance of Eq. (3.52) lies to the

fact that differences between p(t) and p(t-1) will have as a result an appropriate r(t)

signal corresponding to the increase in stability. An error signal can now be defined

for training the ACE:

r(t) = r(t) +yp(t) - p(t-1) (3.53)

p(t) is implemented as a series of "weights" wcj to the ACE such that

P(t) _W ck.
(t) Xi(t) (3.54)

The function is learned by adjusting the wcj's according to a 'delta-rule' with an error

signal 6 given by r (t) [3.33]:

Owcf(t) = (3r(t)hj(t) (3.55)

P is the learning parameter and h, (t) indicates the "trace" of neuron xj:

75

Chapter 3 Artificial Neural Networks

h (t) _A hý(t-1) + (1 - A,) x (t-1) (3.56)

This trace is a low-pass filter or momentum, through which the credit assigned to state
j increases while state j is active and decays exponentially after the activity of j has

expired. If r(t) is positive, the action u of the system has resulted in a higher

evaluation value, whereas a negative r(t) indicates a deterioration of the system.

Therefore, r(t) can be considered as an internal reinforcement signal.

3.5 Conclusions

The material of this chapter described the principal concepts of Artificial Neural

Networks. Within the area of control engineering, control and estimation rely on the

effective processing of unpredictable and imprecise information. To tackle such tasks,

current approaches tend to be based on some "model" of the unknown process in

question. The use of neural network based models (NNMs) can be considered as one

solution to this problem.

A number of NN learning algorithms have been proposed, but the supervised

backpropagation algorithm is by far the most widely applied. Despite the "similarity"

between supervised and reinforcement method, the latter is used in applications where

a less informative error signal, i. e. good/bad signal, is required without a target value.

Although more advanced learning algorithms can be used in place of the

gradient steepest-descent method, these alternative procedures can be considered

computational more expensive and therefore not worthwhile in software terms.

In the subsequent chapters we are concerned about how to apply the

backpropagation algorithm on a variety of network architectures for modelling our

prototype URV.

76

Chapter 3

References

Artificial Neural Networks

[3.1] McCulloch, W. S. and Pitts, W., "A logical calculus of the ideas immanent in
nervous activity", Bulletin of Mathematical Biophysics No. 5,1943, pp. 115-
133.

[3.2] Minsky, M. and Papert, S., "Perceptrons: An Introduction to Computational
Geometry", MIT Press, 1969.

[3.3] Eckmiller, R., Hartmann, G. and Hauske, G. (eds), "Parallel Processing in
Neural Systems and Computers", North-Holland, 1990.

[3.4] Feldman, J. A. and Ballard, D. H., "Connectionist models and their properties",
Cognitive Science, No. 6,1982, pp. 205-254.

[3.5] Adamides, E., Tsalides, P. and Thanailakis, A., "Hierarchical Cellular
Automata Structures", Parallel Computing, No. 18,1992, pp. 517-524.

[3.6] Hebb, D. O., "The Organization of Behaviour", Wiley, 1949.

[3.7] Freeman, J. A. and Skapura, D. M., "Neural Networks: Algorithms,
Applications, and Programming Techniques", Addison-Wesley, 1991.

[3.8] Zurada, J. M., "Introduction to Artificial Neural Systems", West Publishing
Co., 1992.

[3.9] Rosenblatt, F., "Principles of Neurodynamics", Spartan Books, 1959.

[3.10] Rumelhart, D., McClelland, T. L., (eds), "Parallel Distributed processing:
Explorations in the Microstructure of Cognition. Vol. 1: Foundations", MIT
Press, 1986.

[3.11] Werbos, P. J., "Beyond regression: New tools for prediction and analysis in the
behavioral sciences", Harvard University, Masters Thesis, 1974.

[3.12] Le Cun, Y., "Une procedure d' apprentissage pour reseau a seuil
assymetrique", Proc. of Cognitiva, No. 85,1985, pp. 599-604.

[3.13] Hornik, K., Stinchcombe, M. and White, H., "Multilayer feedforward networks
are universal approximators", Neural Networks, Vol. 2,1989, pp. 359-366.

[3.14] Fausett, L, "Fundamentals of neural networks: Architectures, algorithms, and
applications", Prentice-Hall, 1994.

77

Chapter 3 Artificial Neural Networks

[3.15] Wasserman, P. D., "Neural Computing, Theory, and Practice", Van Nostrand
Reinhold, 1989.

[3.16] Pao, Y-H., "Adaptive Pattern Recognition and Neural Networks", Addison-
Wesley, 1989.

[3.17] Sietsma, J. and Dow, R. J. F., "Creating artificial neural networks that
generalise", Neural Networks, Vol. 4,1991, pp. 67-79.

[3.18] Hertz, J., Krogh, A. and Palmer, R. G., "Introduction to Theory of Neural
Computation", Addison-Wesley, 1991.

[3.19] Darken, C. and Moody, J., "Towards faster stochastic gradient search" in
Advances in Neural Information Processing Systems 4, Moody, J., Hanson, S. J.
and Lippmann, R. P. (eds), Morgan Kaufmann, 1991, pp. 1009-1016.

[3.20] Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T. and Allcon, D. L.,
"Accelerating the convergence of the backpropagation method", Biological
Cybernetics, Vol. 59,1988, pp. 257-263.

[3.21] Silva, F. M. and Almeida, L. B., "Speeding up backpropagation", in Advanced
Neural Computers, Eckmiller, R. (ed), North-Holland, 1990, pp. 151-158.

[3.22] Johansson, E. M., Dowla, F. U. and Goodman, D. M., "Backpropagation
Learning for Multilayer Feed-Forward Neural Networks using the Conjugate
Gradient Method", Int. J. Neural Systems, Vol. 2, No. 4,1992, pp. 291-301.

[3.23] Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T., "Numerical
Recipes: The Art of Scientific Computing, Cambridge University Press, 1992.

[3.24] Fletcher, R., "Practical Methods of Optimization", Wiley-Interscience, 1986.

[3.25] Gill, P. E., Murray, W. and Wright, W. H., "Practical Optimization", Academic
Press, 1981.

[3.26] Kohonen, T., "The Self-Organizing Map", Proc. IEEE, Vol. 78, No. 9,
September 1990, pp. 1464-1480.

[3.27] Kohonen, T., "Self-Organization and Associative Memory ", Springer-Verlag,
1984.

[3.28] Ritter, H., Martinez, T. and Schulten, K., "Neural Computation and Selg-
Organizing Maps", Addison-Wesley, 1992.

[3.29] Martinez, T. and Schulten, K., "Hierarchical neural net for learning control of
a robot's arm and gripper", Proc. IJCNN '90, San Diego, Vol. 3, pp. 747-752.

78

Chapter 3 Artificial Neural Networks

[3.30] Barto, A. G., Sutton, R. S. and Anderson, C. W., "Neurolike adaptive elements
that can solve difficult learning problems", IEEE Trans. Systems, Man and
Cybernetics, No. 13,1983, pp. 834-846.

[3.31] Miller III, W. T., Sutton, R. S. and Werbos, P. J. (eds), "Neural Networks for
Control", MIT Press, 1990.

[3.32] Sutton, R. S., "Learning to predict by the method of temporal differences",
Machine Learning, No. 3,1988, pp. 9-44.

[3.33] Barto, A. G. and Sutton, R. S. "Simulation of anticipatory responses in classical
conditioning bt a neuron-like adaptive element", Behavioral Brain Res., Vol 4,
1982, pp. 221-235.

79

CHAPTER 4

A Neural Network Approach for Identification of

an Underwater Robotic Vehicle

4.1 General Features

The control of Underwater Robotic Vehicles (URVs) has always offered a challenge

to the control engineer, due to the combined nature of both the vehicle itself and the

environment in which it operates. The design of controllers to optimise URVs

operations relies on the availability of models describing the dynamic behaviour of the

vehicle. The number of parameters affecting the non-linearities in an URV are large,

therefore the identification of such a system is a significant challenge.

The ability of artificial neural networks to model nonlinear functions to any

arbitrary precision has been a large influence in their use for nonlinear control

applications [4.1]. One of the important advantages of using neural networks (NNs)

for control applications is that the dynamics of the controlled system (plant) need not

be completely known as a prior condition for controller design. This is a very

desirable feature in the design of an URV control system, because of the non-

linearities arising from rigid-body coupling and also the unpredictable nature of

disturbances from sea environment. Also, the ability of these networks for adaptation

80

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

and disturbance rejection and their highly parallel nature of computation make this

approach attractive for real-time control applications.

A major portion of NN research is involved in function approximation and

dynamic system modelling. Although, in this thesis we are concerned primarily with

control issues, a discussion of these topics is considered to be essential.

The aim is to develop a non-linear controller to keep station or "hover" a

prototype single-input-single-output (SISO) URV, which we call the Aquacube. A NN

model has to be developed and then incorporated into a predictive control strategy as

we shall discuss in a next chapter.

Whenever a new technology is applied, a method for comparing the

performance of a particular technique is essential. Often an appropriate method

involves the concept of benchmarking. Benchmarking, in general terms, is the

application of an algorithm to a standardized set of problems which are designed to

explore the performance characteristics and limitations of the algorithm in question.

The algorithm's performance can then be compared to the performance of standard

algorithms or methods which are applied to the same problem.

The Robotics group at Liverpool University has developed a number of

different controllers for the already mentioned prototype URV [4.2][4.3]. Due to the

rather unsuccessful experimental results, the issue of designing a novel neural

controller is an alternative significant challenge. As the system dynamics of the

vehicle can be greatly influenced by the dynamics of the vehicle thruster, it is essential

its approximate model to be developed.

4.2 Vehicle Characteristics

As we have already seen, the control of an URV is a very complex non-linear

problem. For control testing, it was decided a vehicle which would operate with only

one degree of freedom to be used [4.2].

Since the easiest positional parameter to measure is depth, a pressure

transducer was mounted on the vehicle. The Aquacube also comprises a single thruster

aligned vertically and mounted in a steel endoskeleton. All information and power is

81

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

transmitted via an umbilical which is non-tensioned and made approximately neutrally

buoyant, in order to minimise the static forces. Buoyancy also was added to make the

vehicle slightly positively buoyant. Details for this prototype URV can be found in

Appendix A.

In our case, a brushless dc motor driven by a PWM inverter was used, as it

commonly the case today and motor torque is commanded by applying an analog

voltage (±10V) to the motor controller. In this case, stiction can lead to pronounced

dead bands for small thrust values which are crucial in fine position control. In the

strict sense, dead band is defined as the specified range of values over which the

incoming signal can be varied without causing the output to respond. From an

"equilibrium" state, as the input-control voltage is slowly increased, a point is reached

at which the motor just starts to turn. If the polarity of the voltage is reversed, the

same thing will happen, but the motor will start in reverse. For a dc motor, it is the

applied voltage, either to the field or armature depending on how they are controlled.

which will just cause the motor to start. In Fig. 4.1 the vehicle velocity is illustrated

while the vehicle input is driven with negative to positive step signals ("c? " case) and

reverse ("cl" case).

0.20

0.16

-ý 0.10

0
0
v 0.06

m
0-0.00

-0.06

-0.10

-0.16

"01
ý- --- c2

Figure 4.1: Incidence of dead band and hysteresis

K

stop Input e lpnol (volts)

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

From this diagram the above phenomenon together with a hysteresis incident can be

clearly shown. The dead band is due to a number of different things including friction

of the gear train and load, inertia of the motor rotor, and certain magnetic effects[4.4].

The dead band in "c 1" case is extended approximately in the range [1, -3] Volts, while
in "c2" case from [-1.8,2.8] Volts.

It is well known that thrusters are subject to serious degradation due to axial-

and cross-flow effects. Axial-flow effects can be reasonably approximated by the

modelling of the truster unit alone, the velocity of the fluid entering the thruster

shroud effectively changes the angle of attack of the propeller, thus altering the force

produced. Cross-flow effects are much more difficult to model and have been shown

experimentally to be highly dependent on the position of the thruster on the vehicle

[4.5]. In both cases, the reduced amount of force produced by the thruster will reduce

the overall gain of the control system unless these effects are specifically included in

the controller design.

Therefore, although the vehicle can be considered as a SISO plant, its

dynamics are highly non-linear. The hydrodynamic coefficients of the vehicle are

unknown, and the drift due to water currents and the buoyancy generate extra forces

and moments. Similarly, the acceleration and deceleration of the vehicle affects its

overall dynamics.

4.2.1 A Dynamic Vehicle Model

In this section, an approximation of the transfer function of the vehicle and its

surrounding environment will be attempted. Although, we are primarily interested in

neural modelling, it is crucial for us to know approximately the dynamic order of our

non-linear system. This knowledge will be the basis in finding a suitable neural

network model.

In developing the vehicle equations of motion, we have to take in account that

a system which is set in motion by a force has a number of forces opposing it, i. e.,

the force is relative to the mass and acceleration and the constants of friction and

velocity [4.6]. Therefore, in our case a simplified vehicle simulation has the form:

83

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

F, =Mx +fz (4.1)

where M is the effective mass (actual vehicle mass plus "added mass"), f is the

viscous friction and added buoyancy, and Ft is the output thruster force. Converting

the above equation to the Laplace operator, we obtain the system function which

relates the actual position of the vehicle and the output thrust force

X(s)
_1k Fe(s) (Ms + f)s s(1 +Ts)

where the equivalent time constant i=M/f.

However, the relationship between the commanded thrust force Fc and the

output force F, can be derived from the transfer function of an armature controlled dc

motor [4.7].

The armature controlled dc motor utilises a constant field current, and therefore the

motor torque is

T (s) = Km II(s) (4.3)

where K,,, is defined as the motor constant. The armature current is related to the

input voltage applied to the armature as

V(s) = (Ra + Ls)I (S) + Vb(s) (4.4)

where Vb(s) is the back electromotive-force voltage proportional to the motor speed.

Therefore we have

Vb(s) = Kb(o(s) (4.5)

and the armature current is

Icc (S) _
VU(s) - K', c)(s) (4.6)

The load torque equation is given by

(Ra + Las

84

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

Js Z6(s) + fsO(s) = Tjs) - Td(s) (4.7)

The relations for the armature controlled dc motor are shown schematically in Fig. 4.2.

I

Figure 4.2: Armature controlled dc motor

Therefore, we can obtain the following transfer function

w(S)
_K G(S) _-m V(s) [(Ra + Las)(Js + f) + KhK]

(4.8)
K m

) (S 2+ 2ýw11S + w2 11

The output thrust force and the angular velocity are related through the following

equation [4.5]

Fr = yo)

where y can be considered as a flow variable.

(4.9)

Combining Eqs. (4.2), (4.8) and (4.9) the following fourth-order transfer function is

obtained for our system:

85

Disturbances

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

X(s) X(s) Fe(s) up(s)
V (s) Fe(s) w(s) Va(S)

S(1 + "tS)(S 2+ 2cu s+ o)n)

Key characteristics we expect the Aquacube to show are behaviour partly as a Type

1 system and a fourth order one with some underdamping effects.

To calculate the system's overall response a series of frequency response tests

were carried out. The test used was to give a sinusoidal control input to the PWM

unit, whilst measuring the vehicle's depth throughout. From repetitions of this test at

different frequencies in the range [0.35 - 5.236] radsec, the frequency response of the

vehicle can be calculated. Figs. 4.3 - 4.8 show the response of the vehicle to sinusoid

of various frequencies, where T represents the signal period. These figures graphically

emphasise the dynamics of the vehicle. The dynamic behaviour of the thruster when

coupled with other dynamic nonidealities such as drift, can result such nonlinear

performance.

The next step in system identification is to determine by means of practical

testing, the transfer function or some equivalent mathematical description for the

dynamic characteristics of the system components. Traditional experimental procedures

involve subjecting the system to step, ramp, pulse or sinusoidal input variations, and

then carrying out relatively simple analysis of the output response curves. If the

transfer function is available in factorized form then the system frequency response

can be shown in a Bode plot. This consists of two plots normally drawn on semi-

logarithmic plot, log10 G(jo) , and a phase plot, L G(jw), both on a linear scale,

against frequency cn plotted on a logarithmic scale. The magnitude is most commonly

plotted is decibels i. e. 20 log10 G(jc)) I. One reason for this choice of graph is that,

since the magnitude is plotted in logarithmic form, the overall magnitude and phase

information can both be obtained from the component parts by graphical addition. A

second important advantage of such a plot is that certain approximation using straight

line constructions can be quickly drawn and often suffice for accuracy.

86

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

4

S

4_

0
b

(j 5
00
N

aý
GQ4

.: J

13

2a

2_

8

4Z

as HI

A 1-2

0. a 1 B1 101 151 901 "1
No. patterns (meec)

Aquacube -Input signal

Figure 4.4: Vehicle response with T=2.4 sec

201 261

I. a
7

i_e °
a

m A

S. d
ü

a
1.2

C

No. patterns (msec)

Aquacube -Input signal

Figure 4.3: Vehicle response with T=1.2 sec

4 Zä

yý 47

0.4
1 61 101 161 901 261

No. patterne (msec)

I-
-Aquacube -Input signal

Figure 4.5: Vehicle response with T= 3.6 sec

4`2.6
il

1ýC

tja .. -- -- :- ---- -- +- -: -1 -- -/ "1-- -ý - -- --ý- -- -- - 1-ýýp,
op 1i rr

---- -- -- ------ `}ý- -ýi M1T 1.260

11
51 101 161 201 961 801 881

No. patterne (m eec)

Aquacube -Input signal

Figure 4.7: Vehicle response with T=9 sec

9.6

n

Öý
b

v

g

"I

aP GQ.

J

16

R,

ý6_

7. a 0
0
ö

Z. 1 a

d A

1.9
ü

ýr
1.7

1R
1 51 Lai 161 Sol 261 301 1161

No_patterna (cnsec)

-'Aquacube -Input . Ignal

Figure 4.6: Vehicle response with T=4.8 sec

4

55

A
p0

CR 5
OD

a2
a
ar

15

I

6.4

L

i. e ö

is

Ap

0.4

0
61 101 101

No. patterni (meec)

Aquacube -Input signal

Figure 4.8: Vehicle response with T= 18 sec

87

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

In our case the system identification problem is to estimate the dynamic characteristics

of the Aquacube based on observed input-output data. The advantages of sinusoidal

test inputs can be described form the point of view of the relative ease of signal

generation and ease of analysis, and the physical understanding of system response

which results.

This section describes an alternative method of calculating the frequency

response of the Aquacube prototype by the use an FFT-based algorithm.

A physical process can be described either in the time domain, by the values

of some quantity h as a function of time t, e. g., h(t), or else in the frequency domain,

where the process is specified by giving its amplitude H (generally a complex number

indicating phase also) as a function of frequency f, that is H(f) , with -- <f < oo. For

many purposes it is useful to think of h(t) and H(f) as being two different

representations of the same function. One goes back and forth between these two

representations by means of the Fourier transform equations,

HY) =f h(t) e 2" ̀f`dt
(4.11)

h(t) =
JHWe2df

In the time domain, function h(t) may happen to have one or more special symmetries.

It might be purely real or purely imaginary or it might be even, h(t) = h(-t), or odd,

h(t) = -h(-t). In the frequency domain, these symmetries lead to relationships between

H(f) and H(-f). In the most common situations, as in our case, function H(t) is sampled

at evenly spaced intervals in time. Let A denote the time interval between consecutive

samples, so that the sequence of sampled values is

hn = h(n0) n=0,1,2,3,4,... (4.12)

The reciprocal of the time interval A is called the sampling rate, and in our case is

equal to 0.3 seconds. For any sampling interval A, there is also a special frequency

f, called the Nvquist critical frequency, given by

88

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

1 (4.13) fý
2A

The Nyquist critical frequency is important as it is related with the well known

sampling theorem: If a continuous function h(t) is sampled at frequencies higher than

this critical frequency, then the function h(t) is completely determined by its samples

hn [4.81.

We can now estimate the Fourier transform of a function from a finite N

number of consecutive sampled values. With N numbers of input, we will evidently

be able to produce no more than N independent number of output. So, instead of

trying to estimate the Fourier transform H(f) at all values of f in the range -f to

let us seek estimates only at the discrete values

nNN fn=
NA

n=- 2,... ý2
(4.14)

The remaining step is to approximate the integral in Eq. (4.11) by a discrete sum

[4.9]:

N-1 N-1

H(fn) _
Jh(t)e2tdt hke Zn'f, "A A hke 2(4.15)

k=O k=O

The final summation in Eq. (4.15) is called the discrete Fourier transform of the N

points hk. Let us denote it by Hn,

N-1

Hh e2n`kn/N
nk

k=O

(4.16)

The discrete Fourier transform maps N complex numbers (the hk's) into N complex

numbers (the H, 's). It does not depend on any dimensional parameter, such as the time

scale A. The discrete Fourier transform has symmetry properties almost exactly the

same as the continuous Fourier transform. The discrete Fourier transform can in fact

be computed with a faster algorithm , the fast Fourier transform, or FFT [4.10].

Although there are a number of variants on the basic FFT algorithm, by far the easiest

89

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

case is the one in which the original N is an integer power of 2. In that case. if the
length of the data set is not a power of two, then it should be padded it with zeros up
to the next power of two.

MATLAB [4.11] has a toolbox consisting of functions immediately useful for

system identification. It is easy to compute the FFT for the sinusoidal inputs and the

corresponding vehicle positions. Their absolute magnitudes and phases can be derived

from FFT, and therefore the magnitude of the Aquacube's transfer function can be

computed as the ratio of the output magnitude to the input one. Similarly, the phase

of the Aquacube's function can be considered as the difference of the input phase
from the output one. Figs. 4.9 - 4.16 show the spectra of the absolute magnitude and

phase of two of the test data set. The spectral peaks are associated with particular bin

numbers. The relationship between the bin number and the actual frequency is

f= (bin -number - 1) * fr /N (4.17)

where f is the sample frequency, and N the length of the data set.

It can be seen that the spectral peaks correspond to the appropriate frequency

of the input signal. The results of the frequency response are summarised in table 4.1

and the open-loop Bode diagram is shown in Fig. 4.17.

Frequency (rad/sec) Magnitude (cm - db) Phase(degrees)

: 0.349 28.94 -130.0

0.698 22.93 -140.0

III : 1.309 13.90 -152.0

IV: 1.745 11.17 -170.0

V: 2.618 -1.73 -183.0

VI: 5.236 2.85 -318.0

Table 4.1

90

Chapter 4

70

60

50

40

JO

20

10

A Neural Network Approach for Identification of an Underwater Robotic Vehicle

0 0.5 1 1.5 2 2.5 3 3.5

Figure 4.9: Absolute magnitude spectrum of the input signal with T= 18 sec (m)

-s

0 1.5 2 z. a 3 3.6

Figure 4.10: Phase spectrum of the input signal with T= 18 sec (rad)

1O

1e

14

12

10

s

e

4

4

L

0 0.6 1 1.8 2 2.6 3 3.5

Figure 4.11: Absolute magnitude spectrum of the output signal with T= 18 sec (m)

1.0

O. e

O

0 o. e t 1.5 z a. e 3t

Figure 4.12: Phase spectrum of the output signal with T= 18 sec (rad)

91

Chapter 4

4

4

J

3

7

2

1

1

A Neural Network Approach for Identification of an Underwater Robotic Vehicle

5

Figure 4.13: Absolute magnitude spectrum of the input signal with T=4.8 sec (m)

4

3

2

1

O

-1

-2

-3
-4 0 0.6 1 1.5 2 2.5 3 3. a

Figure 4.14: Phase spectrum of the input signal with T=4.8 sec (rad)

O O. 8 1 1.5 2 2.6 3 3.5

Figure 4.15: Absolute magnitude spectrum of the output signal with T=4.8 sec (m)

a. e

3

2. e

2

1. e

I

0.5

0

Y4i:

ak8; -0.5 3.8

Figure 4.16: Phase spectrum of the output signal with T=4.8 sec (rad)

92

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

40

30

20

10
00

I'ý f-- id1

0

-too

-200 i,
00
4)

-300

-400

-10 11111111111 _600
0.349 3.49

Frequency (rad/sec)

-Aquacube M. *Aquacube Ph. -4-Model Ph. Model M

Figure 4.17: Open-loop Bode diagram

From a first look at the Bode diagram, one can spot the "spurious" absolute value at

the frequency 2.618 rad/sec, which is due to the rather noisy input-output data set at

that frequency. As we are moving to a higher frequency, we can notice a breakdown

of the "linearity". At this particular frequency, the input magnitude spectrum has a

clear peak at the 27th point. On the other hand, the output magnitude spectrum

contains two similar peaks, one at 27th point ant the other, the higher, at 22nd. In that

case, if we consider the 22nd point as the most appropriate one, the phase of the

transfer function at this particular frequency is increased to -273°.
It is very interesting to show how the fourth-order linear model, we have

already described, can approximate this behaviour.

We know that the logarithmic magnitude of (jco)-' in decibels is -20 loglo w db.

At the first frequency point, cn=0.349 rad/sec, the contribution of this factor should be

9.12 db. The difference from the actual magnitude is due to the constant gain

parameter, which is assumed to be equal approximately 9.8. The second frequency

point, co=0.698, proves the existence of these factors as their combination gives us a

magnitude of 22.92 db, very close to the actual one. The third and fourth frequency

point reveal the existence of the (1±jcoT)"' factor. The time constant T, is considered

to be approximately equal to 1 second, which gives us reasonable results for the third

93

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

and fourth frequency point, 13.13 db and 9.02 db respectively.
The 6th frequency point, w=5.236 rad/sec, depends on not only from the

previous parameters but also from the quadratic factor which is shown in Eq. (4.10).

Using log-magnitude curves for this factor, it is considered that the parameters ý=0.1

and can=5.8 give reasonable results, i. e. 2.65 db.

On the other hand, the phase-angle curve for these specific frequency points,

starts at -105° for the first point, moves to -120° and -135° for the second and third

point respectively, and ends to -210° for the 6th frequency point.
The above results "drive" us to the question why one can consider neural

approaches for modelling and control this URV prototype, while an approximate
fourth-order model is sufficient.

The linear model rely on the key assumption of small range operation in order

to be valid. The sinusoidal input signal in our case is small in amplitude and well

above from the thruster dead-band which can be considered as a "hard non-linearity".

When the required operation range is large, then the current parameters of the model

are not suitable and the linear model is likely to perform very poorly or to be unstable.

Additionally, the dead-band phenomenon will affect dramatically its performance.

It is our interest to show that a neural network approach can model the

Aquacube in a large operation range and in addition, in the specific small operation

range to perform as a linearised neural model. Therefore, in the next chapter the

performance of recurrent neural networks will be investigated and the appropriate

Bode diagrams for this small operation range will be plotted.

We now compare the frequency-response curves of Fig. 4.17 with the

corresponding curves for the Aquacube as they can be found in [4.2]. By examining

the data from which that "Bode plot" was derived, we can conclude that they are not

realistic by any means. For example someone can consider from these data, that the

thruster is a linear system without any kind of dead bands.

The transfer function which has been derived from this "Bode plot" can be

found in 14.3] and has the following form:

94

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

and fourth frequency point, 13.13 dh and 9.02 dh respectively.
The 6th frequency point, c,. w=5.236 rad/sec, depends on not only from the

previous parameters but also from the quadratic factor which is shown in Eq. (4.1O).

Using log-magnitude curves for this factor, it is considered that the parameters ý=O. I

and co�=5.8 give reasonable results, i. e. 2.65 dh.

On the other hand, the phase-angle curve for these specific frequency points,

starts at -105° for the first point, moves to -120° and -135° for the second and third

point respectively, and ends to -210° for the 6th frequency point.
The above results "drive" us to the question why one can consider neural

approaches for modelling and control this URV prototype, while an approximate

fourth-order model is sufficient.

The linear model rely on the key assumption of snmall range operation in order

to be valid. The sinusoidal input signal in our case is small in amplitude and well

above from the thruster dead-hand which can he considered as a "hard non-linearity".

When the required operation range is large, then the current parameters of the model

are not suitable and the linear model is likely to perform very poorly or to he unstable.

Additionally, the dead-hand phenomenon will affect dramatically its Performance.
It is our interest to show that a neural network approach can model the

Ayuacube in a large operation range and in addition, in the specific small operation

range to perform as a linearised neural model. Therefore, in the next chapter the

performance of recurrent neural networks will he investigated sind the appropriate

Bode diagrams for this small operation range will he plotted.

We now compare the frequency-response curves of F 'I4.17 with the

corresponding curves for the Ayuacuhe as they can he found in 14.21. By examining

the data from which that "Bode plot" was derived, we can conclude that they are not

realistic by any means. For example someone can consider from these data, that the

thruster is a linear system without any kind of dead hands.

The transfer function which has been derived from this "Bode plot" can he

found in 14.31 and has the following form:

94

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

hidden layer. However, as in the case of polynomials, Fourier series, and general

orthogonal functions, the Weierstrass theorem does not provide a recipe for the choice

of the number of terms needed to achieve the approximation, i. e., the number of layers

and numbers of nodes in each layer in the network. In practice, these have to be

determined by trial and error in a specific context. However, as in the case of

polynomials, too small a network may not be able to sufficiently approximate

accurately the observed input-output data, while too large a network may not be able

to sufficiently "generalise", interpolate, accurately.

Poggio and Girosi [4.16] have also shown that the method of approximating

functions also includes as special cases other powerful interpolation schemes such as

the use of Radial Basis Functions (RBFs) which will be discussed in detail in a later

section of this chapter. These networks may always be structured with only a single

hidden layer and trained using linear optimisation techniques with a guaranteed global

solution [4.17].

The Weierstrass theorem provides a sound basis for the use of MLPs and

RBFs, since it assures that such networks can approximate a continuous function to

any degree of accuracy. However, since polynomials, orthogonal functions, and splines

can also be used to approximate such functions, it is not readily apparent as to why

neural networks should be preferred. Hence, practical considerations generally dictate

the choice of the specific class of functions used for approximation. Extensive

computer studies carried out during the past few years have revealed that both MLP

and RBF networks have some advantages over conventional methods for

approximation. For example, polynomial approximations do not have good scaling

properties and, in addition, are difficult to implement in hardware because of signal

saturating effects of analog circuits. Further, when the polynomial is of high order and

the magnitude of the input variable exceeds one, the output can be very large,

resulting in numerical instabilities during the determination of coefficients. The basis

functions for orthogonal series expansions are quite complex and generally given in

the form of look-up tables. Hence, they are not particularly suited for real-time

applications. In contrast to the above, neural networks are readily implementable in

hardware and possess hardware robustness. As a consequence, neural networks have

96

Chapter 4A Neural Network Approach fier Identification of an Underwater Robotic Vehicle

the potential for being useful components in the design of complex robotic control

systems.

4.4 Non-linear System Modelling

A major proportion of any control task is spent trying to form an adequate model of

the plant. This is where it is claimed that neural networks have it great advantage over

classical techniques because they can he "trained" with observed data from the real

plant, to reproduce the characteristics of' the plant as a black box model. The neural

networks are used as non-linear, multi-variable function approximation tools. The

"training" involves the optimisation of' the weights in the network until the knowledge

distributed among them is suf'ficient to provide a black-box model of the plant.

A training set of input output pairs is needed to provide sufficient inl'ormation

to model the non-linear system. An input signal must he chosen which will excite all

the dynamic modes of the system and cover the whole amplitude range of' interest,

otherwise the validity of' the model will become highly input sensitive. As a

consequence of' the slightly positive buoyancy of' the vehicle, we found from

experiments in it swimming pool that the thruster requires it Illlllllllllill value, which

ranges in region cif 12 - 31 volts, in order to maintain or increase the current vehicle

depth position. Therefore it is critical for the NN to learn this characteristic of the

vehicle as the buoyancy adds an extra force toi the system. The training set consisting

of' a series of step control signals is illustrated in Fig. 4.1 Ka. The reason of choosing

this type of signals lies to the fact that due to the thruster stiction, as shown in Fig.

4. I, alternative signals like RAS (Random Amplitude Signal) or sine waves, proved

to he "poor" candidates for training the neural model of the vehicle. The two distinct

areas in the step signal (positive and negative) provide sufficient information for

modelling of the vehicle as it will he shown later in this thesis. A number of step and

sine signals have been used to validate the various neural models, and this testing set

is illustrated in Fig. 4.18h. Notice that this figure extends over pages 99 and 1(111.

In a real system, the measurements of the training data are likely to he subject

to noise, and the system output is going to he influenced by unpredictable

9

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

disturbances. The job of the neural network is therefore to find a generalisation which

represents the underlying system, while ignoring the noise, or finds the underlying

characteristics of the disturbances.

4

3.5

3

AZ
A
ý. 6

0.5

0

a

e

9.6 8

3.15 7

2.7

25 i""
.:..

.

a 1.8 %
x. 35

0.8

0.45 --

1 21 41 al 91
00

No. of patterns (ursec)

.. - --. J. -. .. 1

1.

L

........................

ý=
f

1 21 41 61 81 101 121 141 181 181 201

No. of patterns (mieo)

Aquacubc -'input signal

3

2.5

_2 8

d. 5

0.5

0
1

...............

21 41

No. of patterns (m. ec)

-Aquacube --input signal

4-;
r
ö

2

oQ
e

-z .,
a

-4

-8

-8

6

5

4

3ö

1

0

', -Aquacube --input eianal

3.8

3.16

2.7

EF.
25

1.8

Q
41.35

0.9

0.45

n

_.. _....

-------------- _.
r...

_ '--..... -.... -.. T... _.... ý--.....

..............

- ------ -----

.........

21 41

Yo. of patterns (msec)

Aquacube --input signal

Figure 4.18a: Training set for modelling the Aquacube

0

-i

-2 a

ö
-3

s
-4 c

y
7

-5 -. 7
a

-6

-7

-8

98

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

3.5

3

2.5

2

1.5

1

0.5

01
1 21 41 61 81 101 121 141 161 181

No. of pattern (maec)

-Aquacube -'input signal

Step_file 1

4

3.5

3

5

2

4
ý. 5

0.5

O

.
.:...... -......

-- "- ----- ;..... :......:.....: ... :.. -"". ---
........., -

;.... -

-- ---- -
:...

-- - -- -- -- - -- 1

1 21 41 B1 81 101 121 141

No. of patterns (maec)

-Aquacube -input signal

Step-file 3

3

2.5

6

. az
4
O

'd

1.5

i

I

i

r

I

51 101 151 201 251 301 351

No. of patterns (muec)

Aquacube "'input signal

Sine file 2

3
8

2.5

2 °> Z
v/

a

0 4.5

Ä 0.
m

4

-4
ý

0.5

-e
0

...

................
....

1

. 1

"1

1

1 21 41 81 81 101 121

No. of patterns (maec)

Aquacube -'input iignel

6.8

5.5

4.4 3

3.3

2.2
a
q

1.1

a

Step-file 2

8

7

6m

0
5ý

m
40

d m

a
2?

i

0

2 3.9

3.4

A. BF'` - 2.9
qj

a2.4

a.

1.2
t:,

Es

1 1.4
1 101 201

No. of patterns (maec)

Aquacube ---input s1gna1

Sine file 1

3.8 2. s 3.8

2.4 3-4
I. 1I If II

II. 'I, I1
,, II

,11 ,1 ,1. ,1
11

it II I.
.'

'I : 1' I 3.2
''.. Lf-r,

- -)i. t-
J4.11-I. '

P-F-

..

I
r

-I 1 . -I!.! ý.
to

-r i", 1 I.

I, Iý
>

,iv1

1.6 . 1-f. F L 4- 11 -P1-
. .

'. l
ß

Y. e
.., d, 1jI1 11, 'r, 'f 1ý. 1X1.1 rr

2.8 q 1'' 1"
II 11

1 r"
"

1'' 1'' I, I'' ,p
MI

11 , 1X11 11
"I1: " 11 ', t"1"1",. I I'

o

41.1 ýll. fýý"'"i-Iýý"11.11.1(. -ý!. rh'''''"ýý!
ý"ýa-Jý-ý e. 9

61 II
I'

II ""
11

ýý;
II

Ir li
11

I'
rl

''
7b,

1II11_I1,11111.
if

11
11

n:
,I1111 11

II" W''

4III
II II ,I II I)

7
11 . II 11

II 11 n 11 11 o

2wu.. n., J.. 1. e0. un;. " -11 . if: 11 Ir. lL. lr "
u: u" .c"..

' .1
to

11" 11
"

II
it

1Y1Y11Y11:
,1(1i

0. f ...; ... 1.4

1.4
e,

I 61 101 161 201 261

No. of patterns (maec)

-Aquecube ' input signal

Sine file 3

99

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

2

1.75

1.5

. 1.25

m
b 1

0.75

At ilý'll

iýiý_lü«11"1-U-rll
4f Jj Ilr-I'

- Iý if I"i -II I II P
IP

II 11
ýI Iý

II II
(I II II

II II II;
II II II

II II
111II1I11NI III 1I III 111111 1' 11 IIIIII1II1II
IýJý.

I
ll ýr lý ý_ILr I I; iý I. ý. ýlý+-I, I-ý- r Jj"ý-Lr

II II
II II II

rl
II

Iý-I III: I II III II II; II
II il'I I' I

II II II II ýI II
rl 1: 11 j1 I II rr

11
II I

rl II
II II I'

II
II

11
I1:

11 II ý1
II pl II I II "II II

7r11_, I_"il-I/-li-Iý-Il.

11 II II
II Iý II II II ý

II: II ýý
II II III

YL9', 11 ýý
ýI II "II il III

II rl

,Iq II II u
II II 11 II it II It

pIqI
11

0.5 L
1

4

3.5

3ö

2.4 bo

2
a

1.5

1
51 101 161 201

No. of patterns (ursec)

Aquacube --input signal

Sine file 4

Figure 4.18b: Testing set for modelling the Aquacube

4.4.1Modelling Configurations

In general, identification of the plant should result in usable terms such as coefficients

of a plant differential equation or coefficients of its transfer function. Without

reference to any particular network structure we now discuss architectures for training

networks to represent non-linear dynamical systems and their inverses.

Forward modelling. The procedure of training a neural network to represent the

forward dynamics of a system will be referred to as forward modelling. The basic

configuration is shown in Fig. 4.19.

Figure 4.19: Forward modelling

100

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

The neural network model is placed in parallel with the system and the error between

the system and the network output (the prediction error) is used as the network
training signal. The learning structure is a classical supervised learning problem where

the teacher provides target values directly in the output coordinate system of the

learner.

Inverse modelling. Inverse models of dynamical systems play a crucial role in a range

of control structures. Conceptually the simplest approach is direct inverse modelling

as shown schematically in Fig. 4.20. Here, a synthetic training signal is introduced to

the system. The system output is then used as input to the network. The network

output is compared with the training signal (the system input) and this error is used

to train the network. This structure will clearly tend to force the network to represent

the inverse of the plant.

Figure 4.20: Inverse modelling

However, obtaining inverse models raises some drawbacks as:

" The learning procedure is not "goal directed"; the training signal must be

chosen to sample over a wide range of system inputs, to explore the

operational range, without making explicit reference to the reference signals

for which close loop control is required.

0 If the non-linear system mapping is not one-one then an incorrect inverse can

be obtained. This occurs for a system when, more than one value, say two, of

input exists that corresponds to one value of output. It may be that the eventual

mapping learned would somewhat tend to average the two, for example,

101

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

desired input values, but in no case can such identification of the system
inverse be considered adequate.

4.4.2 Identification of Discrete-Time Dynamical Systems
Most physical systems are dynamic in nature and the identification of such systems

using input-output data will naturally involve dynamic elements. One possibility is to

introduce dynamics into the network itself. This can be done either using recurrent

networks or by introducing dynamic behaviour into the neurons as it will be shown
in the next chapter. A straightforward approach which will be followed here, is to

augment the network input with signals corresponding to Input-State-Output

Representation [4.18].

The representation of multi-input, multi-output dynamical systems using state

equations is currently well known. These take the form,

x(k+1) = f[x(k), u(k)]
y(k) = h[x(k)]

(4.19)

where { u(k) }, { x(k) }, { y(k) } are discrete-time sequences. For a linear system that is

controllable and observable, it has been proved that the initial state of the system can

be computed from ii values of the input and output, and hence, any SISO system can

be described by a difference equation of the form

nb n,

(k) _ -ý a, y(k-i) +Eb u(kJ) + e, e(k-l) (4.20)
t=t j=t t=t

where u(k) is the scalar input signal, y(k) is the scalar output signal of the unknown

system, e(k) is the disturbance. Usually, it is assumed that e(k) is a zero-mean white

noise process. It should be noted that the system model is driven by the deterministic

input signal u(k) and disturbances (noise) e(k) while the user can control or measure

u(k) but not e(k). In this model the present output signal is estimated as a linear

combination of the past inputs and outputs of the system and the past samples of

disturbances. In the identification literature the model described above is called the

ARMAX model (autoregressive moving average with an exogenous signal).

102

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

There are several practically important special cases of the ARMAX model [4.19]:

0 An autoregressive (AR) model, sometimes called an all-pole model, is obtained

when nb = nc= 0. The AR model can be described by the difference equation

Y(k) _ -ý a y(k-i) (4.21)

In the AR model no deterministic input is used and only past values of the

output are employed to predict its present value y(k).

0A moving average (MA) model, sometimes called an all-zero model, is

obtained when na= nb= 0, i. e.

9(k) _ cl e(k-l)
1=1

(4.22)

In an MA model no past values of the output are used and no deterministic

input.

0A mixed autoregressive moving average (ARMA) model is obtained when

nb=0. Then

nn

9(k) = -E a1
.
Y(k-i) +EC, e(k-l) (4.23)

i=i r=t

Clearly, this class of stochastic models includes the AR and MA models as

special cases.

0A finite impulse response (FIR) model is obtained for na= n, = 0. For this case

we have

lln

9(k) _b u(k j)
j=1

(4.24)

0 An infinite impulse response (IIR) model, also called ARX or controlled

autoregressive model, is obtained when n, = 0, i. e.

103

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

na n,

9(k) _ -ý a; y(k-i) +b u(k J) (4.25)
. =1 j=1

The feature, that AR and IIR models can be formulated as linear autoregressive, is one
important property since powerful and relatively simple algorithms and associated

neural networks can be applied directly to estimating parameters of these models

providing a tremendous speed.

The AR model provides good results only if a dynamic system is linear or

nearly linear. However, for highly non-linear systems the prediction by a linear AR

model may be very poor or even completely wrong. Therefore, a more flexible and

universal approach is to employ a neural network with non-linear processing units

which will be able to approximate any nonlinear continuous function on the basis of

training examples, and therefore such a model will be very general and flexible.

Virtually, a neural network provides only a single-step prediction when the last

available values of the given time series are applied to all inputs of the network.

The identification problem using neural networks can be separated into three

successive steps:

(i) model building,

(ii) the learning procedure (i. e. determination of the parameters of the model),

(iii) testing or diagnostic checking.

For the nonlinear system identification the models can take the general NARX

(nonlinear autoregressive model with exogenous input) form [4.20]

9(k) = F[y(k-1),..., y(k-n,,), u(k-1),..., u(k-ne)] (4.26)

where u(k) and y(k) are, respectively, the single input and single output of the system,

assuming it as a SISO type. F(") is the unknown system function and y(k) is the

estimated output of the system. The model described by Eq. (4.26) can be represented

by a NN shown in Fig. 4.21a [4.21]. That model is quite general and rather difficult

to learn (i. e. to identify and characterise) because of the relatively large number of

unknown involved. For this reason this general model is usually simplified if some

insights of the unknown system are available. Figs. 4.21b, c, d show such simplified

104

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

models proposed by Narendra and Parthasarathy [4.21]. All these models can be

considered as an extension or generalisation of the linear infinite impulse response
(IIR) model.

For our application, the most general model will be considered. The choice

of a specific class of networks for the approximation of a non-linear map depends

upon a variety of factors dictated by the particular applications under study and is

usually related to the desired accuracy, the prior information available concerning the

input to the plant, and the analytical tractability of the resulting system. In modelling

the Aquacube, we have considered only two classes of networks:

(i) The Multilayer Perceptron (MLP) in which the adjustable parameters form a

non-linear network, and

(ii) Radial Basis Function Networks (RBFNs) in which the adjustable parameters,

or weights, are adjusted as part of a linear network.

105

Chapter 4

(a)

u(k)

A Neural Network Approach for Identification of an Underwater Robotic Vehicle

y(k)

y(k-nom)

Z

Neural

Z-i network

rciodel

F[,]

Z-ý

u(k-n)

y(k)

(b)
-ýý1

k-1),
-u(k-n.

)]+
(k-l).., y(k-n.)]

y(k)

(c)
-n")

(-q+
-1). -. y(k-n.)]

-.. 61

y(k)

(d) -n)

=F2[u(k-1).. ß(k-r..))+

+Fý aý y(k4)

Figure 4.21: Different non-linear models for a SISO dynamic system

y(k) ° F[Y(k-1),
, y(k_n), u(k-1), --, u(k-n,)]

106

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

4.4.3 Modelling using Multilayer Perceptron Networks
Using an expression corresponding to that of Eq. (4.25), a SISO non-linear forward

model form using past values of the Aquacube input and output can be expressed as:

y(t) = F(Y(t-1),..., y(t-n), u(t-1),..., u(t-m)) (4.27)

where y(t) and u(t) are the sampled system output and input at time instant t, n and

m denote the number of past outputs and inputs respectively and F(.) is the unknown

non-linear function to be identified.

Determination of the network's topology involves the appropriate assignment

of the network's input nodes to past values of system inputs and outputs and the

specification of the internal structure. Formal techniques for determining an optimum

number of nodes in the hidden layers are still an area of current research and presently

this task is often achieved by experimentation. An important factor when choosing the

number of neurons for each layer is to make certain the network has enough neurons

within the layers to carry out the task required. However a major problem when

selecting a networks size is to ensure that it is not over filled with neurons. This

restricts the networks knowledge to that of the training data. Thus the network will be

no longer able to generalise when presented with new input data.

In our case, best performance was achieved using a NN with two hidden

layers, of 18 and 12 nodes each, with standard sigmoidal functions as the non-linear

neural activation function [4.22]. Network training was undertaken by presenting the

network with a data set of input-output values consisting of the control signals and

depth indications from the vehicle. In a typical implementation, the error back-

propagation (BP) learning is used, where the network weights are updated at each

pattern presentation until learning is complete, i. e. the MSE (mean square error) is at

acceptable levels. The learning rate was set at 0.1 and the momentum term at 0.2575.

Knowledge of the system indicates that the vehicle with the surrounding

environment is likely to exhibit predominantly fourth order dynamics. The network

was configured in the following NARX model structure:

V �1(t+l) = "(t), y P(t-1), y °(t-2) y `'(t_3)) (4.28)

107

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

with inputs consisting of one past control input and four past output data values from

the plant, and the next plant output as the network output. In other words, the NN was

trained as a one-step-ahead predictor, as it can predict the vehicle position a single

step into the future. Fig. 4.22 shows schematically this configuration. The number of
delays of the external input signal, and the number of delays of the feedback signal

normally estimate the order of the unknown plant, and this is the only information

about the plant needed to be known in advance. Attempts to use a smaller input vector

failed to converge owing to the complexity of this underwater prototype.

Figure 4.22: Feed-forward model for Aquacube

In a different version, a NARX model structure with 6 inputs, one control signal and

five depth indications, was used with similar results. Figs. 4.23 - 4.30 illustrate the

validation of the network trained as a forward model using the BP algorithm and table

4.2 summarises the results.

108

Chapter 4

3

26

8

A Neural Network Approach for Identification of an Underwater Robotic Vehicle

a
0 b

1.6

1

e

2^
0

6ä

q
0.

L

Z 9.9

; iii 3.4

2.6

2.4

1 2 :
"; : '+

, ýýiý f' -' -; ,
5

. . ; ý ý;

i f" 'ýiýliyS I iýt
1.9

; ;ý ; ý;
1

1 101 201
1-4

No. of patterns (msec)

--Neural not, 5/1B/12/1 -Aquacube --input signal

1 51 101 151 201 251 301 351
No. of patterns (mIea)

Neural net: 6/18/12/1 -Aquacube ---input s11na1

Figure 4.23: Sine-file 2

Q

z

n
V i.

'd

0

i
i

.2

5 -..
x.

-- ...
'... .. .- --- -

Figure 4.24: Sine-file 1

3.

ö

ea

ä

2 8"

4.

0.
B

1 91 41 61 01 101 11x1 141 101 161

No. of pattern. (meec)

- Neural net- 5/18/12/1 -Aquacube --input signal

Figure 4.25: Step-file 1

_ --...
9

~:
....

.... . --... -

g ---- -----

i

e

7

6

2

1

0
1 21 41 61 81 101 121 141

No. of patterns (meet)

--Neural net: 6/18/12/1 -Aquncube --input eianal

Figure 4.26: Step-file 3

109

Chapter 4 A Neural Network Approach for Identification of an Underwater Robotic Vehicle

i
12 -i" - 'r -- -i. . F.

- 1

16 ' :

9. B

3.2-3

0

2.8
V

Q

2
,ý

61 101 151 201 261 301 351
No. of patterns (meec)

Neural net: 6/18/12/1 -Aquaeube "- input signal

Figure 4.27: Sine-file 2

3.6

3

25

g

1.6

1

0.6

0

l

.......

......................

...........

8

4
0

20 >

o

-2
A

-411

-8

1 21 41 61 81 101 121 141 161 181

No. of pattern. (msec)

Neural net: 6/18/12/1 -Aquacabe --input eianal

Figure 4.29: Step-file 1

2

1.8

0. e

4

1.2

I

I,

IýIýy

3.9

SA
_
ö

2.9

2.4

1.9

.4 101 201
No. of patterns (msec)

Neural net: 6/18/12/1 -Aquacube --input signal

Figure 4.28: Sine-file 1

4

3.6

3

2
Cl.
L. 6

1

0.6

n

0

i. "

------------- --------------- -------
------------ ------

s

e
7

0
6ý

4I

ö
a

1

0
1 21 41 61 81 101 121 141

No, of patterns (znsec)

--Neural net. 6/18/12/1 -Aquacube --input signal

Figure 4.30: Step-file 3

110

Chapter 4 A Neural Network Approach for Identification of an Underwater Robotic Vehicle

Test - files MSE for 5/18/12/1 net MSE for 6/18/12/1 net

I: sine file 2 0.000372 0.000312

II: sine file 1 0.001045 0.001168

III: step-file 1 0.001100 0.001116

IV: step-file 3 0.002377 0.001189

Table 4.2

An example of the MSE curve of trained sigmoidal network as a function of an

output-layer weight is shown in Fig. 4.31. This curve shows a deep minimum which

carved out by the back-propagation learning process. It becomes clear that BP is

subject to convergence on local minimum. Also, this diagram reveals the networks

fault tolerance. Due to the distributed information encoding, a varied weight has as a

result a graceful degradation of network response.

m
0.0 2.0 4.0 6.0 8.0

Figure 4.31: MSE curve

In an alternative way, a neural network is directly trained to learn the inverse

dynamics of our underwater prototype as shown schematically in Fig. 4.32. Training

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

can be performed off-line, and the trained network can be used directly as a feed-

forward controller in a later stage.

Figure 4.32: Inverse model for Aquacube

Two different neural configurations have been specified, both with two hidden layers.

As it had been suspected, longer time passed until the performance reach some

acceptable levels. This fact reveals the difficulty in obtaining an inverse plant model.

Two types of NARX configuration were used and they have been formulated as

u(k) = F(y(k+1), y(k), v(k-1), y'(k-2), v(k-3) u(k-1)) (4.29)

for type I and

u(k) = F(y(k+1), y(k), y(k-1), y(k-2), y(k-3)) (4.30)

for type II. Figs. 4.33 - 4.36 illustrate the validation of the inverse model and table 4.3

summarises the results.

Test - files MSE for 6/18/12/1 net MSE for 5/10/4/1 net

I: Sine file 2 0.0710 3.20276

II: Step-file 1 0.1725 3.22140

Table 4.3

11?

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

It is quite evidence that the performance of the inverse model is rather disappointed

compared with the forward model. In practice, the u(k-1) signal is provided by the

network itself by a delay-feedback, with a result that the network error is accumulated

through the process and therefore it can be considered that an inverse network does

not provide an efficient and robust model for our system.

Despite the fact that the forward neural model is very accurate, that one-step-

ahead predictor cannot be used independently for a plant as a simulation aid, or to

provide long range predictions. The long-term prediction scheme will be considered

in detail in the next chapter where novel architectures will attempt to approximate this

problem.

113

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

9.5

3

3.6

3

v

e. ý

Ö3

v

pß. 6

.
000y000
0

e8
a
A

1.6

i

a 0 b
e

1.6

I

Ö

Ov

y -2

A. a-4

-a

-6
51 101 161 201 2151 sot 551

No, of patterns (meee)

- Neural not. 6/18/12/1 -input signal --Aquacube

Figure 4.33: Sine-file 2

e

_e
ö

'-4
'B

r+

Q

iy

l 61 101 161 201 261 901 361

s. e

s

a
S. Q7

0.6

0
1 31 51 91 Izi 151 Lei

No. of patterns (meec)

- Neural net: 6/18/12/1 -input signal --Aquacube

Figure 4.34: Step-file 1

9.6 6

J_

O

b
ri 0

'r gl.
eb., -e

1.6

ý _p

No. of patterns (meec)

Neural net: 5/10/4/1 -input signal ""-Aquacube

Figure 4.35: Sine-file 2

------ r: ti

li r

at e1 at 191 161 181

No. of patterns (msec)

- Neural net: 5/10/4/1 -input signal Aquecuba

Figure 4.36: Step-file 1

96

ß

i. Q^

ß, gki
a

oe

114

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

4.4.4 Modelling using Radial Basis Functions networks
An alternative model to the multilayer perceptron for the identification and time series

prediction in the neural network employing radial basis functions (RBFs). RBFs are

a relatively new approach in simulating neural networks. A generalised form of the

RBF has found wide application in areas such signal processing and control

engineering [4.23]. A RBF is a function which has in-built distance criterion with

respect to a centre. Functions like this have been shown to be very effective for

interpolation [4.24] and for smoothing of data. A recent application of RBFs is in area

of neural networks where they can be used as a replacement for the sigmoidal

activation function. A typical radial basis function neural network consists of three

layers of neurons (input, hidden, output) which are components of a fully connected

feed-forward architecture. The special radial basis behaviour is performed by the

single layer of hidden neurons. The activation of a hidden neuron is determined in two

steps: The first is computing the distance (usually by using the Euclidean norm)

between the input vector x and a centre c; which represents the itli hidden neuron.

Second, a function h which is usually bell-shaped (e. g. Gaussian) is applied, using the

obtained distance to get the final activation of the hidden neuron. Typical choices for

radial basis functions O(x) are

" (D (r) =r piecewise linear approximations,

" I(r) = r3 cubic approximation,

" I(r) = exp(-r` / (7') Gaussian function,

" J(r) = r2 log(r) thin plate splines,

" c(r) = (r2 + 6) 1/2 multiquadratic function,

" c(r) = (r2 + 62)-`/2 inverse multiquadratic function,

where 6 is a real coefficient called the width or scaling parameter. From the above

described functions we have used the widely used Gaussian function which has a peak

at the centre c and decreases monotonically as the distance from the centre increases.

Each hidden neuron may use a different standard deviation which performs stretching

of the function along its single argument. To demonstrate this effect, each hidden

neuron can be seen as a N-dimensional hypersphere, the radius of which is given by

the standard deviation. Input patterns yielding a point inside of the sphere will lead

115

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

to a high activation of the corresponding neuron. Assuming a well-defined RBF neural

network, the spheres which are represented by the hidden neurons cover the regions

in vector space which correspond to the set of input patterns that are to be classified.

The activation of a neuron in the output layer is determined by a linear

combination of the fixed nonlinear basis functions, i. e.

nk

F`(x) =E Oij + 6`0,1 < 1< no (4.31)
j=1

where O are the adjustable weights that link the output node(s) with the appropriate

hidden neurons. Fig. 4.37 shows a general RBF network with n inputs and a scalar

linear combiner.

Figure 4.37: An RBF neural network

In general, a RBF network is specified by three sets of parameters: the centres c; E

F, the width or distance scaling parameters ß; and the synaptic weights O , j.

The width or distance scaling parameter is determined by using the "global

first-iwighbour" heuristic [4.25]. It uses the uniform average width 6=< AXE for

all units, where AXn,
n

is the euclidean distance in the input space between each unit

m and its nearest-neighbour unit n, and <> indicates a global average over all such

pairs. Although each hidden neuron may have a different width parameter 6h, a same

width is sufficient for universal approximation. All the widths in the network can

therefore be fixed to a value 6, and this can result in a simpler training strategy. As

in the case of the MLP, although the theory guarantees the ability of a RBF network

116

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

with correct weights and centres to represent accurately an arbitrary continuous
function, it does not provide information on whether or not these parameters can

actually be learned using any existing learning law. A common learning strategy is to

randomly select some network input vectors as the RBF centres, thus effectively fixing

the network hidden layer. The weights in the output layer can then be learnt using the

least-squares (LS) method.

The present study adopts a systematic approach to the problem of centre

selection. Because a fixed centre corresponds to a given regressor in a linear

regression model, the selection of RBF centres can be regarded as a problem of subset

model selection. The orthogonal least squares (OLS) method can be employed as a

forward regression procedure which constructs RBF networks in a rational

way[4.26][4.27]. The algorithm chooses appropriate RBF centres one by one from

training data points until a satisfactory network is obtained. Each selected centre

maximises the increment to the explained variance of the desired output, and so ill-

conditioning problems occurring frequently in random selection of centres can

automatically be avoided.

In contrast to most learning algorithms, which can only work if a fixed

network structure has first been specified, the OLS algorithm is a structural

identification technique, where the centres and estimates of the corresponding weights

can be simultaneously determined in a very efficient manner during learning. OLS

learning procedure generally produces a RBF network smaller that a randomly selected

RBF network [4.28].

For our case, the structure of the structure of the RBF network employed to

identify the Aquacube was defined by 7 centres and 6 input units, i. e. one past input

plant signal and 5 past output plant signals. The nonlinear activation function was

chosen as the "bell-shaped" Gaussian function. Figs. 4.38 - 4.40 show how

successfully the RBFN performed the one-step ahead prediction, and table 4.4

summarises the results.

Assuming that neural networks are to he used for function approximation, the

immediate question that arises concerns the choice of the neural network architecture.

A disadvantage of the MLP is that the weight parameters are embedded in a non-

117

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

linear feedforward process which usually necessitates a lengthy training process.

Test - files MSE

I: Step-file 1 0.003461

II: Step-file 3 0.001893

III: Sine file 2 0.002464

Table 4.4

In addition, the parameters can converge to local minima. The adjustment of a single

parameter of the network also affects the output globally, and this factor contributes

further to the slow convergence rates observed in training our network.

In contrast to the above, the RBFN, with narrow receptive fields for the basis

functions, is suited for faster learning, as noted earlier. However, for large numbers

of input units, the number of radial basis functions required can become excessive.

This implies that MLP is preferred when the dimensionality of the input space is high.

Consequently, the a priori knowledge of the system in question affects the decision

for the neural network architecture.

3.6

3

2.5

12

1.6

b1

0.5

0

-nß

.

1 21 41 61 81 101 121 141 181 181

No. of patterns (meec)

- RBF net -Aquaoube --input signal

Figure 4.38: Step-file 1

B

B

4ö

O
zv

o
Ö

-z V

-4

-B

-8

4

3.5

3

. cp 2

1

0.5

0

ILI

---- -----

-- -- --- ... ---. ----- ---

.....
!
-- ---

e:
-"" -- ---- ---- ----

b
-- -----:.....

----------------- ------

21 41 61 at 101

No. of patterns (mseo)

-'RBF net -Aquaaube -'input signal

Figure 4.39: Step-file 3

9
O
D

. a0
m

.A
0.
q

118

(Hupfer 4A Neural
.
A'etwnrk : lppruacIs J)r Identi%ication of an Underwater Robotic Vehicle

3

25

e
.2

VV
9

15

iý i

4.5 Conclusions

6l 101 151 201 261 301 351

No. of pattern. (rnsec)

RRF net -Aqueoube -input el4nnl

Figure 4.40: Sine file 2

9.8

2.2

2. e

2 .5

14

In this chapter, detailed studies were conducted oil the dynamics of' an underwater

vehicle. The concept of' neural network modelling was introduced. Additionally, two

different neural methods were discussed and their perflormance evaluated. Oinipared

tco RßF network the popular MI, P network was found to he more accurate although

the former was faster in training', time.

l'he present Chapter aI"º> dealt with the difficulties in using the hackpwpagation

fol. invrrsc ºiuýýlCI1iný. "I'he optimum choice OI* network site -encrally is dependent

upOn the task it is required tu perform, Different MIT networks where designed with

one and two, hidden layers respectively and the latter one proved tu he the hest, with

a result all the niudelline results of this chapter tu he hatted oil that structure.

In the next chapter we shuw how recurrent neural architectures can he used I'ur

the modelling of the prototype t RV.

References

X4. I Ilunt, K. J., Sharhani, I)., 'Lhikow. ski, R. and (ºawthrup, P.. I., "Neural Networks
I'Or Control -A survey", Autonnatica, Vol. ? K, No. (i, 1992, pp. 1083- 1112.

111)

Chapter 4A Neural Network Approach for Identification of an Underwater Robotic Vehicle

[4.2] Swainston, J. R., "Positional control of underwater vehicles", MSc thesis,
Liverpool University, December 1992.

[4.3] Stephens, M., "Intelligent adaptive control of remotely operated vehicles
(ROVs)", Ph. D Thesis, Liverpool University, March 1994.

[4.4] Miller, R. W., "Servomechanisms: Devices and Fundamentals", Prentice-Hall,
1977.

[4.5] Yoerger, D. A., Cooke, J. G. and Slotine, J., "The Influence of Thruster
Dynamics on Underwater Vehicle Behavior and their Incorporation into
Control Systems design", IEEE J. Oceanic Engineering, Vol. 15, no. 3, ! 990,
pp. 167-177.

[4.6] Ogata, K., "Modern Control Engineering", Prentice-Hall, 1990.

[4.7] Dorf, R. C., "Modern Control Systems", Addison-Wesley, 1992.

[4.8] Astrom, K. J., and Wittenmark, B., "Computer-Controlled Systems", Prentice-
Hall, 1990.

[4.9] Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T., "Numerical
Recipes: The Art of Scientific Computing, Cambridge University Press, 1992.

[4.10] Elliot, D. F. and Rao, K. R., "Fast Transforms: Algorithms, Analyses,
Applications", Academic Press, 1982.

[4.1 1] MATLAB, Signal Processing Toolbox User's Guide, The MathWorks Inc.
1992.

[4.121 Bekey, G. A. and Goldberg, K. Y., "Neural Networks in Robotics", Kluwer
Academic Publishers, 1993.

[4.13] Hunt, K. J. and Sbarbaro, D., "Studies in Neural Network Based Control", in
Neural Networks for Control and Systems, Warwick, K., Irwin, G. W. and
Hunt, K. J. (eds), IEE 1992, pp. 94-123.

�[4.14] Hornik, K., Stinchcombe, M. and White, H., "Multilayer feedforward networks
are universal approximators", Neural Networks, Vol. 2,1989, pp. 359-366.

[4.15] Funahashi, K., "On the approximate realization of continuous mappings by

neural networks", Neural Networks, No. 2,1989, pp. 183-192.

J4.161
Pog`gio, T. and Girosi, F., "Networks for approximation and learning", IEEE
Proceedings, Vol 78, No. 9,1990, pp. 1481-1497.

I

(Ycupler 41 Neural
. Artxurk : lpproarh for Identification of an Underwater Robotic Vehicle

[4.17 11 conaurd. J. A. and Knuer, M. A., . 'Radial ha,, iti function networks for
l tUlts". l! -11', . ('ontrol Systems Magazine, April 1991, pp.

3I-ýS.

L.. "Sv, tCII I(ICIt I iC itiOn: l hCOOrv, kw the l'scr" Prctiticc -I lall, 1987.

X4.191 I. juii i. L. and Siida"trOttt, T., "' IIL)lV anti PiactICC IZrcursivc
Idientihieati(>n". The MIT Preo, I986.

fý J. 201 ('hcn. S. and Billing's, S. A.. "'rural nrtWOOrkti for noýnlincar dynamic systcnl
muciclIinL, and idclitification". [nt. J. Cot trot, Vol. 56, no. 2,1992, pp. 3fo)-
340.

121 J \ýucnclr<<. K. S. and l'<<rth, itiarýlthý'. K., Idcntiliratiýýn and C'ýýntmI ýýI Uynantic, il
ii ing A'curad Nct v nk,, ". 11'J-,

.T raw, Ncur. ýl Nct%v()rký, Vol. I, No. g
March 1990. pp 4-? 7.

(4 221 Kººdo, Liannis, V. S.. Liýhuýº. I'. J. Gh and Luc. ºs. J., "A neural pwdVhvccmunlkr
fror undcrwatcr rcºhc)tic application,, ", Proc. 2nd IIý+, F/1 ('S Workshop oll
Ncuraf . ct"urk AphficatR)n' and 'I ºuºIs, Liverpool, September 1993,1l1, T,
Computer Society Press, pp. 126- 133.

(4.231 11o>Ihind. A. (;.. 1mrris. 11. J. auic1 ; VI(tntdgUC, (i. A., "Radial I'LlIM1011
Qctwo iks ap[1iccl to hn)1C cuntri)l", i\nicrican ('untrOI ('unl., 1992, pp, 480-
484.

1-I. 241 hmcII. V1. J. U., "Radial ha"i" l'unrti"n , t1)1)t ililatiunti tu polynunlials", 1'roc.
12th Biennial Nunirrical /\nalvsi. S ('un1'., Uuntiec, 1987, pp. 223-2-41.

142SI J. and Darken, ('.. "I <«t I. ' IIninýý in ncIwOrk,, ul' lurally-tuned
'"'rural ('u inptitatiU, n, Vol. 1,1989, pp 2 1-2)4.

14.20) ('Ihcn, S., C(mim, ('. I
.
N. and Grant, I'. M., "Orth(wonal (cast-, "quires Ic, u-111,110

iii! rithn1 I'0r radial h, iSi , ILIMAI) rangy. Neural Networks,
No. 2,191)), pp. 302-30 9.

"/14.271 Own, S., t3i11in-s, S. A.. ('c)wan. ('. I. N. and (; rant, P. M., I'r ic(ic<<I iýlýntiliratiun

of NAIZ)vInX iuoulrls using-, radial haw, funrliuns', Int.. 1. ('unlrul, No. 52,
1990, pp. 1327-1350.

14.2 81 ('hrn, S., Grant, P. M. and ('swan, ('. I
.
N., "Ortlio u, (nal Ir, iýt ýyuarrs alguritlinn

f*()r training, multimithut radial hatiiti f'MIC110n networks", II: I: Prow. - F, Vol.
39, Nu. 6,1992, pp. 37S-X84.

121

CHAPTER 5

Identification of an Underwater Robotic Vehicle

using Recurrent Neural Networks

5.1 Introduction

During the past decade, linear system identification has made major progress and

many generic linear models, such as transfer models and convolution models, are

available and widely used. For example, transfer function models have been used as

fundamental tools for the design and analysis of control systems. However, linear

models can only be used under limited conditions and special assumptions, because

most physical systems behave non-linearly. Often, a nonlinear dynamic model is

needed; thus nonlinear system identification becomes essential, especially when an

analytical model is not available.

A number of nonlinear models have been proposed in the past. Leontaritis and

Billings [5.1] have presented a nonlinear autoregressive moving average with

exogenous model inputs (NARMAX). A NARMAX model gives a description of the

system in terms of a nonlinear functional expansion, such as a polynomial expansion,

of delayed inputs, outputs and predicted errors. Besides to the classical non-linear

models, neural networks have been used as an alternative non-linear system

122

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

identification by several researchers.

An important class of ANN are the so called dynamic networks. The node

equations in these networks are described by differential or difference equations. These

networks are important because many of the systems that we wish to model in the real

world are non-linear dynamical systems. It is possible to use a static network to

process time series data by simply converting the temporal sequence into a static

pattern by unfolding the sequence over time. That is, time is treated as another

dimension in the problem. From a practical point of view we can only afford to unfold

the sequence over a finite period of time. This can be accomplished by feeding the

input sequence into a tapped delay line of finite extent, then feeding the taps from the

delay line into a static neural network architecture like an MLP.

In the previous chapter a feedforward network was employed as a NARX

model for identification of a prototype URV. There, the network is fed with past

system input and outputs and the next-step system output is predicted. That NARX

configuration is referred to as a series-parallel method because the neural network is

not only in series with but also in parallel to the system to be identified. The serious

drawback with such feedforward networks is that they lack the ability to retain

information for an arbitrary duration. On the other hand such systems are not resistant

to background noise [5.2]. The small error between the neural output and the plant,

inherent to the approximate model developed by the network, can cause some trouble

in the case that the network tries to predict multiple steps into the future. The error

can grow in a cumulative fashion over time, leading thus to large errors and to

instability. Therefore, although feedforward networks have been applied to

identification of the Aquacube URV with success, that structure cannot be used

independently from the plant as a simulation aid, or to provide long range predictions.

In contrast to the series-parallel model, the network can be arranged completely

parallel to the system, which is therefore referred to as a parallel identification

method. While the series-parallel method requires only a feedforward network,

topologically, the parallel identification method results in a neural network with

delayed recurrent connections from its output neurons back to its own input neurons.

A neural networks with such recurrent connections is referred to as a time-lag

123

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

recurrent network.

The use of recurrent neural networks as system identification networks offers

a number of potential advantages over the use of static layered networks. Recurrent

neural networks provide a means for encoding and representing internal or hidden

states, albeit in a potentially distributed fashion, which leads to capabilities that are

similar to those of an observer in modern control theory. Recurrent network

architectures provide increased flexibility for the filtering of noisy inputs [5.3].

It is our purpose, in this chapter, to reveal the difference between the recurrent

networks and feedforward networks in identifying dynamical systems. An accurate

recurrent plant model is highly desirable since it can be used independently from the

plant for separate dynamic simulation, whereas in the one-step ahead prediction

structure the network is dependent on data immediately available from the plant.

To date, the two most popular training algorithms for recurrent networks are

techniques based on gradient descent. For purposes of training, the BPTT

(backpropagation through time) algorithm [5.4], and the RTRL (real-time recurrent

learning) [5.5] have large memory requirements, they exhibit long convergence times

due to small learning rates that are required by these procedures, and they are often

susceptible to local minima [5.6].

In this chapter, our primary objective is to create five-step ahead accurate

recurrent models for our underwater prototype and with the requirement of short

training time, alternative recurrent architectures are proposed and compared with the

BPTT algorithm. In our case, each time step corresponds to the sampling interval

which was set to 0.3 seconds.

5.2 Fully Recurrent Back-propagation Rule

Dynamic or recurrent networks are qualitatively different from static ones, because

their structure incorporates feedback. In general, the output of every neuron is fed

back with varying weights to the inputs of all neurons. A neural system composed of

these elements, with all weights non-zero in general, is called a fully connected or

124

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

recurrent network. For systems with sequential input, it is important to employ

feedback. This may be achieved in a number of ways, which can be divided into

supervised and unsupervised methods for estimating the internal state of the system.

Unsupervised recurrent networks deserve a mention, for their potential if not for their

current degree of development. Here, the aim is to form a dynamical system such that

the internal state retains the maximum amount of information from past inputs [5.7].

Historically, most connectionist research has concentrated on the supervised methods.

5.2.1 Backpropagation Through Time (BPTT)

Conceptually the simplest method is backpropagation through time [5.4]. Here, the

technique is to convert the network from a feedback system into a purely feedforward

system by unfolding the network over time. The idea is that if the system processes

a signal that is t� time step long, then we create n copies of the network. The feedback

connections are modified so that they are now feedforward connections from one

network to the subsequent network as illustrated in Fig. 5.1.

2

Figure 5.1: Training with BPTT

The equivalent static network has as many layers as time instants, therefore it is easily

understood in the discrete time context. As illustrated in Fig. 5.1, one considers an

input layer at time t as a layer next to the output layer at time t-l, from which the

delayed recurrent signal comes. In other words, the recurrent network can be

considered as a chain of small feedforward networks. Training such a recurrent

network, however, becomes a question of convenience in terms of deriving derivatives

for utilising gradient optimisation techniques.

125

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

Although, Werbos [5.8] in 1974 developed a chain rule for use with ordered

dynamical derivatives, the conventional chain rule for partial derivatives can be

defined as:

<< aE
u w" = w11° aw.

(
where E is a cost function which in our case takes the general form

N

E=2> (d; (T) - y, (ti))2 (5.2)

, c=t. i=l

and

aE (5.3)
a

Wt;
T=t

The S; (i) parameter can be calculated recursively as follows:

S, (ti) _Ew., (t,)f ' (x (ý+1))S =0 (5.4)

; _l

where

d1('t) - y, (ý), if y1(ß) is a network output;
ei(s) _ (5.5)

0, otherwise,

Note in the case of outputs that error signals may be produced in any layer, not just

the last, and are propagated backwards from the layer in which they originate. The

only real compilation is the constraint that all "copies" of each connection w; j must

remain identical, whereas backpropagation would normally produce different

increments Ow;, for each particular copy. The usual solution is simply to add together

the individual increments and then change all copies of w1 by the total amount.

The method is essentially non-recurrent, because it uses feedforward equivalent

for learning, so there is no explicit use of the network's feedback. It requires recording

126

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

of the whole trajectories and playing them back to calculate the weights. However,

once the weights are established the network runs as a recurrent one and this

differentiates it from static backpropagation.

The main problem with this backpropagation through time approach is the need

for large computer resources. Storage needs, computer time for simulation, and

number of training examples needed are all enlarged by the duplication of units [5.9].

For long sequences, or for sequences of unknown length, the approach becomes

impractical.

5.2.2 Real-Time Recurrent Learning Rule

To overcome the limitations of the previous approach, an algorithm is needed that can

train fully recurrent, continually running networks to implement dynamical systems

described only by the temporal stream of their inputs and outputs. A powerful learning

algorithm, called real-time recurrent learning, or RTRL [5.5] [5.10] is capable of

training fully recurrent networks with the ability to process serial data. In fact, the

topology that can be trained with this algorithm is very simple: it consists of just two

layers, an input and an output layer. Furthermore, the neurons in the output layer must

be fully interconnected with each other and each of them must also receive the output

of all input neurons. Fig. 5.2 shows an example network.

Networks of this type run continually in the sense that they sample their inputs

on every update cycle, and any unit receive training signals on any cycle. The

procedure differs from BPTT in that its ability due to continuous processing frees it

from any requirement for a fixed, or even bounded, epoch length. RTRL differs from

the procedures that use past states for current input in that it correctly does credit

assignment to past events.

The algorithm is a general derivation of the backpropagation rule, thus the

same equation determines the global error value, but it requires much more

calculations. Furthermore, the fully recurrent architecture it requires is not very

desirable for the number of links increases quadratic as the network grows.

127

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

Figure 5.2: Example network that satisfies the RTRL requirements

Below are the equations of this learning algorithm for updating the weights in a fully

recurrent network. Assume that U is the set of output neurons and I the set of input

neurons. The precise algorithm then consists of computing, at each time step t from

t� to t,,, the quantities p; jk(t) using Eqs. (5.7) and (5.8), and then using the differences

ek(t) between the desired and the actual outputs to compute the weight changes:

Ow,
ý(t) =a ek(t)PI; k(t) (5.6)

keU

where a stands for the learning rate and p; jk(t) is defined as:

pijk(t+l) fI (Sk(t)) E
Wkl pijl(t) + 8ik Zj(t)] (5.7)

ICU

with initial conditions

ik(t) =0 (5.8)

where fk'(sk(t)) is the derivation of the neuron output function with respect to the

128

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

activation value sk(t), 8; k denotes the Kronecker delta and z, (t) the output value of

neuron jEUUI.

From these equations it follows that each output neuron k needs to keep the

values p; jk(t) of all links that run from neuron j to i and, because the change in weight

is a sum of products of these values and the errors between desired and actual output,

we need to do approximately k more multiplications and additions. Concluding, p1 k

can be compared to b; j value of the standard backpropagation rule, but the actual

weight change needs a lot more calculations which increase as the number of output

neurons increases.

While the RTRL algorithm is very powerful, it has two significant drawbacks:

It requires a great deal of computation on each update cycle, and it is nonlocal. the

amount of storage and computation required are independent of time but increase with

the number of units in the network [5.11]. In sequential computers, the algorithm

requires, for n units, a storage capacity of roughly n3, and a computation time on each

cycle of order n4 [5.12]. The algorithm is nonlocal in the sense that each unit must

have knowledge of the complete recurrent weight matrix and error vector. However,

the algorithm is very parallel and in a parallel computer its computation time can be

reduced to order n2log(n) by using a processor for each weight.

5.2.3 Truncated Backpropagation Through Time

The previous networks can be considered as non-effective due to the large

computational requirements. Another approach, called Truncated Backpropagation

Through Time, tries to approximate the true gradient by only unfolding the network

over the last five time steps. In this case, only five copies of the network are made,

normal backpropagation with weight sharing is used [5.13].

This approach is to build up predictions for the position of the underwater

vehicle from predicted values in five earlier time periods. The whole scheme can be

considered as a "shift register" with length sequence equal to five. At the beginning

of each sequence, the network inputs are updated by the real system.

For modelling the Aquacube prototype, a network with two hidden layers and

a 6/20/ 14/ 1 structure was used. This structure corresponds to an NARX input topology

129

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

of one control signal and five position indications.

As the trajectory unfolds over time t5, we can simply accumulate the values of

weight change at each time step until the final time step. After the network has run

through the specified trajectory, we alter each weight w1 by

rs

owj(t) (5.9)

The error function used for deriving the weight change for each step can be defined

by

d(k) -O(k)
ek = q=k-1

(d(k) -o(k)) + D9(q)
q=1

for time step k=5

for time step k=4,3,2,1

where Ay(q) is given by

D9(q) _S wv

(5.10)

(5.11)

and represents the error contribution of the q internal feedback signal of the preceding

time step.

Figs. 5.3 - 5.5 show a segment of test data and the corresponding five-step-

ahead predictions using this truncated method.

Test - files MSE

I: Step-file 3 0.029

II: Step-file 1 0.023

III: Sine file 2 0.124

Table 5.1

130

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

As the neural network predicts only the next time step, it has to be chained to itself

to go as far as the specified future horizon. The process can be considered as a

moving window of width p=5 along the whole training set. Table 5.1 summarises the

results and although the method gives reasonable results with step tests, in the sine test

case the response was shifted, i. e. was out of phase. Despite these results, an

enormous time, more than 15 hours, was needed for training.

4

3.6 ----- 7
ILI

ä2..... ./`...... ;... 4

01 Tj

I 21 41 61 81 101 121 141

No. of patterns (magic)

Neural net -Aqunoube --input signal

Figure 5.3: Step-file 3

9

2.6

_2

ý. 6

0

0.6

0
1

3.6

26

g

1.6
v

1

0.6

0

{... f..... i 8

ý.

f

r0

_I
ý'" ý.

f_.
.. _\

ý4
....

...

... ...

,

.. i" -

1 21 41 61 81 101 121 141 161 181

No. of patterns (meec)

- Neural net -Aquaoube -. input signal

Figure 5.4: Step-file 1

1. I\ /l s ý"L LI r1 II I. . rl rl .

ý.
,Iý..; I1fI,

IJ X11. i. 11 .
14

ýa t' I I. iI1r : ý1 i y+ i,

J J... ý. ý
L. L..

ý.

1r... r. t:. ý.
Y...

ý:
/.

-.
1

. r. ýý.
l... ý-F... ýI

.
r... J.

11 ;ý
111 Iýý ýI

: ýý 0
III

:
'll Iý: ýI

Iý

4

3.5

0
9

v

2i.
j

OOO.
yýýý O

Z

a a
1.5

51 101 151 201 251 36,3511

No. of patterns (moat)

--Neural net -Aquacube -Input signal

Figure 5.5: Sine_file 2

0

ö
Q .+

ß

4ý

131

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

5.3 Long Range Predictions using RBFNs

In the previous section, a modified BPTT for modelling the Aquacube was discussed

where the prediction horizon was set to five time steps.

In this section, a first attempt to an autonomous iterative network response will

be considered. In the previous chapter, the radial basis function network (RBF) using

the OLS algorithm was applied for modelling the Aquacube in an one-step-ahead

prediction scheme. The network was configured in the following NARX model,

y m(t+l) =f (u(t), y p(t), y p(t-1), y n(t-2), y p(t-3), v P(t-4)) (5.12)

The identified RBF network was then used to iteratively produce the network output,

y "`fit+l) =f (u(t), y mit), y' (t_1), v'(t-2), y m(t-3), v "1(t-4)) (5.13)

This scheme was used in order to demonstrate how well the identified RBF model can

capture the underlying dynamics of our nonlinear system.

Figs. 5.6 - 5.7 illustrate the autonomous response of the RBF network and table 5.2

summarises the results. From these results it can be shown that the iterative network

response closely matches the response of the Aquacube when a series of step signals

are given as control input.

8

7

49

0

2. H

1

0

4

3.6

9

rD6

, Ei

RY. S
i

0.5

n

B

8

4^
ö

2

0
ö

-2 � p
!L

-4

-8

-8

4

3.6

3

2
a
16

1

0.6

n

\f

... .

I'.....

------- _.

``.

... .

....

ý1 21 41 81 Al 101 121 141

No. of patterns (msee)

RHF net -Aquaoube --input signal

Figure 5.6: Step-file 3

132

... :.... _". 1_ß_....:. f. J. . ". _. . __. ý. ...

i

X

21 41 61 81 101 121 141 181 181

No. of patterns (meeo)

-'RBI' net -dquaaube'input signal

Figure 5.7: Step-file 1

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

Test - files MSE

I: Step-file 3 0.007

II: Step-file 1 0.125

Table 5.2

The number of inputs to the network seems to be critical. An attempt to use an RBF

network with fewer input nodes, i. e. one past input plant signal and 4 past output plant

signals, was ended in failure due to the fact that this RBF- version model could not

reproduce the effect of the buoyancy extra force to the vehicle. Fig. 5.8 illustrate this

attempt.

3.5

$

25

2

1

0.5

0
1

.... .. y.. ý.. _.... _. ý........

21 41 @1 89 1m1 121

No. of patterns (mien)

- RBF neural -Agtsoube

Figure 5.8: RBF using smaller input vector

It is very interesting to note that an RBF network can act simultaneously as an one-

step-ahead predictor and as recurrent model. This fact is due to the particular spatially

and parametrically localised network implementation. Due to the spatial decay rate of

the Gaussian function, the partial derivatives of an input q quickly approach zero as

q becomes different from the centre that corresponds to the particular Gausssian

function. Thus, this network is spatially localised. In addition, a weight is adjusted

only if it has a significant effect on the network output, so only a small number of

133

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

parameters will need to be adjusted for any input point; therefore, the network is also

parametrically localised.

As this RBF network is our first attempt to implement an autonomous recurrent

network, it is very interesting to examine its performance for the same frequency

response tests in order to derive a Bode plot for this network. Fig. 5.9 illustrates the

network's behaviour for a sinusoidal signal with T=9 sec.

3

2.6

0
:Q
a 0 b

1.5

I

Table 5.3 summarises the results of the frequency tests using MATLAB and the open-

loop Bode plot is shown at Fig. 5.10.

40

88

v 24

.... ý E fý 1
0-j-
0.342

17
"r "4 v; ý. rtýý

ý1 51 101 151 201 251 301

No. of patterns (magic)

Neural net -Aqunoube -- Input ignai

Figure 5.9: RBF response to sine test

3.40
Frequency (rad/sec)

Magnitude Phase

5
9

V

m

N O
06

0

-20

N
V
V

-40 c.
u

PO

-eo n

a.

-BO

-100

Figure 5.10: Bode diagram for RBF-model

134

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

Frequency (rad/sec) Magnitude (cm - db) Phase (degrees)

I: 0.349 29.34 -62.83

II: 0.698 22.30 -61.68

III: 1.309 19.54 -52.88

IV: 1.745 19.55 -37.48

V: 2.618 18.59 -19.66

VI: 5.236 21.62 -1.07

Table 5.3

It is quite clear that the RBF network can be considered as a lead system compared

to the Aquacube. Only at low frequencies the RBF magnitude seems to match closely

to that of the real system.

To illustrate the nature of the learning process in a RBF network, we have to

point out one of the major drawbacks of such networks which utilise Gaussian units.

The results of Poggio and Girosi [5.14] show that the spectrum of Gaussian which is

also a Gaussian (this is true in the continuous domain while it is approximately true

in the discrete domain) falls off very quickly. Above a certain cutoff frequency, its

spectrum is almost zero everywhere if the widths of the Gaussians are large, a=

4.2431 in our case. One has to use many Gaussian units to learn the high-frequency

part of the mapping. This explains the intuitive arguments put forward by Weigend,

Huberman and Rumelhart [5.15] against the use of Gaussian RBF's networks for

learning complex mappings. One remedy for the problem is to use other kind of radial

basis functions. Different types of splines could be alternative candidates [5.16]. This

is to be investigated in a future work.

135

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

5.4 Spread Encoding Recurrent Networks

General recurrent networks are of interest due to their ability to represent a large class

of dynamic systems. Training algorithms for recurrent networks have been proposed

and the most popular of them have been described in previous sections. However,

these remain computationally intensive and thus are not very practical for

implementing complex networks having many units. Alternative RBF networks with

gaussian activation function have been proposed and despite the fact that the

computational complexity and memory requirements are significantly decreased, their

current performance remains rather questionable.

Many problems, including ours, involve dynamic patterns and it is natural to

reflect this by sequential information processing. There are two approaches to

processing inputs in the time domain: one is to window the inputs and then treat the

time domain like another spatial domain; alternatively, to use some internal storage

to maintain a current state.

It has been found that a major factor affecting the neural model prediction

accuracy when it is acting as a recurrent model is the method by which data is coded

in the network. The reason for this is because, as a recurrent model, any errors in the

predicted output are fed back to the network inputs. Thus, an accumulation of errors

can occur which significantly degrades the network performance. The conventional

method of conditioning the data is to apply the scaled data to single nodes at the input

and output of the network.

An alternative form of representing the data, called spread encoding (SE), has

been shown to enable a network to maintain a high degree of accuracy when operated

in a recurrent mode by exploiting the network's fault tolerance [5.17]. The SE network

is an artificial neural network with gaussian input windows. It can be considered as

a generalisation of the backpropagation network proposed by Rumelhart, et al [5.18].

In this method, each data value is represented as the mean value of a sliding Gaussian

pattern of excitation over several nodes at the network input and output. A similar and

reverse procedure is applied at the network output to decode the output back into the

original variable range.

136

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

The procedure is somehow similar to that of representing data in fuzzy membership
functions [5.19]. Fig. 5.11 illustrate the internal architecture of this technique. This

approach is partly motivated by neurophysiology and mathematics. In the brain, a

spike that is sent by a neuron via an axon is not received as a spike by the receiving

cell. Rather, the postsynaptic potential has a short rise and a long tail.

tput
er

Sliding input
layer

Figure 5.11: Spread Encoding Neural Architecture

A continuous valued variable, x, is coded in the range [xm;
n, Xmax] to N network nodes

in the following way. Each node is assigned a value, a;, linearly spaced by a distance,

6, within the range of x and additional nodes are includes either side of the range to

improve the representation accuracy at the data limits. The excitation of each node,

yf;, is found by integrating over each class interval the bell-shaped function f(a) _

F(a), where F(a) has the following form:

F(a) =1 (5.14)
1 +e -(a-x)ßß

Here, x is the value to be coded and 6 is a constant that controls the width of the

excitation patterns. This particular excitation can be expressed as:

137

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent
.
Neural

.
Networks

a+8/2

W`
f [a f((X)lda (5.15) 1

ai
a -&2

Eq. (5.15) is solved by integration by parts using Eq. (5.14) and can be solved

analytically as follows:

a; +8/2 a; +S/2

Wi ai =fa f(a)da =Ja F'(a)da =
a. -S/2 a -S/2

(5.15a)
c(, +

«'+s/2 f F((x)da [oc
a-S/2

It can be shown that

F(a)da = [(x - lnF(a)] (5.15b)

leading to the result

yJaý _[a[F((x)-1] + 1nF(a)]aa,
--+S/2 8/2

The network output is decoded simply by:

y= aýýý (5.17)

Note, that in [5.17], yf; is approximated by the trapezium rule, introducing in this way,

a small error in inverting the code through Eq. (5.17). The width of an input window

determines how much local temporal context is captured by a single connection. The

gaussian input-window has the advantage that it provides some robustness against

temporally misaligned input tokens. It is obvious that small misalignments of the input

signal do not change the input of the receiving units significantly. The robustness is

dependent on the width of the window. Therefore a wide window would make the

input of the receiving unit more robust. The node excitations, i4;, in Eq. (5.15) were

138

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

scaled to the range [0.1,0.9] as in the conventional scaling technique and each data

value was coded to an arbitrary 6 network nodes. This architecture motivates the

concept of spatial localisation [5.20]. A network will be referred to as spatially
localised if and only each and every adjustable parameter of the network has a
significant effect on the network output only for a small subset of the input space. For

such a network, the partial derivative of the network output with respect to any

network parameter will only be significantly different from zero over a small subset

of the domain.

The network therefore was constructed with two hidden layers, in a NARX

36/20/14/6 mode and the standard backpropagation rule was used for training. Fig,,.

5.12 - 5.13 illustrate the validation of the network as a recurrent model and table 5.4

summarises the results.

3.6

26

g

1.6

1

0.6

n

8
0

Irk-
.rý.

r_
r.

+r -; - -- -- - ...
1,:... r... ---

1 21 41 61 81 101 M 141 161 181

No. of pattern. (ursec)

- Neural net -Aquaoube --input eifinal

Figure 5.12: Step-file 1

0

o

-z

-4ý

-8

12

1 21 41 61 81 101 121 141

No. of patterns (meec)

- Neural net -Aquaaube --input aignnl

Figure 5.13: Step-file 3

7

eö
6v

9*.

2ý

1

0

Test - files MSE

I: Step-file 1 0.0087

II: Step-file 3 0.0095

Table 5.4

139

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

For long term prediction, the spread encoding network performance although 1e"s

accurate than that in the one-step ahead prediction, tracked the plant output over the

complete duration of the test. From these results, it should be noted that when the

input to the thruster is below the critical range [2-3] volts, the movement of the

vehicle depends primary on the forces from water inertia and buoyancy and not from

the thruster itself. The neural network managed to model the buoyancy forces as well

as the thruster characteristics, both of which are essential for control of the vehicle.

Similarly to the RBF case, the calculation of the SE network response over the same

series of sinusoidal tests was attempted. Fig. 5.14 - 5.15 show the response of the

network to sinusoids of two different frequencies.

1.6

1.3

ý 1.1

b 0.9

0.7

0.6
1 51 101 161 201 261

No. of patterns (msea)

-' Neural net "' Input signal

2C iý' ttiJ

MSi

.
'�

".
t:

r..
'. '.... ýýý'1'. 1. -ýý'.: ý. ýi.

ýý`. 'lý

JAW
03

1 51 101 161 2Q1 E51

No. of patterns (mmec)

- Neural net --Input eigrad

P-6

ß
0

2v

q

1.6 °

90 a
93

0.5

Figure 5.14: Sine test with T=9.0 sec Figure 5.15: Sine test with T=2.4 sec

At this moment we have to emphasise the fact that although in previous cases the

amplitude of the sinusoidal signals was set in the range 2.5 ±1 (in volts), here we have

limited it to 2.0 ±1 (in volts). It should be noted that despite the fact that the critical

point of "equilibrium" was identified from the SE network to be 2 volts, this can be

considered acceptable as long as it lies inside the critical range [2 - 3] volts. The

complete results of the frequency response tests are summarised in table 5.5 and the

open-loop Bode plot, which was constructed using FFT methods, is shown in Fig.

5.16.

..
. 1. ,. ý

.
i,. .

1,.. }. i"'ß..;. 1ý..; '. i? 1. . '. tý. .:. f)ý.. iý-1.
... Cý Q

. _.. 1

In

1.5

1.3

ö
a r. 1.1

6 0.9
d
a a

0.7

140

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

Frequency (rad/sec) Magnitude (cm - db) Phase (degrees)

I: 0.349 24.41 -61.80

II : 0.698 19.12 -66.3 3

III: 1.309 15.45 -67.73

IV: 1.745 12.78 -71.60

V: 2.618 9.628 -72.24

VI: 5.236 4.96 -55.75

Table 5.5

Although the magnitude of the SE network seems to be in agreement with that of the

Aquacube, the phase margin reveals a lead factor. On the other hand, this architecture

"enjoys" a better flexibility than the previous RBF network.

£0

az

b ý 24
V
b

L6

U

............ i........ $.... _ I.... I_.. v_. i. _ i.. r. i........ r

I- TI1f'ý

0

-20
m
m
m

-40 ti
to

-00 m

a

-60

-100
0,349 3.49

Frequenoy (rad/seo)

-Magnitude --Phase

Figure 5.16: Bode diagram for SE neural model

In conclusion, we have to see this new architecture as a strong candidate for recurrent

modelling despite the big size which decreases its effectiveness.

141

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

5.5 Internal State Recurrent Networks

The representation of temporal knowledge and time correlation in neural networks

presents a continuous challenge to researchers in the field of artificial neural networks.
In the previous section, the so called "Windowed Input Network" has been applied for

an iterative response modelling of the Aquacube. Another approach has been that of

explicitly including the time dependency into the network structure. The commonly-

used backpropagation algorithm contains no "memory", hindering the learning of

temporal patterns. Here, the alternative is to use a dynamic network that is given some
kind of memory to encode past history. This section describes an extension to error

backpropagation that allows the nodes in a neural network to encode state information.

Two recurrent architectures, the so called "autoregressive network" and a modified

version of the well known Elman network, will be discussed as examples of internal

state networks.

5.5.1 The Autoregressive Backpropagation Network

Recurrent neural networks have important capabilities such as attractor dynamics and

the ability to store information for later use. However, the fully connected recurrent

network, where all neurons are coupled to one another, is difficult to train and to

make it converge in a short time. A new model called the autoregressive recurrent

network (ARNN), which can converge in reasonable training time, is proposed and a

generalised backpropagation algorithm is developed to train the ARNN. The idea is

that we still use a recurrent neural network model but the recurrent neurons are

decoupled so that each neuron only feedbacks to itself. With this modification, the

ARNN model is considered to converge easier and to need less training cycles than

the fully recurrent network.

In backpropagation learning, the inputs to a neuron are multiplied by

feedforward weights and summed, along with a node bias term. The sum is then

passed through a smooth sigmoidal transfer function, producing the neuron's output

value. This neural model has no memory, because the output value is independent of

142

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

previous outputs.

Output Units

rent Unfts

Input Units

Figure 5.17: ARNN architecture

A novel multilayered recurrent neural network architecture is proposed in this section.

The ARNN is a hybrid feedforward / feedback neural network, with the feedback

represented by recurrent connections appropriate for approximating the dynamic

system. The structure of the ARNN is shown in Fig. 5.17.

There are two hidden layers, with sigmoidal transfer functions, and a single

linear output node. The ARNN topology allows recurrency only in the first hidden

layer. For this layer, the memoryless backpropagation model has been extended to

include an autoregressive memory, a form of self-feedback where the output depends

also on a weighted mum of previous outputs.

A modified backpropagation algorithm is developed to train the ARNN. The

mathematical model for the ARNN is shown below:

Y(t) = 0(t) _ WrOQl(t), Q1 = f(Si), Si = wHZ(t) (5.18)
ti

k=5

Z (t) = .
f(H (t)), H (r) W; °Z (t_k) W,

jI1,
(5.19)

k=1

where I1(t) is the i`h input to the ARNN, H, (t) is the sum of inputs to the f" recurrent

143

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

neuron in the first hidden layer, Zi(t) is the output of the fh recurrent neuron, S, (t) is

the sum of inputs to the l`" neuron in the second hidden layer, Q, (t) is the output of

the l" neuron in the second hidden layer and O(t) is the output of the ARNN. Here,

f (") is the sigmoid function and W', WD, WH, and W° are input, recurrent, hidden, and

output weights, respectively. As it is shown from Eq. (5.19) the objective here is to

demonstrate a five-step-ahead recurrent model of the Aquacube, therefore the number

of memories was set to five.

In order to perform gradient descent in weight space, each feedforward weight

w; j, and each feedback weight w°k,, need to change proportionally to the negative of

the gradient with respect to that weight.

Let d(t) and y(k) be the desired and actual responses of the ARNN, then an error

function for a training cycle can be defined as

E_ [d(t) (5.20)

The gradient of error in Eq. (5.20) with respect to an arbitrary weight W is

represented by

aE
_ -e(t)

ay(t)
_ -e(t)

aO(t)

aW aW aW
(5.21)

where e(t) = d(t) - y(t), the error between the real system and the ARNN output.

The partial derivatives are summarised as following:

a0(t)
= Q1(t) (5.22a)

awl O

ao(t)
= f, (S1) W1° Z(t) (5.22b)

aW

ao(t) (t) az ýtD
a w; ° aw; k

144

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

ao(t =b (t)
aJ

(5.22d) a w,; awij

where

1(tý =fI (SI) WIOW1' (55"22e)

Eqs. (5.22c) and (5.22d) contain recursive sub-terms which have the form

az. (t) n=5 az'. (t-n) az. (o) '=f '(H.)(Z (t-k) +WD' =0.0 (5.23)
aWjý 'l

n=1
Jn auljD aWJD

and

az. (t) n=5
D

az. (t -11)
az. (O)

'=f '(H.)(1. +E Win '), ' =0.0 (5.24)
/ýe aWI n=1 aW,

j/ aW, j!

Eqs. (5.23) and (5.24) are nonlinear dynamic recursive equations for the state gradients

and can be solved recursively in time with given initial conditions. In the case of the

usual feedforward network, however, the recurrent weight W° is zero and they become

algebraic equations.

The negative gradients of the error with respect to weights are

-
aE

= e(t)Q1(t) (5.25)
awlo

-
aE

= e(t) f'(S1)Wl° Z(t) (5.26)
aWjH

aE
_ e(t)8 (t)

a. (()
(5.27)

aw; ° a w; ° k

145

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

aE
_ e(t)&(t)

aZ (t)
(5.28)

a w,; J aWiJ

The weights can now be adjusted following the steepest descent method, i. e., the

update rule of the weights becomes

W(n+l) = W(n) + T1(_
aE)

+ a0W(n) (5.29)
aw

where the weight, W, can be Wo, WH, WD, or W'. Also il is the learning rate, a is the

momentum factor, and OW(n) represents the change in weight in the n`h iteration.

The ARNN was trained as a five-step-ahead prediction model for our

underwater prototype. The five memories in each node at the first hidden layer allow
the network to encode state information. A structure of 6/20/14/1 nodes has been used,

with inputs consisting of one past control signal and five past depth indications. Figs.

5.18 - 5.21 with modelling tests, illustrate the temporal nature of the "autoregressive"

network and table 5.6 summarises the results.

Although this method is dependent on the number of "memories" in the

"recurrent" nodes and therefore it can be considered as a partially recurrent network,
it proved to be the fastest in training time. From the simulation results, it can be seen

that the nonlinear system identification using ARNN is very promising. On the other
hand, the reduced number of training cycles makes this technique a strong candidate

for use in real-time long range prediction controllers.

Test - files MSE

I: Step
-file

1 0.0207

II: Step- file 2 0.0087

III: Sine file 2 0.0050

IV: Sine file 3 0.0053

Table 5.6

146

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

3.

2

9

V 1.
v

.;.. i. _... . _. F :.. "' r__: -.. _.. i.. ýý

3
B

2.5

$ °> 2

ö p,

-2 v

a1

-4.
0.5

-6

e

0
1 21 41 61 61 101 121 141 161 181

No. of pattern (msec)

Neural net -Aqunoube --input signal

Figure 5.18: Step-file 1

3

2.6

:2

1.6

iý I

;,:,
1
ýýi lý 1 11 1

'1
i ýý iiiý

i' 'ý
ýý Ali iý

;
ii ,ýý Ali

II I
1 1ý
Iý

i
1 I.

ý
ýý' ii ; ýý iiý

ýI1 ýI ýI

1I yI

i

II
ý

11,
Iý

II
\ 1"ý

1

\
1ý

I'

I 1 '1 11
ýi1

1: I I
lIIýII 11

`
1 1. ýI

ý: i

1
I\ :Iý ý I: ý1

II 1ý: ;1 ...
11 I 111 I; Iý.. 11

1ý Itý.. - 1.

ll ýýý
ýý : ll li : ýl ýi :ý

11 11 \1

1

51 101 151 201 251 901

No. of patterns (ursec)

- Neural net -Aquacube --input 31gnal

Figure 5.20: Sine-file 2

2

4ö

vp

eý

9ý

147

0

-.. ,. _... -- 4

-- ---... -" - 2.

....... --- -" -" " 1.

n 01
i El 41 61 81 101 101

No. of patterns (meec)

- Neural net -Aqunoube -input siýanl

Figure 5.19: Step-file 2

6

4ö

1

4 a

:6

VV
1

05

0
1

\Iý ý
ill Ip II I, I, II 11 II II M II II II I

ý1 ýI ýI
.
1I ýI

ý1 11 11 4: ýI ýI n It II II ý1 II 11 Iý
ýI

,1 : I' 1' +l"+\"i iý"ir it tr"rr-rr-rr-rr-rr-rr-rl"tl-1ý1+-1+-; I+--1ý. 11 11 11 II II II II 1"I /1 lI 11 rl ,I "11 11 111,; 1, LII 11 11 1: 1 II1I 11 ilI 11 , 1,1 11 (I 11 11 11 1; 1 11 ,1II (I I1t 11 11 14.
II 4-I a. r±lýJ-I J. ýJ. I J-l l. L 1.1 l-11-11-L1-aJ-ý I. 11-a J"ý-1-

11 1 1' 1' I111 11 I 1: I 11 1111: 1 1I 1/
11,111II, I, 1IIIý1I11111111ý, 1I

11I11,1 1 11 :III111i. I I: I11I1I
11 11 /

II
I ,1 jl 11 II II: II il 1 11 I(I,

r"It-It-1, t"fr-}r-f r"(r-; lrI1,11'17'1, -1ý-ý1- 1 I""r; -r(-rý -rl
11 11 11 ,1 11 11 . II II II u" II II Il 11: I1 IF
11 1' I/ ýI P II :. ' Iý u 11 . II II u II: II IL 4

" I/ YM 1% 'ý 11 1' o" II JJ 0' 11 YU4

51 101 151 Rol E51

No. of patterns (Masse)

- Neural net -Aquaoube --input signal

Figure 5.21: Sine-file 3

5

ýo
v

0
L R7

600

.. Lý
A

L6

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Netzworks

5.5.2 Elman Network
Recurrent networks with feedback exhibit a dynamic behaviour incorporating a
temporal aspect not well conveyed by feedforward networks. They also create their

own state variables and delays, thus requiring less information about the system being

modelled. As an alternative to the ARNN architecture, the network developed by

Elman [5.21] has a simpler architecture and it can work with the standard
backpropagation learning algorithm. The context units of the Elman network memorise

some past states of the hidden units, so the output of the network depend on an

aggregate of the previous states and the current input. This is the reason that the

Elman network possesses the characteristic of a dynamic memory.

A block diagram of an Elman network is shown in Fig. 5.22. From this, it can

be seen that in an Elman network, in addition to the input, hidden, and output units,

there are also context units. The input and output units interact with the outside

environment, while the hidden and context units do not. The input units are only

buffer units which pass the signals without changing them. The output units are linear

units which sum the signals fed to them. The hidden units have nonlinear sigmoidal

functions. The context units are used only to memorise the previous activations of the

hidden units and therefore can be considered to function as one-step time delays. The

feedforward connections are modifiable but the recurrent are fixed.

Output units

Figure 5.22: The Elman network architecture

148

Input Unite Context Units

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

At a specific time t, the previous activations of the hidden units, at time (t-1), and the

current inputs, at time t, are used as inputs to the network. At this stage the network

is a feedforward network. These inputs are propagated forward to produce the output.

The standard backpropagation learning rule [5.18] is then employed to train the

network. After this training step, the activations, at time t, of the hidden units are sent

back through the recurrent links to the context units and saved there for the next

training step, i. e. time (t+1). At the beginning of training, the activations of the hidden

units are unknown. Thus, they are usually set to one half of the maximum range of

the value that the hidden units can take. For a sigmoidal activation function, the initial

values can be set to 0.5.

This network has been proved to be effective of modelling linear systems not

higher than the first order [5.22]. For this reason, an idea based on the work of [5.23]

was employed to configure a modified Elman network which is shown in Fig. 5.23.

Here, self-connections are introduced in the context units of the network in order

these units to gain individual "inertias".

Output Units

Figure 5.23: Modified Elman architecture

The introduction of self-feedback in the context units increases the possibility of the

Elman network to model high-order systems. Thus the output of the jth context unit

in the modified Elman network is given by

149

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

xCi(t+1) = ox i(t) +x (t) (5.30)

where xcj (t) and xj (t) are, respectively, the outputs of the jth context unit and the jth

hidden unit and a is the feedback gain of the self-connections.

It can be shown that:

x,. (t+l) =x (t) + ax (t-1) + a2x (t-2) +... (5.31)

Usually, a is between 0 and 1. A value of a nearer to 1 enables the network to trace

further back into the past. During computer simulations [5.24], the modified network

was able to model high-order linear systems, but its performance to nonlinear systems

was questionable.

To override these handicaps, a new Elman network structure is proposed for

modelling our underwater prototype. From the linear analysis in the previous chapter,

we concluded that our system operates partly as a type 1 integrator. The use of the

Elman network for nonlinear systems and also the study of an efficient learning

method for systems with integrators is a new goal to look in.

As the first objective for this type of networks is to create five-step-ahead

accurate prediction models for the Aquacube, we have extended Eq. (5.31) to

x(j(t+l) =x (t)+ax (t-1)+a2x (t-2)+a3x (t-3)+a4x (t-4)+asx. (t-5) (5.32)

In order to enhance network's performance we have added an extra hidden layer and

replaced the linear output function with a standard sigmoidal one. Therefore a

3/12/14/1 Elman network was applied with self-feedback in the 12 context units, with

o. equal to 0.8. The input to the network consisted of the current control signal and

the current and previous system position. That specific type of input was chosen in

order to enable the network to emulate externally the integrator part of the Aquacube

using input-output data.

Figs. 5.24 - 5.27 illustrate the performance of this modified Elman network as

a five-step-ahead predictor and table 5.7 summarises the results.

The above observations suggest that the Elman network is effective for

identifying nonlinear systems. The feedback gain a was found experimentally to be

150

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

equal to 0.8. Attempts to use a lower gain gave us poorer results and this fact

indicates that in order to have long range prediction we have to trace further back to

the past. Future work will examine new algorithms that enable an Elman network to

find the proper value of a by itself.

J.

2

0
a
b . I.

0.

3.5

9

Sae

2

1. e

------ -- -----

.

--.

i
V:

"tl

.. -.

... _

2.

ö

Ö 0.

Zýb
ill

0.

6

3
\
r

1

. .

i`
1

l 41 41 01 tl1 1V1 1 41 141 101 101

No. of patterns (meec)

- Neural net -Aquaoube --input eignnl

Figure 5.24: Step-file 1

a

21 41 61 81 101 121

No. of patterns (meec)

- Neural net -Aquhonbe --input eignnl

Figure 5.25: Step-file 2

i5

ZLfi

nQ
vg

p L5

'd

a5

0
1

ý---. IJI.
. -R... ý11ý ...

I
l... il.. .! i. ti. -

Iý----Irý----ýý"-ý. ii....
li ýII"11

I I" rI .11
I Iýj

111.111
ý 11 I1 1` 11

I I% 1 I; 1 ' '/' r
1

f l... I-
i

ý ýI

ýýýý

;1 i 1. /
ý1ý 1" II rl

1J1 1 1 I I. , I. II I

" 11.

51 101 1a1 ml 151 301

No. of patterns (meec)

- Neural net -Aquaoubo --input ß12nl

Figure 5.26: Sine-file 2

94

z
O

Löß

M

a a
i. e

151

e. e

6.6

0
4.4

9.9

2.2 i

.9
1.1

0

35

Ä.. 11 4Ihhky4
1ý

ýII %ý Y" a
h II h II h ,I II hIa11 .II 1" I 11 /II

11 11 11 II . II ,I: /I 111I 11 1
rß

/; 11 UI 1IIIII 11 .III 11.11 111 111E IJ ! J-11.1 J-j' 4I Il. l. l ý. lJl I+I Iýý11ý
7 II", -ý J

,i "J`I JIX 11 1II.. 11I1I;
1

I' 'ý 11 ý'I I1 v I4 1I 1I 1I ý. I 1.11.11 Fr; ll fl !. lit;!.. i IV f, "ýioIA, -rF.
l/.. rtiJý. y! FJ! -1 7

IIII ,ýIII
11

I, II 11 TI IM II1 j/ III, I 1
'I . I/ II 11; 11 II 11 -Ný II 11
If I, ''I II II, II II 11: 11 If f) Ir1ý I/_ 6ý II

-I1 At 01-q 4 Il4-li-J, -lf,. ,l ll l rI1 . 11. ý1__I f
4 II II 11 11 II ýI 11 IUW 11; III a1h1. M/fU1I. f1 ,_ If If

---- -- --------------

4

ö

v

ti
B ft

01 101 let zo1 aal

No. of pattern. (meeo)

- Neural net -Aquacube - input at"

Figure 5.27: Sine-file 3

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

Test - files MSE

I: Step
-file

1 0.0112

II: Step- file 2 0.0096

III: Sine file 2 0.0129

IV: Sine file 3 0.0210

Table 5.7

In summary, this approach of producing a dynamic memory is clearly simpler than the

SE network with a result the computational burden to be substantially reduced.

The above results indicate the opportunity to examine the performance of the

Elman network in an autonomous iterative response. The SE and RBF networks have

already proved their ability to work practically independent from a real system. The

approach of producing such dynamic memory is simpler than the tapped-delay-line

method commonly adopted in the previous techniques. For a single-input single-output

system, as our underwater prototype, we are looking for a network with only one

input line and one output line as required elements. This contrasts with the tapped-

delay-line method where, during training, parts of the network inputs are derived from

the system to be identified, but in recall these inputs are from the network, which

makes the training structure different from the recall structure. Thus, for a single-input

single-output network, good training results invariably lead to good recall results

because there is no difference between the training structure and the recall structure.

The existence of an integrator allow us to consider the following relation for the

system output in the s-plane domain

1'(s) =1 Y(s)
s

(5.33)

Frone the above relation it is clearly shown that it is more convenient the Y(s)

identification than that of the original y(s). Back to the t-plane domain, the above

152

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

relation is transformed to

y(t) = y(t-1) +T Y(t) (5.34)

where T is the sampling interval equal to 0.3 seconds.

Therefore, using Eq. (5.34) a new approach for system identification, with an Elman

network, has been obtained. The already known modified Elman version can be used

with the control signal u(t) as the only network input and the Y(t) as the output. From

Eq. (5.34) Y(t) is the vehicle's velocity.

A structure of 1/14/1 has been used, with once again a nonlinear output node.

As the network was trained to predict iteratively the velocity Y(t) term, as a

consequence, Eq. (5.34) was employed to reconstruct the actual position.

Figs. 5.28 - 5.31 illustrate the validation of this approach in a number of the

autonomous iterative response tests, and table 5.8 summarises the results. The

proposed modification has improved the versatility of the network. As shown from the

sinusoidal tests the network appears to have a drift similar to the real underwater

vehicle for the same signal amplitude. This fact, in conjunction with the simpler

network complexity, prove that the current approach is better suited to this kind of

sequence processing than the SE network.

4

3

0
2

v

1

0
1

--"-- --..

.......... -e

r
21 41 61 81 101 121 141

No. of patterns (meec)

- Neural net -Aquacube --input signal

Figure 5.28: Step-file 3

U.

E.
e

g ~'
o ,d
w
A

a.

ý1
21 41 81 81 101 121 141 Sal 181

No. of patterns (maec)

- Neural net -Aquacube --input eiynal

Figure 5.29: Step-file 1

8

4-.
' 0

Z

W
0

-2 -' a a
ýý

-8

153

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Network%

a

2.5

2

6

4.6
a
u b

1

0.6

n

I I 1 ý; 1

\

1ý X11 I
h

f

I1 11 1ý

\ý/
\

11 I ýI j;
I

II
1 I:

.. ý. 1.. ..
1.. r. ýi I"--

I

I"-ý"if.

;

1. L. ýý.
y.. l .. '. . 1.. f

11 I .. I I 111

1

' I"
.:. 'n I 1 I' K-^h C

1

1 I

1

I 11 S 1

2.5
9

3ö

2'j
m

2p
a
A

1.5

I 61 101 161 201 251 301 361

No. of pattern. (meec)

Neural net -Aqunonbe -'input ignel

Figure 5.30: Sine-step 2

E

1.76

1.6

41.26

v
1

0.75

A Fi

4

9.5

3ö

2.
ý

To

2ä

9

1.5

I 61 101 161 901

No. of patterns (mnec)

Neural net -Aqunoube -" input aignn]

Figure 5.31: Sine-file 4

Test - files MSE

I: Step- file 3 0.0344

II: Step- file 1 0.0040

III: Sine file 2 0.0661

IV: Sine file 4 0.0034

Table 5.8

The open-loop Bode plot, which again was constructed using an FFT technique from

the same sinusoidal tests, is shown in Fig. 5.32, while the complete results of the

frequency tests are summarised in table 5.9.

154

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

30-

25-

, 20- m
'a

4) 15-

10-
OD
m

6-

0-

-6
7

..............

-o

--50

--too- 00
CD

--150 Op
m

-200 m

-250 a

--500

--350
0.340 3.49

Frequency (rad/sec)

- E1man M. +Elman Ph. *Aquacube M. °Aquacube Ph.

Figure 5.32: Bode diagram for the Elman network

This plot shows the superiority of the proposed dynamic network over the SE and

RBF networks. This study has thus made available a versatile network for system

modelling based on the well known Elman network, without the serious drawbacks

associated with other neural system modelling techniques.

Frequency (rad/sec) Magnitude (cm - db) Phase (degrees)

I: 0.349 26.235 -111

0.698 20.129 -124

III : 1.309 13.50 -100.85

IV: 1.745 8.405 -116.35

V: 2.618 4.254 -86.71

VI: 5.236 -0.77 -266

Table 5.9

155

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Xetworks

5.5.3 Neural Network Identification using Spectral Functions

Identification of time series signals has always been a challenging work to signal

processing engineers and researchers. In previous sections, a Bode plot was

constructed using an FFT technique through six frequency response tests.

In this section we propose an alternative approach that is effective even for high noise

time series signal identification using once again non-parametric methods such as FFT

algorithms. The adopted approach is based on the evaluation of the power density

spectra of the input and output signal of a system and the appropriate cross spectra

[5.25]. Power spectral density is a function of frequency and it describes quantitatively

how the energy in a signal is distributed over the frequency spectrum. Therefore,

provided that the input to the system signal has a wide enough frequency spectrum

then an estimate of the system can be made using only the information contained in

a input-output data set.

One suitable candidate is the so called "Pseudo Random Binary Sequences"

(PRBS). These are very useful approximations to periodic white noise and are the

forcing functions most widely used in statistical system testing. They are signals which

can take on only two possible states, the state can change only at discrete intervals of

time At, the change occurs in a deterministic pseudo random manner, and the sequence

is periodic with period T= NAt, where N in an integer.

The most commonly used type of PRBS is the maximum length sequence,

which is of length N= 2" -1, where n is an integer. This can be generated by an n

stage shift register with the first stage determined by feedback of the appropriate

modulo two sum of the last stage and one or two earlier stages, as shown in Fig. 5.33

[5.26]. The logic contents of the shift register are moved one stage to the right every

At seconds. The output can be taken from any stage and is a serial sequence of logic

states having cyclic period NAt. The two possible states of the register, '0' and 'I',

can be transformed to any required minimum and maximum amplitude value.

156

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

ip flops

two

Figure 5.33: Generation of PRBS by shift register

In the previous section a "discrete" Bode plot for the Elman network was constructed

based on sinusoidal signals as input to the network. Here, the objective is to create a

"continuous" Bode diagram by using PRBS signals and to compare the outcome with

the previous results.

For our case, a 63 bit PRBS signal of bit interval 0.3 seconds was used as

input excitation. Fig. 5.34 shows the form of this signal where the maximum and

minimum amplitude were set to 3.25 and 1.75 volts respectively. Experiments showed

that a lower length sequence has an effect poorer results due to the short period of

cross correlation of the system's output and input signal.

Assuming that u(t) and y(t) are the system's input and output respectively, then

by estimating the various spectra involved [5.27], the frequency function of the neural

network can be estimated as:

GN ; co) _ , 14 (5.35)
(DU (w)

where the cross correlation RY� (i), is defined as

N

J ('t) =N ý'(t+i)u(t) (5.36)

and analog expressions for the others. Then, the estimation of the corresponding

157

Clock pulse (to shift contents every At sec)

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

spectrum is given by

M

(Dyu((j)) _MR u(t)WM(T)e , c=-M

(5.37)

and analogously for (D,, and (D Y.
Here, WM (i) is the so-called lag window' and M is

the width of the lag window.

3.

3

2.6

2

1.6

p

a
0.6

0`
1 21 41 81 61 101 121 141 181 181

No. of patterns (meet)

Figure 5.34: Typical PRBS signal

However, the disadvantage of this method lies to fact that poor results can be obtained

as the level of internally generated system noise increases. In that case, filtering the

data before the estimation can improve the fit in the interesting frequency bands. The

MATLAB Signal Processing Toolbox [5.28] contains functions for designing and

applying filters. In our case a fourth order Butterworth filter was used and Fig. 5.35

shows the Bode plot obtained by evaluating the cross spectrum from the cross

correlation function for the Elman network.

158

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

100
AMPLITUDE PLOT, input #1 output #1

10-1

10-2

10-3
10-2

-100

-150

-200'
10-2

10-1 100 101

frequency (rod/sec)

PHASE PLOT, input #1 output #1

10-1 100 101

frequency (rad/sec)

102

Figure 5.35: Comparison of the Continuous Bode plot for the Elman network with the
frequency response of the Aquacube (*)

The results are clearly consistent with those we obtained from the "discrete" Bode

plot, while the noise makes its appearance for frequencies beyond about 4 rad/secs.

Our best fully recurrent neural network model matches the magnitude of the frequency

response of the Aquacube very well, but it shows a sharp transition between the phase

at low and high frequencies.

Despite the lead that the Elman network appears to have over the Aquacube

in the phase diagram, its high recall performance, as shown by the magnitude diagram.

and its simple architecture, demonstrates its superiority for long-term prediction over

other neural modelling techniques.

102

159

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent
. Neural . Networks

5.6 Conclusions

In this chapter, the backpropagation algorithm is projected as an effective learning

method for neural networks having feedback connections and memory neurons.

In dynamic applications, the real computing power of connectionist models

could be exploited only if the network itself is dynamical in nature. One approach was

to window the network inputs and then treat the time domain like another spatial

domain, with a result the development of the spread encoding network.

Alternatively to introduce dynamics into the network by transferring the regular

network neuron state to another set of "duplication" neurons called memory neurons.

The modified Elman and the "autoregressive" networks were examples of such

architectures. It was shown that memory neuron networks performed as accurately as

the spread encoding network over a prediction horizon of five steps ahead, while they

"enjoyed" a smaller network structure thus faster both in terms of training and recall,

making them ideal candidates for the on-line control of our prototype URV.

References

[5.1] Leontaritis. I. J. and Billings, S. A., "Input-output parametric models for

nonlinear systems. Part 1: Deterministic non-linear systems; Part 2: Stochastic

non-linear systems", Int. J. Control, No. 41,1985, pp. 303-344.

[5.2] Werbos, P. J., McAvoy, T. and Su, T., "Neural networks, system identification,

and control in the chemical process industries", in Handbook of Intelligent
Control, White, D. A. and Sofge, D. A. (eds), Van Nostrand Reinhold, 1992, pp.
283-357.

[5.3] Polycarpou, M. M. and Ioannou, P. A., "Stable nonlinear system identification

using neural networks models", in Neural Networks in Robotics, Bekey, G. A.

and Goldberg, K. Y. (eds), Kluwer Academic Publishers, 1993, pp. 165-177.

[5.4] Werbos, P. J., "Backpropagation through time: What it is and how to do it",
IEEE Proceeding, Vol. 78, No. 10, October 1990, pp. 1550-1560.

[5.5] Williams, R. J. and Zipser, D., "A learning algorithm for continually running

160

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

fully recurrent neural networks", Neural Computations, No. 1, pp. 270-280.

[5.6] Catfolis, T., "A Method for Improving the Real-Time Recurrent Learning
Algorithm", Neural Networks, Vol. 6,1993, pp. 807-821.

[5.7] Robinson, T., "Practical network design and implementation", Presentation at
the Cambridge Neural Network Summer School, September 1992, U. K.

[5.8] Werbos, P. J., "Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences", Ph. D thesis, Harvard University, 1974.

[5.9] Puskorious, G. V. and Feldkamp, L. A., "Practical Considerations for Kalman
Filter Training of Recurrent Neural Networks", Proc. ICNN '93, San Francisco,
pp. 1189-1195.

[5.10] Williams, R. J. and Zipser, D., "Experimental Analysis of the Real-time
Recurrent Learning Algorithm", Connection Science, Vol. 1, No. 1,1989,
pp. 87-111.

[5.11] Rao, S. S. and Ramamurti, V., "A hybrid technique to enhance the performance
of recurrent neural networks for time series prediction", Proc. ICNN '93, San
Francisco, pp. 52-57.

[5.12] Sun, G. Z., Chen, H. H. and Lee, Y. C., "A fast on-line learning algorithm for
recurrent neural Networks", IJCNN '91, Singapore, Vol. 2, pp. 13-18.

[5.13] Hush, D. R. and Horne, B. G., "Progress in supervised neural networks", IEEE
Signal Processing Magazine, January 1993, pp. 8-39.

[5.14] Poggio, T. and Girosi, F., "Networks for approximation and learning", IEEE
Proceedings, Vol 78, No. 9,1990, pp. 1481-1497.

[5.15] Huberman, B. A., Rumelhart, D. E. and Weigend, A. S., "Predicting the Future:

a Connectionist Approach", Int. J. Neural Systems, Vol. 1,1990, pp. 193-210.

[5.16] Harris, C. J., Brown, M., "A nonlinear adaptive controller: a comparison
between fuzzy logic control and neurocontrol", IMA J. Math. Control and
Information, Vol. 8,1991, pp-239-265.

[5.17] Evans, J. T, Gomm, J. B., Williams, D., Lisboa, P. J. G., "Identification and on-
line control of a non-linear process via an artificial neural network approach",
Proc. 2nd IEEE/BCS Workshop on Neural Network Applications and Tools,
Liverpool, September 1993, IEEE Computer Society Press, pp. 109-118.

[5.18] Rumelhart, D., McClelland, T. L., (eds), "Parallel Distributed processing:
Explorations in the Microstructure of Cognition. Vol. 1: Foundations", \1IT

161

Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks

Press, 1986.

[5.19] Zadeh, L. A., "Fuzzy Sets", Information Control, Vol. 8,1965, pp 338-353.

[5.20] Antsaklis, P. and Passino, K., "An Introduction to Intelligent and Autonomous
Control Systems", Kluwer Academic Publishers, 1993.

[5.21] Pearimutter, B. A., "Dynamic Recurrent Neural Networks", Carnegie Mellon
University, Report No. CMU-CS-90-196, December 1990.

[5.22] Pham, D. T. and Liu, X., "Identification of linear systems using recurrent neural
networks", in Applications of Neural Networks to Modelling and Control,
Page, G. F., Gomm, J. B. and Williams, D. (eds), Chaptman and Hall, 1993, pp.
24-34.

[5.23] Hertz, J., Krogh, A. and Palmer, R. G., "Introduction to Theory of Neural
Computation", Addison-Wesley, 1991.

[5.24] Pham, D. T. and Liu, X., "Identification of linear and nonlinear dynamics
systems using recurrent neural networks", Artificial Intelligence in Engineering,
No. 8,1993, pp. 67-75.

[5.25] Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T., "Numerical
Recipes: The Art of Scientific Computing, Cambridge University Press, 1992.

[5.26] Schwartzenbach, J. and Gill, K. F., "System Modelling and Control", Edward
Arnorld (Publishers) Ltd, 1979.

[5.27] MATLAB, System Identification Toolbox, The MathWorks Inc. 1991.

[5.28] MATLAB, Signal Processing Toolbox User's Guide, The MathWorks Inc.
1992.

162

CHAPTER 6

Control of an Underwater Robotic Vehicle using
Neural Network Approaches

6.1 Introduction

Automatic control, once regarded as exotic technology, has become commonplace. In

consumer products automatic controllers regulate the temperature and humidity in our

homes, the speed of our automobiles, the chlorine in our swimming pools, even the

cooking of our food. Modern industry uses these systems in a myriad of applications.

Without them large segments of the petrochemical, pharmaceutical, semiconductor,

machine tool, and many other industries could not exist in their present form. Lacking

automatic control we could not have gone to the moon, nor could we have produced

most of our modern weapons systems. Most of these applications have developed

within the past 50 years; prior to World War II automatic control was poorly

understood and little used. Now, armed with better theory and growing demand, the

number of systems is increasing exponentially, fuelled by an inexorable drive toward

automation.

Mathematical systems theory, despite its success with linear systems, is of little

help with nonlinear systems; its results are sparse and system specific. Hence, for the

163

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

sake of mathematical tractability, nonlinear systems are usually analyzed by making
linear approximations of their performance. While useful, this method never truly

represents a real-world system. If for no other reason, physical systems are nonlinear

due to their bounded outputs; they are unable to produce an output beyond some limit.

This and more subtle deviations from linearity may make a linear system solution non-

optimal, thereby producing unexpected performance degradation, instability, and even

outright failure in practical applications.

Some of the best examples of control are to be found in natural systems.
Mundane activities that we and other biological organisms perform unerringly are well
beyond the capabilities of our best artificial control systems. Walking on two feet,

riding a bicycle, are feats that we take for granted but which we have not been able

to realise in the machines of our design. The exceptional achievements of human

control make the shortcomings of our conventional control technology seem all the

more striking.

The common thread in the above examples is the controlling mechanism, a

biological nervous system. Our understanding of the brain at a detailed level is

limited, but several abstract characteristics are well-known. The state of neither our

knowledge nor our technology permits modelling the brain in a meaningful way. We

can, however, develop computational methods that are brain-inspired. The hope is that

some aspects of biological computation that are essential to the sophisticated control

behaviour that it helps realise can thereby be captured. Arguments of vitalism aside,

dispute the notion that more brain-like computational models should help produce

more brain-like performance in areas such as control.

The use of neural networks (NNs) in control applications, including robotics,

and aerospace applications, among others, has recently begun a pattern of very rapid

growth. In some cases, neural networks have been used to perform very narrow,

specific tasks within a control system, such as pattern recognition or feature extraction.

In other cases, neural networks have been used directly to output the signals which

control motors, or actuators, or whatever needs to be controlled. The term

neurocontrol refers to this case.

164

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

Neurocontrol is an important field of research for two reasons:

0 Because of the contribution it may ultimately make to our understanding

of the human mind

0 Because it can enable the automated control of systems which could not

be controlled in the past, for one of two reasons - the physical cost of

implementing a known control algorithm, or the difficulty of finding

such an algorithm for complex, noisy, nonlinear problems.

Neural networks eliminate the need to set up and solve difficult nonlinear

mathematical models; instead, the networks learn from examples to optimise

performance regardless of the system's nonlinearity. Furthermore, they can be trained

on-line to optimise continuously the system's operation despite a changing

environment. Neural networks as a control technology is not necessary opposed to

conventional control. Improvements in control systems can be realised through

appropriate hybrids of neural networks and traditional techniques.

This chapter will concentrate on backpropagation and its variations for control

applications. Other artificial neural network techniques have been applied to control

[6.1], but the backpropagation techniques are more fully developed. For automatic

control, a backpropagation neural network has the advantages of a full nonlinear

representation and a well developed learning algorithm.

The next section presents various neural network methods for control. The

objective in that section is to provide a foundation in neural network control. This is

necessary to understand the proposed neural architecture and its relationship to other

neural network controllers. The last section presents the proposed architecture as an

efficient way of controlling nonlinear systems, such as URVs.

6.2 Neurocontrol Structures

The neural network makes use of nonlinearity, learning, parallel processing, and

generalisation capabilities for application to advanced intelligent control. The range

of neural network techniques for control is so large that it cannot be covered

adequately in this section. Underneath the apparent complexity, required by specific

165

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

applications, there are really only five generic designs now used in neurocontrol. Each

of the five does allow for some degree of variation. While the depth of presentation

can vary greatly, an attempt will be made to convey an understanding of the basic

principles governing each, as well as some idea of their areas of applicability and

potential limitations.

Supervised control. In many cases it is possible to perform a needed automatic

control function by simply teaching a neural network to mimic the behaviour of an

existing controller with a supervised learning algorithm. The existing controller can
be a conventional one or a human expert. In the former case, this method seems, at
first, ridiculous since a controller is already available. The existing conventional

controller, however, may be impractical to implement. Barto in [6.2] mentions that a

neural network may be able to provide the control using an input representation that

is easier to measure than the representation required by the known controller.

In the latter case, this technique assumes the availability of a human who performs

adequately, and some motivation for producing a machine replacement, such as cost,

speed, consistency, or safety [6.3]. Fig. 6.1 a shows how the neural network is trained.

The network receives the same inputs as the human-the input x, and the state vector

(the actual system output in this case).

(4)

PLANT

input

x
Neural
Network

State
Vector

(b)

Figure 6.1: Supervised control

166

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

The output of the network is compared with that of the human and the difference is

fed back to modify the network's weights in a direction that reduces the error. When

the network has been adequately trained, that is, when it responds sufficiently like the

human throughout the operating range, training is terminated, the human is removed

from the loop, and control is turned over to the neural network as shown in Fig. 6. lb.

Supervised control is conceptually simple and easy to implement. However, it

cannot improve upon the performance of the human who may operate in an

unacceptable non-optimal manner. While less than satisfying from a theoretical

standpoint, supervised control with NNs is assumed to allow access to some of these

human abilities that have been optimised over thousands of years of evolution.

Delta / Dual control. A neural network may be combined with another

controller to enhance the overall control capability. This type of controller is illustrated

in Fig. 6.2. It functions analogously to the integral term in a PID controller where the

integral term minimises long term errors.

Figure 6.2: Combining a conventional controller with a
neural network

An important application note for the dual controllers is that if feedback is used, then

the feedback signal should be sent directly to the NN instead of providing the network

with an error signal. The error signal does not contain the context information of the

feedback data. Thus, with the error signal as input, the network is forced to find a

167

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

mapping without knowledge of where in the state space the error is generated. In a

formal sense, this method is equivalent to a kind of adaptive critic design, which will

be discussed later, where the critic has been fixed in advance. Its performance is

highly sensitive to the quality of the fixed feedback system.

Miyamoto, Kawato et al., [6.4] successfully used this method to train a

functional network to control a robotic arm. Since then, many researchers have

successfully replicated this design.

Direct Inverse control. If a plant can be represented by an invertible function,

a simple method of automatic control is possible. Fig. 6.3a shows the training phase

where the network learns this inverse function. The network receives the plant state

vector as input. The difference between the network output and the control input to

the plant constitute an error signal used to adjust network weights.

Once trained, the arrangement of fig. 6.3b is used to control the system. Since

the composition of F(F-')=1, the state vector equals the control input; therefore, to

achieve a desired system output it is only necessary to provide it as input. This

approach has been used to control the manufacture of thermoplastic composite

structures [6.5]. The network was first trained by manually exercising the process over

a range of control parameters. In performance comparisons with a linear PID

controller, the neural network exhibited a lower tracking error, less noise sensitivity

and higher robustness with respect to unknown process delays.

In some cases this method has some serious problems [6.6]. The learning

procedure is not "goal directed"; the training signal must be chosen to sample over a

wide range of system inputs, to explore the operational range, without making explicit

reference to the reference signals for which close loop control is required. This point

is strongly related with the general concept of persistent excitation.

The plant function also may not be invertible. If the nonlinear plant mapping

is not one-one then an incorrect inverse can be obtained. For example, considering

only the static problem, the plant may produce the same output for more than one

input. Training to produce the inverse function would require the network to produce

different outputs for the same input; a not achievable condition. If the system is

considered dynamical, the situation is still more complicated.

168

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

(a)

Control State
Input Neural Vector

Network F DR.

F-'

(b)

Figure 6.3: Control using the inverse function

The frequency response of the plant may go to zero at some input frequency. Since

this would require an infinite response from the neural network at this frequency, the

inverse is again not physically realisable.

With these caveats, the method of direct inverse control is still worthy of

consideration if the characteristics of the plant are well understood, and its transfer

function is known to be invertible.

Neural Adaptive control. In designing nonlinear neural control systems, it

seems reasonable to start with the successful models developed for linear systems,

suitably modified to include neural networks. This is the approach taken by Narendra

[6.7] who has shown a set of powerful and general methods for achieving stable

adaptive control of linear time-invariant systems. He and others have this work to

nonlinear neural network applications with considerable success [6.8], using structures

similar to those developed for linear adaptive control systems, with nonlinear neural

networks substituted for the linear processing elements.

Fig. 6.4 shows an adaptive control configuration intended to produce a system

capable of maintaining optimal performance despite variations in its environment.

169

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

Figure 6.4: Direct adaptive control

Here, the control error ec (the difference between the actual and desired system output)

is minimised by feeding it back to the controller, where it is used to modify the

controller's characteristics in such a way as to reduce this error. The mechanism by

which this modification is achieved constitutes a large part of the highly developed

science of adaptive control. Again, linear systems have received most of the attention;

the theoretical results for nonlinear systems are sparse and specialised.

The configuration shown in Fig. 6.4 is called the direct method. Unfortunately

there is no visible way to use it with nonlinear plants. The problem lies in the location

of the unknown nonlinear plant. Lying as it does between the controller and the

output, it seems that there is no way to determine the changes in the controller's

response characteristics needed to minimise the control error. Psaltis and Sideris [6.9],

introduced the concept of using the plant Jacobian, or sensitivity derivative, to allow

errors at the plant output to be fed back to the network. This in not a new concept,

the field of sensitivity modelling having been developed to provide estimates of these

derivatives, for the use in gradient descent MRAC schemes. If the cost function is

defined as J(W), then, knowing the Jacobian of the plant, the gradient of the cost

function with respect to the P input cj, could readily be determined, with v, being the

i`h plant output.

170

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

aJ(w) aj(w) a (6.1) a; ay; ac
This gradient, which is produced at the output of the neural network, can now readily
be fed back using the backpropagation learning rule. However, since it is to be

assumed that little knowledge of the nonlinear plant is available, it would be difficult

to obtain an analytical expression for the plant Jacobian. Numerical differentiation

could be used to form an approximation to the Jacobian, but would of course suffer

from large errors that plague such a technique. Alternatively, the ay/ac term can be

obtained on-line from the incremental inputs and outputs of the plant dynamics,

providing that the learning rate should be sufficiently small so that the weights of the

network do not vary significantly at each instant.

Fig. 6.5 shows the indirect method, a configuration that is useful for both linear

and nonlinear plants [6.10]. An additional functional block called the identification

model is required. During training, both the identification model and the plant receive

the same input. The identification error, the model's deviation from the actual plant

output, is used by backpropagation to adjust the model's weights. Once trained, the

model's output will track the plant's output.

Figure 6.5: Indirect adaptive control

171

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

Once the identification model has been trained to mimic the plant's input-output

behaviour, it may be used in a procedure that minimises the control error by

optimising the controller's weights. This process is easily understood by assuming that

the controller and the identification model are cascaded neural networks. If the

identification model's weights are "frozen" after training, the controller's weights are

adjusted by backpropagation through the identification model along the path shown

in Fig. 6.5.

The case where the weights of the identification model, once set by training,

are fixed should be considered as seldom. In general, the identification model must

be updated periodically as the characteristics of the plant change with time and

operating conditions. Another factor that forces retraining is the limited nature of most

training sets. The ideal training set would constitute a complete, statistically accurate

representation of the input data. This may not be possible in practice. Acquisition of

such a set may be technically or economically infeasible, or it may be impossible to

anticipate how the input data statistics will change over time. As a result, the

identification model, as initially trained, may only accurately represent the actual

plant's characteristics over a limited range.

For these reasons, the identification model must be retrained, usually without

disrupting normal control operation. This on-line retraining is desirable but

complicated. Updating the model may produce complex interactions with the control

loop, thereby interfering with correct operation of the overall control system. This

problem may be alleviated by selecting different update rates for the identification

model and the control variables. Empirically, the identification model is adjusted more

frequently than the control variables for the sake of robustness.

Reinforcement Learning control. Often a sequence of decisions must be made

without an immediate indication of their effectiveness. For example, when playing

chess there is no conclusive indication of performance until the last move has been

made. Despite this lack of intermediate information, the skilful player has learned to

make "good" moves at every step of the game. This points up the difficult training

problem of credit assignment, that is, determining which series of actions should be

reinforced when only the final result is known.

172

Chapter 6 Control of an Underwater Robotic Vehicle using Neural . Network Approaches

A reinforcement controller is trained with an error signal that is much lower

in quality than the feedback signal in other controllers. The advantage is that the error

signal is normally directly available from the environment with little or no processing.

A reinforcement learning system requires two components: a search generator

and a memory. The search element is necessary to explore the space of operation and

elicit responses from the environment. The memory component uses the reinforcement

signal to learn the operations that yield the best return.

Often, a reinforcement signal is not available at every instance of time. Thus,

the learning system must learn a proper series of steps instead of a single step. To

speed learning when no reinforcement signal in present, Barto et al. [6.11] included

an additional element, an adaptive critic, as shown in Fig. 6.6. The purpose of the

critic is to predict the reinforcement given the current system state. The critic provides

a reinforcement signal when the environment is not providing one. This greatly speeds

the learning.

Figure 6.6: Reinforcement learning controller with
adaptive critic

A difficulty with reinforcement learning is that because the reinforcement signal is

only a single good/bad signal, the control network learns slowly in high dimensional

spaces.

Werbos [6.12] proposed a solution to this problem by adding a model network

173

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

between the critic and the controller. This configuration is illustrated in Fig. 6.7. The

model network provides derivative information to the controller network to , peed the
learning.

Input

Critic

Neural Net.
Plant Model

R

Reinforcement
learning Plant

Controller Control
Signals

Figure 6.7: Reinforcement controller with plant model
assisting the adaptive critic

The other facet of reinforcement learning is the search element. The search element

is responsible for exploring the state space. It generates the test actions for probing

the system. Much of the work to date has used random behaviour as the search

element. However, Schmidhuber in [6.13] has proposed the use of a plant model for

guiding the search.

Details aside, the importance of the reinforcement learning controllers is that

they actively participate and experiment with the environment instead of being trained

off-line. As such they have a greater capacity for learning about and accommodating

unforeseen events in the environment than do other neural control techniques.

174

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

6.3 Predictive Control Strategies

In the previous section, the existing control schemes for learning control of dynamical

systems were briefly discussed. It was shown that "model-based" algorithms can

permit highly optimised control.

Control design methods centred on the model based control concept are

potentially very attractive for industrial applications. Model Predictive Control (MPC)

is now widely recognised as a powerful methodology to address industrially important

control problems [6.14]. The reason for such popularity is the ability of model-based

predictive control to yield high performance despite significant unmeasurable change

in the underlying physical behaviour of the plant that is controlled. The general

strategy of MPC algorithms is to utilise a model to predict the output into the future

and minimise the difference between the predicted output and the desired one.

Such schemes have been proved to be very successful for linear systems [6.15].

Most of the MPC techniques are based on linear models and are thus not very well

suited for the control of nonlinear systems. Because of this, there have been numerous

efforts to extend MPC techniques for the control of nonlinear systems [6.16][6.17]. All

of these efforts require the use of detailed fundamental models. In numerous occasions

such models are unavailable; thus nonlinear identification techniques must be used in

order to apply MPC methods to nonlinear systems.

It is the ability of neural networks to describe and model many, if not all, of

the non-linearities of complex systems which makes them ideal candidates for use

within a predictive control scheme.

This section illustrates how predictive control schemes can be used for the

control of an underwater vehicle. Both the one-step-ahead and the long range

(multi-step) predictive controller are considered and are evaluated on-line.

6.3.1 Predictive Control using Feedforward Neural Networks

We now propose an one-step-ahead prediction controller architecture for control of the

nonlinear dynamics of our underwater prototype, the Aquacube. The controller

175

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

architecture should be designed with the goal of providing a nonlinear learning

controller with stability assurances. Central to the controller design process is the

feasibility to actually use. To address this issue, the proposed control architecture was

tested with real time experiment using the prototype underwater robot in a swimming

pool.

The objective of the controller is to make the vehicle track a desired trajectory

with minimum error. As the vehicle can be considered as a SISO system, the desired

trajectory is related to the corresponding depth displacement.

Our investigation relies on using a forward neural model directly, as part of a

closed loop model predictive control scheme. Instead of using a transfer function, the

controller is implemented as a finite optimisation procedure, which has to be solved

for any time t. The possibility of handling constraints (such as limitations of the

control values) by incorporating them into the optimisation objective gives MPC a

special attractivity. Even for nonlinear systems, the stability of the closed loop system

can be proven [6.18].

Model based predictive control comprises the following elements:

" Prediction of plant output by means of a plant model.

" Generation of a reference trajectory for a desired plant output, starting from the

knowledge of the current plant state.

" Calculation of the best control action to minimise the difference between

predicted plant output and the reference trajectory.

The algorithm of MPC is characterised by the following strategy:

0A reference trajectory, a "prediction horizon", is calculated at each sampling

time.

0 Calculation of control input is based on prediction of plant output, and its

comparison with the reference trajectory, repetitively over the whole process

from now until the prediction horizon.

In this general case, the control inputs which will optimise matching with the

reference trajectory can cause the predicted output for the next sample to be different

from the reference trajectory. This is in order to obtain a best fit over the whole of the

reference trajectory.

176

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

However, in the first instance, we have chosen to simplify the general

approach. Rather than predicting several sampling intervals ahead, we have chosen to

attempt to control on the basis of a one-step-ahead prediction.
The proposed MPC structure is shown in Fig. 6.8 [6.191, where D represents

the delay of the output signal. In this structure the forward neural network is used to

predict the next output response of the nonlinear system and in order to find the

optimum controller input, a cost function of the form given below should be

minimised:

N Nu

_ [ysp(t+J)-y, (t+J)]'+ ßE Au(k+i)2+X[v (t+1)-v(t)]2 (6.2)

f=l i=O

where NP is the output prediction horizon, N� is the control horizon, N,, p
is the desired

vehicle position, y., and y are the neural and plant outputs respectively. Lambda (k)

is a damping factor that reduces jitter and therefore can be considered as a smoothing

factor. In our trials, lambda (?) ranged in the region of [0 - 8].

St

Figure 6.8: Model Predictive Control scheme

The above control structure includes a feedback to the setpoint, which ensures steady

state accuracy. Alpha ((x) is a parameter which introduces a difference timescale for

177

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

changes in the modified setpoint and therefore improves robustness of the control

scheme by reducing the effects of plant/model mismatch. As this control scheme is

used to predict the next output response of the non-linear system, NP was set to 1 and
Nu to 0. Beta ((3) is set to 0 because we are primarily concerned with reducing any

underdamping using the parameter k.

The operation of the MPC is as follows. At each time step, 300 msec in our

case, the vehicle position is sampled and the error is computed. A feedforward

multilayered neural network was used as a model of Aquacube. A structure of

5/18/12/1 was used with two hidden layers, as this was proved to be sufficient

accurate for one-step-ahead modelling of our underwater prototype. The neural

network inputs are initialised to current and previous values of the vehicle position

and input and a chosen value of u(t). Network initialisation and calculation of the cost

function J are repeated with different values of u(t) and the value of u(t) that

minimises the cost function is selected and applied to the thruster of the vehicle.

D

Nonlinear
plant

aetpoint
Nonlinear

_ PI/I optimiser
-_ ri D

Neural
model

actual output
neural output

Figure 6.9: Hybrid Model Predictive Control scheme

Two alternative control strategies have been also introduced in this section. Unlike the

conventional closed loop control, PI control for example, the main idea is to

compensate the non-linear relation among the plant variables by introducing the

proposed nonlinear neural optimiser in the loop as it can be shown in Fig. 6.9. In this

178

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

sense the PI controller regards our non-linear plant as a linear combined system with

unit gain.

Since the neural model is not perfect, the PI controller helps to reduce the

sensitivity of the whole system against disturbances as well as provides zero steady

state error by increasing the system type number. It is worth noting that the main

improvement from the conventional PI approach results from the knowledge acquired

by the NN during the training period [6.20]. We note that the performance of this

scheme can be improved slightly by employing an integral control action only. This

eliminates the overshoot behaviour which due to the proportional part of the controller.

In the PI-MPC scheme, the settings for the conventional controller were K. =

0.08, and K, = 0.02 sec-', while in the I-MPC case K; was set to 0.2 sec-'.

Results from simulation of the proposed three methods are shown in Figs. 6.10-

6.12 respectively. A spread encoding (SE) network replaced the real underwater

vehicle, and the good tracking of the desired trajectory demonstrates the effectiveness

of the above control architectures.

1.4

1.2

0.4

0.2

A

. __
1 ý- _ jI

.
F

....... . f..........
ý

......

1

. f
ý.

... . ---- . _..

f
.......

ý1 81 41 81 81 101

time (sec)

I--
Setpoint -NN model

Figure 6.10: MPC scheme in simulation

1.2

J. 8

c

---..... -y

7.4

7.2

----... ------- ""----.

---..... -

.. -"---- --""--"" ,

H

a
b

A 1 21 41 61 81 101

time (eeo)

Setpoint -NN Model

Figure 6.11: MPC with I term in simulation

179

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

1.4

1.2

ö 0.6
b

0.4

0.2

n

Fr'

1 21 41 81 81 101

time (sea)

- Setpoint -NN Model

Figure 6.12: MPC with PI term in simulation

Additionally, our one-step ahead predictive control schemes performed very

satisfactorily under real operational conditions. In Figs. 6.13 - 6.16 we can see the

results obtained from the Aquacube, in a swimming pool test, using the three proposed

techniques.

9

2.8

2
d

0.6

0
1

.... I
I..

....

I

1
1"

1
......r...

11

21 41 81 81 101 121 141 1161 181

time (am)

- Aquacube --se¢poUri

Figure 6.13: MPC scheme with X=3

8

II

... --..,....... r,.. -.. ý ý, _ . ý--.... ý.. -I .. r......,. -.
II

I

Ii

i
i F

.

2.5

2
E

1

0.5

oll 21 41 61 al 101 121 141 161 1111
fte (see)

- aquabe - segmEnt

Figure 6.14: MPC scheme with k=6

180

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

............ i
2

.... _...... 1... -_J. t ýT

I
ý.

Ö __
I"

........ ._...

...................... -.. --

0
1 21 41 61 81 101 121 141 161 161 201

time (no

- aquacaube -- seWrt

Figure 6.15: MPC with I term

9

2-5

2

v

0.8

0
1

-- -- -- "- -- -"
cý

ri
i

i.

.

21 41 ei 81 101 121 141 181 181 201

tim. (. a

aq uacu b. - -.. tpoln1

Figure 6.16: MPC with PI term

It is worth noting that in the original MPC scheme, the increase of ? factor results in

the expected smoother behaviour of the plant, in areas where the training was

sufficient accurate. Setpoint changes were made through the whole operating range

and from the above results it can be seen that the one-step-ahead prediction network

has learnt to predict the vehicle's output and therefore the MPC brings the vehicle

near the reference value.

The network size and input configuration is a critical factor for the overall

stability of the system. They are probably the most important parameters of the

proposed neural network controller.

8

2.5

2
E

5

7

0.5

.

rý ---- -------------- ----------- ---

21 41 6" 61 101 121 141 161 1*1
äms (Sao)

-- Neurml prodkAor --- Setpolnt - Aq Luwtd)e

Figure 6.17: Modelling accuracy for NN

181

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

Fig. 6.17 shows the good tracking of the vehicle's position from the feedforward

neural predictor and this fact demonstrates the capability of the proposed predictor to

emulate the vehicle's response even under real operational conditions.

Under the MPC scheme, the nonlinear optimiser is designed to command the

vehicle for tracking a specified position (depth). The global operation of the MPC

scheme is important from the aspects of stability and robustness, but more important

is the way in which the vehicle is controlled. Fig. 6.18 illustrates the neural network

control of the Aquacube.

C

4
n

2

0

0
-2

ö
-4

-A

ýrý. f

21 41 61 61 101 1Z1 141 161 181

time (sec)

s

2.5

1. ý

1e

0.5

--eetpoint -control input

Figure 6.18: Control input used in MPC

Although the neural-predict-controller maintains good control of the vehicle, the above

diagram reveals the cost of using one-step ahead prediction schemes. The control

values are spread in a large operational area and by no means can be considered as

smooth enough. This can be explained by the fact that as we are using one-step-ahead

prediction schemes we did not optimise the control effort in a larger horizon, i. e. no

emphasis on control limitations was given.

However, this "problem" can be easily overcome by employing long range prediction

control schemes, something that will be considered later in this chapter.

The complete results from the experimental trials are summarised in table 6.1.

182

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

Method MSE setpoint - plant MSE plant - NN

MPC 1X=3 0.0234 0.00162

MPC 1X=6 0.0355 0.0018

MPC 2 (NN + I) 2=4 0.0579 0.00045

MPC 3 (NN + PI) X--4 0.0558 0.00044

Table 6.1

A number of other control strategies have been implemented and tested on the same

vehicle under the same operating conditions, as we have already discussed in a

previous chapter. A PID, for example, with specific coefficients "seems" to give

satisfactory results. An attempt to test again the PID controller on the Aquacube, gave

us the following results.

I . "r. ýr.: ux: "tiv.. sý
2

1 21 41 81 81 101 121 141 151 181
firne (904

- SetpoEnt -- Aqusoube -, - PID conmd . Iprul

Kp: 1.76,00: 0.18, Kd 0.2

4

These rather disappointing results can be explained by the fact that a PID controller

was constructed according to the instructions given in [6.21], i. e. without including the

positive offset to compensate for the effect of buoyancy. Similar results can be also

obtained for the methods described in [6.22].

183

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

6.3.2 Predictive Control using Recurrent Neural Networks
The method presented in the previous section can be expanded in a straightforward

manner to handle long range (multi-step) predictions.

In the previous chapter, different recurrent network architectures for modelling
dynamical systems, as our underwater prototype, were discussed. These architectures

differ in their performance aspects in terms of computational complexity, mapping

capabilities and convergence.

The objective of this section is to solve the model predictive control problem

when the model of the system is given by a nonlinear recurrent network. With the

requirement of fewer weights and a shorter training time for the neural network model,

the modified Elman and the "autoregressive" networks are proposed [6.23].

The recurrent-MPC structure consists of a recurrent neural model which is used to

predict the next five output responses of the nonlinear system. According to this

configuration, the following optimisation problem is to be solved:

NN
n

O'[y,
p(t+i)-yn(t+a)]2+E

Au(k+J)2+X[v'�(t+l) y(t)]2
(6.3)

=i j=o

where NP is the output prediction horizon, N� is the control horizon, 0 is a weight in

the output error and 2 is a damping factor to suppress oscillations. the prediction

horizon specifies the range of future outputs which are being considered in the

minimisation, while the control horizon defines the number of control moves required

to reach the desired objective. The role of the recurrent network is to provide the

outputs predictions up to the specified prediction horizon. In our trials, the 0 value

ranged in the region [1.2 - 2], while in the case of k in the region [0 - 4].

Depending on the control horizon specified, a range of future control moves

may have been calculated at each sample instant. However, control is implemented in

a "receding horizon" manner; i. e. only the first of the calculated control sequences is

applied, so as to avoid uncertainties associated with extrapolation [6.24].

The optimal control, u(t), that will minimise the cost function, is determined

by numerical methods like the Simplex method or the Rosen Gradient Projection

Method. If the control horizon is shorter than the prediction horizon, the future control

184

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

after N� is held constant to u(t +Nu) [6.25]. In our case the prediction horizon was set

at five and the control horizon at zero. In this configuration, the recurrent networks
identify one-step-ahead model and use it recursively up to the pre-specified prediction
horizon.

Figs 6.19 - 6.20 show a simulation test of the long range prediction controller
in which the prediction is made by the modified Elman and the "autoregressive"

networks respectively. As in previous simulation tests, the real underwater system was

replaced by a SE network.

3

2.5

2
F
4.5

0.5

0
i

r

21 41 81 81 101 121 141

time (sea)

I--
NN Model -Setpoint

Figure 6.19: Elman - MPC in simulation

Z)

2.6

2
0
ý. 6

.1

0.6

0
1

............

............ ...

.........

...................
..........

21 41 e1 81 101 121

time (seo)

- NN Model -Setpoi-t

Figure 6.20: "AR"-MPC in simulation

The control algorithm was then tested with real-time experiments using the Aquacube

in a swimming pool and performances can be shown in Figs. 6.21 - 6.23, while the

complete experimental results are illustrated in table 6.2.

It is clearly shown that the one-step-ahead network output of the recurrent

networks matches closely to the one of the Aquacube. This fact reveals the power of

recurrent links that can be found in both configurations.

Although the "autoregressive" version of long term prediction control scheme proved

to be superior than using the Elman network, both experiments demonstrated the

effectiveness of the recurrent-MPC in keeping the vehicle at a specified constant depth

with the minimum required control effort.

185

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

2.6

..

0.6 -"--

0
1 21 41 61 61 101 121 141 181 181

time (see)

- Setpoint - Aquaoube

Figure 6.21: "AR" MPC with a=0.999

J

2.6

0.5

n

0.6 -- ---.

O
1 21 41 61 81 101 121 141 161 101

time (va-0)

.

I
--Setpofat -Aquacube

Figure 6.22: "AR" MPC with a=0.2

r. 2
H
ý. 6
m
v

1

1 21 41 el al 101 181 141 161 181

time (see)

- Setpoint -Aquacube

Figure 6.23: Elman MPC with a=0.5

Method MSE setpoint - plant MSE plant - NN

AR a=0.999, 0.0523 0.000516

X=4,0=1.8

AR a=0.2, 0.0547 0.000590

A, =4,0=2

Elman a=0.5, 0.0555 0.000748

X4,0=1.8

Table 6.2

3

2.5

186

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

Another parameter having significant importance in the controller performance is the

measurement noise. The results showed the ability of the recurrent MPC scheme to

adapt the measurement noise, a phenomenon which is found in any real experimental

test.

The good results obtained with recurrent networks are due also to the fact that

minimum control effort was used to achieve the specific performance. The control

values are smoother than those of the one-step-ahead control are shown in Fig. 6.24 -
6.25.

6

4

ä2

da ro
0

0
.5 -2

.........
c
..

u
0

-4

-e 1 21 41 61 81 101 121 141 181 181

time (eeo)

" eetpoint - control signal

3

2.5

20

0
a V

1ö

0.5

0

Figure 6.24: Control input for "AR" network

8

4
21
°> 2

m0

0
-2

00
U

-4

_w

i

21 41 61 61 101 121 141 181 181

time (see)

I--.
etpoint - control signal

3

2.5

21

0.5

0

Figure 6.25: Control input for Elman network

As the plant is a nonlinear system, and the Elman net did not mimic exactly the

dynamics of the plant, a small offset error was produced. This offset error can be

quickly eliminated either by adaptation of NN if learning is kept active, or if the

whole MPC scheme might be connected, using an outer loop, with an integral term.

References

[6.1] Comoglio, R. F. and Pandya, A. S., "CMAC Neural Network Architecture for
Control of an Autonomous Undersea Vehicle", Proc. SPIE Vol 1709,
Applications of Neural Networks III, 1992, pp. 517-527.

[6.2] Barto, A. G., "Connectionist Learning for Control: An Overview", in Neural
Networks for Control, Miller III, W. T., Sutton, R. S. and Werbos, P. J. (eds),
MIT Press, 1990, pp. 5-59.

187

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

[6.3] Werbos, P. J., "Neurocontrol and Fuzzy Logic: Connections and Designs", Int.
J. Approximate Reasoning, Vol. 6, No. 2,1992, pp. 185-221.

[6.4] Miyamoto, H., Kawato, M., Setoyama, T. and Suzuki, R., "Feedback-Error-
Learning Neural Network for Trajectory Control of a Robotic Manipulator",
Neural Networks, Vol. 1,1988, pp. 251-265.

[6.5] Sofge, D. A. and White, D. A., "Neural network based process optimization and
control", Proc. 29th Conf. on Decision and Control, Hawaii, December 1990,
pp. 3270-3276.

[6.6] Zurada, J. M., "Introduction to Artificial Neural Systems", West Publishing
Co., 1992.

[6.7] Narendra, K. S. and Parthasarathy, K., "Identification and Control of
Dynamical Systems using Neural Networks", IEEE Trans. Neural Networks,
Vol. 1, No. 1, March 1990, pp 4-27.

[6.8] Narendra, K. S., Annaswamy, A. M., "Stable Adaptive Systems", Prentice-Hall,
1990.

[6.9] Psaltis, D., Sideris, A. and Yamamura, A. A., "A multilayered neural network
controller", IEEE Control Systems Magazine, Vol. 8,1989, pp. 17-21.

[6.10] Tanomaru, J. and Omatu, S., "Towards effective neuromorphic controllers",
Proc. IECON '91, pp. 1395-1400.

[6.11] Barto, A. G., Sutton, R. S. and Anderson, C. W., "Neurolike adaptive elements
that can solve difficult learning problems", IEEE Trans. Systems, Man and
Cybernetics, No. 13,1983, pp. 834-846.

[6.12] Maren, A., Harston, C. and Pap R., "Handbook of Neural Computing
Applications", Academic Press, 1990.

[6.13] Schmidhuber, J., "Reinforcement Learning in Markovian and Non-Markovian
Environments", in Advances in Neural Information Processing Systems 3,
Lippmann, R. P., Moody, J. E. and Touretzky, D. S. (eds), Morgan Kaufmann,
1991, pp. 500-507.

[6.14] Saint-Donat, J., Bhatt, N. and McAvoy, T. J., "Neural net based predictive
control", Int. J. Control, Vol 54, No. 6,1991, pp. 1453-1468.

[6.15] Clark, D., Mohtadi, C. and Tuffs, S., "General Predictive Control", Automatica,
Vol. 23,1987, Parts I& II, pp. 137-160.

[6.16] Brengel, D. D. and Seider, W. D., "A Multi-Step Nonlinear Predictive

188

Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches

Controller", American Control Conf., 1989, pp. 1100-1106.

[6.17] Peterson, T., Hernandez, E., Arkun, Y. and Schork, J., "Nonlinear Predictive
Control of a Semi-Batch Polymerization Reactor by an Extended DMC",
American Control Conf. 1989, pp. 1534.

[6.18] Mayne, D. Q., Michalska, H., "Receding horizon control of nonlinear systems",
IEEE Trans. on Automatic Control, 1990, vol. 35, no 7, pp814-824.

[6.19] Kodogiannis, V. S., Lisboa, P. J. G. and Lucas, J., "A neural predictive controller
for underwater robotic applications", Proc. 2nd IEEE/BCS Workshop on
Neural Network Applications and Tools, Liverpool, September 1993, IEEE
Computer Society Press, pp. 126-133.

[6.20] Kodogiannis, V. S., Lisboa, P. J. G., Lucas, J., "Neural Network Based Predictive
Control System for Underwater Robotic Applications", submitted to IEE
Proceedings D, 1994.

[6.21] Swainston, J. R., "Positional control of underwater vehicles", MSc thesis,
Liverpool University, December 1992.

[6.22] Stephens, M., "Intelligent adaptive control of remotely operated vehicles
(ROVs)", Ph. D Thesis, Liverpool University, March 1994.

[6.23] Kodogiannis, V. S., Lisboa, P. J. G., Lucas, J., "Neural Network Based Predictive
Control Systems for Underwater Robotic Vehicles", to appear in Proc. of
ELECTRO '94, Boston 10-12 May 1994.

[6.24] Willis, M. J., Di Massimo, C., Montague, G. A., Tham, M. T. and Morris, A. J.,
"On Neural Networks in Chemical Processes", Proc. IEE - D, Vol. 138, No.
3,1991, pp. 256-266.

[6.25] Koivisto, H., Kimpimäki, P., Koivo, H., "Neural net based control of the
heating process", in Artificial Neural Networks, Kohonen, T., Mäkisara, K.,
(eds), North-Holland 1991, pp. 1277-1280.

189

CHAPTER 7

Conclusions and Recommendations

7.1 Conclusions

The primary thrust of this research was to demonstrate practical techniques for

nonlinear control. The main issues of the study were learning methods for modelling

and control of a Single-Input-Single-Output underwater vehicle.

The application of neural networks to complex systems is not new. It has been

shown to be quite successful for land vehicles [7.1]. However, for the additional

complexities of an environment such as the sea, the research has just started.

The well known backpropagation algorithm is introduced as a universal

learning algorithm for models. The universality of the algorithm is demonstrated by

studying it on a number of different network architectures. We have demonstrated this

property on modelling a complex nonlinear system such as an real underwater vehicle.

It is to be emphasised here that for dynamic modelling tasks, the generalisation

capabilities of the learning algorithm may be more important than the training time.

Generalisation refers to the ability of the trained networks to correctly interpret a new

set of input data from the same domain of the training data. It is the capability of the

networks to learn the regularities in the input data rather than performing a simple

"look-up table" operation.

190

Chapter 7 Conclusions and Recommendations

A neural network was configured to represent the dynamics of the vehicle in

a NARX model scheme and this approach has been found to provide good modelling

results as the network was capable to predict the next vehicle's position.
The universality of the backpropagation is further investigated by analysing

recurrent networks for long range predictions of the vehicle dynamics. Three new

schemes for recurrent modelling using gradient based neural network approaches are

proposed in this thesis.

In dynamic applications, the real computing power of connectionist models

could be exploited only if the networks themselves are dynamical in nature. Two

approaches to processing inputs in the time domain have been applied: One was to

window the inputs and then treat the time domain like another spatial domain, with

the result the development of the spread encoding network.

Alternatively to introduce dynamics into the network by transferring the regular

network neuron state to another set of "duplication" neurons called memory neurons.

The modified Elman and the "autoregressive" networks are examples of such

architectures. The learning, generalisation and temporal information extraction abilities

of these architectures were studied on modelling the underwater vehicle and the results

confirmed that they can be used as efficient neural prediction models.

Although there is a growing interest in applying neural networks to nonlinear

systems, little work has been reported on using such networks for real-time control.

Two predictive control approaches for the learning control using one-step-ahead

and five-step-ahead prediction neural networks are proposed. The proposed schemes

are evaluated both in simulation and on-line and are shown to provide very good

tracking performance. It is shown that long range prediction schemes improves the

tracking performance of the system significantly compared to the one-step-ahead

prediction controller. Additionally, hybrid control strategies which combine neural

predictive with conventional controllers are investigated and the results show us the

possibility of an effective integration of two different kind controllers.

Using the proposed control schemes a new application for the neural networks

concerning the learning control of underwater vehicles is portrayed.

191

Chapter 7

7.2 Recommendations

Conclusions and Recommendations

This research has provided foundation for a number of possible theoretical as well as

practical extensions. The most important of them include the development of a neuro-
fuzzy system for modelling and control complex nonlinear systems and the

implementation of such learning systems in a VLSI form.

Neural networks and neurocomputations in general, imply an implicit character

of knowledge being acquired from a family of training patterns and distributed along

the connections of the structure within their learning. Accepting this point of view one

can think of neural networks as structure-free and fully distributed models. The

distributivity of computations contributes to profound learning capabilities as the

individual computing elements in the network are capable of adjusting their

connections to carry out the best possible mapping for the training set of patterns.

While the computational distributivity enhances learning, this also makes it almost

impossible to come up with a reasonable interpretation of the overall structure of the

network in the form of easily comprehended explicit logical constructs, like "if-then"

statements. In contrast to the implicit character of the knowledge that has been

"coded" into the network, different knowledge representation schemes used in

symbolic computations code the domain knowledge in an explicit manner.

On the other hand, fuzzy logic based design for control has several advantages

including simplicity and ease in design. However, as the system complexity increases,

it becomes difficult for the fuzzy logic to determine right set of rules and membership

functions to describe the system behaviour.

Use of neural networks to learn system behaviour seems to be a good way to

solve the above mentioned problem. This problem can be solved by defining a fuzz}'

error that is propagated back through a neuro-like architecture of the fuzzy controller.

According to this fuzzy error, the strength of its antecedent, the current state of the

controlled system, and the control action derived from the conclusion, each fuzzy rule

determines its amount of error and tunes the membership functions of its antecedent

and its conclusion. By this we can get an unsupervised learning technique that enables

a fuzzy controller to adapt to a control task by knowing just about the global state and

192

Chapter 7

the fuzzy error.

Conclusions and Recommendations

As an extension to the above technique, a hybrid learning procedure can be

used, where the neuro-fuzzy inference system can construct an input-output mapping
based on both human knowledge (in the form of fuzzy "if-then" rules) and stipulated
input-output data pairs.

Artificial neural systems are currently realised in a number of ways. In this

work, they have been implemented in software. For the best results and real-life

applications, however, neural networks need to be implemented either as a hardware

emulation or as special-purpose hardware integrated circuit.

There have been a number of researchers trying to implement neural networks

using arrays of Transputers. Although Transputers are very popular nowadays due to

their very high performance / price ratio, the implementation of m nodes of a neural

network to an n Transputer array suffers from communication overhead. According

to the GALATEA European project [7.2], Philips Co. reports that the speedup of their

Transputer system was lower than the expected one, and this fact led the company

to replace Transputers by Digital Signal Processors (DSPS) in their GPNC (general

purpose neurocomputer hardware) demonstrator. DSPS offered the following

advantages: fast scalar operations (10 x over Transputer); higher bus bandwidth.

Special-purpose hardware has recently become available to replace

microprocessors and digital signal processors for neural network implementations. The

new hardware builds on the parallelism within neural networks to provide a large

increase in speed at about the same cost. It can be several thousand times faster than

the previous approaches.

Neural network applications suitable for implementation in digital VLSI cover

a wide spectrum, from dedicated feedforward networks for real time feature detection

to general purpose engines for exploring learning algorithms [7.3]. Digital

implementations use either parallel or bit-serial arithmetic and the majority of them

include some form of on-chip learning.

Although digital simulation is the usual way of implementing a neural network,

the concept is essentially analogue. New hybrid designs are of interest where weights

will be stored digitally while the computation of the inner product will be performed

193

Chapter 7

in an analogue domain.

Conclusions and Recommendations

The combination of specialised hardware and advance algorithms will offer the

practical engineer a new tool, moving electronic technology closer to the human

domain.

References

[7.1] Harris, C. J. and Brown, M., "EEC-funded PANORAMA research project",
Southampton University, 1990.

[7.2] GALATEA, ESPRIT II research project Contract No. 5293, Commission of the
European Community, DG XII, Brussels.

[7.3] Antognetti, P. and Milutinovic, V. (eds), "Neural Networks: Concepts,
Applications, and Implementations", Vol II, Prentice-Hall, 1991.

194

APPENDIX A

"AQUACUBE" DESIGN

In order to validate the effectiveness of neural control strategies for the control of

underwater vehicles, a vehicle which would operate with only one degree of freedom

was constructed. Since the easiest positional parameter to measure is depth, using a

pressure transducer, a simple vehicle was designed and constructed to house one

thruster aligned vertically, and a pressure transducer. This simple one dimensional

model was called the Aquacube due to its simplistic shape. A drawing of this

prototype vehicle is shown in Fig. Al.

The Aquacube has a single thruster mounted in a steel endoskeleton.

Positioning the thruster in this manner reduces axial and cross flow effects. A 4-2OmA

current loop pressure sensor is added to the vehicle for measuring depth; sufficient

buoyancy is added to the vehicle to make it slightly positively buoyant. Without any

drive power, the vehicle will usually tend to drift upwards because of this positive

buoyancy. All information and power is transmitted via a umbilical which is non-

tensioned and made approximately neutrally buoyant, in order to minimise the static

forces. Fig. A2 illustrates Aquacube at its physical environment.

For ease of development, and because of the simplicity of the system, a

Personal Computer, with suitable interface boards, was used for control and data

logging. Motor control has been particularly difficult on two accounts. The first was

the marinization of the motor housing to provide reliable operation and the second was

the best method for motor drive.

195

In addition to the non-linear characteristics in axial flow machines, the stiction

in the thruster at low speeds and the required starting torques coupled with ,
forced

us to control the thruster using a Pulse-Width-Modulation drive system. The

modulation frequency was 20 kHz and the motor voltage was ±25V with a current of

20A peak. Noise interference from the umbilical to the sensor signals needed special

consideration in order to reduce it to an acceptable level.

It is on this model that all the neural strategies have been carried out. In

addition, the vehicle's small size and weight gave us a more convenient test bed for

experimental purposes rather than one with a larger and more complex design.

I,

Figure Al: The Aquacube prototype vehicle

196

U

low

, ýw
ý+IF

'ý
X"

ýr

_, ý,

Figure A2: The Aquacube during testing

197

APPENDIX B

PUBLISHED AND SUBMITTED PAPERS

1. Kodogiannis, V. S., Lisboa, P. J. G. and Lucas, J., "A neural predictive controller

for underwater robotic applications", Proc. 2nd IEEE/BCS Workshop on

Neural Network Applications and Tools, Liverpool, September 1993, IEEE

Computer Society Press, pp. 126-133.

2. Kodogiannis, V. S., Lisboa, P. J. G., Lucas, J., "Neural Network Based Predictive

Control System for Underwater Robotic Applications", submitted to IEE

Proceedings D, 1994.

3. Kodogiannis, V. S., Lisboa, P. J. G., Lucas, J., "Neural Network Based Predictive

Control Systems for Underwater Robotic Vehicles", to appear in Proc. of

ELECTRO '94, Boston 10-12 May 1994.

4. Kodogiannis, V. S., Lisboa, P. J. G., Lucas, J., "Long Range Predictive

Controller for Underwater Robotic Vehicles using Recurrent Neural Networks",

Proc. 2nd IEEE Mediterranean Symposium on New Directions in Control &

Automation, Chania, Crete, Greece, 19-22 June 1994, pp. 217-224.

5. Kodogiannis, V. S., Lisboa, ̀ P. J. G., Lucas, J. ' "Identification and Learning

Control for Underwater Robotic Vehicles using Neural Network Techniques",

submitted to IEEE Trans. on Control Systems Technology, 1994.

198

