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ABSTRACT 

Oceanographic exploration is one of the fast emerging applications of robotics. Since 

a vast region of the ocean is still unexplored because of the difficulties in having 

manned interventions, robotics is the most suitable alternative. The design of 

controllers for Underwater Robotic Vehicles (URVs) is as challenging as for land 

based ones. The difficulties in modelling an URV and its hazardous environment 

restrict the use of conventional controllers. Artificial neural networks can provide a 

general framework for nonlinear modelling and control. This thesis describes the 

application of neural networks for the modelling and control of a prototype URV, as 

an example of a system containing severe non-linearities. The backpropagation 

algorithm is demonstrated successfully on a variety of network architectures. Such 

architectures include multilayer perceptrons, recurrent networks and memory neuron 

networks. A Model Predictive Control structure, with neural network model is used. 

Two architectures are proposed, one-step-ahead and long-range prediction schemes 

respectively. These structures are evaluated both in simulation and on-line. The 

proposed schemes are shown to provide very satisfactory dynamic response and 

tracking characteristics. A hybrid control strategy, which combines neural predictive 

with conventional control, is introduced to show the feasibility of combining different 

classes of controllers. 
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Notation and Abbreviations 

The following notation and abbreviations are used in this thesis. Note that vectors are 

indicated with a bold font: 

URV Underwater Robotic Vehicle 

NARX Nonlinear AutoRegressive model with eXogenous inputs 

PID Proportional-Integral-Derivative Controller 

MRAC Model Reference Adaptive Control 

ST Self-Tuning 

ANN Artificial Neural Networks 

Al Artificial Intelligence 

BP Backpropagation learning rule 

i (j, k,.. ) the unit i (j, k, 
... ) 

xP the pth input pattern vector 

xP1 the ith element of the pth input pattern vector 

iP the input to a set of neurons when input pattern vector p is presented 

to the network 

IP; the net input of neuron i due to input pattern vector p 

OP the output of the network when input pattern vector p was input to the 

network 

Opi the ith element of the output of the network when input pattern vector 

p was input to the network 
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d' the desired output of the network when input pattern vector p was input 

to the network 

dP1 the ith element of the desired output of the network when input pattern 

vector p was input to the network 

aP the activation values of the network when input pattern vector p was 

input to the network 

aP; the activation values of element i of the network when input pattern 

vector p was input to the network 

W the matrix of connection weights 

w; the weights of the connections which feed into unit i 

w; j the weight of the connection from unit j to unit i 

F the set of activation functions 

F; the activation function associated with unit i 

Yj the learning rate associated with weight w; j 
9 the biases to the units 

e1 the bias input to unit i 

U; the threshold of unit i in F; 

EP the error in the output of the network when input pattern vector p is 

input 

the energy of the network 

LMS Least Mean Square 

$ error signal vector used in BP 

MLP Multilayer Perceptron 

µ momentum term 

ASE Associative Search Element 

ACE Adaptive Critic Element 

SISO Single Input Single Output 

PWM Pulse Width Modulation 

T period of the sine-wave signals 

FFT Fast Fourier Transform 

RAS Random Amplitude Signal 

RBF Radial Basis Function 
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(D regression function used in RBFs 

ß width of the regression function used in RBFs 

c; centre of the gaussian unit i used in RBFs 

OLS Orthogonal Least Squares 

BPTT Backpropagation through time 

RTRL Real Time Recurrent Learning rule 

SE Spread Encoding neural network 

yf; excitation of node i in a SE architecture 

ARNN Autoregressive recurrent neural network (also found as AR) 

PRBS Pseudo Random Binary Sequence 

MPC Model Predictive Control 

MSE Mean-Squared-Error 

NP prediction horizon 

N� control horizon 

damping factor 

ß parameter associated with the control part of Eq. 6.2 

J cost function associated with the MPC scheme 

D delay of the output signal 

KP proportional gain in a PI controller 

K; Integral gain in a PI controller 

a parameter which introduces a difference timescale for changes in the 

modified setpoint 

0 weight in the output error used in the MPC scheme 
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CHAPTER 1 

Introduction 

Central to the operation of modern technology is system regulation and control. 

systems from home appliances and automobiles to nuclear reactors and spacecraft 

require automatic control systems to maintain their operation. 

Most controllers of today are simple in design and are fixed at the time of 

development. They suffer from limits on the range of operation, system instability, 

improper operation, inefficiency and a multitude of others problems due to their 

simple design and lack of adaptability [1.1]. Automatic control researchers are well 

aware of these problems and have developed specialised algorithms and techniques to 

incorporate more knowledge into control systems. The work, however, is narrow in 

focus and has concentrated on specific solutions to precisely defined problems. 

Because of the narrow focus and the difficulty in applying the specialised techniques, 

many control tasks continue to be solved using very simple controllers. The process 

control industry is a good example. Although significant advances in hardware and 

control theory have occurred, most systems are still implementing PID (proportional- 

integral-derivative) controllers. These controls use 1930s control theory running on 

advanced digital hardware. 

The main problem with many new techniques is that they require significant 

knowledge to be properly implemented. Real-time control of nonlinear systems with 

unknown structures or parameters remains an open area of research. Most of the recent 
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developments in control theory have applied to linear systems with known structures 

and parameters. Optimal control techniques, for which a wealth of theory has been 

developed [1.2], are directed primarily towards linear systems. 
Many different extensions of linear system design techniques have been 

studied. For nonlinear systems, the most direct approach is modelling of the plant 
dynamics using physical laws in conjunction with off-line experiments to determine 

the relationship between the inputs and outputs of the plant. Modelling techniques, 

such as fitting linear models to frequency response curves, finite element analysis and 

stochastic modelling have been successful at characterising classes of unknown plants. 

These techniques have been successful in the control problem when the model 

accurately describes the system. The approach is sometimes limited by the 

computational complexity of the model or by the inflexibility of the controller when 

the plant changes characteristics as the controller operates. Adaptive control, such as 

the Model Reference Adaptive Control, has become available to those systems having 

such uncertainty. The primary advantage of this approach was that stability of the 

adaptive process was guaranteed for a large class of systems. 

Although conventional control techniques (both adaptive and non adaptive) 

using standard mathematical methods have performed remarkably well, their appeal 

tapers off when one is confronted with the control of complex systems characterised 

by poor models, high dimensionality of the decision space, distributed sensors, 

distributed decision makers, multiple time scales, multiple time constants, high noise 

levels, drifting parameters values, stringent performance requirements, non-linearities, 

and so on. As a system becomes more complex, so does the complexity associated 

with the computation of the control law and the task of implementing the control in 

a timely fashion. The trend of control theory, therefore, is intended to develop more 

general approaches, which can solve as many applications as possible, even if the 

plants are too complex to be modeled with concise mathematical expressions or the 

environmental conditions vary too large to be controlled by use of traditional 

controllers. The control problem of this kind is no ways a trivial one. 

An "intelligent control" method is one that addresses these problems with some 

degree of satisfaction. Although, tight definitions are hard to come by, an intelligent 
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system is one that can sense the environment, process the sensor data, and generate 

and execute a timely control actions in order to guide the system from an initial state 

to a terminal state, while satisfying the constraints and objectives. The greater the 

ability to deal with the above problems, the more intelligent is the control system. 

When we discuss intelligent control systems, we expect the intelligent control 

systems to have reasoning mechanisms with knowledge-based systems such as expert 

systems and adaptive controllers to the changing environment. The reasoning 

mechanism produces control strategies symbolically for complex and composite tasks 

by using knowledge and data base systems after recognition of the environment. As 

the reasoning mechanism deals with symbols, whereas the real world is numerical, it 

is necessary to classify the data in order to map the numerical sensed data into the 

symbolic data for understanding of the process state. However, it is difficult to decide 

such rules that classify the numerical data. In expert systems, human experts must 

decide these rules by using their domain-dependent knowledge. Moreover, in order to 

achieve tasks following the control strategy produced by a reasoning mechanism, it 

is necessary for the intelligent control systems to use effective adaptive controller for 

servo control. 

Furthermore, fuzzy set theory also has potential for intelligent control systems. 

It is characterised as an extension of binary Boolean logic, and can be considered as 

another powerful tool to model phenomena associated with human thinking and 

perception. Fuzzy logic based design for control has several advantages including 

simplicity and ease in design. However, as the system complexity increases, it 

becomes difficult for the fuzzy logic either to determine right set of rules and 

membership functions to describe the system behaviour or to modify existing rules. 

In this thesis, an alternative approach is presented which alleviate these difficulties. 

1.1 Rationale of the present research 

As control methods have found their way into standard practice, they have opened the 

door to a wide spectrum of complex applications. Many of them are characterised by 

model and/or parametric uncertainty and high disturbance or noise levels. Since the 
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ability of living systems to cope with similar situations is well known, systems 

theorists attempted to incorporate such characteristics in artificial systems. As a result, 

over the past three decades numerous terms borrowed from psychology and biology, 

such as pattern recognition, adaptation, learning and self-organisation, have been 

introduced into the systems literature. 

Biological information processing systems are some of the most highly 

organised structures. They are compact, energy efficient and self-adaptive systems, 

which can monitor and control all the body-functions in an optimal way. They 

outperform the conventional digital computers in a number of functionalities such as 

perception, optimisation, learning and control. 

Artificial neural networks try to mimic the biological brain system into 

mathematical model. In artificial neural network, a "model" of the brain, connects 

many linear or nonlinear neuron models and processes information in a parallel 

distributed manner. In conventional Von-Neumann computers, the speed of 

computation is limited by the propagation delay of transistors. Because of their 

massively parallel nature, neural networks can perform computations at much higher 

speed. In addition, the neural networks have many interesting and attractive features. 

Learning and self-organisation capabilities are some of these features. Therefore, 

neural networks can adapt to changes in data, learning the characteristics of input 

signal. 

Most neural networks have parameters that control how they learn as they 

cycle repeatedly through the training data. The values selected for these parameters 

influence how well the trained network performs. Largely due to the adaptive or 

empirical nature of the neural network algorithms, parameter choice requires 

experimentations, and the results depend in part on the developer's experimental 

technique. Finding suitable parameter values by experiment has been an impediment 

to the development of these networks, especially because some of the algorithms 

consume large amounts of computer time. A single training run can often take hours, 

days, or even weeks on workstations. The multiple training runs needed to fully 

explore a wide range of possible solutions have been out of the question, forcing 

developers to limit problems artificially. Parallel hardware designed especially for the 
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networks removes or reduces this computational barrier, thereby accelerating the 

networks' developments. 

So why use them? Because they offer valuable characteristics unavailable 
together elsewhere. First, they can infer subtle, unknown relationships from data. This 

characteristic is useful because gathering data does not require explaining it. Second, 

the networks can generalise, meaning they can respond correctly to patterns that are 

only broadly similar to the original training patterns. Generalisation is useful because 

real-world data is noisy, distorted, and often incomplete. Third, they are nonlinear, that 
is, that can solve some complex problems more accurately than linear techniques. 

Nonlinear behaviour is common, but can be difficult to handle mathematically. Finally 

neural networks are highly parallel. They contain many identical, independent 

operations that can be executed simultaneously. This is useful because parallel 
hardware can run neural networks quickly, often making them faster than alternative 

methods. 

Although there is a growing interest in applying neural networks to nonlinear 

systems, little work has been reported on using such networks for real-time 

applications. 

Oceanographic exploration is one of the fast emerging applications of robotics. 

Since a vast region of the ocean is still unexplored because of the difficulties in 

having manned interventions, robotics is the most suitable alternative. The design of 

controllers for Underwater Robotic Vehicles (URVs) is as challenging as for land 

based ones. The difficulties in modelling an URV and its hazardous environment 

restrict the use of conventional controllers. 

Artificial neural networks can provide a general framework for nonlinear modelling 

and control. One of the important advantages in using neural networks for the control 

applications is that the dynamics of the controlled system need not be completely 

known for the design of the controllers. This is very desirable feature in the design of 

an underwater vehicle control system. 

The current work describes the application of neural networks for the modelling and 

control of a prototype URV, as an example of a system containing severe non- 

linearities. The goal of this research is to develop practical techniques for stable 
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nonlinear learning control. To meet this goal, two objectives for control of the vehicle 

are proposed. 

The first objective is to develop accurate model architectures for the prototype 

URV. Such architectures include multilayer perceptrons, recurrent networks and 

memory neuron networks. The second objective is to develop a technique for 

controlling the URV using neural network models. Two architectures are proposed, 

one-step-ahead and long-range Model Predictive Control schemes. These structures are 

evaluated both in simulation and on-line. A hybrid control strategy, which combines 

neural predictive with conventional controller, is introduced to show the feasibility of 

combining different classes of controllers. 

Two specific issues addressed in the studies are: (i) The complexity of the 

network models, in terms of the number of interconnection strengths, with nonlinear 

dynamics; and, (ii) The ability of the proposed model predictive control schemes to 

provide good tracking performance. 

1.2 Organisation of the Thesis 

The Thesis is organised into seven chapters. Following the introduction chapter 

(Chapter 1), the second chapter gives an overview of dynamic systems and control. 

Topics discussed include properties of nonlinear systems and classical, modern and 

intelligent control techniques. Chapter 2 also summarises previous studies of different 

type controllers in the applications involving underwater robotic vehicles. Artificial 

neural networks foundations, properties are the focus of Chapter 3. In Chapter 4, the 

mathematical derivation of a linear model of the prototype URV is presented, together 

with a NARX neural model capable for one-step-ahead prediction. Chapter 5 presents 

the results of studies on backpropagation algorithm as a learning technique for 

recurrent and memory neuron network architectures. The proposed Model Predictive 

Control schemes are reviewed and analyzed in Chapter 6. Concluding remarks and 

final recommendations are provided in Chapter 7. Appendix A gives us some details 

of the prototype URV, while Appendix B summarises the papers that have been 

produced during this research. 
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CHAPTER 2 

Background and State-of-the-Art 

2.1 Dynamic Systems 

A dynamic system refers to a system in motion. The study of dynamic systems is the 

investigation of the variations in systems over time. The language of dynamic systems 

is the mathematics of differential equations. Thus, the foundations of dynamic system 

analysis are the generation and analysis of differential equations. 

For control applications, the distinction between linear and nonlinear systems 

is important. According to Wylie [2.1 ], a linear system is defined as: 

DEFINITION: "A differential equation is linear if and only if each term of 

the equation is of the first degree in its dependent variables or any of its 

dependent variable derivatives. " 

In comparison, a nonlinear differential equation is simply any differential 

equation, which is not linear in the set of all its dependent variables. Real physical 

systems in general are nonlinear. Thus, they are a motivation for the study of 

nonlinear systems. 

Most work in the domain of automatic control has concentrated on linear 

systems, mainly for lack of good tools for analysis of nonlinear systems. This is not 

as great a drawback as it first appears, considering that any nonlinearity can be 

8 



Chapter 2 Background and State-of-the-Art 

represented as a truncated Taylor series. As long as the system's operation remains 

sufficiently close to the state about which equations were linearised, the linear 

approximation is adequate. Nevertheless, a fully nonlinear representation is desirable, 

and with the wide availability of digital computers this is feasible. 

2.1.1 Why Nonlinear Control? 

This section describes nonlinear systems and the control of physical systems. A 

nonlinear representation of a problem is desirable because actual physical systems are 

normally nonlinear. Linear control is a mature subject with a variety of powerful 

methods and a long history of successful industrial applications. Thus, it is natural for 

one to wonder why so many researchers from such broad areas as aircraft control, 

robotics, process control, and biomedical engineering, have recently showed an active 

interest in the development and applications of nonlinear control methodologies. Many 

reasons can be cited for this interest: 

" Improvement of existing control systems: Linear control methods rely on the 

key assumption of small range operation for the linear model to be valid. When the 

required operation range is large, a linear controller is likely to perform very poorly 

or to be unstable, because the nonlinearities in the system cannot be properly 

compensated for. Nonlinear controllers, on the other hand, may handle the 

nonlinearities in large range operation directly. This point is easily demonstrated in 

robot motion control problems. when a linear controller is used to control robot 

motion, it neglects the nonlinear forces associated with the motion of the robot links. 

The controller's accuracy thus quickly degrades as the speed of motion increases, 

because many of the dynamic forces involves, such as coriolis and centripetal forces, 

vary as the square of the speed. Therefore, in order to achieve a pre-specified 

accuracy in robot tasks such as pick-and-place, the speed of robot motion has to be 

kept low. On the other hand, a conceptually simple nonlinear controller, commonly 

called computed torque controller, can fully compensate the nonlinear forces in the 

robot motion and lead to high accuracy control for a very large range of robot speeds 

and a large workspace. 

" Analysis of hard nonlinearities: Another assumption of linear control is that 
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the system model is indeed linearisable. However, in control systems there are many 

nonlinearities whose discontinuous nature does not allow linear approximation. These 

so-called "hard nonlinearities" include Coulomb friction, saturation, dead-zones, 

backlash, and hysteresis, and are often found in control engineering [2.2). Their effects 

cannot be derived from linear methods, and nonlinear analysis techniques must be 

developed to predict a system's performance in the presence of these inherent 

nonlinearities. Because such nonlinearities frequently cause undesirable behaviour of 

the control systems, such as instabilities or spurious cycles, their effects must be 

predicted and properly compensated for. 

*Dealing with model uncertainties: In designing linear controllers, it is 

usually necessary to assume that the parameters of the system model are reasonably 

well known. However, many control problems involve uncertainties in the model 

parameters. This may be due to a slow time variation of the parameters, or to an 

abrupt change in parameters. A linear controller based on inaccurate or obsolete values 

of the model parameters may exhibit significant performance degradation or even 

instability. Nonlinearities can be intentionally introduced into the controller part of a 

control system so that model uncertainties can be tolerated. Two classes of nonlinear 

controllers for this purpose are robust controllers and adaptive controllers. 

" Design Simplicity: Good nonlinear control designs may be simpler and more 

intuitive than their linear counterparts. This a priori paradoxical result comes from 

the fact that nonlinear controller designs are often deeply rooted in the physics of the 

controlled process. 

The study of nonlinear analytical techniques is important for a number of 

reasons. First, theoretical analysis is usually the least expensive way of exploring a 

system's characteristics. Second, simulation, though very important in nonlinear 

control, has to be guided by theory. Blind simulation of nonlinear systems is likely to 

produce few results or misleading results. This is especially true given the great 

richness of behaviour that nonlinear systems can exhibit, depending on initial 

conditions and inputs. Third, the design of nonlinear controllers is always based on 

analysis techniques. Since design methods are usually based on analysis methods, it 

is almost impossible to master the design methods without first studying the analysis 

10 
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tools. Furthermore, analysis tools also allow us to assess control designs after they 

have been made, and, in case of inadequate performance, they may also suggest 
directions of modifying the control designs. 

It should not come as a surprise that no universal technique has been devised 

for the analysis of all nonlinear control systems. In linear control, one can analyse a 

system in the time domain or in the frequency domain [2.3]. However, for nonlinear 

control systems, none of these standard approaches can be used, since direct solution 

of nonlinear differential equations is generally impossible, and frequency domain 

transformations do not apply. 

While the analysis of stability of nonlinear control systems is difficult, serious 

efforts have been made to develop appropriate theoretical tools for it. 

One technique is Lyapunov analysis. Basic Lyapunov theory comprises two 

methods introduced by Lyapunov, the indirect method and the direct method [2.4]. 

The indirect method, or linearisation method, states that the stability properties of a 

nonlinear systems in the close vicinity of an equilibrium point are essentially the same 

as those of its linearised approximation. The method serves as the theoretical 

justification for using linear control for physical systems, which are always inherently 

nonlinear. The direct method is a powerful tool for nonlinear system analysis, and 

therefore the so-called Lyapunov analysis often actually refers to the direct method. 

The direct method is a generalisation of the energy concepts associated with a 

mechanical system: the motion of a mechanical system is stable if its total mechanical 

energy decreases all the time. In using the direct method to analyses the stability of 

a nonlinear system, the idea is to construct a scalar energy-like function (a Lyapunov 

function ) for the system, and to see whether it decreases. The power of this method 

comes from its generality. It is applicable to all kinds of control systems, be they 

time-varying or time-invariant, finite dimensional or infinite dimensional. Conversely, 

the limitation of the method lies in the fact that it is often difficult to find a Lyapunov 

function for a given system. 

Although Lyapunov's direct method is originally method of stability analysis, 

it can be used for other problems in nonlinear control. One important application is 

the design of nonlinear controllers. The idea is to somehow formulate a scalar 
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positive function of the system states, and then choose a control law to make this 

function decrease. A nonlinear control system thus designed will be guaranteed to be 

stable. The direct method can also be used to estimate the performance of a control 

system and study its robustness [2.5]. 

Another approximate technique for studying nonlinear systems is the so-called 
describing function method [2.6]. The basic idea of the method is to approximate the 

nonlinear components in nonlinear control systems by linear "equivalents", and then 

use frequency domain techniques to analyse the resulting systems. Unlike Lyapunov 

methods, whose applicability to a specific system hinges on the success of the trial 

and error search for a Lyapunov function, its application is straightforward for 

nonlinear systems satisfying some easy-to-check conditions. 

The method is mainly used to predict limit cycles in nonlinear systems. Other 

applications include the prediction of subharmonic generation and the determination 

of system response to sinusoidal excitation. The method has a number of advantages. 

First, it can deal with low order and high order systems with the same straightforward 

procedure. Second, because of its similarity to frequency-domain analysis of linear 

systems, it is conceptually simple and physically appealing, allowing users to exercise 

their physical and engineering insights about the control system. The disadvantages 

of the method are linked to its approximate nature, and include the possibility of 

inaccurate predictions (false predictions may be made if certain conditions are not 

satisfied) and restrictions on the systems to which it applies (for example, it has 

difficulties in dealing with systems with multiple nonlinearities). 

Thus, the subject of nonlinear control is an important area of automatic control. 

Today, robust controllers and adaptive controllers are dealing with the problem of 

controlling the output of a nonlinear plant in the presence of parametric or structural 

uncertainty. On the other hand, learning basic techniques of nonlinear control analysis 

and design can significantly enhance the ability of a control engineer to deal with 

practical control problems effectively. It also provides a sharper understanding of the 

real world, which is inherently nonlinear. Therefore, there is currently considerable 

enthusiasm for the research and application of nonlinear control methods. 
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2.2 Control of Physical Systems 

Background and State-of-the-Art 

Control of dynamic systems is the regulation of a system to perform a useful task. The 

term automatic control is also commonly used to emphasise that the control is done 

by equipment rather than manually. 

Control systems are divided into two broad classes; open-loop and closed-loop. 

The input to both systems is the set of desired goals, which are determined external 

to the automatic controller. Figs. 2.1 and 2.2 illustrate the basic structures of open- 

loop and closed-loop control systems respectively. 

INPUT 
CONTROLLER PLANT 

OUTPUT 

Figure 2.1: Open-loop control system 

Open-loop control requires that the controller contains sufficient knowledge of the 

system and its inputs to control the system without measuring the system or plant 

output. The closed-loop approach uses information from the output of the plant to 

provide control with less a priori knowledge. 

INPUT 
CONTROLLER PLANT 

OUTPUT 

Figure 2.2: Closed-loop control system 

Closed-loop or feedback control systems are generally better able to accommodate 

unexpected disturbances to the system than open-loop controllers. 
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Chapter 2 

2.2.1 Classical Control 

Background and State-of-the-Art 

Classical control techniques were developed in the 1930s. Most of the techniques 

concentrate on linear constant coefficient with one input and one output. Common 

tools are Laplace and Z-transforms and transfer functions [2.7]. 

Surprisingly, classical controllers comprise the bulk of the controllers in use 

today. The two most common type of controllers are the bang-bang and PID. They 

illustrate the level of sophistication of most present controllers. 

The best example of a bang-bang controller is the common home thermostat. 

In heating mode, if the temperature is below a certain level, the furnace is activated. 

Once the temperature is sufficient, the thermostat shuts the furnace off. The main 

design constraint is the need for some hysteresis or dead band around the setpoint to 

prevent rapid on/off cycling. The primary advantage is low cost and simple operation. 

The primary disadvantage is that the system is never exactly at the setpoint due to the 

need for a dead band. 

The second type is a PID (Proportional-Integral-Derivative) controller. This 

controller is generally used where a smooth range of control is available and more 

precision is needed than a bang-bang controller can provide. The control action of a 

PID, shown in Fig. 2.3, is the weighted sum of the error, the derivative of the error 

and the time integral of the error. 

se, 

Figure 2.3: Proportional-Integral-Derivative Controller 

These controllers are used heavily in the process and manufacturing industries. PID 

controllers are also used in conjunction with many other controllers. The main 
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advantages are relatively inexpensive components and the wide familiarity of users 

with their operation. The main disadvantages are that selection of the weighting 

coefficients can be difficult, and changes in the plant conditions can place the 

controller in conditions where the coefficients are inappropriate. 

2.2.2 Modern Control 

In classical control theory, various design methodologies are used to achieve 

performance specifications defines in terms of quantities such as rise and settling time, 

gain and phase margin, and bandwidth. Classical methods work well for controlling 

linear, single input, single output systems; however, they are ill-suited for controlling 

the complex nonlinear, multiple input, multiple output systems that are characteristic 

of many real-life control problems. Optimal and adaptive control are some popular 

approaches to the control of such systems. 

Optimal control theory has been used to solve many such complex nonlinear, 

multivariable problems in a variety of industrial settings. 

The application of optimal control techniques to a problem requires a clear 

description of the desired performance to be achieved. This generally involves the 

development of a mathematical description of the process, an understanding and 

determination of the constraints on the control system, and the determination of 

appropriate performance measures. 

In formulating a mathematical model of a process, some initial knowledge of 

the physical constraints involved as well as an initial specification of the desired 

performance are generally available to assist in determining the accuracy with which 

one models the process. The conventional approach is to describe the response of a 

process using ordinary differential equations, with accuracy requirements commonly 

expressed in the frequency domain. This step involves classification of the system and 

determination of observable state information. Once the state and control parameters 

are identified, the physical constraints on these values can be analyzed. The physical 

constraints on state parameters usually involve the observability of the system which 

is highly dependent upon the ability to filter noise from observable states and estimate 

unobservable states [2.8]. Control constraints are usually dictated by bandwidth and 
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actuator limitations, as well as controllability issues resulting from unobservable states. 
Development of a performance measure for a complex process can provide the 

most difficult of challenges for control engineers. The performance measure (or cost 
functional ) is basically a mathematical description of the physical performance 

requirements of a system which when minimised ( or maximised ) achieves "optimal" 

behaviour. In practice, the design of an optimal control system is often an iterative 

process, in which the performance measure is altered after observing the actual 

performance that is obtained. Common optimisers include dynamic programming, 

linear programming, and variational calculus techniques [2.9]. 

One simple approach to robust control is the so-called sliding control 

methodology. Intuitively, it is based on the remark that it is much easier to control lu- 

order systems, be they nonlinear or uncertain, than it is to control general n`''- order 

systems. Accordingly, a notational simplification is introduced, which, in effect, allows 

n`h- order problems to be replaced by equivalent 1s`- order problems, as shown in Fig. 

2.4. It is then easy to show that, for the transformed problems, "perfect" performance 

can in principle be achieved in the presence of arbitrary parameter inaccuracies. 

Figure 2.4: Sliding mode controller 

Such performance, however, is obtained at the price of extremely high control activity 
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[2.10]. This leads us to a modification of the control laws which, given the admissible 

control activity, is aimed at achieving an effective trade-off between tracking 

performance and parametric uncertainty. 

On the other hand, the "family" of adaptive controllers differs from ordinary 

controllers in that the controller parameters are variable, and there is mechanism for 

adjusting these parameters on-line based on signals in the system. There are two main 

approaches for constructing adaptive controllers. One is the so-called model-reference 

adaptive control method, and the other is the so-called self-tuning method. 

Generally, a model-reference adaptive control system can be schematically 

represented by Fig. 2.5. It is composed of four parts: a plant containing unknown 

parameters, a reference model for compactly specifying the desired output of the 

control system, a feedback control law containing adjustable parameters, and an 

adaptation mechanism for updating the adjustable parameters [2.11]. 

The plant is assumed to have a known structure, although the parameters are 

unknown. For linear plants, this means that the number of poles and the number of 

zeros are assumed to be known, but their locations are not. For nonlinear plants, this 

implies that the structure of the dynamic equations is known, but that some parameters 

are not. 

Figure 2.5: A model-reference adaptive control system 

17 



Chapter 2 Background and State-of-the-Art 

A reference model is used to specify the ideal response of the adaptive control system 

to the external command. Intuitively, it provides the ideal plant response which the 

adaptation mechanism should seek in adjusting the parameters. The choice of the 

reference model is part of the adaptive control system design. This choice has to 

satisfy two requirements. On the one hand, it should reflect the performance 

specification in the control tasks, such as rise time, settling time, overshoot or 

frequency domain characteristics. On the other hand, this ideal behaviour should be 

achievable for the adaptive control system, i. e., there are some inherent constraints on 

the structure of the reference model, its order and relative degree, given the assumed 

structure of the plant model. 

The controller is usually parameterised by a number of adjustable parameters. 

The controller should have perfect tracking capacity in order to allow the possibility 

of tracking convergence. That is, when the plant parameters are exactly known, the 

corresponding controller parameters should make the plant output identical to that of 

the reference model. When the plant parameters are not known, the adaptation 

mechanism will adjust the controller parameters so that perfect tracking is 

asymptotically achieved. If the control law is linear in terms of the adjustable 

parameters, it is said to be linearly parameterised. Existing adaptive control designs 

normally require linear parameterisation of the controller in order to obtain adaptation 

mechanism with guaranteed stability and tracking convergence. 

The adaptation mechanism is used to adjust the parameters in the control law. 

In MRAC systems, the adaptation law searches for parameters such that the response 

of the plant under adaptive control becomes the same as that of the reference model. 

Clearly, the main difference from conventional control lies in the existence of this 

mechanism. The main issue in adaptation design is to synthesise an adaptation 

mechanism which will guarantee that the control system remains stable and the 

tracking error converges to zero as the parameters are varied. Many formalism in 

nonlinear control can be used to this end, such as Lyapunov theory, hyperstability 

theory, and passivity theory. 

Usually, in non-adaptive control design, one computes the parameters of the 

controllers from those of the plant. If the plant parameters are not known, it is 
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intuitively reasonable to replace them by their estimated values, as provided by a 

parameter estimator. A controller thus obtained by coupling a controller with an on- 

line (recursive) parameter estimator is called a self-tuning controller. Fig. 2.6 

illustrates the schematic structure of such an adaptive controller. Thus, a self-tuning 

controller is a controller which performs simultaneous identification of the unknown 

plant. 

Figure 2.6: A self-tuning controller 

The operation of a self-tuning (ST) controller is as follows: at each time instant, the 

estimator sends to the controller a set of estimated plant parameters, which is 

computed based on the past plant input u and output y; the computer finds the 

corresponding controller parameters, and then computes a control input u based on the 

controller parameters and measured signals; this control input u causes a new plant 

output to be generated, and the whole cycle of parameter and input updates is 

repeated. The controller parameters are computed from the estimates of the plant 

parameters as if they were the true plant parameters. This idea is often called the 

certainty equivalence principle. 

Parameter estimation can be understood simply as the process of finding a set 

of parameters that fits the available input-output data from the plant. This is different 

from parameter adaptation in MRAC systems, where the parameters are adjusted so 

that the tracking errors converge to zero. For linear plants, many techniques are 

available to estimate the unknown parameters of the plant. The most popular one is 
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the least-squares method and its extensions. There are also many control techniques 

for linear plants, such as pole-placement, PID, LQR, or H°° designs. By coupling 

different control and estimation schemes, one can obtain a variety of self-tuning 

regulators. The self-tuning method can also be applied to some nonlinear systems 

without any conceptual difference. 

In the basic approach to self-tuning control, one estimates the plant parameters 

and then computes the controller parameters. Such a scheme is often called indirect 

adaptive control, because of the need to translate the estimated parameters into 

controller parameters. It is possible to eliminate this part of the computation. We may 

reparameterise the plant model using controller parameters ( which are also unknown, 

of course), and then use standard estimation techniques on such a model. Since no 

translation in needed in this scheme, it is called a direct adaptive control scheme. 

As described above, MRAC control and ST control arise from different 

perspectives, with the parameters in MRAC systems being updated so as to minimise 

the tracking errors between the plant output and reference model output, and the 

parameters in ST systems being updated so as to minimise the data-fitting error in 

input-output measurements. The two methods can also be quite different in terms of 

analysis and implementation. Compared with MRAC controllers, ST controllers are 

more flexible because of the possibility of coupling various controllers with various 

estimators. However, the stability and convergence of self-tuning controllers are 

generally quite difficult to guarantee, often requiring the signals in the system to be 

sufficiently rich so that the estimated parameters converge to the true parameters. If 

the signals are not very rich, the estimated parameters may not be close to the true 

parameters, and the stability and convergence of the resulting control system may not 

be guaranteed. In this situation, one must either introduce perturbation signals in the 

input, or somehow modify the control law. In MRAC systems the stability and 

tracking error convergence are usually guaranteed regardless of the richness of the 

signals. However, the stability proof is not guaranteed if the model of the system does 

not match the actual system [2.12]. This proof, depends on a linear model assumption 

for the plant. Moreover, very little is known quantitatively about noise propagation in 

this class of adaptive systems. The adaptation mechanism depends on a nonlinear 
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product term that makes noise analysis extremely difficult in the general case. 

2.2.3 Intelligent Control 

With the application of classical or modern control techniques to nonlinear systems, 

there has been a trade-off between accuracy and simplicity. Although modern control 

techniques are developed for systems to perform over larger ranges of uncertainties, 

there are still some fundamental limitations in the current techniques. For example, 

the computational complexity grows geometrically with the number of unknown 

parameters. The trend of control theory, therefore, is intended to develop more 

general approaches, which can solve as many applications as possible, even if the 

plants are too complex to be modeled with concise mathematical expressions or the 

environmental conditions vary too large to be controlled by use of traditional 

controllers. The control problem of this kind is in no ways a trivial one. 

An "intelligent control" method is one that addresses these problems with some 

degree of satisfaction. Although, tight definitions are hard to come by, an intelligent 

system is one that can sense the environment, process the sensor data, and generate 

and execute a timely control action in order to guide the system from an initial state 

to a terminal state, while satisfying the constraints and objectives [2.13]. If the 

problem is slowly drifting parameters, adaptive controllers will do. However as a 

system is required to perform various functions at different levels of abstraction, as 

is the case with hand-eye coordination in robotic controls, it becomes necessary to 

coordinate activities like data acquisition, data fusion, knowledge generation and 

control. 

One avenue for performing this coordination is to use knowledge-based 

production systems. One objective of knowledge-based-systems, or expert systems as 

they are well known, is to develop computer-based models for problem solving that 

are different from physical modelling and parameter estimation. An expert system 

attempts to model the knowledge and procedures used by a human expert in solving 

problems within a well-define domain. Knowledge representation is a key issue in 

expert systems[2.14]. Many different approaches have been attempted, such as 

procedural representations, semantic networks, production systems or rules, and 
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frames. A knowledge-based-systems consists of a knowledge base, an inference 

engine, and a user interface. 

The knowledge base consists of data and rules. The data can be separated into 

facts and goals. The rule base contains production rules which are typically 

implemented as a collection of "if 
... then ... else" statements. In a control application 

the rules represent knowledge about the control and estimation problem that are built 

into the system. This includes the appropriate characterisation of the algorithms, 

judgemental knowledge on when to apply them, and supervision of the system. The 

rules are introduced by the knowledge engineer via a knowledge acquisition system. 

The inference engine processes the rules to arrive at conclusions or to specify 

goals. It scans the rules according to a strategy, which decides from the current 

database which production rules to select next. This can be done according to different 

strategies. In forward chaining it is attempted to find all conclusions from a given set 

of premises. In backward chaining the rules are traced backward from a given goal 

to see if it can be supported by the current premises. The user interface finally, is the 

development support that the system gives. 

The idea of expert control is to have a collection of algorithms for control, 

supervision, and adaptation that are orchestrated by an expert system [2.15]. A block 

diagram of such a system is shown in Fig. 2.7. 

Supervision 
algorithms 

Operator Knowledge- 
based 
system 

Identification 
algorithms 

Control 
algorithms Process 

Figure 2.7: An expert control system 

The system consists of an ordinary feedback loop with a process and a controller. 
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There is a collection of different algorithms for control, parameter estimation, control 

design, diagnosis, and supervision. The algorithms are coordinated by a knowledge- 

based system, which decides what algorithm to use when. 

However, these systems are brittle in the sense that integration of newly 

acquired knowledge is difficult. Additionally, expert systems seem to be sensitive to 

incorrect, fuzzy or noisy data and the degree of plant uncertainty in incompleteness, 

randomness and ignorance of data, due to process nonlinearities and parameter 

variations is a major influence in the controller's performance. Human controllers 

derive adaptive experiential linguistic or qualitative models of the process, and 

generate qualitative based actions or responses to given situations that are loosely 

parameterised by the operating conditions as well as by their perceived experiential 

"model". The problem is how to represent and compute processes that are imprecisely 

described in a systematic and logical manner. 

Zadeh, the originator of fuzzy logic, found that for many complex processes 

high levels of precision are unobtainable nor required for effective system operation. 

To overcome the need for precise process representation Zadeh [2.16] introduced the 

calculus of fuzzy logic, which may be viewed as a parallel representation to 

probability theory rather than as an alternative. Fuzzy logic is aimed at modelling the 

imprecise models of reasoning, such as common sense reasoning, for uncertain and 

complex processes. 

Instead of using the ordinary concept of set inclusion, Zadeh introduced a 

function that expressed the degree of belonging to a given set as a function taking 

values in the range 0 and 1. In fuzzy logic the operation and corresponds to taking the 

minimum of the membership functions, the operation or corresponds to taking the 

maximum of the membership functions, and not corresponds to the ones complement 

of the membership function. Alternative methods of evaluating the and/or functions 

have been proposed since. The idea was first applied to control systems in Mamdani 

[2.17] and since then a large number of applications using fuzzy logic have also 

appeared. 

A block diagram of a fuzzy controller is shown in Fig. 2.8. All sensor signals 

are converted to linguistic variables in a process called fuzzification. This may be 
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viewed as a quantization procedure. The number of quantization levels is typically 

small, three to seven. For a given value of a real variable, the membership function 

expresses the degree of belongingness to each linguistic variable. A measurement thus 

gives a degree of coincidence with the linguistic variables chosen to represent it. A 

fuzzy control law may be viewed as a state feedback that gives a representation of the 

control signal as a fuzzy variable in terms of the state where it is assumed that all 

state variables are available as linguistic variables. Typically, fuzzy logic controllers 

operate on minimising an error function such as tracking or command error, 

formulating the controller output as a nonlinear function of this and its derivatives (for 

higher dimensional controllers). The control signal as a linguistic variable is then 

mapped into a real number by an operation called defuzzification. 

Sensors 

Figure 2.8: A fuzzy controller 

Actuators 

Although the fuzzy logic controller may contain only a finite and incomplete set of 

rules that express knowledge in an imprecise manner, the inherent interpolation 

properties of fuzzy logic provides a mechanism for accumulating these rules, weighted 

according to their individual significance, that each make a contribution to a specific 

measure which in addition provides natural interpolation and generalisation between 

rules for input/output situations that are not explicitly represented in the rules. As the 

fuzzy control law is expressed in terms of the linguistic variables, it is often simple 
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and transparent. Humans operators may be able to deal with fuzzy controllers easier 

than with equivalent algorithmic controllers. 

As with expert systems a fundamental weakness with static logic is the 

acquisition of the rule base from human experts, frequently leading to incomplete and 

conservative control strategies. The autonomous elicitation of the controller rule base 

bases upon self-organisation [2.18], has obvious advantages, not only can it derive the 

rule base by experiential means, it can also modify its behaviour in response to plant 

parametric changes, temporal or spatial. 

Unfortunately, the memory requirements for fuzzy logic controllers, either static or 

self-organising, grows exponentially with the dimension of system variables used in 

the control rule base. 

The inflexibility of many industrial robotic systems has been cited as one of 

the principle reasons for the reduction in the growth rate of robotic industrial 

applications [2.19]. It is anticipated that by introducing learning elements into the 

control systems, the plant will become more flexible and better able to deal with 

complex, real-world environments. Learning is an integral part of any intelligent 

control (IC) system which exists at many levels of abstraction. At the guidance and 

servo levels, learning algorithms have been studied in the adaptive control field for 

many years [2.20], and these have been complemented by research into adaptive 

neural networks. Higher in the IC architecture, learning can be as simple as internally 

updating its world model, or complex learning / exploring systems may be used. Each 

task requires an appropriate learning system as the problem structures are generally 

different. Therefore learning systems should be aimed at particular problems, and 

should always use the maximal amount of relevant a priori information. 

Within the specific context of dynamic processes, learning may be required since 

0 Prior knowledge about the plant's structure is unavailable or only 

partially known. 

0 The plant may be time-varying. 

0 The operational environment us only partially known or time-varying. 

0 To improve the performance of the plant over a wide range of operating 

conditions. 
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" To increase the flexibility of the control system. 

" Reduced design costs. 

although is should always be remembered that other techniques can provide similar 

benefits if the problem is structured appropriately. 

Learning control techniques generally use a basic model which is inherently 

nonlinear. This is an important point, because it enables global plant models to be 

constructed, rather than the locally linear models which are used in adaptive control. 

Therefore there is no need for the continuous adaptation which is necessary to 

compensate for changing operating points once a satisfactory model has been learnt, 

but rather a gaining or transferal of knowledge. 

Learning algorithms, as it has been listed above, are required to operate in ill- 

defined and time-varying environments with a minimum amount of human 

intervention. These techniques are typically used to control plants for which a 

conventional mathematical analysis is not possible. Recently, research interest has 

refocused on using biologically inspired learning algorithms and control architectures, 

and this has been part of a wider revival of research activity into Artificial Neural 

Networks (ANN) [2.21]. 

Neural networks are constructed from two primitive elements: processing units 

and (directed) connections between units. Each connection has a real-valued weight 

associated with it. The unit output is a scalar quantity, usually some monotonic but 

nonlinear function of the weighted sum of its inputs. Fig. 2.9 shows a common unit 

model. 

A primary reason for the interest in neural networks (NN) is the existence of 

general-purpose learning rules [2.22]. For widely different applications, the desired 

functionality can be achieved without the manual "programming" that conventional 

computers require. NN learning rules can be used to develop models of processes, to 

adapt to environmental conditions, and to discover useful features implicit in the 

received stimuli. 

Two types of learning approaches are most relevant for control applications: 

supervised and reinforcement learning. Supervised learning is a "learning by 

examples" approach. Typically, a "training set" of examples is collected; each training 
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example consists of an input signal for the network and the corresponding network 
"desired output". The most popular algorithm for supervised learning is the 

"backpropagation" [2.23]. It adjusts network weights to accomplish an approximation 

gradient-descent minimisation of a squared error criterion over the training set. 

Xl 

x2 

xN 

= ,f 
(ý w1xi ) 

Figure 2.9: A processing unit for a neural network 

In reinforcement learning the evaluative feedback provided to the network during 

training is weaker than in supervised learning [2.24]. Reinforcement learning consists 

of a stochastic trial-and-error search, and is related to dynamic programming and 

stochastic learning automata theory. 

In addition to their learning capabilities, ANN provide several features that are 

important for control applications: 

0 Universal approximation capabilities. NNs can be used to model 

arbitrarily complex, highly nonlinear, multidimensional functions. 

0 Generalisation and Robustness. Given appropriate training data, a 

trained network will not only be able to produce the right outputs for 

the training examples, but it will exhibit generalisation: novel inputs 

will be processed correctly. Another aspect of generalisation is tolerance 
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to noise and error: as the input stimuli of a learned network are 

corrupted with more and more noise or errors, performance degrades 

gracefully, not catastrophically. 

0 Fast execution. Once trained, most neural network models are 

extremely fast. the training process can be time consuming, but for 

applications where the training is conducted off-line this is not an issue. 

The highly parallel architecture of neural networks also lends itself to 

hardware implementation. 

0 Fault tolerance. processing and memory are distributed throughout the 

network. Consequently, NNs typically exhibit graceful degradation to 

damage. This characteristic considerably facilitates the task of 

developing hardware implementations. 

0 Dynamic sensitivity analysis. An important and often underappreciated 

feature of neural networks is that they are "invertible'. Given any 

network state, input/output sensitivities are readily computable. The 

sensitivity analysis can be used to adjust input variables so that network 

output is minimised or maximised. 

We can loosely categorise the large number of control approaches that have been 

investigated in the neural networks community into the following six broad classes 

[2.24]. 

" Controller Modelling. 

" Process Modelling. 

" Inverse process Modelling. 

" Reinforcement Learning. 

" Neural Controller Development. 

" Process Structure and Parameter Identification. 

As a computing technology inspired by the brain, neural networks promise to help 

achieve a quality of control that has hitherto been the exclusive preserve of biological 

organisms. 

Both the neural networks and the fuzzy systems have some difficulties. The 

neural network can produce the mapping rules from the empirical training sets through 
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learning, but the mapping rules in the network are not visible and are difficult to 

understand. On the other hand, since the fuzzy systems do not have learning 

capabilities, it is difficult for the user to determine and to tune in an efficient way the 

rules. In order to solve these difficulties, some synthesis techniques have been 

proposed and they have been often called Fuzzy Neural Networks (FNN) [2.25]. 

The fuzzy system and the neural network can be used independently in a 

system or either one serves as a preprocessor for the other. For example, one can use 

the fuzzy system as a supervisor or a critic for the neural network in order to improve 

convergence of learning. There, the learning rate is determined by using fuzzy rules 

[2.26]. Alternatively, a fuzzy inference system can be implemented in the framework 

of neural networks. By using hybrid learning procedures [2.27], an input/output 

mapping, based on both human knowledge (in the form of fuzzy if-then rules) and 

stipulated input/output data pairs can be constructed. With a further development, it 

is believed that these systems will eventually replace conventional fuzzy decision 

systems in a variety of applications, where learning or adaptation of the fuzzy 

reasoning process to the environment offers an advantage [2.28]. 

2.3 Modelling and Control of URV's 

A large portion of the earth is covered by seawater and has not been fully explored. 

It is obvious, that all kinds of ocean activities , 
including both scientific ocean related 

research, and commercial utilisation of ocean resources, will be greatly enhanced by 

the development of robotic underwater work systems. During the last few years, the 

use of such vehicles has rapidly increased since such a vehicle can be operated in the 

deeper and riskier areas where divers cannot reach. Underwater robotic vehicles 

(URVs) are performing several challenging functions. Generally, the present URVs can 

be classified as 

" Large and Medium Work and Support URVs. 

" Inspection, Observation, Search, Survey and Light Work URVs. 

" Inspection, Observation, Search and Survey URVs. 

" Low-cost URVs (under 25,000). 
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" Very Low-cost URVs (under ¬5,000). 

" Military URV systems. 

" Custom and Special Purpose URVs. 

" Autonomous Underwater Vehicles (AUVs). 

However, subsystems in the current vehicles are immature compared to those in on- 

land systems and therefore, performance of the vehicles is limited. High technologies 

developed for on-land systems cannot be directly adapted to underwater vehicle 

systems since such vehicles have different dynamic characteristics from on-land 

vehicles, and their operating environment is unstructured. 

2.3.1 Underwater vehicle dynamics 

The dynamics of URVs are fundamentally nonlinear due to inertia, buoyancy, rigid 

body coupling and hydrodynamic effects. The control of such vehicles is often more 

difficult in many aspects than aircraft, ships, or submarines. Although, the nonlinear 

dynamic behaviour of URVs is somehow similar to the well-known rigid body 

vehicle motion of aircraft or submarines, there are a couple of important differences. 

0 URVs usually have comparable velocities along all three axes. 

Therefore, control techniques that depend on linearisation of the 

equations of motion about a single forward operating speed cannot be 

used as effectively as they can with aircraft and submarines. 

" The high density of water sets URVs and submarines apart from aircraft 

because the forces and moments produced by fluid motion are 

significant and they cannot be conventionally combined with the forces 

and moments produced by vehicle motion to form functions of relative 

motion only (except for the special case of a neutrally buoyant vehicle). 

Underwater vehicles may not have a streamlined shape, and their dynamics can 

change significantly by the addition of extra items of equipment, such as sensor packs 

or cameras and by the position and loading of robotic arms. These vehicles undergo 

complex multiaxis motions that accentuate nonlinearities and make linear control 

techniques difficult to apply [2.29]. 

Additional inertia terms to rigid body inertia terms must be introduced to 
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account for the effective mass of surrounding fluid that must be accelerated with the 

vehicle, the so called added mass. These added mass coefficients are defined as the 

proportionality constants which relate each of the linear and angular accelerations with 

each of the hydrodynamic forces and moments they generate. The added mass 

coefficient is introduced for the vehicle and each link of the manipulator, in the case 

that an arm is fitted on the URV [2.30]. 

Hydrodynamic coefficients are difficult to obtain and may be poorly known. 

Experience suggests that the evaluation of the hydrodynamic properties is expensive 

and uncertain, as conventional methods involve semi-empirical body-buildup 

techniques and long and expensive tank trials [2.31]. Substantial engineering effort 

is then required to derive a model from these results, leading to a prohibitively 

expensive model which will be invalid as soon as the vehicle configuration is changed 

by the addition of different equipment. Hence there is also the requirement that the 

unpredictable changes that occur during day-to-day operation be dealt with by 

techniques that do not involve skilled control engineers. 

In the range of Reynolds numbers in which vehicles typically operate, flow is 

turbulent and drag force is usually described as a force proportional to the square of 

the corresponding relative motion of the vehicle [2.32]. Even for simple shapes, drag 

coefficients are functions of the Reynolds number, therefore velocity, so the use of 

fixed coefficients is always an approximation. Any suitable control technique must 

have demonstrable robustness to errors in the model coefficients. Fortunately, it is 

usually possible to bound the uncertainty on the coefficients. In the case where, the 

URV is fitted with a robotic manipulator arm, the drag force is also computed for each 

link of the manipulator. The links experience a rotational drag due to the rotation of 

each link. 

The resultant force and moment of a thruster configuration consisting of N 

thrusters can be expressed as the vector sum of the force and moment from each 

individual thruster. The major problem that is encountered in thruster modelling is that 

they behave as highly nonlinear actuators. Therefore, the thruster and torque 

coefficients cannot be represented as being constant but rather must be expressed as 

functions of the above coefficients. Even when a thruster is not moving through the 
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water, its force-producing behaviour is not simple. It has been shown that in many 

cases thrusters act like nonlinear filters that significantly influence closed-loop 

behaviour at low speeds and hover. This effect is largely responsible for the 

notoriously poor performance of the automatic heading and depth servos for most 

URVs. 

Inspection and work vehicles are generally designed to be able to move in any 

direction. A lack of symmetry can cause nonlinear cross-coupling effects that are very 

prominent during multiaxis motions and when working in a current. These effects are 

far more pronounced for a URV than for a submarine which usually moves ahead, 

turns, or changes depth at constant rates. 

The disturbances that act on an URV are difficult to model, measure, or 

estimate. A measurement of currents may not be available. The influence of a tether 

is difficult to estimate, although in principle it could be measured. Quantitative 

indicators of both stability and performance, given estimates of these disturbances, 

would be very useful. 

In order to use any of the well developed linear design methods for a nonlinear 

system, the models must be linearised. For a vehicle that moves predominantly straight 

ahead, linearising about several values of forward speed can be a successful approach. 

For, a vehicle that can move in any direction, the system should be linearised about 

many combinations of speed along multiple axes in order to account for the 

complexity of the system. A complexity that can be increased if we take in account 

the dynamic interactions caused by manipulator motions, in the case that a robotic 

manipulator is mounted on the vehicle. 

Since each linearised configuration requires that a separate design problem be 

solved, this approach requires a large design effort. For a vehicle able to move in n 

degrees of freedom, linearisation produces a system of order 2n if position is to be 

controlled. The designer must choose to build a controller for a system of order 2n or 

ignore coupling between axes. In addition, the stability of the resulting "gain 

scheduled" system may be questionable [2.33]. 

In summary, high-performance control of underwater vehicles presents 

problems not addressed easily using classical or modern linear techniques. The 

32 



Chapter 2 Background and State-of-the-Art 

dynamics of underwater vehicles are described by highly nonlinear high-order systems 

with uncertain models and disturbances that are difficult to model or measure. More 

recently, alternative approaches have been developed to control nonlinear systems and 

to handle uncertainties. Among these, "intelligent techniques" are becoming more 

widespread, and this is also reflected in a number of proposals for control of URVs. 

2.3.2 Controller architectures for underwater vehicles 
The solution of the above control problems has been the subject of considerable 

research using different approaches applied to simulated systems, to experimental 

systems, and a number of operational vehicles have also been reported. 

Yoerger et at. [2.34] propose the use of sliding mode techniques for path following 

in studies leading to the construction of the well known JASON vehicle [2.35]. This 

is because sliding mode is a conventional control approach which, using a linear 

model of the vehicle, is capable of driving the vehicle in a pre-determined control 

trajectory and holding it there in the presence of disturbances. Although the method 

is robust to imprecise models and parameters variations, the design process needs raw 

estimation of the parameters. 

As an extension, an adaptive version of sliding control has been tested on a 

tethered underwater vehicle [2.36]. Utilising the uncertainty-performance trade-off 

explicitly available using sliding techniques, rapid adaptation laws can be formulated 

for a wide class of nonlinear systems based on Lyapunov stability considerations [2.5]. 

In an alternative approach by Yoerger et al. [2.37], a transputer-based 

distributed processing control system has been applied to the Hylas vehicle. While 

Hylas vehicle was created to serve as an experimental platform in a five meter 

cylindrical test tank, and therefore lacks the ruggedness required for ocean operations, 

its design mimics that of JASON in all significant control aspects (e. g. centre of 

buoyancy-centre of gravity separation, thruster placement, actuator nonlinearities). 

Through the use of transputers as distributed controllers in the proposed by the 

authors URV, a combined vehicle-manipulator control has been achieved. A proper 

transputer network links the necessary sensors with the control system, and therefore 

a cheap in cost parallel processing control system has been achieved, without the use 
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of "smart" intelligent systems and VLSI hardware devices. 

In a similar way, Cristi et al. [2.38] suggested the use of sliding modes with 

adaptivity, where the sliding surface is based on system state and state estimators 

rather than on output error. In some cases is might be desirable to design a control 

system based on the measurements of a restricted set of signals. This is typically the 

case when one wants to improve the reliability of the system by the design of a 

controller which is robust in the presence of failures of some of the sensors. In 

contrast to the classic sliding mode techniques which are based on the assumption of 

full state feedback, here, the problem of designing a controller is based on the 

observed state, and it can be shown that the global stability can still be guaranteed for 

a class of nonlinearities of interest. Numerical simulations using a full set of nonlinear 

equations of motion show the effectiveness of the proposed technique. 

A hierarchical control scheme is described in Goheen et al. [2.39], whereby 

higher level controllers direct the action of subordinates by planning the actions for 

each actuator, then monitoring their performance under local control. This modular 

approach is desirable because it reduces the control problem into a number of separate 

tasks which are easier to control individually, and once in the finished vehicle can be 

carried out in parallel. This has benefits in terms of the distribution of computational 

processing, and simplifies the design and testing of the vehicle control system. There 

are, however, a few areas which require attention. Using linearised equations of 

motion, the authors indicate that their present system is not suitable for roll and pitch 

control and higher-order models incorporating second-order effects might be required. 

As an extension to the above technique, multi-input / multi-output self-tuning 

controllers have been tested on simulation in the equations of motion for the UMEL 

'Seapup' URV [2.40]. Two such schemes are presented; the first is an implicit linear 

quadratic on-line self-tuning controller, and the other uses a robust control law based 

on a first-order approximation of the open-loop dynamics and on-line recursive 

identification. Continuous adaptation is a useful capability, but requires increased 

computing power. For strongly nonlinear systems, estimation errors can become very 

large when the output is changed rapidly. In this case, the estimation is stopped when 

the output is "far away" from its set point. Another option is to use a conventional 
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self-tuning controller whose estimator has been adjusted to track rapidly. While this 

technique is relatively simple, it does require that the level of measurement noise be 

relatively small, as an estimator which tracks parameters rapidly has trouble 

differentiating between the signal and noise [2.41]. 

Despite all the precautions that must be taken, self-tuning URVs provide an 

advantage over systems with fixed-gain control. 

Apart the well known JASON URV, a number of operational vehicles have 

been developed in many forms [2.42 - 2.44], adopting in a way classic and modern 

control techniques. 

In view of the very difficult control problems presented by URVs operation 

and to handle uncertainties, "intelligent" techniques have been deployed. Among these, 

fuzzy systems and neural networks are becoming more widespread, and this is 

reflected in proposals for "intelligent" control of underwater vehicles. 

One application involves a fuzzy six degree of freedom flight control system 

for the Ocean Voyager, an URV currently under development by the Advanced 

Marine Systems Group at Florida University (FAU) [2.45]. The success of Fuzzy 

Logic Controllers (FLCs) in controlling nonlinear, complex, and poorly defined 

systems prompted that investigation into the use of fuzzy logic and fuzzy decision 

making techniques for both low and high level control of URVs. The high level 

control problem is to develop an algorithm that will dock a submersible in a confined 

space. The low level control problem is to develop a system that controls the 

heading, pitch, depth, and speed of the vehicle. In this low level, the controller must 

be robust to variations in system response due not only to modelling errors and 

nonlinearities but also to coupling effects. 

The control system was organised as follows: A simple proportional controller 

controls speed. Three separate FLCs each control heading, pitch, and depth. Each 

fuzzy controller has two components: a rule-based fuzzy controller and a fuzzily 

constrained integrator. The Ocean Voyager was simulated with a highly accurate six 

degree of freedom non-linear simulation model developed at FAU. Overall the fuzzy 

controller seems to be robust to changes in vehicle speed. Further improvements can 

be made by using state space techniques to optimise the fuzzy controllers. 

35 



Chapter 2 Background and State-of-the-Art 

A different, in simulation again, approach involves the so-called self-organising 

fuzzy controllers [2.46], where the rules forming the logic knowledge base may 

themselves be derived from test data on-line. Self-organising controllers have been 

found to be sensitive to signal noise, therefore the solution that has been proposed 

involved a combination of fixed rule-base fuzzy controller and an adaptive fuzzy one. 

More recently, neural network approaches have been developed to control 

underwater vehicles. At present, these approaches can be classified into four groups 

with respect to the implementation of the neural controller. 

In one of the simplest approaches, a neural network was trained using the 

chemotaxis algorithm to mimic the inverse model of a linearised URV model [2.47]. 

The inverse network then replaced a PID controller as a feedforward controller. 

Although that NN controller provided a smoother output than that of the oscillatory 

PID output, its mean-squared-error was bigger than that of the PID. As the simulated 

designs become practical realities, a major problem arises from the fact that in many 

cases it is almost impossible to find an inverse model for the system, therefore the 

generality of the proposed method cannot be guaranteed. 

Similarly, in some other control strategies an on-line approach of the 

feedforward controller is proposed. One of the main difficulties in the "inverse" 

approach is the availability of the training signal which can be used in fine-tune in- 

line to allow the network to optimise its own control strategy. This is resolved by two 

research groups in similar ways. In the first case, the concept of learning with a critic 

is used [2.48]. The presented control system does not require any information about 

the system dynamics except an upper bound of the inertia terms. In the second case, 

the "Alopex" algorithm was applied to train the neural feedforward controller [2.49]. 

Although due to the stochastic nature of the "Alopex" algorithm a perfect tracking 

with zero error may not be possible, both these strategies, in simulation, showed the 

effectiveness of the neural net controller in handling time-varying parameters. 

An on-line learning control scheme for URVs using feedforward neural 

networks is described by Venugopal et al. [2.50]. The dynamics of a simulated model 

of an URV are splitting into Single-Input-Single-Output cases. Their technique can 

deal with the nonlinear vehicle dynamics directly and no linearisation of the dynamics 
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is needed for the design of the controller. Although the plant is considered to be 

unknown, its inverse Jacobian can be obtained on-line from the incremental inputs and 

outputs of the dynamics. This inverse Jacobian then can be used to update on-line a 

gain factor which is using to update the network weights with the actual output error. 

As the updating is being performed on-line on all of the above methods, when these 

methods become realities, the emphasis of controller is concentrated on the noise 

effects and from this point of view the robustness of the above techniques to noise is 

questionable. 

An alternative approach [2.51] uses an associative memory, the CMAC, to 

smoothly take over from a constant gain default controller as the network learns to 

invert the process dynamics. This was applied to a simulation of an URV model. That 

model consisted of two input parameters, the rudder and stern plane deflections and 

six output parameters; forward velocity, vertical velocity, pitch angle, side velocity, 

roll angle, and yaw angle. It has demonstrated that CMAC could control the URV 

model over a desired trajectory, after training had occurred over the trajectory. This 

means that, in a real world application, CMAC could be taught a specific path or 

trajectory and would be able to control the vehicle along the path. With CMAC's 

adaptive learning capabilities, the trajectories trained on could be modified without re- 

training. The amount of change possible from a learned trajectory to a new trajectory 

before re-training is necessary, is an important area for future research. 

Finally, Fuji and Ura [2.52] present one of the first implementation of a 

combination of a fuzzy controller and neural network for the pitch control of an 

experimental URV using elevators. The fuzzy controller, called the "premature 

controller", is used as a start-up controller until the neural network controller learns 

the vehicle characteristics. There is a specific learning phase in their control scheme 

which necessitates the "premature controller", in order to keep the system in the early 

period of operation in "acceptable" bounds. 

The Robotics group at Liverpool University has developed a prototype 

underwater vehicle in order to validate single-axis classic and modern control 

strategies for URVs. A number of methods have been implemented and tested in 

simulation and on that prototype vehicle in real conditions, including PID controller, 
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MRAC, rule-based and fuzzy systems [2.53] [2.54]. 

Although in simulations, these control schemes performed quite satisfactorily, 

the experimental results were rather disappointing. Because of the fact that the forces 

due to the water inertia and vehicle buoyancy were not included either in the 

calculations of the appropriate control parameters or the construction of the linear 

model, the result was that all time when the control signal was below a critical point 

these unconsidered forces pushed the vehicle to the surface. Although this problem 

was overcome with the inclusion of a positive offset in order to compensate these 

forces externally, this was judged to be entirely unsatisfactory from the control point 

of view. 
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CHAPTER 3 

Artificial Neural Networks 

3.1 Fundamentals 

For many centuries, one of the goal of humankind has been to develop better 

machines. We imagine these machines as performing all cumbersome and tedious 

tasks so that we might enjoy a more fruitful life. The era of machine making began 

with the discovery of simple machines such as lever, wheel and pulley. Many equally 

congenial inventions followed thereafter. Nowadays engineers and scientists are trying 

to develop intelligent machines. 

The 1980s have shown a renewed interest for artificial neural networks. A first 

wave of interest emerged after the introduction of simplified neurons by McCulloch 

and Pitts in 1943 [3.1]. These neurons were presented as models of biological neurons 

and as conceptual components for circuits that could perform computational tasks. 

When Minsky and Papert published their book Perceptrons in 1969 [3.2] in which 

they showed the deficiencies of perceptron models, most neural network funding was 

redirected and researchers left the field. The interest re-emerged only after some 

important theoretical results were attained in the early eighties (most notably the 

discovery of error back-propagation), and new hardware developments increased the 

processing capacities. 
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The demand for practical applications of artificial intelligence (Al) made 

evidence the limitations of previous concepts of hardware and software. 
Characteristically, today's computers solve problems that are difficult for humans, but 

fail miserably at everyday tasks that humans master without a great deal of effort. This 

circumstance, so far, has limited the use of computers to narrow problem areas and 
indicates a fundamental difference between Al methods and the operation of biological 

nervous systems. 

Most computers, until recently, were based on the so-called von Neumann 

architecture. They derive their performance from one or only a few central processors 

which carry out long sequential programs at extremely high speed. Therefore, signal 

propagation times within the computer have already begun to emerge as limiting 

factors to further gains in speed. At the same time, efforts to master multifaceted 

problem situations, by means of conventional programming techniques lead to 

programs of a complexity that can no longer be managed reliably. 

A way out of this dilemma requires an abandonment of the von Neumann 

architecture used up to now, and instead to apply a large number of computational 

processors working in parallel. For the programming of such computers, new kinds 

of algorithms are required that must allow a distribution of a computational tasks over 

a great number of processors. In order to keep the necessary task of integrating such 

algorithms into complex software systems manageable, the algorithms must be error 

tolerant and capable of learning [3.3]. These features seem to be realised in biological 

brains with nerve cells as processors, which, by technical standards, are slow 

computational elements and of only limited reliability, but which on the other hand 

are present in huge numbers, processing sensory data and motor tasks concurrently. 

In order to make this "biological know-how" available, the interdisciplinary 

research area of Neural Computation has developed in the last few years. 

A neural network's ability to perform computations is based on the hope that 

we can reproduce some of the flexibility and power of the human brain by artificial 

means. An artificial neural network (ANN) consists of a pool of simple processing 

units which communicate by sending signals to each other over a large number of 

weighted connections. A set of major aspects of a parallel distributed model can be 
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distinguished: 

Artificial Neural Networks 

"a set of processing units, or neurons; 

"a state of activation o for every unit, which also determines the output 

of the unit; 

0 connections between the units. Generally each connection is defined by 

a weight wjj which determines the effect which the signal of unit j has 

on unit i; 

"a propagation rule, which determines the effective input i; of a unit from 

its external inputs; 

" an activation function F; which determines the new level of activation 

based on the effective input i; (t) and the current state a; (t); 

" an external input or offset O for each unit; 

"a method for information gathering; 

" an environment within which the system must operate, providing input 

signals and - if necessary - error signals. 

Fig. 3.1 illustrates these basics, some of which will be discussed in the next sections. 

Figure 3.1: Basic components of an artificial neural network 
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3.1.1 Processing units 

Artificial Neural Networks 

Each unit performs a relatively simple job: receive input from neighbours or external 

sources and use this to compute an output signal which is propagated to other units. 
Apart from this processing, a second task is the adjustment of the weights. The system 
is inherently parallel in the sense that many units can carry out their computation at 

the same time. 

Within neural systems it is useful to distinguish three types of units: input units 

which may receive data from outside the system, output units which send data out of 

the system and hidden units whose input and output signals remain within the system 

itself. 

During operation, units can be updated either synchronously or asynchronously. 

With synchronous updating, all units update their activation simultaneously; with 

asynchronous updating, each unit has a (usually fixed) probability of updating its 

activation at time t, and usually only one unit will be able to do this at a time. In 

some cases the latter model has some advantages. 

3.1.2 Connections between units 
In most cases we assume that each unit provides an additive contribution to the input 

of the unit with which it is connected. The total input to unit i is simply the weighted 

sum of the separate outputs from each of the connected units plus a bias term 6;. 

1j(t)a. (t) + e, (t) (3.1) 

j 

The contribution for positive w; j is considered as an excitation and for the negative w1 

as inhibition. In some cases more complex rules for combining inputs are used, in 

which a distinction is made between excitatory and inhibitory inputs. We call units 

with a propagation rule (3.1) sigma units. 

A different propagation rule, introduced by Feldman and Ballard [3.4], is 

known as the propagation rule for the sigma-pi unit: 
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w (t) 11 
a 

k(t) 
+ ei(t) 

jk 
(3.2) 

Often, the ask are weighted before multiplication. Although these units are not 
frequently used, they have their value for implementation of lookup tables. 

3.1.3 Activation and output rules 
A rule is also needed which gives the effect of the total input on the activation of the 

unit. We need a function F; which takes the total input ii(t) and the current activation 

a; (t) and produces a new value of the activation of the unit i: 

a(t+l) = F(a(t), ii(t)) (3.3) 

Often, the activation function is a non-decreasing function of the total input of the 

unit: 

a(t+l) - F(i(t)) = Fjj: tiv, i(t)a(t) + 8; (t)] (3.4) 

although activation functions are not restricted to non-decreasing functions. Generally, 

some sort of threshold function is used: a hard limiting threshold function, a sgn 

function, or a linear or semi-linear function, or a smoothly limiting threshold as 

shown in Fig. 3.2. 

" 

sgn semi-linear 
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sig m oid 

Figure 3.2: Various activation functions for a unit 
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ly limiting function often a sigmoid (S-shaped) function like 

a= F(ig) =1 
1+e-`, 

(3.5) 

ae applications a hyperbolic tangent is used, yielding output values in 

+1]. In some cases, the output of a unit can be a stochastic function of 

ut of the unit. In that case the activation is not deterministically 

)y the neuron input, but the neuron input determines the probability p that 

ta high activation value: 

P(a, <-- l) =1 
-i IT 1+e 

(3.6) 

T is a parameter which determines the slope of the probability function. 

Jetwork topologies 

ire many different ways to connect artificial neurons to large networks. These 

nt patterns of interconnections between the neurons are called architectures or 

t structures. Such large networks may be able to perform complex tasks which 

d be impossible for individual neurons. 

The architectures of artificial neural networks can roughly be divided into three 

-Te categories: 

0 

Feedforward networks, where the data flow from input to output units is 

strictly feedforward. The data processing can extend over multiple layers of 

units, but no feedback connections are present, that is, connections extending 

from output of units to inputs of units in the same layer or previous layers. 

Recurrent networks, that do contain connections. Contrary to feedforward 

networks, the dynamical properties of the networks are important. In some 

cases, the activation values of the units undergo a relaxation process such that 

the network will evolve to a stable state in which these activations do not 

change any more. In other applications, the change of the activation values of 

the output neurons are significant, such that the dynamical behaviour 
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constitutes the output of the network. 

0 Cellular networks, where regularly spaced special artificial neurons called cells 

communicate directly with other neurons only in their nearest neighbourhood. 

Similarly to cellular automata [3.5], adjacent cells can interact with each other 

by means of mutual lateral interconnections. Cells not connected together can 

affect each other indirectly because of the propagation of signals during the 

transient (dynamic) regime. Fig. 3.3 illustrate schematically the various 

architectures. 

X y 
110 10 Ni N2 N3 

Feedforward representation 

Cellular representation 

Figure 3.3: Schematic representation of various architectures 

3.1.5 Information storage 
As a natural result of storing information in weights, the information or knowledge is 

distributed. This is one of the most important differences between neural networks 

computations and a standard Von Neumann style_digital computer. A standard digital 
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computer stores information as words or tokens in the memory. Each token is a 

concentrated highly specific piece of data. The loss or corruption of even one token 

can result in a complete failure of the computer. Instead of focusing data into a token, 

a neural network stores the knowledge in a distributed form. The knowledge is stored 

across many weights with each weight contributing to many parts of the knowledge. 

Thus, the information is stored in the cumulative interaction of many nodes and their 

associated weights. In contrast to a Von Neumann architecture, the loss or corruption 

of a weight simply degrades the performance of the network and does not result in 

failure of the network. 

Another important difference is that information in a neural network is stored 

in an associative memory instead of an addressed memory. In an associative memory, 
data is retrieved by its similarity to the input data. Common digital computers use 

addressed memory. Each memory location is given a label, and the contents of the 

location are accessed by providing the datum label or address to the memory. In 

contrast, when a neural network is presented a possibly incomplete or damaged 

version of the desired data, the network locates the most similar data in memory. As 

such, some networks are designed simply to be associative memories. In other network 

architectures this ability is used to generalise between training examples. 

3.1.6 Learning Algorithms 

A learning or training algorithms is a core component of most neural networks. 

Although a learning algorithm is needed to determine the connection weights, a 

primary benefit of the learning algorithm is the mitigation of the knowledge 

acquisition bottleneck. 

The knowledge acquisition bottleneck is a term coined by the artificial 

intelligence community to describe the difficulty of determining the relevant 

knowledge and incorporating it into a rule base or expert system. This problem is not 

limited to the artificial intelligence community, but it also is a common problem for 

scientists and engineers. 

A neural network solves the problem in the same way that humans and animals 

often solve the problem, by learning from examples. Within this context of learning by 

50 



Chapter 3 Artificial Neural Networks 

example, there are many methods for training a neural network. Neural network 
training procedures are divided into the following three categories: 

0 Supervised or Associative learning in which the network is trained by 

providing it with input and matching output patterns. These input-output pairs 

can be provided by an external teacher, or by the system which contains the 

network (self-supervised). 

0 Unsupervised learning or Self-organisation in which an (output) unit is trained 

to respond to clusters of pattern within the input. In this mode the system is 

supposed to discover statistically salient features of the input population. 

Unlike the supervised learning paradigm, there is no a priori set of categories 

into which the patterns are to be classified; rather the system must develop its 

own representation of the input stimuli. 

0 Reinforcement learning in which input examples are supplied to the network 

and a scalar signal of how good the network is performing is used to adjust the 

network. Normally, a series of examples is presented, where each input 

produces a network response. At the end of the input series, the scalar input 

of performance is supplied and the network adjusts itself to improve its 

performance. 

The difference between supervised learning and reinforcement learning is that 

supervised learning has an external teacher to tell the network how to adjust, while 

reinforcement learning must decide the proper adjustment from a good/bad signal. No 

information on specific improvements in the control signal is provided. 

3.1.7 Neural Network Learning Rules 

The learning algorithms discussed above result in an adjustment of the weights of the 

connections between units, according to some modification rule. Virtually all learning 

rules for models of this type can be considered as a variant of the Hebbian learning 

rule suggested by Hebb in his classic book "Organization of Behaviour" [3.6]. The 

basic idea is that if two units i and j are active simultaneously, their interconnection 

must be strengthened. If i receives input from j, the simplest version of Hebbian 

learning prescribes to modify the weight w; j with 
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Awiý = ya; a (3.7) 

where 'y is a positive constant of proportionality representing the learning rate. Since 

its inception, the Hebbian rule needs to be modified to counteract unconstrained 

growth of weight values, which takes place when excitations and responses 

consistently agree in sign. This corresponds to the Hebbian learning rule with 

saturation of the weights at a certain, preset level. 

Another common rule uses not the actual activation of unit i but the difference 

between the actual and desired activation for adjusting the weights: 

Aw, ý = y(d, - (x, )a (3.8) 

in which d; is the desired activation provided by a teacher. This is often called the 

Widrow-Hoff rule or the delta rule, and will be discussed in more detail in next 

sections. 

Many variants (often very exotic ones) have been published the last few years 

[3.7]. Two of them, arguably the most popular ones can be considered to be the 

Correlation learning rule and the Winner-Take-All learning rule. In the first case, 

the adjustments for the weights are 

Owe.. = ýyd, a (3.9) 

This simple rule states that if d; is the desired response due to aj, the corresponding 

weight increase is proportional to their product. The rule typically applies to recording 

data in memory networks with binary response neurons. It can be interpreted as a 

special case of the Hebbian rule with a binary activation function and for a; = d; 

. 
However, Hebbian learning is performed in an unsupervised environment, while 

correlation learning is supervised. 

On the other hand, the Winner-Take-All learning rule differs substantially from 

any of the rules discussed so far in this section. It can only be demonstrated and 

explained for an ensemble of neurons, preferably arranged in a layer of p units. This 

rule is an example of competitive learning, and it is used for unsupervised network 

training. Typically, winner-take-all learning is used for learning statistical properties 
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of inputs [3.8]. The learning is based on the premise that one of the neurons in the 

layer, say the m'th, has the maximum response due to a specific input vector. This 

neuron is declared the winner. The individual weight adjustment therefore becomes 

sw.. = C(a -w (3.10) 

3.2 Multi-layer Feed-forward Networks 

There are many different types of neural networks, each of which has a different 

architecture, learning method, and performance capabilities. Often, the structure and 

dynamics of a network correspond readily to the network's function. 

The Perceptron, developed by F. Rosenblatt [3.9], was the first neural network 

to emerge. It substantiated the concept of the artificial neuron which is still used 

today, where each neuron computes a weighted sum of its inputs, and passes this sum 

into a non-linear thresholding function. As this was a single-layer network, the class 

of tasks that could be accomplished was very limited. 

Minsky and Papert [3.2] showed in 1969 that a two layer feed-forward network 

can overcome many restrictions, but did not present a solution to the problem of how 

to adjust the weights from input to hidden units. An answer to this question was 

presented by Rumelhart, Hinton and Williams in 1986 [3.10], and similar solutions 

appeared to have been published earlier [3.11][3.12]. 

In this section we shall concentrate on supervised learning from example and describe 

in detail one of the most widely used learning procedures, the back propagation 

algorithm, also called the generalised delta rule. 

The central idea behind this solution is that the errors for the units of the 

hidden layer are determined by back-propagating the errors of the units of the output 

layer. For this reason the method is often called the back-propagation learning rule. 

A feed-forward network has a layered structure. Each layer consists of units 

which receive their input from units from a layer directly below and send their output 

to units in a layer directly above the unit. There are no connections within a layer. 
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The Ni inputs are fed into the first layer of Nh., hidden units. The input units are 

merely 'fan-out' units; no processing takes place in these units. The activation of a 
hidden unit is a function F; of the weighted inputs plus a bias, as given in Eq. (3.4). 

The output of the hidden units is distributed over the next layer of Nh, 2 hidden units, 

until the last layer of hidden units, of which the outputs are fed into a layer of No 

output units. Fig. 3.4 illustrates this process. 

NNN 
h, l h, 1-2 h, l-1 

Figure 3.4: A multi-layer network with I layers of units 

Although back-propagation can be applied to networks with any number of layers, it 

has been shown [3.13] that only one layer of hidden units suffices to approximate any 

function with finitely many discontinuities to arbitrary precision, provided the 

activation functions of the hidden units are non-linear. In most applications a feed- 

forward network with a single layer of hidden units is used with a sigmoid activation 

function for the units. 

3.2.1 The generalised delta rule 
An important generalisation of the learning rule, presented by Widrow and Hoff [3.7] 
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as the "least mean square" (LMS) learning or "delta" procedure, has been extended 

by Minsky and Papert [3.2] to continuous inputs and outputs. The LMS procedure has 

been applied most often with purely linear output units. This procedure finds the 

values of all the weights that minimise the error function by a method called gradient 

descent. The idea is to make a change in the weight proportional to the negative of 

the derivative of the error as measured on the current pattern with respect to each 

weight. 

Since we are using units with non-linear activation functions, we have to 

generalise the delta rule which originally was presented for linear functions to the set 

of non-linear activation functions. The activation is a differentiable function of the 

total input, given by 

di = F(i; ý) (3.11) 

in which 

ijp =E WiocP + 61. (3.12) 
J 

To get the correct generalisation of the delta rule, we must set 

A wl.. 
EP (3.13) 

aw.. 
U 

The error measure El is defined as the total quadratic error for pattern p at the output 

units: 

N 

EP=1 (din - ap)2 

2 i=l 

while E=I El is the overall measure of the error. We can write 

(3.14) 
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aEp 
_ 

aEp aiip 
awii ciii awii 

By Eq. (3.12) we see that the second factor is 

ai`n 
(3.16) ap ) 

aW.. ii 
When we define 

P 
bp =-Ep (3.17) 

ali 

we will get an update rule which is equivalent to the delta rule, resulting in a gradient 

descent on the error surface if we make the weights changes according to: 

Apwlj. = 76, iocjp 
(3.18) 

The trick is to figure out what b; P should be for each unit i in the network. The 

interesting result, which we now derive, is that there is a simple recursive computation 

of these b 's which can be implemented by propagating error signals backward 

through the network. 

To compute 8; P we apply the chain rule to write this partial derivative as the 

product of two factors, one factor reflecting the change in error as a function of the 

output of the unit and one reflecting the change in the output as a function of changes 

in the input. Thus, we have 

spaEP aEPaal 
ai, p ace, ai, p 

Let us compute the second factor. By Eq. (3.11) we see that 

(3.19) 
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v (Xi 
=F '(i, ) (3.20) 

aiip 

which is simply the derivative of the squashing function F for the ith unit, evaluated 

at the net input i1 to that unit. To compute the first factor of Eq. (3.19), we consider 

two cases. First, assume that unit i is an output unit of the network. In this case, it 

follows from the definition of El that 

EP_ 
-(dip - a) (3.21) 

as 

which is the same result one can obtain with the standard delta rule. Substituting this 

and Eq. (3.20) in Eq. (3.19), we get 

8P = (d; ' - ap) F, "(ii') (3.22) 

for any output unit i. Secondly, if i is not an output unit, we do not readily know the 

contribution of the unit to the output error of the network. However, the error measure 

can be written as a function of the net inputs from hidden to output layer; EP = EP (i1 , 
i2P,..., li ... 

) and we use the chain rule to write 

aE p 
No aE p alh 

_ 

No aE pa 
Nn 

r WhkOCk 
aap n=1 

alp aaý 
n=1 

alp aaP k=1 
ihh (3.23) 

No aE p_Np E 
whi -E 

ýhW 
hi 

h=1 aih h=1 

Substituting this in Eq. (3.19) yields 

N 

Sp = F'(ii")t ShWhi 

h=1 

(3.24) 

Eqs. (3.22) and (3.24) give a recursive procedure for computing the b's for all units 

in the network, which are then used to compute the weights changes according to Eq. 

(3.18). This procedure constitutes the generalised delta rule for a feed-forward network 
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of non-linear units. 

3.2.2 Working with back-propagation 
The application of the generalised delta rule thus involves two phases: During the first 

phase the input is presented and propagated forward through the network to compute 

the output values a1 for each output unit. This output is compared with the desired 

value, resulting in an error signal b; P for each output unit. The second phase involves 

a backward pass through the network during which the error signal is passed to each 

unit in the network and appropriate weight changes are calculated. 

Weight adjustment with sigmoid activation function. The results from the previous 

section can be summarised in three equations: 

" The weight of a connection is adjusted by an amount proportional to the 

product of an error signal S, on the unit i receiving the input and the output f 

the unit j sending this signal along the connection: 

Opw1j. = , YS'a! (3.25) 

" If the unit is an output unit, the error signal is given by 

bn =(d, ý _Opp)F'(i1) 
(3.26) 

Take as the activation function F the 'sigmoid' function as defined in a 

previous section: 

di = F(i, p) =1 
-i`0 

(3.27) 
1+e 

In this case the derivative is equal to 
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F'(ii') = aI 
ai; p1 + 

(1 +eý; P) (1 +eý P) 

= aP(1 - ap) 

1e -t 
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(3.28) 

such that the error signal for an output unit can be written as: 

bP = (di' - aei)aei(l - aei) (3.29) 

" The error signal for a hidden unit is determined recursively in terms of error 

signals of the units to which it directly connects and the weights of those 

connections. For the sigmoid activation function: 

NN 

bp = F' (i/) 5t öhWhi =u (I - ai) t Shwhi (3.30) 
h=1 h=1 

One important factor about the sigmoid function, or any other similarly shaped 

function, is that its derivative is always positive, and is close to 0 for either large 

positive or large negative input values to that function. The derivative has its 

maximum value when the input to the function is 0. This is important in helping the 

back-propagation learning algorithm work effectively. This is because the changes 

made to the weights are proportional to the derivative of the activation. If this 

derivative is near 0, then the changes are small. This is desirable, because the 

derivative is near 0 when the activation value is near 0 or 1, one of the stable states. 

When the activation of the neuron is in the middle range, we want to change the 

neuron's output a good deal, driving it to produce a value near one the stables states. 

The derivative is largest when the activation is in the middle range, and so the change 

in the weights is also fairly large. Thus, the transfer function not only gives us smooth 

and differentiable behaviour, it actually helps the learning law work the way we want 

it to. 

Note that as the activation of a neuron approaches either zero or one, the 

59 



Chapter 3 Artificial Neural Networks 

derivative approaches zero. Because the learning of weight change is proportional to 

this derivative, a weight may change slower than desired for neurons, which yield 

either a large or small activation. This can cause difficulties in training the network. 
In summary, the basic back-propagation algorithm can be performed by 

realising the following steps: 

Step 1: Initialise all synaptic weights to small random values. If the initial 

values are too large, the activations functions may saturate from the 

beginning and the network will become stuck in a very flat plateau or 

a local minimum near the starting point. Usually, the initial values of 

weights are chosen as random values uniformly distributed between 

(-0.5 / fan-in) and (+0.5 / fan-in), where fan-in of a unit is the number 

of units which are fed forward to this unit [3.14]. 

Step 2: Present an input from the class of learning examples (input/output 

pattern) and calculate the actual outputs of all neurons using the present 

values of W and the pattern. In general, one form of preprocessing will 

be required for the examples. That form is normalisation. That is, either 

the value of each example should always be in the interval between 0 

and 1, or the total length of each example vector should be some 

constant value such as 1. Especially in cases where large input values 

are multiplied by a large number of weights (large fan-in) this form of 

preprocessing is preferable as it prevents the hidden neuron's saturation. 

Step 3: Specify the desired output and evaluate the local error signals for all 

layers. 

Step 4: Adjust the synaptic weights. 

Step 5: Present another input pattern corresponding to the next learning example 

and go back to Step 2. 

All the training example are presented cyclically until the synaptic weights are 

stabilised, i. e. until the error for the entire set is acceptably low and the network 

converges. After training a multilayer network, or perceptron as it is well known, 

usually has the feature of a generalisation, i. e. it has the ability for proper response 
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to input patterns not presented during the learning process. Such a generalisation is an 

important feature of multilayer perceptrons (MLPs). 

This somewhat mysterious generalising ability of the MLP can be interpreted 

as follows. The MLP performs a non-linear mapping between an input and output 

space. The learning of the perceptron can be regarded as synthesizing an 

approximation of a multidimensional function which is performing a simple fitting 

operation or a hypersurface reconstruction in a multidimensional space to a finite set 

of data points (the training examples). From this point of view the generalisation is 

nothing more than interpolating the test set on the fitting (or reconstructed) 
hypersurface. 

Learning rate and momentum. The learning procedure requires that the change in 

weight is proportional to aEI / aw. True gradient descent requires that infinitesimal 

steps are taken. The constant of proportionality is the learning rate 'y. This learning 

parameter should be chosen small to provide minimisation of the total error function 

E. However, for small y the learning process becomes very slow. On the other hand, 

large values of y correspond to rapid learning, but lead to parasitic oscillations which 

prevent the algorithm from converging to the desired solution. Moreover, if the error 

function contains many local minima, the network might get trapped in some local 

minimum, or get stuck on a very flat plateau. One simple way to improve this learning 

algorithm is to smooth the weight changes by overrelaxation [3.15], i. e. by adding the 

momentum term: 

Ow, 
j(t+1) = ySpaj + JJw1j(t) (3.31) 

where t indexes the presentation number and p is a constant in the range [0 - 1] which 

determines the effect of the previous weight. The second term in Eq. (3.31) may 

improve the convergence rate and the steady state performance of the algorithm. 

Intuitively, if the previous weight change is large, then adding a fraction of this 

amount to the current weight update will accelerate the convergence process. 
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3.2.3 Deficiencies of back-propagation 
Despite the apparent success of the back-propagation learning algorithm, there are 

some aspects which make the algorithm not guaranteed to be universally useful. Most 

troublesome is the long training process. This can be a result of a non-optimum 
learning rate and momentum. A lot of advanced algorithms based on back-propagation 

learning have some optimised method to adapt this learning rate, as will be discussed 

in a next section. Outright training failures generally arise from two sources: network 

paralysis and local minima. 

Network paralysis. As the network trains, the weights can be adjusted to very large 

values. The total input of a hidden unit or output unit can therefore reach very high 

(either positive or negative) values, and because of the sigmoid activation function the 

unit will have an activation very close to zero or very close to one. As is clear from 

Eqs. (3.29) and (3.30), the weight adjustments which are proportional to ajP(l -() 

will be close to zero, and the training process can come to a virtual standstill. 

Local minima. The error surface of a complex network is full of hills and valleys. 

Because of the gradient descent, the network can get trapped in a local minimum 

when there is a much deeper minimum nearby. Probabilistic methods can help to 

avoid this trap, but they tend to be slow. Another suggested possibility is to increase 

the number of hidden units. Although this will work because of the higher 

dimensionality of the error space, and the chance to get trapped is smaller, it appears 

that there is some upper limit of the number of hidden units which, when exceeded, 

again results in the system being trapped in local minima. 

3.2.4 Optimising the back-propagation network 
During the past several years, researchers have explored many ways to enhance the 

performance, maximise likelihood of convergence while learning, and improve the 

overall learning rate of the back-propagation neural networks. There are several factors 

which have provided an impetus for this work. These include the fact that the basic 

back-propagation network often takes a discouragingly long time to learn, and that 

sometimes it does not converge at all for a given random set of starting weights. There 

are three major ways to improve performance of the back-propagation network: 
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through modifying the structure, the dynamics, or the network training and learning 

rules. In this section we shall consider some of these areas and the rest of them will 
be discussed in detail in the subsequent chapters at appropriate sections. 

Although sigmoid functions are quite often used as activation functions, other 
functions can be used as well. In some cases this leads to a formula which is known 

from traditional function approximation theories. For example, from Fourier analysis 
it is known that any periodic function can be written as an infinite sum of sine and 

cosine terms (Fourier series): 

f(x) _ (ancosnx + bnsinnx) (3.32) 
n =O 

We can rewrite this as a summation of sine terms 

f(x) = ao +E cnsin(nx + O, 
t) 

(3.33) 
n=l 

with cn = 
V'(an2 

+ bn2) and 6n = arctan (b/a). This can be seen as a feed-forward 

network with a single input unit for x; a single output unit for f(x) and hidden units 

with an activation function F= sin(i). The factor ao corresponds with the bias of the 

output unit, the factors c., correspond with the weights from hidden to output unit; the 

phase factor On corresponds with the bias term of the hidden units and the factor n 

corresponds with the weights between the input and hidden layer [3.16]. 

The basic difference between the Fourier approach and the back-propagation 

approach is that the in the Fourier approach the "weights" between the input and the 

hidden units (these are the factors n) are fixed integer numbers, whereas in the back- 

propagation approach these weights can take any value. 

When using a back-propagation network, one of the most important 

configuration issues is to select the optimal number of neurons in the hidden layers. 

This number is not known in advance, and usually is estimated by a trial and error 

approach. 

One possible approach is to construct a neural network with an excessive 

number of hidden units and then some redundant units are removed during the 
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learning process. All neurons that do not 
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contribute to the solution or give 
information nor required at the next layer can be considered as redundant hidden units. 
In order to find which hidden units can be removed, the output of all the hidden units 
is monitored and analyzed across all the training examples after the network achieves 

convergence. If the output of a certain hidden unit is approximately constant for all 
training examples this unit can be removed since it does not contribute essentially to 

the solution because it is acting as an additional bias to all neurons to which it feeds. 

This process of removing the redundant hidden units is called pruning [3.17]. 

Recently, a heuristic modification of the back-propagation algorithm has been 

proposed which varies the number of hidden units dynamically. According to this 

modification the data structure is very flexible and allows the following operations: 

" Adding or "killing" neuron layers 

" Generating or annihilating neurons within each layer 

" Modifying the interconnection between neurons in two adjacent layers 

As that type of modification is beyond the scope of this thesis. 

Although, theoretically, the back-propagation algorithm performs gradient 

descent on the total error only if the weights are adjusted after the full set of learning 

patterns has been presented, more often than not a single pattern update algorithm is 

applied. In this case, a pattern is presented at the input and then all weights are 

updated before the next pattern is presented. In the standard way, the batch procedure, 

since the weight changes must be accumulated over the entire training set, additional 

local storage for each connection is required. In practice the back-propagation batch 

learning algorithm usually takes a more sophisticated form than that given by Eq. 

(3.31). The change in each weight is often calculated from the formula 

Aw, ](t+1) bpaj' +µ Aw; 
j. 
r(t) 

- 4w, -'(t) (3.34) 
nt-1 p 

where n1_1 is the number of processing units (neurons) in the (1-1) layer, and 4 is a 

decay factor, with typical values of 10-1 to 10-5, which prevents the algorithm from 

generating very large weights[3.18]. 

In general, the on-line approach has to be used if all training examples are not 
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available before the learning starts and an adaptation to the actual (on-line) stream of 
training patterns is desired. Furthermore, the on-line learning algorithm is usually 

convenient and more effective than the batch algorithm when the number of the 

training examples is very large, since the batch procedure requires auxiliary memory 
to accumulate the local updates. 

The on-line procedure introduces some randomness (noise) that often may help 

in escaping from local minima. On the contrary the standard batch procedure 
introduces some inherent averaging filtering due to collecting the total gradient 
information before deciding the next step. Although the batch learning algorithm 

provides a better estimate of the gradient components and avoids a mutual interference 

of the weight changes (caused by different patterns), it does not improve the learning 

speed sufficiently to compensate for the additional computational cost. Usually, the 

on-line algorithm is faster and more effective than the standard batch procedure, 

especially for large-scale classification problems. This can be explained by the fact 

that usually many training examples possess redundant information in the sense that 

many contributions to the gradient are very similar, and waiting to compute all these 

contributions before updating the weights is simply wasteful. 

However, for many applications, especially, if high precision mapping is 

required, the batch procedure may be the method of choice. Moreover, the batch 

approach lends itself to straightforward applications of more sophisticated optimisation 

procedures as it can be shown in the next section. 

Summarising, the relative effectiveness of the on-line and batch procedure is 

dependent on the problem, but the on-line algorithm seems superior in most cases, 

especially for large and redundant training sets. 

As we have already mentioned the training of MLPs using the standard back- 

propagation algorithm is plagued by a slow convergence. There are cases in which the 

learning speed is a limiting factor in practical applications of neural networks. 

Darken and Moody [3.19] proposed a simple approach called "search-then- 

conzverge" strategy. According to this strategy the learning rate is gradually decreasing 

during the learning process. In the first phase of learning (called the search phase) the 

learning rate is almost constant (i. e. it decreases very slowly) and it is sufficiently 
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large. In the second phase of learning (the converge phase) the learning rate 
exponentially decreases to zero. Two possible schedules for the learning rate have 
been suggested: 

1 
YO 

+k 
(3.35) 1 

ko 

or 

1+ck 
Yk) _ 7o 

k 

yo k° 
(3.36) 

1+c +ko(_)2 
yo ko 

o 

where yo > 0, c>0, ko >>1 (typically 100<_ ko <_ 500) are suitably chosen parameters. 

Alternatively, another simple heuristic strategy for the batch learning procedure is to 

relate the learning rate with the total error function E. More specific the learning rate 

should be increased (typically by multiplying its actual value by a factor a=1.05) if 

the total error function E is decreased (i. e. the new error is less than the old error) and 

decreased rapidly (typically by multiplying it by a factor b=0.7) if the new error 

exceeds the old error by more than a prespecified ration (typically 1.04) [3.20]. 

After starting with a small learning rate its modifications are described by the 

iterative equation 

ay 1) 
i 

y k) 
=b,,, (k-1) 

if E(W (k)) < E(W ck-1>), 

if f ETW )> kE(W (k-1)), 

otherwise, 

where typical values of the parameters are a=1.05, b =0.7, k=1.04. 

(3.37) 
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In order to improve more the performance of the back-propagation algorithm 
we may apply the following heuristic proposed by Silva and Almeida [3.21 ]. There, 

each weight has its own learning rate which is adaptively adjusted during the learning 

process on the basis of gradient information of the error function E. Therefore, the 
learning rate is computed iteratively as 

a if f 
aE(W"') aE(W (k-'))ý 

0 
k> awli. awli (3.38) rii 

b (k -1), otherwise. 

where recommended values of the parameters are: 

1.1 <_ a <_ 1.3,0.75 <_ b <_ 0.9 and y; j(0) = 10-1. 

According to this algorithm, if the gradient component aE / aw; j has the same sign 
in two consecutive steps, the corresponding rate is increased exponentially and, if the 

gradient component alternates, the learning rate is decreased. 

3.2.5 Advanced Algorithms 

Many researchers have devised improvements of and extensions to the basic back- 

propagation algorithm described in previous sections. May be the most obvious 

improvement is to replace the rather primitive steepest descent method with a 

direction set minimisation method, e. g., conjugate gradient minimisation [3.22]. Note 

that minimisation along a direction u brings the function f at a place where its 

gradient is perpendicular to u (otherwise minimisation along u is not complete). 

Instead of following the gradient at every step, a set of n directions is constructed 

which are all conjugate to each other such that minimisation along one of these 

directions uj does not spoil the minimisation along one of the earlier directions u;, i. e., 

the directions are non-interfering. Thus one minimisation in the direction of u; 

suffices, such that n minimisations in a system with n degrees of freedom bring this 

system to a minimum, provided that the system is quadratic. This is different from 

gradient descent, which directly minimises in the direction of the steepest descent. 

Suppose the function to be minimised is approximated by its Taylor series 
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where T denotes transpose, and 

f(p) b= -Vf fP [A] = 
a2f (3.39) 

axýax 
p 

A is a symmetric positive definite nxn matrix, the Hessian of f at p. The gradient 

off is 

Vf = Ax -b (3.40) 

such that a change of x results in a change of the gradient as 

S(VJ) = A(6x) (3.41) 

Now, suppose f was minimised along a direction u; to a point where the gradient g; +, 
off is perpendicular to u; , 

i. e., 

T 
g u; ; +l =0 (3.42) 

and a new direction u; +, 
is sought. In order to make sure that moving along u; +, 

does 

not spoil minimisation along u; we require that the gradient off remain perpendicular 

to u; , i. e., 

u; gi+2=0 (3.43) 

otherwise we would once more have to minimise in a direction which has a 

component of u;. Combining Eqs. (3.42) and (3.43), we get 

0= UT 
T (i+1 

- gi+2) = U'5(VJ) = U. Au. 
+I 

(3.44) 

When Eq. (3.44) holds for two vectors u; and u; +, they are said to be conjugate. 
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Now, starting at some point po, the first minimisation direction uo is taken 

equal to go = -Of (po), resulting in a new point p,. For i >_ 0, calculate the directions 

ui+l = gi+l + /u 
i 

(3.45) 

where y; is chosen to make u; TA ui-1 =0 and the successive gradients perpendicular, 

T 
g`+ T `+' with gk = -V f , 

pt 
for all k>0 (3.46) 7i ýT 

gig; 

Next, calculate p; +2 = P; +I + k+, u; +, where ki, j is chosen so as to minimise f(p; 
+2 

using a line minimisation technique like the "Golden Section Search" or the "Brent's 

method" [3.23]. The process described above is known as the Fletcher-Reeves method, 

but there are many variants which work more or less the same [3.24]. 

In practice, it is usually necessary to restart the optimisation process 

periodically due to the numerical inaccuracy of the results in a search direction and 

(or) due to the nonquadratic nature of the problem. The algorithm should be restarted 

(by a search in the steepest-descent direction) when a nondescent search direction is 

generated. The conjugate gradient method can be regarded as being somewhat 

intermediate between the method of steepest-descent and the quasi-Newton methods 

in terms of the convergence property and the complexity [3.25]. The advantage of the 

conjugate gradient algorithm is its simplicity for estimation of optimal values of the 

parameters compared to more advanced algorithms as some quasi-Newton methods. 

3.3 Self-Organising Networks 

The majority of neural network applications call for supervised training. For each 

sample input contained in the training set, the desired outputs are also known. The 

inputs and outputs are both presented to the network, and the network learns to 

associate them. There are some applications, though, for which "correct" outputs are 

not known. Or sometimes we may know the outputs that we would like the network 

to learn, but we want to see if the network can learn them on its own. The network 
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must discover for itself any relationships of interest that may exist in the input data. 

Our interest is in designing networks that are able to translate the discovered 

relationships into outputs. For such applications, unsupervised training is the 

appropriate choice. 

The most famous neural network model reared toward unsupervised training 

is the Kohonen network, named after its inventor, Teuvo Kohonen [3.26]. It relies on 

a type of learning called competitive learning. In most other networks models, all 

neurons adjust their weights in response to a training presentation. In competitive 

learning, the neurons compete for the privilege of learning. Only one, or at most, a 

few neurons are allowed to adjust their weights in response to a presentation. 

Figure 3.5: Kohonen network 

Kohonen networks, also known as self-organisation networks, consist of two layers: 

an input layer and an output layer. Each neuron in the input layer is fully connected 

to each neuron in the output layer by a connection with an associated weight. The 

output layer usually is represented as a two-dimensional array of neurons. Within two 

dimensions, obviously, the neurons could be arranged in many ways. Most often, they 
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are arranged in either rectangular or hexagonal arrays. Fig. 3.5 illustrates a simple self- 

organising network model. 

The activation of an output neuron is the dot product of its weights to the 

incoming input values. The neuron having maximum activation for a given 

presentation is declared the winner. Thus the winning neuron is, in a measurable way, 

the closest to the input value and thus represents the input value. Therefore, the input 

data, which may have many dimensions, comes to be represented by a two- 

dimensional vector which preserves the order of the higher dimensional input data. 

This can be thought of as an order-preserving projection of the input space onto the 

two-dimensional Kohonen layer. One problem that could arise is that, by chance, one 

output neuron can end up representing too much of the input data. To solve the 

problem of neuron winning too frequently, the mechanism of a conscience is 

introduced [3.27]. 

Mexican hot function 

) Stovepipe hat function 

Chef hot function 

Figure 3.6: Self-organising activation 
functions 
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The conscience mechanism depends on keeping a record of how often each output 

neuron wins and this information is then used during training to "bias" the distance 

measurement. The conscience mechanism helps the output layer achieve another 

benefit: The output neurons naturally represent approximately equal information about 

the input data. Where the input space has sparse data, the representative output 

neurons compact the space. Where the input space has high density, the representative 

output neurons spread out to allow finer discrimination. In this way the output layer 

is thought to mimic the knowledge representation of biological systems. 

Each weight in the neighbourhood of the winning neuron is then adjusted 

according to the formula: 

w. (t+l) = wi(t) + h(t)[x(t) - w. (t)] (3.47) 

where x(t) is the sample presented to the network and h(t) is a learning coefficient. 

First, it usually decreases with increasing iterations (time) [3.28]. Second, it can vary 

with the distance from the winning neuron, taking on the shape of one of the special 

functions which are shown in Fig. 3.6. 

As the topology-conserving quality of this network seems to have many 

counterparts in biological brains, it does not come as a surprise, that a number of 

applications have been derived especially in robotics [3.29]. 

3.4 Reinforcement Learning 

In a previous section supervised training methods have been described in which the 

weight adjustments are calculated using a set of "learning samples". These learning 

samples can either be given by an external teacher or, in the case that the network is 

used to control a system which interacts with the world, be derived from the 

interaction of the system with the environment. However, not always such a set of 

learning examples is available or can be derived. Often the only information is a 

signal which is given when a desired goal has been reached (reward) or when the 

system fails (punishment). This reinforcement signal is characterised by the fact that 
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it is less informative than a set of examples (only a correct-false judgement is given) 

and that it is often delayed: the success or failure signal which is given at a certain 

moment is a result of control signals (networks outputs) in the past. The question is 

whether a network can be trained with such poor and delayed training data. A number 

of algorithms have been developed that make this form of learning possible. 

Specifically, Barto et al. [3.30] have formulated reinforcement learning as a learning 

strategy which does not need a set of examples provided by a "teacher". The system 

described by Barto explores the space of alternative input-output mappings and uses 

an evaluative feedback (reinforcement signal) on the consequences of the control 

signal (network output) on the environment. It has been shown that such reinforcement 

learning algorithms are implementing on-line, incremental approximation to the 

dynamic programming method for optimal control, and are also called heuristic 

dynamic programming [3.31]. 

The basic building blocks in most reinforcement learning schemes are an 

Associative Search Element (ASE) which uses a stochastic method to determine the 

correct relation between input and output and an Adaptive Critic Element (ACE) 

which learns to give a correct prediction of future reward or punishment, as shown in 

Fig. 3.7. The external reinforcement signal r can be generated by a special sensor or 

be derived from the state vector. 

Figure 3.7: Architecture of a reinforcement learning scheme 
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3.4.1 Associative search 

Artificial Neural Networks 

In its most elementary form the ASE gives a binary value o(t) (-= 10,1 } as a stochastic 
function of an input vector. The total input of the ASE is the weighted sum of the 
inputs, with the inclusion of a bias input which is a stochastic variable Z with mean 

zero normal distribution: 

N 

i(t) _ wsj X(t) +Z (3.48) 
j=1 

The activation function F is a threshold such that 

1I ifi(t)>0 
O(t) = a(t) _ (3.49) 

0 otherwise 

For updating the weights, a Hebbian type of learning rule is used. However, the 

update is weighted with the reinforcement signal r(t) and an 'eligibility' ej is defined 

instead of the product o(t) xx(t) of input and output: 

wsi(t+l) = ws. (t) + ocr(t)ei. (t) (3.50) 

where a is a learning factor. The eligibility ej is given by 

e (t+ l) = bes(t) + (1 - 8)o(t)x( (t) (3.51) 

with 8 the decay rate of the eligibility. The eligibility is a sort of 'memory'; ej is high 

if the signals from the input state unit j and the output unit are correlated over some 

time. 

Using r(t) in Eq. (3.50) has the disadvantage that learning only takes place 

when there is an external reinforcement signal. The problem lies to the fact that as 

training progresses, the reinforcement signal r(t) appears less and less. Instead of r(t), 

usually a continuous "internal reinforcement" signal r (t) given by the ACE, is used. 

In control applications, the input vector is the (n-dimensional) state vector s 

of the system. In this case, a "decoder" is used, which divides the range of each of the 

input variables s; in a number of intervals. The aim is to divide the input (state) space 

in a number of disjunct subspaces, or "boxes" as called by Barto. The input vector 
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can therefore only be in one subspace at a time. The decoder converts the input 

vector into a binary values vector x, with only one element equal to one, indicating 

which subspace is currently visited. 

3.4.2 Adaptive critic 
The Adaptive Critic Element (ACE) uses rules from Temporal Difference Learning 

[3.32] to define an internal reinforcement signal r which is available for each state of 

the system and no longer incidental (just in case of failure) but continuously present. 

The basic idea is that for each state xj an evaluation value p(t) = p(xj(t)) has 

to be learned by the ACE. This evaluation should be the expectation of the discounted 

sum of external reinforcement, and if p(t) is correctly learned then 

P(t-1) - r(t) +7P(t) (3.52) 

with 0<y<1. By attempting to make prediction of future evolution of the 

reinforcement signal, the learning rule produces predictions that tend to be the earliest 

possible indictions of eventual reinforcement. The significance of Eq. (3.52) lies to the 

fact that differences between p(t) and p(t-1) will have as a result an appropriate r(t) 

signal corresponding to the increase in stability. An error signal can now be defined 

for training the ACE: 

r(t) = r(t) +yp(t) - p(t-1) (3.53) 

p(t) is implemented as a series of "weights" wcj to the ACE such that 

P(t) _W ck. 
(t) Xi(t) (3.54) 

The function is learned by adjusting the wcj's according to a 'delta-rule' with an error 

signal 6 given by r (t) [3.33]: 

Owcf(t) = (3r(t)hj(t) (3.55) 

P is the learning parameter and h, (t) indicates the "trace" of neuron xj: 
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h (t) _A hý(t-1) + (1 - A, ) x (t-1) (3.56) 

This trace is a low-pass filter or momentum, through which the credit assigned to state 
j increases while state j is active and decays exponentially after the activity of j has 

expired. If r(t) is positive, the action u of the system has resulted in a higher 

evaluation value, whereas a negative r(t) indicates a deterioration of the system. 

Therefore, r(t) can be considered as an internal reinforcement signal. 

3.5 Conclusions 

The material of this chapter described the principal concepts of Artificial Neural 

Networks. Within the area of control engineering, control and estimation rely on the 

effective processing of unpredictable and imprecise information. To tackle such tasks, 

current approaches tend to be based on some "model" of the unknown process in 

question. The use of neural network based models (NNMs) can be considered as one 

solution to this problem. 

A number of NN learning algorithms have been proposed, but the supervised 

backpropagation algorithm is by far the most widely applied. Despite the "similarity" 

between supervised and reinforcement method, the latter is used in applications where 

a less informative error signal, i. e. good/bad signal, is required without a target value. 

Although more advanced learning algorithms can be used in place of the 

gradient steepest-descent method, these alternative procedures can be considered 

computational more expensive and therefore not worthwhile in software terms. 

In the subsequent chapters we are concerned about how to apply the 

backpropagation algorithm on a variety of network architectures for modelling our 

prototype URV. 
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CHAPTER 4 

A Neural Network Approach for Identification of 

an Underwater Robotic Vehicle 

4.1 General Features 

The control of Underwater Robotic Vehicles (URVs) has always offered a challenge 

to the control engineer, due to the combined nature of both the vehicle itself and the 

environment in which it operates. The design of controllers to optimise URVs 

operations relies on the availability of models describing the dynamic behaviour of the 

vehicle. The number of parameters affecting the non-linearities in an URV are large, 

therefore the identification of such a system is a significant challenge. 

The ability of artificial neural networks to model nonlinear functions to any 

arbitrary precision has been a large influence in their use for nonlinear control 

applications [4.1]. One of the important advantages of using neural networks (NNs) 

for control applications is that the dynamics of the controlled system (plant) need not 

be completely known as a prior condition for controller design. This is a very 

desirable feature in the design of an URV control system, because of the non- 

linearities arising from rigid-body coupling and also the unpredictable nature of 

disturbances from sea environment. Also, the ability of these networks for adaptation 
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and disturbance rejection and their highly parallel nature of computation make this 

approach attractive for real-time control applications. 

A major portion of NN research is involved in function approximation and 

dynamic system modelling. Although, in this thesis we are concerned primarily with 

control issues, a discussion of these topics is considered to be essential. 

The aim is to develop a non-linear controller to keep station or "hover" a 

prototype single-input-single-output (SISO) URV, which we call the Aquacube. A NN 

model has to be developed and then incorporated into a predictive control strategy as 

we shall discuss in a next chapter. 

Whenever a new technology is applied, a method for comparing the 

performance of a particular technique is essential. Often an appropriate method 

involves the concept of benchmarking. Benchmarking, in general terms, is the 

application of an algorithm to a standardized set of problems which are designed to 

explore the performance characteristics and limitations of the algorithm in question. 

The algorithm's performance can then be compared to the performance of standard 

algorithms or methods which are applied to the same problem. 

The Robotics group at Liverpool University has developed a number of 

different controllers for the already mentioned prototype URV [4.2][4.3]. Due to the 

rather unsuccessful experimental results, the issue of designing a novel neural 

controller is an alternative significant challenge. As the system dynamics of the 

vehicle can be greatly influenced by the dynamics of the vehicle thruster, it is essential 

its approximate model to be developed. 

4.2 Vehicle Characteristics 

As we have already seen, the control of an URV is a very complex non-linear 

problem. For control testing, it was decided a vehicle which would operate with only 

one degree of freedom to be used [4.2]. 

Since the easiest positional parameter to measure is depth, a pressure 

transducer was mounted on the vehicle. The Aquacube also comprises a single thruster 

aligned vertically and mounted in a steel endoskeleton. All information and power is 
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transmitted via an umbilical which is non-tensioned and made approximately neutrally 

buoyant, in order to minimise the static forces. Buoyancy also was added to make the 

vehicle slightly positively buoyant. Details for this prototype URV can be found in 

Appendix A. 

In our case, a brushless dc motor driven by a PWM inverter was used, as it 

commonly the case today and motor torque is commanded by applying an analog 

voltage (±10V) to the motor controller. In this case, stiction can lead to pronounced 

dead bands for small thrust values which are crucial in fine position control. In the 

strict sense, dead band is defined as the specified range of values over which the 

incoming signal can be varied without causing the output to respond. From an 

"equilibrium" state, as the input-control voltage is slowly increased, a point is reached 

at which the motor just starts to turn. If the polarity of the voltage is reversed, the 

same thing will happen, but the motor will start in reverse. For a dc motor, it is the 

applied voltage, either to the field or armature depending on how they are controlled. 

which will just cause the motor to start. In Fig. 4.1 the vehicle velocity is illustrated 

while the vehicle input is driven with negative to positive step signals ("c? " case) and 

reverse ("cl" case). 
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From this diagram the above phenomenon together with a hysteresis incident can be 

clearly shown. The dead band is due to a number of different things including friction 

of the gear train and load, inertia of the motor rotor, and certain magnetic effects[4.4]. 

The dead band in "c 1" case is extended approximately in the range [ 1, -3] Volts, while 
in "c2" case from [-1.8,2.8] Volts. 

It is well known that thrusters are subject to serious degradation due to axial- 

and cross-flow effects. Axial-flow effects can be reasonably approximated by the 

modelling of the truster unit alone, the velocity of the fluid entering the thruster 

shroud effectively changes the angle of attack of the propeller, thus altering the force 

produced. Cross-flow effects are much more difficult to model and have been shown 

experimentally to be highly dependent on the position of the thruster on the vehicle 

[4.5]. In both cases, the reduced amount of force produced by the thruster will reduce 

the overall gain of the control system unless these effects are specifically included in 

the controller design. 

Therefore, although the vehicle can be considered as a SISO plant, its 

dynamics are highly non-linear. The hydrodynamic coefficients of the vehicle are 

unknown, and the drift due to water currents and the buoyancy generate extra forces 

and moments. Similarly, the acceleration and deceleration of the vehicle affects its 

overall dynamics. 

4.2.1 A Dynamic Vehicle Model 

In this section, an approximation of the transfer function of the vehicle and its 

surrounding environment will be attempted. Although, we are primarily interested in 

neural modelling, it is crucial for us to know approximately the dynamic order of our 

non-linear system. This knowledge will be the basis in finding a suitable neural 

network model. 

In developing the vehicle equations of motion, we have to take in account that 

a system which is set in motion by a force has a number of forces opposing it, i. e., 

the force is relative to the mass and acceleration and the constants of friction and 

velocity [4.6]. Therefore, in our case a simplified vehicle simulation has the form: 
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F, =Mx +fz (4.1) 

where M is the effective mass (actual vehicle mass plus "added mass"), f is the 

viscous friction and added buoyancy, and Ft is the output thruster force. Converting 

the above equation to the Laplace operator, we obtain the system function which 

relates the actual position of the vehicle and the output thrust force 

X(s) 
_1k Fe(s) (Ms + f)s s(1 +Ts) 

where the equivalent time constant i=M/f. 

However, the relationship between the commanded thrust force Fc and the 

output force F, can be derived from the transfer function of an armature controlled dc 

motor [4.7]. 

The armature controlled dc motor utilises a constant field current, and therefore the 

motor torque is 

T (s) = Km II(s) (4.3) 

where K,,, is defined as the motor constant. The armature current is related to the 

input voltage applied to the armature as 

V(s) = (Ra + Ls)I (S) + Vb(s) (4.4) 

where Vb(s) is the back electromotive-force voltage proportional to the motor speed. 

Therefore we have 

Vb(s) = Kb(o(s) (4.5) 

and the armature current is 

Icc (S) _ 
VU(s) - K', c)(s) (4.6) 

The load torque equation is given by 

(Ra + Las 
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Js Z6(s) + fsO(s) = Tjs) - Td(s) (4.7) 

The relations for the armature controlled dc motor are shown schematically in Fig. 4.2. 

I 

Figure 4.2: Armature controlled dc motor 

Therefore, we can obtain the following transfer function 

w(S) 
_K G(S) _-m V(s) [(Ra + Las)(Js + f) + KhK ] 

(4.8) 
K m 

) (S 2+ 2ýw11S + w2 11 

The output thrust force and the angular velocity are related through the following 

equation [4.5] 

Fr = yo) 

where y can be considered as a flow variable. 

(4.9) 

Combining Eqs. (4.2), (4.8) and (4.9) the following fourth-order transfer function is 

obtained for our system: 
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X(s) X(s) Fe(s) up(s) 
V (s) Fe(s) w(s) Va(S) 

S(1 + "tS)(S 2+ 2cu s+ o)n) 

Key characteristics we expect the Aquacube to show are behaviour partly as a Type 

1 system and a fourth order one with some underdamping effects. 

To calculate the system's overall response a series of frequency response tests 

were carried out. The test used was to give a sinusoidal control input to the PWM 

unit, whilst measuring the vehicle's depth throughout. From repetitions of this test at 

different frequencies in the range [0.35 - 5.236] radsec, the frequency response of the 

vehicle can be calculated. Figs. 4.3 - 4.8 show the response of the vehicle to sinusoid 

of various frequencies, where T represents the signal period. These figures graphically 

emphasise the dynamics of the vehicle. The dynamic behaviour of the thruster when 

coupled with other dynamic nonidealities such as drift, can result such nonlinear 

performance. 

The next step in system identification is to determine by means of practical 

testing, the transfer function or some equivalent mathematical description for the 

dynamic characteristics of the system components. Traditional experimental procedures 

involve subjecting the system to step, ramp, pulse or sinusoidal input variations, and 

then carrying out relatively simple analysis of the output response curves. If the 

transfer function is available in factorized form then the system frequency response 

can be shown in a Bode plot. This consists of two plots normally drawn on semi- 

logarithmic plot, log10 G(jo) , and a phase plot, L G(jw), both on a linear scale, 

against frequency cn plotted on a logarithmic scale. The magnitude is most commonly 

plotted is decibels i. e. 20 log10 G(jc)) I. One reason for this choice of graph is that, 

since the magnitude is plotted in logarithmic form, the overall magnitude and phase 

information can both be obtained from the component parts by graphical addition. A 

second important advantage of such a plot is that certain approximation using straight 

line constructions can be quickly drawn and often suffice for accuracy. 
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In our case the system identification problem is to estimate the dynamic characteristics 

of the Aquacube based on observed input-output data. The advantages of sinusoidal 

test inputs can be described form the point of view of the relative ease of signal 

generation and ease of analysis, and the physical understanding of system response 

which results. 

This section describes an alternative method of calculating the frequency 

response of the Aquacube prototype by the use an FFT-based algorithm. 

A physical process can be described either in the time domain, by the values 

of some quantity h as a function of time t, e. g., h(t), or else in the frequency domain, 

where the process is specified by giving its amplitude H (generally a complex number 

indicating phase also) as a function of frequency f, that is H(f) , with -- <f < oo. For 

many purposes it is useful to think of h(t) and H(f) as being two different 

representations of the same function. One goes back and forth between these two 

representations by means of the Fourier transform equations, 

HY) =f h(t) e 2" ̀f`dt 
(4.11) 

h(t) = 
JHWe2df 

In the time domain, function h(t) may happen to have one or more special symmetries. 

It might be purely real or purely imaginary or it might be even, h(t) = h(-t), or odd, 

h(t) = -h(-t). In the frequency domain, these symmetries lead to relationships between 

H(f) and H(-f). In the most common situations, as in our case, function H(t) is sampled 

at evenly spaced intervals in time. Let A denote the time interval between consecutive 

samples, so that the sequence of sampled values is 

hn = h(n0) n=0,1,2,3,4,... (4.12) 

The reciprocal of the time interval A is called the sampling rate, and in our case is 

equal to 0.3 seconds. For any sampling interval A, there is also a special frequency 

f, called the Nvquist critical frequency, given by 
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1 (4.13) fý 
2A 

The Nyquist critical frequency is important as it is related with the well known 

sampling theorem: If a continuous function h(t) is sampled at frequencies higher than 

this critical frequency, then the function h(t) is completely determined by its samples 

hn [4.81. 

We can now estimate the Fourier transform of a function from a finite N 

number of consecutive sampled values. With N numbers of input, we will evidently 

be able to produce no more than N independent number of output. So, instead of 

trying to estimate the Fourier transform H(f) at all values of f in the range -f to 

let us seek estimates only at the discrete values 

nNN fn= 
NA 

n=- 2,... ý2 
(4.14) 

The remaining step is to approximate the integral in Eq. (4.11) by a discrete sum 

[4.9]: 

N-1 N-1 

H(fn) _ 
Jh(t)e2tdt hke Zn'f, "A A hke 2(4.15) 

k=O k=O 

The final summation in Eq. (4.15) is called the discrete Fourier transform of the N 

points hk. Let us denote it by Hn, 

N-1 

Hh e2n`kn/N 
nk 

k=O 

(4.16) 

The discrete Fourier transform maps N complex numbers (the hk's) into N complex 

numbers (the H, 's). It does not depend on any dimensional parameter, such as the time 

scale A. The discrete Fourier transform has symmetry properties almost exactly the 

same as the continuous Fourier transform. The discrete Fourier transform can in fact 

be computed with a faster algorithm , the fast Fourier transform, or FFT [4.10]. 

Although there are a number of variants on the basic FFT algorithm, by far the easiest 
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case is the one in which the original N is an integer power of 2. In that case. if the 
length of the data set is not a power of two, then it should be padded it with zeros up 
to the next power of two. 

MATLAB [4.11] has a toolbox consisting of functions immediately useful for 

system identification. It is easy to compute the FFT for the sinusoidal inputs and the 

corresponding vehicle positions. Their absolute magnitudes and phases can be derived 

from FFT, and therefore the magnitude of the Aquacube's transfer function can be 

computed as the ratio of the output magnitude to the input one. Similarly, the phase 

of the Aquacube's function can be considered as the difference of the input phase 
from the output one. Figs. 4.9 - 4.16 show the spectra of the absolute magnitude and 

phase of two of the test data set. The spectral peaks are associated with particular bin 

numbers. The relationship between the bin number and the actual frequency is 

f= (bin -number - 1) * fr /N (4.17) 

where f is the sample frequency, and N the length of the data set. 

It can be seen that the spectral peaks correspond to the appropriate frequency 

of the input signal. The results of the frequency response are summarised in table 4.1 

and the open-loop Bode diagram is shown in Fig. 4.17. 

Frequency (rad/sec) Magnitude (cm - db) Phase(degrees) 

: 0.349 28.94 -130.0 

0.698 22.93 -140.0 

III : 1.309 13.90 -152.0 

IV: 1.745 11.17 -170.0 

V: 2.618 -1.73 -183.0 

VI: 5.236 2.85 -318.0 

Table 4.1 
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From a first look at the Bode diagram, one can spot the "spurious" absolute value at 

the frequency 2.618 rad/sec, which is due to the rather noisy input-output data set at 

that frequency. As we are moving to a higher frequency, we can notice a breakdown 

of the "linearity". At this particular frequency, the input magnitude spectrum has a 

clear peak at the 27th point. On the other hand, the output magnitude spectrum 

contains two similar peaks, one at 27th point ant the other, the higher, at 22nd. In that 

case, if we consider the 22nd point as the most appropriate one, the phase of the 

transfer function at this particular frequency is increased to -273°. 
It is very interesting to show how the fourth-order linear model, we have 

already described, can approximate this behaviour. 

We know that the logarithmic magnitude of (jco)-' in decibels is -20 loglo w db. 

At the first frequency point, cn=0.349 rad/sec, the contribution of this factor should be 

9.12 db. The difference from the actual magnitude is due to the constant gain 

parameter, which is assumed to be equal approximately 9.8. The second frequency 

point, co=0.698, proves the existence of these factors as their combination gives us a 

magnitude of 22.92 db, very close to the actual one. The third and fourth frequency 

point reveal the existence of the (1±jcoT)"' factor. The time constant T, is considered 

to be approximately equal to 1 second, which gives us reasonable results for the third 
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and fourth frequency point, 13.13 db and 9.02 db respectively. 
The 6th frequency point, w=5.236 rad/sec, depends on not only from the 

previous parameters but also from the quadratic factor which is shown in Eq. (4.10). 

Using log-magnitude curves for this factor, it is considered that the parameters ý=0.1 

and can=5.8 give reasonable results, i. e. 2.65 db. 

On the other hand, the phase-angle curve for these specific frequency points, 

starts at -105° for the first point, moves to -120° and -135° for the second and third 

point respectively, and ends to -210° for the 6th frequency point. 
The above results "drive" us to the question why one can consider neural 

approaches for modelling and control this URV prototype, while an approximate 
fourth-order model is sufficient. 

The linear model rely on the key assumption of small range operation in order 

to be valid. The sinusoidal input signal in our case is small in amplitude and well 

above from the thruster dead-band which can be considered as a "hard non-linearity". 

When the required operation range is large, then the current parameters of the model 

are not suitable and the linear model is likely to perform very poorly or to be unstable. 

Additionally, the dead-band phenomenon will affect dramatically its performance. 

It is our interest to show that a neural network approach can model the 

Aquacube in a large operation range and in addition, in the specific small operation 

range to perform as a linearised neural model. Therefore, in the next chapter the 

performance of recurrent neural networks will be investigated and the appropriate 

Bode diagrams for this small operation range will be plotted. 

We now compare the frequency-response curves of Fig. 4.17 with the 

corresponding curves for the Aquacube as they can be found in [4.2]. By examining 

the data from which that "Bode plot" was derived, we can conclude that they are not 

realistic by any means. For example someone can consider from these data, that the 

thruster is a linear system without any kind of dead bands. 

The transfer function which has been derived from this "Bode plot" can be 

found in 14.3] and has the following form: 
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and fourth frequency point, 13.13 dh and 9.02 dh respectively. 
The 6th frequency point, c,. w=5.236 rad/sec, depends on not only from the 

previous parameters but also from the quadratic factor which is shown in Eq. (4.1O). 

Using log-magnitude curves for this factor, it is considered that the parameters ý=O. I 

and co�=5.8 give reasonable results, i. e. 2.65 dh. 

On the other hand, the phase-angle curve for these specific frequency points, 

starts at -105° for the first point, moves to -120° and -135° for the second and third 

point respectively, and ends to -210° for the 6th frequency point. 
The above results "drive" us to the question why one can consider neural 

approaches for modelling and control this URV prototype, while an approximate 

fourth-order model is sufficient. 

The linear model rely on the key assumption of snmall range operation in order 

to be valid. The sinusoidal input signal in our case is small in amplitude and well 

above from the thruster dead-hand which can he considered as a "hard non-linearity". 

When the required operation range is large, then the current parameters of the model 

are not suitable and the linear model is likely to perform very poorly or to he unstable. 

Additionally, the dead-hand phenomenon will affect dramatically its Performance. 
It is our interest to show that a neural network approach can model the 

Ayuacube in a large operation range and in addition, in the specific small operation 

range to perform as a linearised neural model. Therefore, in the next chapter the 

performance of recurrent neural networks will he investigated sind the appropriate 

Bode diagrams for this small operation range will he plotted. 

We now compare the frequency-response curves of F 'I4.17 with the 

corresponding curves for the Ayuacuhe as they can he found in 14.21. By examining 

the data from which that "Bode plot" was derived, we can conclude that they are not 

realistic by any means. For example someone can consider from these data, that the 

thruster is a linear system without any kind of dead hands. 

The transfer function which has been derived from this "Bode plot" can he 

found in 14.31 and has the following form: 
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hidden layer. However, as in the case of polynomials, Fourier series, and general 

orthogonal functions, the Weierstrass theorem does not provide a recipe for the choice 

of the number of terms needed to achieve the approximation, i. e., the number of layers 

and numbers of nodes in each layer in the network. In practice, these have to be 

determined by trial and error in a specific context. However, as in the case of 

polynomials, too small a network may not be able to sufficiently approximate 

accurately the observed input-output data, while too large a network may not be able 

to sufficiently "generalise", interpolate, accurately. 

Poggio and Girosi [4.16] have also shown that the method of approximating 

functions also includes as special cases other powerful interpolation schemes such as 

the use of Radial Basis Functions (RBFs) which will be discussed in detail in a later 

section of this chapter. These networks may always be structured with only a single 

hidden layer and trained using linear optimisation techniques with a guaranteed global 

solution [4.17]. 

The Weierstrass theorem provides a sound basis for the use of MLPs and 

RBFs, since it assures that such networks can approximate a continuous function to 

any degree of accuracy. However, since polynomials, orthogonal functions, and splines 

can also be used to approximate such functions, it is not readily apparent as to why 

neural networks should be preferred. Hence, practical considerations generally dictate 

the choice of the specific class of functions used for approximation. Extensive 

computer studies carried out during the past few years have revealed that both MLP 

and RBF networks have some advantages over conventional methods for 

approximation. For example, polynomial approximations do not have good scaling 

properties and, in addition, are difficult to implement in hardware because of signal 

saturating effects of analog circuits. Further, when the polynomial is of high order and 

the magnitude of the input variable exceeds one, the output can be very large, 

resulting in numerical instabilities during the determination of coefficients. The basis 

functions for orthogonal series expansions are quite complex and generally given in 

the form of look-up tables. Hence, they are not particularly suited for real-time 

applications. In contrast to the above, neural networks are readily implementable in 

hardware and possess hardware robustness. As a consequence, neural networks have 
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the potential for being useful components in the design of complex robotic control 

systems. 

4.4 Non-linear System Modelling 

A major proportion of any control task is spent trying to form an adequate model of 

the plant. This is where it is claimed that neural networks have it great advantage over 

classical techniques because they can he "trained" with observed data from the real 

plant, to reproduce the characteristics of' the plant as a black box model. The neural 

networks are used as non-linear, multi-variable function approximation tools. The 

"training" involves the optimisation of' the weights in the network until the knowledge 

distributed among them is suf'ficient to provide a black-box model of the plant. 

A training set of input output pairs is needed to provide sufficient inl'ormation 

to model the non-linear system. An input signal must he chosen which will excite all 

the dynamic modes of the system and cover the whole amplitude range of' interest, 

otherwise the validity of' the model will become highly input sensitive. As a 

consequence of' the slightly positive buoyancy of' the vehicle, we found from 

experiments in it swimming pool that the thruster requires it Illlllllllllill value, which 

ranges in region cif 12 - 31 volts, in order to maintain or increase the current vehicle 

depth position. Therefore it is critical for the NN to learn this characteristic of the 

vehicle as the buoyancy adds an extra force toi the system. The training set consisting 

of' a series of step control signals is illustrated in Fig. 4.1 Ka. The reason of choosing 

this type of signals lies to the fact that due to the thruster stiction, as shown in Fig. 

4. I, alternative signals like RAS (Random Amplitude Signal) or sine waves, proved 

to he "poor" candidates for training the neural model of the vehicle. The two distinct 

areas in the step signal (positive and negative) provide sufficient information for 

modelling of the vehicle as it will he shown later in this thesis. A number of step and 

sine signals have been used to validate the various neural models, and this testing set 

is illustrated in Fig. 4.18h. Notice that this figure extends over pages 99 and 1(111. 

In a real system, the measurements of the training data are likely to he subject 

to noise, and the system output is going to he influenced by unpredictable 
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disturbances. The job of the neural network is therefore to find a generalisation which 

represents the underlying system, while ignoring the noise, or finds the underlying 

characteristics of the disturbances. 
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Figure 4.18b: Testing set for modelling the Aquacube 

4.4.1Modelling Configurations 

In general, identification of the plant should result in usable terms such as coefficients 

of a plant differential equation or coefficients of its transfer function. Without 

reference to any particular network structure we now discuss architectures for training 

networks to represent non-linear dynamical systems and their inverses. 

Forward modelling. The procedure of training a neural network to represent the 

forward dynamics of a system will be referred to as forward modelling. The basic 

configuration is shown in Fig. 4.19. 

Figure 4.19: Forward modelling 
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The neural network model is placed in parallel with the system and the error between 

the system and the network output (the prediction error) is used as the network 
training signal. The learning structure is a classical supervised learning problem where 

the teacher provides target values directly in the output coordinate system of the 

learner. 

Inverse modelling. Inverse models of dynamical systems play a crucial role in a range 

of control structures. Conceptually the simplest approach is direct inverse modelling 

as shown schematically in Fig. 4.20. Here, a synthetic training signal is introduced to 

the system. The system output is then used as input to the network. The network 

output is compared with the training signal (the system input) and this error is used 

to train the network. This structure will clearly tend to force the network to represent 

the inverse of the plant. 

Figure 4.20: Inverse modelling 

However, obtaining inverse models raises some drawbacks as: 

" The learning procedure is not "goal directed"; the training signal must be 

chosen to sample over a wide range of system inputs, to explore the 

operational range, without making explicit reference to the reference signals 

for which close loop control is required. 

0 If the non-linear system mapping is not one-one then an incorrect inverse can 

be obtained. This occurs for a system when, more than one value, say two, of 

input exists that corresponds to one value of output. It may be that the eventual 

mapping learned would somewhat tend to average the two, for example, 
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desired input values, but in no case can such identification of the system 
inverse be considered adequate. 

4.4.2 Identification of Discrete-Time Dynamical Systems 
Most physical systems are dynamic in nature and the identification of such systems 

using input-output data will naturally involve dynamic elements. One possibility is to 

introduce dynamics into the network itself. This can be done either using recurrent 

networks or by introducing dynamic behaviour into the neurons as it will be shown 
in the next chapter. A straightforward approach which will be followed here, is to 

augment the network input with signals corresponding to Input-State-Output 

Representation [4.18]. 

The representation of multi-input, multi-output dynamical systems using state 

equations is currently well known. These take the form, 

x(k+1) = f[x(k), u(k)] 
y(k) = h[x(k)] 

(4.19) 

where { u(k) }, { x(k) }, { y(k) } are discrete-time sequences. For a linear system that is 

controllable and observable, it has been proved that the initial state of the system can 

be computed from ii values of the input and output, and hence, any SISO system can 

be described by a difference equation of the form 

nb n, 

(k) _ -ý a, y(k-i) +Eb u(kJ) + e, e(k-l) (4.20) 
t=t j=t t=t 

where u(k) is the scalar input signal, y(k) is the scalar output signal of the unknown 

system, e(k) is the disturbance. Usually, it is assumed that e(k) is a zero-mean white 

noise process. It should be noted that the system model is driven by the deterministic 

input signal u(k) and disturbances (noise) e(k) while the user can control or measure 

u(k) but not e(k). In this model the present output signal is estimated as a linear 

combination of the past inputs and outputs of the system and the past samples of 

disturbances. In the identification literature the model described above is called the 

ARMAX model (autoregressive moving average with an exogenous signal). 
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There are several practically important special cases of the ARMAX model [4.19]: 

0 An autoregressive (AR) model, sometimes called an all-pole model, is obtained 

when nb = nc= 0. The AR model can be described by the difference equation 

Y(k) _ -ý a y(k-i) (4.21) 

In the AR model no deterministic input is used and only past values of the 

output are employed to predict its present value y(k). 

0A moving average (MA) model, sometimes called an all-zero model, is 

obtained when na= nb= 0, i. e. 

9(k) _ cl e(k-l) 
1=1 

(4.22) 

In an MA model no past values of the output are used and no deterministic 

input. 

0A mixed autoregressive moving average (ARMA) model is obtained when 

nb=0. Then 

nn 

9(k) = -E a1 
. 
Y(k-i) +EC, e(k-l) (4.23) 

i=i r=t 

Clearly, this class of stochastic models includes the AR and MA models as 

special cases. 

0A finite impulse response (FIR) model is obtained for na= n, = 0. For this case 

we have 

lln 

9(k) _b u(k j) 
j=1 

(4.24) 

0 An infinite impulse response (IIR) model, also called ARX or controlled 

autoregressive model, is obtained when n, = 0, i. e. 
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na n, 

9(k) _ -ý a; y(k-i) +b u(k J) (4.25) 
. =1 j=1 

The feature, that AR and IIR models can be formulated as linear autoregressive, is one 
important property since powerful and relatively simple algorithms and associated 

neural networks can be applied directly to estimating parameters of these models 

providing a tremendous speed. 

The AR model provides good results only if a dynamic system is linear or 

nearly linear. However, for highly non-linear systems the prediction by a linear AR 

model may be very poor or even completely wrong. Therefore, a more flexible and 

universal approach is to employ a neural network with non-linear processing units 

which will be able to approximate any nonlinear continuous function on the basis of 

training examples, and therefore such a model will be very general and flexible. 

Virtually, a neural network provides only a single-step prediction when the last 

available values of the given time series are applied to all inputs of the network. 

The identification problem using neural networks can be separated into three 

successive steps: 

(i) model building, 

(ii) the learning procedure (i. e. determination of the parameters of the model), 

(iii) testing or diagnostic checking. 

For the nonlinear system identification the models can take the general NARX 

(nonlinear autoregressive model with exogenous input) form [4.20] 

9(k) = F[y(k-1),..., y(k-n,, ), u(k-1),..., u(k-ne)] (4.26) 

where u(k) and y(k) are, respectively, the single input and single output of the system, 

assuming it as a SISO type. F(") is the unknown system function and y(k) is the 

estimated output of the system. The model described by Eq. (4.26) can be represented 

by a NN shown in Fig. 4.21a [4.21]. That model is quite general and rather difficult 

to learn (i. e. to identify and characterise) because of the relatively large number of 

unknown involved. For this reason this general model is usually simplified if some 

insights of the unknown system are available. Figs. 4.21b, c, d show such simplified 
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models proposed by Narendra and Parthasarathy [4.21]. All these models can be 

considered as an extension or generalisation of the linear infinite impulse response 
(IIR) model. 

For our application, the most general model will be considered. The choice 

of a specific class of networks for the approximation of a non-linear map depends 

upon a variety of factors dictated by the particular applications under study and is 

usually related to the desired accuracy, the prior information available concerning the 

input to the plant, and the analytical tractability of the resulting system. In modelling 

the Aquacube, we have considered only two classes of networks: 

(i) The Multilayer Perceptron (MLP) in which the adjustable parameters form a 

non-linear network, and 

(ii) Radial Basis Function Networks (RBFNs) in which the adjustable parameters, 

or weights, are adjusted as part of a linear network. 
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4.4.3 Modelling using Multilayer Perceptron Networks 
Using an expression corresponding to that of Eq. (4.25), a SISO non-linear forward 

model form using past values of the Aquacube input and output can be expressed as: 

y(t) = F( Y(t-1),..., y(t-n), u(t-1),..., u(t-m) ) (4.27) 

where y(t) and u(t) are the sampled system output and input at time instant t, n and 

m denote the number of past outputs and inputs respectively and F(. ) is the unknown 

non-linear function to be identified. 

Determination of the network's topology involves the appropriate assignment 

of the network's input nodes to past values of system inputs and outputs and the 

specification of the internal structure. Formal techniques for determining an optimum 

number of nodes in the hidden layers are still an area of current research and presently 

this task is often achieved by experimentation. An important factor when choosing the 

number of neurons for each layer is to make certain the network has enough neurons 

within the layers to carry out the task required. However a major problem when 

selecting a networks size is to ensure that it is not over filled with neurons. This 

restricts the networks knowledge to that of the training data. Thus the network will be 

no longer able to generalise when presented with new input data. 

In our case, best performance was achieved using a NN with two hidden 

layers, of 18 and 12 nodes each, with standard sigmoidal functions as the non-linear 

neural activation function [4.22]. Network training was undertaken by presenting the 

network with a data set of input-output values consisting of the control signals and 

depth indications from the vehicle. In a typical implementation, the error back- 

propagation (BP) learning is used, where the network weights are updated at each 

pattern presentation until learning is complete, i. e. the MSE (mean square error) is at 

acceptable levels. The learning rate was set at 0.1 and the momentum term at 0.2575. 

Knowledge of the system indicates that the vehicle with the surrounding 

environment is likely to exhibit predominantly fourth order dynamics. The network 

was configured in the following NARX model structure: 

V �1(t+l) = "(t), y P(t-1), y °(t-2) y `'(t_3)) (4.28) 
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with inputs consisting of one past control input and four past output data values from 

the plant, and the next plant output as the network output. In other words, the NN was 

trained as a one-step-ahead predictor, as it can predict the vehicle position a single 

step into the future. Fig. 4.22 shows schematically this configuration. The number of 
delays of the external input signal, and the number of delays of the feedback signal 

normally estimate the order of the unknown plant, and this is the only information 

about the plant needed to be known in advance. Attempts to use a smaller input vector 

failed to converge owing to the complexity of this underwater prototype. 

Figure 4.22: Feed-forward model for Aquacube 

In a different version, a NARX model structure with 6 inputs, one control signal and 

five depth indications, was used with similar results. Figs. 4.23 - 4.30 illustrate the 

validation of the network trained as a forward model using the BP algorithm and table 

4.2 summarises the results. 
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Test - files MSE for 5/18/12/1 net MSE for 6/18/12/1 net 

I: sine file 2 0.000372 0.000312 

II: sine file 1 0.001045 0.001168 

III: step-file 1 0.001100 0.001116 

IV: step-file 3 0.002377 0.001189 

Table 4.2 

An example of the MSE curve of trained sigmoidal network as a function of an 

output-layer weight is shown in Fig. 4.31. This curve shows a deep minimum which 

carved out by the back-propagation learning process. It becomes clear that BP is 

subject to convergence on local minimum. Also, this diagram reveals the networks 

fault tolerance. Due to the distributed information encoding, a varied weight has as a 

result a graceful degradation of network response. 

m 
0.0 2.0 4.0 6.0 8.0 

Figure 4.31: MSE curve 

In an alternative way, a neural network is directly trained to learn the inverse 

dynamics of our underwater prototype as shown schematically in Fig. 4.32. Training 
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can be performed off-line, and the trained network can be used directly as a feed- 

forward controller in a later stage. 

Figure 4.32: Inverse model for Aquacube 

Two different neural configurations have been specified, both with two hidden layers. 

As it had been suspected, longer time passed until the performance reach some 

acceptable levels. This fact reveals the difficulty in obtaining an inverse plant model. 

Two types of NARX configuration were used and they have been formulated as 

u(k) = F( y(k+1), y(k), v(k-1), y'(k-2), v(k-3) u(k-1) ) (4.29) 

for type I and 

u(k) = F( y(k+1), y(k), y(k-1), y(k-2), y(k-3) ) (4.30) 

for type II. Figs. 4.33 - 4.36 illustrate the validation of the inverse model and table 4.3 

summarises the results. 

Test - files MSE for 6/18/12/1 net MSE for 5/10/4/1 net 

I: Sine file 2 0.0710 3.20276 

II: Step-file 1 0.1725 3.22140 

Table 4.3 
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It is quite evidence that the performance of the inverse model is rather disappointed 

compared with the forward model. In practice, the u(k-1) signal is provided by the 

network itself by a delay-feedback, with a result that the network error is accumulated 

through the process and therefore it can be considered that an inverse network does 

not provide an efficient and robust model for our system. 

Despite the fact that the forward neural model is very accurate, that one-step- 

ahead predictor cannot be used independently for a plant as a simulation aid, or to 

provide long range predictions. The long-term prediction scheme will be considered 

in detail in the next chapter where novel architectures will attempt to approximate this 

problem. 
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4.4.4 Modelling using Radial Basis Functions networks 
An alternative model to the multilayer perceptron for the identification and time series 

prediction in the neural network employing radial basis functions (RBFs). RBFs are 

a relatively new approach in simulating neural networks. A generalised form of the 

RBF has found wide application in areas such signal processing and control 

engineering [4.23]. A RBF is a function which has in-built distance criterion with 

respect to a centre. Functions like this have been shown to be very effective for 

interpolation [4.24] and for smoothing of data. A recent application of RBFs is in area 

of neural networks where they can be used as a replacement for the sigmoidal 

activation function. A typical radial basis function neural network consists of three 

layers of neurons (input, hidden, output) which are components of a fully connected 

feed-forward architecture. The special radial basis behaviour is performed by the 

single layer of hidden neurons. The activation of a hidden neuron is determined in two 

steps: The first is computing the distance (usually by using the Euclidean norm) 

between the input vector x and a centre c; which represents the itli hidden neuron. 

Second, a function h which is usually bell-shaped (e. g. Gaussian) is applied, using the 

obtained distance to get the final activation of the hidden neuron. Typical choices for 

radial basis functions O(x) are 

" (D (r) =r piecewise linear approximations, 

" I(r) = r3 cubic approximation, 

" I(r) = exp(-r` / (7') Gaussian function, 

" J(r) = r2 log(r) thin plate splines, 

" c(r) = (r2 + 6) 1/2 multiquadratic function, 

" c(r) = (r2 + 62)-`/2 inverse multiquadratic function, 

where 6 is a real coefficient called the width or scaling parameter. From the above 

described functions we have used the widely used Gaussian function which has a peak 

at the centre c and decreases monotonically as the distance from the centre increases. 

Each hidden neuron may use a different standard deviation which performs stretching 

of the function along its single argument. To demonstrate this effect, each hidden 

neuron can be seen as a N-dimensional hypersphere, the radius of which is given by 

the standard deviation. Input patterns yielding a point inside of the sphere will lead 
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to a high activation of the corresponding neuron. Assuming a well-defined RBF neural 

network, the spheres which are represented by the hidden neurons cover the regions 

in vector space which correspond to the set of input patterns that are to be classified. 

The activation of a neuron in the output layer is determined by a linear 

combination of the fixed nonlinear basis functions, i. e. 

nk 

F`(x) =E Oij + 6`0,1 < 1< no (4.31) 
j=1 

where O are the adjustable weights that link the output node(s) with the appropriate 

hidden neurons. Fig. 4.37 shows a general RBF network with n inputs and a scalar 

linear combiner. 

Figure 4.37: An RBF neural network 

In general, a RBF network is specified by three sets of parameters: the centres c; E 

F, the width or distance scaling parameters ß; and the synaptic weights O , j. 

The width or distance scaling parameter is determined by using the "global 

first-iwighbour" heuristic [4.25]. It uses the uniform average width 6=< AXE for 

all units, where AXn, 
n 

is the euclidean distance in the input space between each unit 

m and its nearest-neighbour unit n, and <> indicates a global average over all such 

pairs. Although each hidden neuron may have a different width parameter 6h, a same 

width is sufficient for universal approximation. All the widths in the network can 

therefore be fixed to a value 6, and this can result in a simpler training strategy. As 

in the case of the MLP, although the theory guarantees the ability of a RBF network 
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with correct weights and centres to represent accurately an arbitrary continuous 
function, it does not provide information on whether or not these parameters can 

actually be learned using any existing learning law. A common learning strategy is to 

randomly select some network input vectors as the RBF centres, thus effectively fixing 

the network hidden layer. The weights in the output layer can then be learnt using the 

least-squares (LS) method. 

The present study adopts a systematic approach to the problem of centre 

selection. Because a fixed centre corresponds to a given regressor in a linear 

regression model, the selection of RBF centres can be regarded as a problem of subset 

model selection. The orthogonal least squares (OLS) method can be employed as a 

forward regression procedure which constructs RBF networks in a rational 

way[4.26][4.27]. The algorithm chooses appropriate RBF centres one by one from 

training data points until a satisfactory network is obtained. Each selected centre 

maximises the increment to the explained variance of the desired output, and so ill- 

conditioning problems occurring frequently in random selection of centres can 

automatically be avoided. 

In contrast to most learning algorithms, which can only work if a fixed 

network structure has first been specified, the OLS algorithm is a structural 

identification technique, where the centres and estimates of the corresponding weights 

can be simultaneously determined in a very efficient manner during learning. OLS 

learning procedure generally produces a RBF network smaller that a randomly selected 

RBF network [4.28]. 

For our case, the structure of the structure of the RBF network employed to 

identify the Aquacube was defined by 7 centres and 6 input units, i. e. one past input 

plant signal and 5 past output plant signals. The nonlinear activation function was 

chosen as the "bell-shaped" Gaussian function. Figs. 4.38 - 4.40 show how 

successfully the RBFN performed the one-step ahead prediction, and table 4.4 

summarises the results. 

Assuming that neural networks are to he used for function approximation, the 

immediate question that arises concerns the choice of the neural network architecture. 

A disadvantage of the MLP is that the weight parameters are embedded in a non- 
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linear feedforward process which usually necessitates a lengthy training process. 

Test - files MSE 

I: Step-file 1 0.003461 

II: Step-file 3 0.001893 

III: Sine file 2 0.002464 

Table 4.4 

In addition, the parameters can converge to local minima. The adjustment of a single 

parameter of the network also affects the output globally, and this factor contributes 

further to the slow convergence rates observed in training our network. 

In contrast to the above, the RBFN, with narrow receptive fields for the basis 

functions, is suited for faster learning, as noted earlier. However, for large numbers 

of input units, the number of radial basis functions required can become excessive. 

This implies that MLP is preferred when the dimensionality of the input space is high. 

Consequently, the a priori knowledge of the system in question affects the decision 

for the neural network architecture. 
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In this chapter, detailed studies were conducted oil the dynamics of' an underwater 

vehicle. The concept of' neural network modelling was introduced. Additionally, two 

different neural methods were discussed and their perflormance evaluated. Oinipared 

tco RßF network the popular MI, P network was found to he more accurate although 

the former was faster in training', time. 

l'he present Chapter aI"º> dealt with the difficulties in using the hackpwpagation 

fol. invrrsc ºiuýýlCI1iný. "I'he optimum choice OI* network site -encrally is dependent 

upOn the task it is required tu perform, Different MIT networks where designed with 

one and two, hidden layers respectively and the latter one proved tu he the hest, with 

a result all the niudelline results of this chapter tu he hatted oil that structure. 

In the next chapter we shuw how recurrent neural architectures can he used I'ur 

the modelling of the prototype t RV. 
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CHAPTER 5 

Identification of an Underwater Robotic Vehicle 

using Recurrent Neural Networks 

5.1 Introduction 

During the past decade, linear system identification has made major progress and 

many generic linear models, such as transfer models and convolution models, are 

available and widely used. For example, transfer function models have been used as 

fundamental tools for the design and analysis of control systems. However, linear 

models can only be used under limited conditions and special assumptions, because 

most physical systems behave non-linearly. Often, a nonlinear dynamic model is 

needed; thus nonlinear system identification becomes essential, especially when an 

analytical model is not available. 

A number of nonlinear models have been proposed in the past. Leontaritis and 

Billings [5.1] have presented a nonlinear autoregressive moving average with 

exogenous model inputs (NARMAX). A NARMAX model gives a description of the 

system in terms of a nonlinear functional expansion, such as a polynomial expansion, 

of delayed inputs, outputs and predicted errors. Besides to the classical non-linear 

models, neural networks have been used as an alternative non-linear system 
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identification by several researchers. 

An important class of ANN are the so called dynamic networks. The node 

equations in these networks are described by differential or difference equations. These 

networks are important because many of the systems that we wish to model in the real 

world are non-linear dynamical systems. It is possible to use a static network to 

process time series data by simply converting the temporal sequence into a static 

pattern by unfolding the sequence over time. That is, time is treated as another 

dimension in the problem. From a practical point of view we can only afford to unfold 

the sequence over a finite period of time. This can be accomplished by feeding the 

input sequence into a tapped delay line of finite extent, then feeding the taps from the 

delay line into a static neural network architecture like an MLP. 

In the previous chapter a feedforward network was employed as a NARX 

model for identification of a prototype URV. There, the network is fed with past 

system input and outputs and the next-step system output is predicted. That NARX 

configuration is referred to as a series-parallel method because the neural network is 

not only in series with but also in parallel to the system to be identified. The serious 

drawback with such feedforward networks is that they lack the ability to retain 

information for an arbitrary duration. On the other hand such systems are not resistant 

to background noise [5.2]. The small error between the neural output and the plant, 

inherent to the approximate model developed by the network, can cause some trouble 

in the case that the network tries to predict multiple steps into the future. The error 

can grow in a cumulative fashion over time, leading thus to large errors and to 

instability. Therefore, although feedforward networks have been applied to 

identification of the Aquacube URV with success, that structure cannot be used 

independently from the plant as a simulation aid, or to provide long range predictions. 

In contrast to the series-parallel model, the network can be arranged completely 

parallel to the system, which is therefore referred to as a parallel identification 

method. While the series-parallel method requires only a feedforward network, 

topologically, the parallel identification method results in a neural network with 

delayed recurrent connections from its output neurons back to its own input neurons. 

A neural networks with such recurrent connections is referred to as a time-lag 
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recurrent network. 

The use of recurrent neural networks as system identification networks offers 

a number of potential advantages over the use of static layered networks. Recurrent 

neural networks provide a means for encoding and representing internal or hidden 

states, albeit in a potentially distributed fashion, which leads to capabilities that are 

similar to those of an observer in modern control theory. Recurrent network 

architectures provide increased flexibility for the filtering of noisy inputs [5.3]. 

It is our purpose, in this chapter, to reveal the difference between the recurrent 

networks and feedforward networks in identifying dynamical systems. An accurate 

recurrent plant model is highly desirable since it can be used independently from the 

plant for separate dynamic simulation, whereas in the one-step ahead prediction 

structure the network is dependent on data immediately available from the plant. 

To date, the two most popular training algorithms for recurrent networks are 

techniques based on gradient descent. For purposes of training, the BPTT 

(backpropagation through time) algorithm [5.4], and the RTRL (real-time recurrent 

learning) [5.5] have large memory requirements, they exhibit long convergence times 

due to small learning rates that are required by these procedures, and they are often 

susceptible to local minima [5.6]. 

In this chapter, our primary objective is to create five-step ahead accurate 

recurrent models for our underwater prototype and with the requirement of short 

training time, alternative recurrent architectures are proposed and compared with the 

BPTT algorithm. In our case, each time step corresponds to the sampling interval 

which was set to 0.3 seconds. 

5.2 Fully Recurrent Back-propagation Rule 

Dynamic or recurrent networks are qualitatively different from static ones, because 

their structure incorporates feedback. In general, the output of every neuron is fed 

back with varying weights to the inputs of all neurons. A neural system composed of 

these elements, with all weights non-zero in general, is called a fully connected or 
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recurrent network. For systems with sequential input, it is important to employ 

feedback. This may be achieved in a number of ways, which can be divided into 

supervised and unsupervised methods for estimating the internal state of the system. 

Unsupervised recurrent networks deserve a mention, for their potential if not for their 

current degree of development. Here, the aim is to form a dynamical system such that 

the internal state retains the maximum amount of information from past inputs [5.7]. 

Historically, most connectionist research has concentrated on the supervised methods. 

5.2.1 Backpropagation Through Time (BPTT) 

Conceptually the simplest method is backpropagation through time [5.4]. Here, the 

technique is to convert the network from a feedback system into a purely feedforward 

system by unfolding the network over time. The idea is that if the system processes 

a signal that is t� time step long, then we create n copies of the network. The feedback 

connections are modified so that they are now feedforward connections from one 

network to the subsequent network as illustrated in Fig. 5.1. 

2 

Figure 5.1: Training with BPTT 

The equivalent static network has as many layers as time instants, therefore it is easily 

understood in the discrete time context. As illustrated in Fig. 5.1, one considers an 

input layer at time t as a layer next to the output layer at time t-l, from which the 

delayed recurrent signal comes. In other words, the recurrent network can be 

considered as a chain of small feedforward networks. Training such a recurrent 

network, however, becomes a question of convenience in terms of deriving derivatives 

for utilising gradient optimisation techniques. 
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Although, Werbos [5.8] in 1974 developed a chain rule for use with ordered 

dynamical derivatives, the conventional chain rule for partial derivatives can be 

defined as: 

<< aE 
u w" = w11° aw. 

( 
where E is a cost function which in our case takes the general form 

N 

E=2> (d; (T) - y, (ti))2 (5.2) 

, c=t. i=l 

and 

aE (5.3) 
a 

Wt; 
T=t 

The S; (i) parameter can be calculated recursively as follows: 

S, (ti) _Ew., (t, )f ' (x (ý+1))S =0 (5.4) 

; _l 

where 

d1('t) - y, (ý), if y1(ß) is a network output; 
ei(s) _ (5.5) 

0, otherwise, 

Note in the case of outputs that error signals may be produced in any layer, not just 

the last, and are propagated backwards from the layer in which they originate. The 

only real compilation is the constraint that all "copies" of each connection w; j must 

remain identical, whereas backpropagation would normally produce different 

increments Ow;, for each particular copy. The usual solution is simply to add together 

the individual increments and then change all copies of w1 by the total amount. 

The method is essentially non-recurrent, because it uses feedforward equivalent 

for learning, so there is no explicit use of the network's feedback. It requires recording 
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of the whole trajectories and playing them back to calculate the weights. However, 

once the weights are established the network runs as a recurrent one and this 

differentiates it from static backpropagation. 

The main problem with this backpropagation through time approach is the need 

for large computer resources. Storage needs, computer time for simulation, and 

number of training examples needed are all enlarged by the duplication of units [5.9]. 

For long sequences, or for sequences of unknown length, the approach becomes 

impractical. 

5.2.2 Real-Time Recurrent Learning Rule 

To overcome the limitations of the previous approach, an algorithm is needed that can 

train fully recurrent, continually running networks to implement dynamical systems 

described only by the temporal stream of their inputs and outputs. A powerful learning 

algorithm, called real-time recurrent learning, or RTRL [5.5] [5.10] is capable of 

training fully recurrent networks with the ability to process serial data. In fact, the 

topology that can be trained with this algorithm is very simple: it consists of just two 

layers, an input and an output layer. Furthermore, the neurons in the output layer must 

be fully interconnected with each other and each of them must also receive the output 

of all input neurons. Fig. 5.2 shows an example network. 

Networks of this type run continually in the sense that they sample their inputs 

on every update cycle, and any unit receive training signals on any cycle. The 

procedure differs from BPTT in that its ability due to continuous processing frees it 

from any requirement for a fixed, or even bounded, epoch length. RTRL differs from 

the procedures that use past states for current input in that it correctly does credit 

assignment to past events. 

The algorithm is a general derivation of the backpropagation rule, thus the 

same equation determines the global error value, but it requires much more 

calculations. Furthermore, the fully recurrent architecture it requires is not very 

desirable for the number of links increases quadratic as the network grows. 
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Figure 5.2: Example network that satisfies the RTRL requirements 

Below are the equations of this learning algorithm for updating the weights in a fully 

recurrent network. Assume that U is the set of output neurons and I the set of input 

neurons. The precise algorithm then consists of computing, at each time step t from 

t� to t,,, the quantities p; jk(t) using Eqs. (5.7) and (5.8), and then using the differences 

ek(t) between the desired and the actual outputs to compute the weight changes: 

Ow, 
ý(t) =a ek(t)PI; k(t) (5.6) 

keU 

where a stands for the learning rate and p; jk(t) is defined as: 

pijk(t+l) fI (Sk(t)) E 
Wkl pijl(t) + 8ik Zj(t)] (5.7) 

ICU 

with initial conditions 

ik(t) =0 (5.8) 

where fk'(sk(t)) is the derivation of the neuron output function with respect to the 
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activation value sk(t), 8; k denotes the Kronecker delta and z, (t) the output value of 

neuron jEUUI. 

From these equations it follows that each output neuron k needs to keep the 

values p; jk(t) of all links that run from neuron j to i and, because the change in weight 

is a sum of products of these values and the errors between desired and actual output, 

we need to do approximately k more multiplications and additions. Concluding, p1 k 

can be compared to b; j value of the standard backpropagation rule, but the actual 

weight change needs a lot more calculations which increase as the number of output 

neurons increases. 

While the RTRL algorithm is very powerful, it has two significant drawbacks: 

It requires a great deal of computation on each update cycle, and it is nonlocal. the 

amount of storage and computation required are independent of time but increase with 

the number of units in the network [5.11]. In sequential computers, the algorithm 

requires, for n units, a storage capacity of roughly n3, and a computation time on each 

cycle of order n4 [5.12]. The algorithm is nonlocal in the sense that each unit must 

have knowledge of the complete recurrent weight matrix and error vector. However, 

the algorithm is very parallel and in a parallel computer its computation time can be 

reduced to order n2log(n) by using a processor for each weight. 

5.2.3 Truncated Backpropagation Through Time 

The previous networks can be considered as non-effective due to the large 

computational requirements. Another approach, called Truncated Backpropagation 

Through Time, tries to approximate the true gradient by only unfolding the network 

over the last five time steps. In this case, only five copies of the network are made, 

normal backpropagation with weight sharing is used [5.13]. 

This approach is to build up predictions for the position of the underwater 

vehicle from predicted values in five earlier time periods. The whole scheme can be 

considered as a "shift register" with length sequence equal to five. At the beginning 

of each sequence, the network inputs are updated by the real system. 

For modelling the Aquacube prototype, a network with two hidden layers and 

a 6/20/ 14/ 1 structure was used. This structure corresponds to an NARX input topology 
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of one control signal and five position indications. 

As the trajectory unfolds over time t5, we can simply accumulate the values of 

weight change at each time step until the final time step. After the network has run 

through the specified trajectory, we alter each weight w1 by 

rs 

owj(t) (5.9) 

The error function used for deriving the weight change for each step can be defined 

by 

d(k) -O(k) 
ek = q=k-1 

(d(k) -o(k)) + D9(q) 
q=1 

for time step k=5 

for time step k=4,3,2,1 

where Ay(q) is given by 

D9(q) _S wv 

(5.10) 

(5.11) 

and represents the error contribution of the q internal feedback signal of the preceding 

time step. 

Figs. 5.3 - 5.5 show a segment of test data and the corresponding five-step- 

ahead predictions using this truncated method. 

Test - files MSE 

I: Step-file 3 0.029 

II: Step-file 1 0.023 

III: Sine file 2 0.124 

Table 5.1 
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As the neural network predicts only the next time step, it has to be chained to itself 

to go as far as the specified future horizon. The process can be considered as a 

moving window of width p=5 along the whole training set. Table 5.1 summarises the 

results and although the method gives reasonable results with step tests, in the sine test 

case the response was shifted, i. e. was out of phase. Despite these results, an 

enormous time, more than 15 hours, was needed for training. 
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5.3 Long Range Predictions using RBFNs 

In the previous section, a modified BPTT for modelling the Aquacube was discussed 

where the prediction horizon was set to five time steps. 

In this section, a first attempt to an autonomous iterative network response will 

be considered. In the previous chapter, the radial basis function network (RBF) using 

the OLS algorithm was applied for modelling the Aquacube in an one-step-ahead 

prediction scheme. The network was configured in the following NARX model, 

y m(t+l) =f (u(t), y p(t), y p(t-1), y n(t-2), y p(t-3), v P(t-4)) (5.12) 

The identified RBF network was then used to iteratively produce the network output, 

y "`fit+l) =f (u(t), y mit), y' (t_1), v'(t-2), y m(t-3), v "1(t-4)) (5.13) 

This scheme was used in order to demonstrate how well the identified RBF model can 

capture the underlying dynamics of our nonlinear system. 

Figs. 5.6 - 5.7 illustrate the autonomous response of the RBF network and table 5.2 

summarises the results. From these results it can be shown that the iterative network 

response closely matches the response of the Aquacube when a series of step signals 

are given as control input. 
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Test - files MSE 

I: Step-file 3 0.007 

II: Step-file 1 0.125 

Table 5.2 

The number of inputs to the network seems to be critical. An attempt to use an RBF 

network with fewer input nodes, i. e. one past input plant signal and 4 past output plant 

signals, was ended in failure due to the fact that this RBF- version model could not 

reproduce the effect of the buoyancy extra force to the vehicle. Fig. 5.8 illustrate this 

attempt. 
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It is very interesting to note that an RBF network can act simultaneously as an one- 

step-ahead predictor and as recurrent model. This fact is due to the particular spatially 

and parametrically localised network implementation. Due to the spatial decay rate of 

the Gaussian function, the partial derivatives of an input q quickly approach zero as 

q becomes different from the centre that corresponds to the particular Gausssian 

function. Thus, this network is spatially localised. In addition, a weight is adjusted 

only if it has a significant effect on the network output, so only a small number of 
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parameters will need to be adjusted for any input point; therefore, the network is also 

parametrically localised. 

As this RBF network is our first attempt to implement an autonomous recurrent 

network, it is very interesting to examine its performance for the same frequency 

response tests in order to derive a Bode plot for this network. Fig. 5.9 illustrates the 

network's behaviour for a sinusoidal signal with T=9 sec. 
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Table 5.3 summarises the results of the frequency tests using MATLAB and the open- 

loop Bode plot is shown at Fig. 5.10. 
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Frequency (rad/sec) Magnitude (cm - db) Phase (degrees) 

I: 0.349 29.34 -62.83 

II: 0.698 22.30 -61.68 

III: 1.309 19.54 -52.88 

IV: 1.745 19.55 -37.48 

V: 2.618 18.59 -19.66 

VI: 5.236 21.62 -1.07 

Table 5.3 

It is quite clear that the RBF network can be considered as a lead system compared 

to the Aquacube. Only at low frequencies the RBF magnitude seems to match closely 

to that of the real system. 

To illustrate the nature of the learning process in a RBF network, we have to 

point out one of the major drawbacks of such networks which utilise Gaussian units. 

The results of Poggio and Girosi [5.14] show that the spectrum of Gaussian which is 

also a Gaussian (this is true in the continuous domain while it is approximately true 

in the discrete domain) falls off very quickly. Above a certain cutoff frequency, its 

spectrum is almost zero everywhere if the widths of the Gaussians are large, a= 

4.2431 in our case. One has to use many Gaussian units to learn the high-frequency 

part of the mapping. This explains the intuitive arguments put forward by Weigend, 

Huberman and Rumelhart [5.15] against the use of Gaussian RBF's networks for 

learning complex mappings. One remedy for the problem is to use other kind of radial 

basis functions. Different types of splines could be alternative candidates [5.16]. This 

is to be investigated in a future work. 
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5.4 Spread Encoding Recurrent Networks 

General recurrent networks are of interest due to their ability to represent a large class 

of dynamic systems. Training algorithms for recurrent networks have been proposed 

and the most popular of them have been described in previous sections. However, 

these remain computationally intensive and thus are not very practical for 

implementing complex networks having many units. Alternative RBF networks with 

gaussian activation function have been proposed and despite the fact that the 

computational complexity and memory requirements are significantly decreased, their 

current performance remains rather questionable. 

Many problems, including ours, involve dynamic patterns and it is natural to 

reflect this by sequential information processing. There are two approaches to 

processing inputs in the time domain: one is to window the inputs and then treat the 

time domain like another spatial domain; alternatively, to use some internal storage 

to maintain a current state. 

It has been found that a major factor affecting the neural model prediction 

accuracy when it is acting as a recurrent model is the method by which data is coded 

in the network. The reason for this is because, as a recurrent model, any errors in the 

predicted output are fed back to the network inputs. Thus, an accumulation of errors 

can occur which significantly degrades the network performance. The conventional 

method of conditioning the data is to apply the scaled data to single nodes at the input 

and output of the network. 

An alternative form of representing the data, called spread encoding (SE), has 

been shown to enable a network to maintain a high degree of accuracy when operated 

in a recurrent mode by exploiting the network's fault tolerance [5.17]. The SE network 

is an artificial neural network with gaussian input windows. It can be considered as 

a generalisation of the backpropagation network proposed by Rumelhart, et al [5.18]. 

In this method, each data value is represented as the mean value of a sliding Gaussian 

pattern of excitation over several nodes at the network input and output. A similar and 

reverse procedure is applied at the network output to decode the output back into the 

original variable range. 
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The procedure is somehow similar to that of representing data in fuzzy membership 
functions [5.19]. Fig. 5.11 illustrate the internal architecture of this technique. This 

approach is partly motivated by neurophysiology and mathematics. In the brain, a 

spike that is sent by a neuron via an axon is not received as a spike by the receiving 

cell. Rather, the postsynaptic potential has a short rise and a long tail. 

tput 
er 

Sliding input 
layer 

Figure 5.11: Spread Encoding Neural Architecture 

A continuous valued variable, x, is coded in the range [xm; 
n, Xmax] to N network nodes 

in the following way. Each node is assigned a value, a;, linearly spaced by a distance, 

6, within the range of x and additional nodes are includes either side of the range to 

improve the representation accuracy at the data limits. The excitation of each node, 

yf;, is found by integrating over each class interval the bell-shaped function f(a) _ 

F(a), where F(a) has the following form: 

F(a) =1 (5.14) 
1 +e -(a-x)ßß 

Here, x is the value to be coded and 6 is a constant that controls the width of the 

excitation patterns. This particular excitation can be expressed as: 
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Neural 

. 
Networks 

a+8/2 

W` 
f [a f((X)lda (5.15) 1 

ai 
a -&2 

Eq. (5.15) is solved by integration by parts using Eq. (5.14) and can be solved 

analytically as follows: 

a; +8/2 a; +S/2 

Wi ai =fa f(a)da =Ja F'(a)da = 
a. -S/2 a -S/2 

(5.15a) 
c(, + 

«'+s/2 f F((x)da [oc 
a-S/2 

It can be shown that 

F(a)da = [(x - lnF(a)] (5.15b) 

leading to the result 

yJaý _[ a[F((x)-1] + 1nF(a) ]aa, 
--+S/2 8/2 

The network output is decoded simply by: 

y= aýýý (5.17) 

Note, that in [5.17], yf; is approximated by the trapezium rule, introducing in this way, 

a small error in inverting the code through Eq. (5.17). The width of an input window 

determines how much local temporal context is captured by a single connection. The 

gaussian input-window has the advantage that it provides some robustness against 

temporally misaligned input tokens. It is obvious that small misalignments of the input 

signal do not change the input of the receiving units significantly. The robustness is 

dependent on the width of the window. Therefore a wide window would make the 

input of the receiving unit more robust. The node excitations, i4;, in Eq. (5.15) were 
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scaled to the range [0.1,0.9] as in the conventional scaling technique and each data 

value was coded to an arbitrary 6 network nodes. This architecture motivates the 

concept of spatial localisation [5.20]. A network will be referred to as spatially 
localised if and only each and every adjustable parameter of the network has a 
significant effect on the network output only for a small subset of the input space. For 

such a network, the partial derivative of the network output with respect to any 

network parameter will only be significantly different from zero over a small subset 

of the domain. 

The network therefore was constructed with two hidden layers, in a NARX 

36/20/14/6 mode and the standard backpropagation rule was used for training. Fig,,. 

5.12 - 5.13 illustrate the validation of the network as a recurrent model and table 5.4 

summarises the results. 
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For long term prediction, the spread encoding network performance although 1e"s 

accurate than that in the one-step ahead prediction, tracked the plant output over the 

complete duration of the test. From these results, it should be noted that when the 

input to the thruster is below the critical range [2-3] volts, the movement of the 

vehicle depends primary on the forces from water inertia and buoyancy and not from 

the thruster itself. The neural network managed to model the buoyancy forces as well 

as the thruster characteristics, both of which are essential for control of the vehicle. 

Similarly to the RBF case, the calculation of the SE network response over the same 

series of sinusoidal tests was attempted. Fig. 5.14 - 5.15 show the response of the 

network to sinusoids of two different frequencies. 
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At this moment we have to emphasise the fact that although in previous cases the 

amplitude of the sinusoidal signals was set in the range 2.5 ±1 (in volts), here we have 

limited it to 2.0 ±1 (in volts). It should be noted that despite the fact that the critical 

point of "equilibrium" was identified from the SE network to be 2 volts, this can be 

considered acceptable as long as it lies inside the critical range [2 - 3] volts. The 

complete results of the frequency response tests are summarised in table 5.5 and the 

open-loop Bode plot, which was constructed using FFT methods, is shown in Fig. 

5.16. 
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Frequency (rad/sec) Magnitude (cm - db) Phase (degrees) 

I: 0.349 24.41 -61.80 

II : 0.698 19.12 -66.3 3 

III: 1.309 15.45 -67.73 

IV: 1.745 12.78 -71.60 

V: 2.618 9.628 -72.24 

VI: 5.236 4.96 -55.75 

Table 5.5 

Although the magnitude of the SE network seems to be in agreement with that of the 

Aquacube, the phase margin reveals a lead factor. On the other hand, this architecture 

"enjoys" a better flexibility than the previous RBF network. 
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In conclusion, we have to see this new architecture as a strong candidate for recurrent 

modelling despite the big size which decreases its effectiveness. 
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5.5 Internal State Recurrent Networks 

The representation of temporal knowledge and time correlation in neural networks 

presents a continuous challenge to researchers in the field of artificial neural networks. 
In the previous section, the so called "Windowed Input Network" has been applied for 

an iterative response modelling of the Aquacube. Another approach has been that of 

explicitly including the time dependency into the network structure. The commonly- 

used backpropagation algorithm contains no "memory", hindering the learning of 

temporal patterns. Here, the alternative is to use a dynamic network that is given some 
kind of memory to encode past history. This section describes an extension to error 

backpropagation that allows the nodes in a neural network to encode state information. 

Two recurrent architectures, the so called "autoregressive network" and a modified 

version of the well known Elman network, will be discussed as examples of internal 

state networks. 

5.5.1 The Autoregressive Backpropagation Network 

Recurrent neural networks have important capabilities such as attractor dynamics and 

the ability to store information for later use. However, the fully connected recurrent 

network, where all neurons are coupled to one another, is difficult to train and to 

make it converge in a short time. A new model called the autoregressive recurrent 

network (ARNN), which can converge in reasonable training time, is proposed and a 

generalised backpropagation algorithm is developed to train the ARNN. The idea is 

that we still use a recurrent neural network model but the recurrent neurons are 

decoupled so that each neuron only feedbacks to itself. With this modification, the 

ARNN model is considered to converge easier and to need less training cycles than 

the fully recurrent network. 

In backpropagation learning, the inputs to a neuron are multiplied by 

feedforward weights and summed, along with a node bias term. The sum is then 

passed through a smooth sigmoidal transfer function, producing the neuron's output 

value. This neural model has no memory, because the output value is independent of 
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previous outputs. 

Output Units 

rent Unfts 

Input Units 

Figure 5.17: ARNN architecture 

A novel multilayered recurrent neural network architecture is proposed in this section. 

The ARNN is a hybrid feedforward / feedback neural network, with the feedback 

represented by recurrent connections appropriate for approximating the dynamic 

system. The structure of the ARNN is shown in Fig. 5.17. 

There are two hidden layers, with sigmoidal transfer functions, and a single 

linear output node. The ARNN topology allows recurrency only in the first hidden 

layer. For this layer, the memoryless backpropagation model has been extended to 

include an autoregressive memory, a form of self-feedback where the output depends 

also on a weighted mum of previous outputs. 

A modified backpropagation algorithm is developed to train the ARNN. The 

mathematical model for the ARNN is shown below: 

Y(t) = 0(t) _ WrOQl(t), Q1 = f(Si), Si = wHZ(t) (5.18) 
ti 

k=5 

Z (t) = . 
f(H (t)), H (r) W; °Z (t_k) W, 

jI1, 
(5.19) 

k=1 

where I1(t) is the i`h input to the ARNN, H, (t) is the sum of inputs to the f" recurrent 
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neuron in the first hidden layer, Zi(t) is the output of the fh recurrent neuron, S, (t) is 

the sum of inputs to the l`" neuron in the second hidden layer, Q, (t) is the output of 

the l" neuron in the second hidden layer and O(t) is the output of the ARNN. Here, 

f (") is the sigmoid function and W', WD, WH, and W° are input, recurrent, hidden, and 

output weights, respectively. As it is shown from Eq. (5.19) the objective here is to 

demonstrate a five-step-ahead recurrent model of the Aquacube, therefore the number 

of memories was set to five. 

In order to perform gradient descent in weight space, each feedforward weight 

w; j, and each feedback weight w°k,, need to change proportionally to the negative of 

the gradient with respect to that weight. 

Let d(t) and y(k) be the desired and actual responses of the ARNN, then an error 

function for a training cycle can be defined as 

E_ [d(t) (5.20) 

The gradient of error in Eq. (5.20) with respect to an arbitrary weight W is 

represented by 

aE 
_ -e(t) 

ay(t) 
_ -e(t) 

aO(t) 

aW aW aW 
(5.21) 

where e(t) = d(t) - y(t), the error between the real system and the ARNN output. 

The partial derivatives are summarised as following: 

a0(t) 
= Q1(t) (5.22a) 

awl O 

ao(t) 
= f, (S1) W1° Z(t) (5.22b) 

aW 

ao(t) (t) az ýtD 
a w; ° aw; k 

144 



Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks 

ao(t =b (t) 
aJ 

(5.22d) a w,; awij 

where 

1(tý =fI (SI) WIOW1' (55"22e) 

Eqs. (5.22c) and (5.22d) contain recursive sub-terms which have the form 

az. (t) n=5 az'. (t-n) az. (o) '=f '(H. )(Z (t-k) +WD' =0.0 (5.23) 
aWjý 'l 

n=1 
Jn auljD aWJD 

and 

az. (t) n=5 
D 

az. (t -11) 
az. (O) 

'=f '(H. )(1. +E Win ' ), ' =0.0 (5.24) 
/ýe aWI n=1 aW, 

j/ aW, j! 

Eqs. (5.23) and (5.24) are nonlinear dynamic recursive equations for the state gradients 

and can be solved recursively in time with given initial conditions. In the case of the 

usual feedforward network, however, the recurrent weight W° is zero and they become 

algebraic equations. 

The negative gradients of the error with respect to weights are 

- 
aE 

= e(t)Q1(t) (5.25) 
awlo 

- 
aE 

= e(t) f'(S1)Wl° Z(t) (5.26) 
aWjH 

aE 
_ e(t)8 (t) 

a. (() 
(5.27) 

aw; ° a w; ° k 
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aE 
_ e(t)&(t) 

aZ (t) 
(5.28) 

a w,; J aWiJ 

The weights can now be adjusted following the steepest descent method, i. e., the 

update rule of the weights becomes 

W(n+l) = W(n) + T1(_ 
aE) 

+ a0W(n) (5.29) 
aw 

where the weight, W, can be Wo, WH, WD, or W'. Also il is the learning rate, a is the 

momentum factor, and OW(n) represents the change in weight in the n`h iteration. 

The ARNN was trained as a five-step-ahead prediction model for our 

underwater prototype. The five memories in each node at the first hidden layer allow 
the network to encode state information. A structure of 6/20/14/1 nodes has been used, 

with inputs consisting of one past control signal and five past depth indications. Figs. 

5.18 - 5.21 with modelling tests, illustrate the temporal nature of the "autoregressive" 

network and table 5.6 summarises the results. 

Although this method is dependent on the number of "memories" in the 

"recurrent" nodes and therefore it can be considered as a partially recurrent network, 
it proved to be the fastest in training time. From the simulation results, it can be seen 

that the nonlinear system identification using ARNN is very promising. On the other 
hand, the reduced number of training cycles makes this technique a strong candidate 

for use in real-time long range prediction controllers. 

Test - files MSE 

I: Step 
-file 

1 0.0207 

II: Step- file 2 0.0087 

III: Sine file 2 0.0050 

IV: Sine file 3 0.0053 

Table 5.6 
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5.5.2 Elman Network 
Recurrent networks with feedback exhibit a dynamic behaviour incorporating a 
temporal aspect not well conveyed by feedforward networks. They also create their 

own state variables and delays, thus requiring less information about the system being 

modelled. As an alternative to the ARNN architecture, the network developed by 

Elman [5.21] has a simpler architecture and it can work with the standard 
backpropagation learning algorithm. The context units of the Elman network memorise 

some past states of the hidden units, so the output of the network depend on an 

aggregate of the previous states and the current input. This is the reason that the 

Elman network possesses the characteristic of a dynamic memory. 

A block diagram of an Elman network is shown in Fig. 5.22. From this, it can 

be seen that in an Elman network, in addition to the input, hidden, and output units, 

there are also context units. The input and output units interact with the outside 

environment, while the hidden and context units do not. The input units are only 

buffer units which pass the signals without changing them. The output units are linear 

units which sum the signals fed to them. The hidden units have nonlinear sigmoidal 

functions. The context units are used only to memorise the previous activations of the 

hidden units and therefore can be considered to function as one-step time delays. The 

feedforward connections are modifiable but the recurrent are fixed. 

Output units 

Figure 5.22: The Elman network architecture 
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At a specific time t, the previous activations of the hidden units, at time (t-1), and the 

current inputs, at time t, are used as inputs to the network. At this stage the network 

is a feedforward network. These inputs are propagated forward to produce the output. 

The standard backpropagation learning rule [5.18] is then employed to train the 

network. After this training step, the activations, at time t, of the hidden units are sent 

back through the recurrent links to the context units and saved there for the next 

training step, i. e. time (t+1). At the beginning of training, the activations of the hidden 

units are unknown. Thus, they are usually set to one half of the maximum range of 

the value that the hidden units can take. For a sigmoidal activation function, the initial 

values can be set to 0.5. 

This network has been proved to be effective of modelling linear systems not 

higher than the first order [5.22]. For this reason, an idea based on the work of [5.23] 

was employed to configure a modified Elman network which is shown in Fig. 5.23. 

Here, self-connections are introduced in the context units of the network in order 

these units to gain individual "inertias". 

Output Units 

Figure 5.23: Modified Elman architecture 

The introduction of self-feedback in the context units increases the possibility of the 

Elman network to model high-order systems. Thus the output of the jth context unit 

in the modified Elman network is given by 
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xCi(t+1) = ox i(t) +x (t) (5.30) 

where xcj (t) and xj (t) are, respectively, the outputs of the jth context unit and the jth 

hidden unit and a is the feedback gain of the self-connections. 

It can be shown that: 

x,. (t+l) =x (t) + ax (t-1) + a2x (t-2) +... (5.31) 

Usually, a is between 0 and 1. A value of a nearer to 1 enables the network to trace 

further back into the past. During computer simulations [5.24], the modified network 

was able to model high-order linear systems, but its performance to nonlinear systems 

was questionable. 

To override these handicaps, a new Elman network structure is proposed for 

modelling our underwater prototype. From the linear analysis in the previous chapter, 

we concluded that our system operates partly as a type 1 integrator. The use of the 

Elman network for nonlinear systems and also the study of an efficient learning 

method for systems with integrators is a new goal to look in. 

As the first objective for this type of networks is to create five-step-ahead 

accurate prediction models for the Aquacube, we have extended Eq. (5.31) to 

x(j(t+l) =x (t)+ax (t-1)+a2x (t-2)+a3x (t-3)+a4x (t-4)+asx. (t-5) (5.32) 

In order to enhance network's performance we have added an extra hidden layer and 

replaced the linear output function with a standard sigmoidal one. Therefore a 

3/12/14/1 Elman network was applied with self-feedback in the 12 context units, with 

o. equal to 0.8. The input to the network consisted of the current control signal and 

the current and previous system position. That specific type of input was chosen in 

order to enable the network to emulate externally the integrator part of the Aquacube 

using input-output data. 

Figs. 5.24 - 5.27 illustrate the performance of this modified Elman network as 

a five-step-ahead predictor and table 5.7 summarises the results. 

The above observations suggest that the Elman network is effective for 

identifying nonlinear systems. The feedback gain a was found experimentally to be 
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equal to 0.8. Attempts to use a lower gain gave us poorer results and this fact 

indicates that in order to have long range prediction we have to trace further back to 

the past. Future work will examine new algorithms that enable an Elman network to 

find the proper value of a by itself. 
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Test - files MSE 

I: Step 
-file 

1 0.0112 

II: Step- file 2 0.0096 

III: Sine file 2 0.0129 

IV: Sine file 3 0.0210 

Table 5.7 

In summary, this approach of producing a dynamic memory is clearly simpler than the 

SE network with a result the computational burden to be substantially reduced. 

The above results indicate the opportunity to examine the performance of the 

Elman network in an autonomous iterative response. The SE and RBF networks have 

already proved their ability to work practically independent from a real system. The 

approach of producing such dynamic memory is simpler than the tapped-delay-line 

method commonly adopted in the previous techniques. For a single-input single-output 

system, as our underwater prototype, we are looking for a network with only one 

input line and one output line as required elements. This contrasts with the tapped- 

delay-line method where, during training, parts of the network inputs are derived from 

the system to be identified, but in recall these inputs are from the network, which 

makes the training structure different from the recall structure. Thus, for a single-input 

single-output network, good training results invariably lead to good recall results 

because there is no difference between the training structure and the recall structure. 

The existence of an integrator allow us to consider the following relation for the 

system output in the s-plane domain 

1'(s) =1 Y(s) 
s 

(5.33) 

Frone the above relation it is clearly shown that it is more convenient the Y(s) 

identification than that of the original y(s). Back to the t-plane domain, the above 
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relation is transformed to 

y(t) = y(t-1) +T Y(t) (5.34) 

where T is the sampling interval equal to 0.3 seconds. 

Therefore, using Eq. (5.34) a new approach for system identification, with an Elman 

network, has been obtained. The already known modified Elman version can be used 

with the control signal u(t) as the only network input and the Y(t) as the output. From 

Eq. (5.34) Y(t) is the vehicle's velocity. 

A structure of 1/14/1 has been used, with once again a nonlinear output node. 

As the network was trained to predict iteratively the velocity Y(t) term, as a 

consequence, Eq. (5.34) was employed to reconstruct the actual position. 

Figs. 5.28 - 5.31 illustrate the validation of this approach in a number of the 

autonomous iterative response tests, and table 5.8 summarises the results. The 

proposed modification has improved the versatility of the network. As shown from the 

sinusoidal tests the network appears to have a drift similar to the real underwater 

vehicle for the same signal amplitude. This fact, in conjunction with the simpler 

network complexity, prove that the current approach is better suited to this kind of 

sequence processing than the SE network. 
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Test - files MSE 

I: Step- file 3 0.0344 

II: Step- file 1 0.0040 

III: Sine file 2 0.0661 

IV: Sine file 4 0.0034 

Table 5.8 

The open-loop Bode plot, which again was constructed using an FFT technique from 

the same sinusoidal tests, is shown in Fig. 5.32, while the complete results of the 

frequency tests are summarised in table 5.9. 
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This plot shows the superiority of the proposed dynamic network over the SE and 

RBF networks. This study has thus made available a versatile network for system 

modelling based on the well known Elman network, without the serious drawbacks 

associated with other neural system modelling techniques. 

Frequency (rad/sec) Magnitude (cm - db) Phase (degrees) 

I: 0.349 26.235 -111 

0.698 20.129 -124 

III : 1.309 13.50 -100.85 

IV: 1.745 8.405 -116.35 

V: 2.618 4.254 -86.71 

VI: 5.236 -0.77 -266 

Table 5.9 
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5.5.3 Neural Network Identification using Spectral Functions 

Identification of time series signals has always been a challenging work to signal 

processing engineers and researchers. In previous sections, a Bode plot was 

constructed using an FFT technique through six frequency response tests. 

In this section we propose an alternative approach that is effective even for high noise 

time series signal identification using once again non-parametric methods such as FFT 

algorithms. The adopted approach is based on the evaluation of the power density 

spectra of the input and output signal of a system and the appropriate cross spectra 

[5.25]. Power spectral density is a function of frequency and it describes quantitatively 

how the energy in a signal is distributed over the frequency spectrum. Therefore, 

provided that the input to the system signal has a wide enough frequency spectrum 

then an estimate of the system can be made using only the information contained in 

a input-output data set. 

One suitable candidate is the so called "Pseudo Random Binary Sequences" 

(PRBS). These are very useful approximations to periodic white noise and are the 

forcing functions most widely used in statistical system testing. They are signals which 

can take on only two possible states, the state can change only at discrete intervals of 

time At, the change occurs in a deterministic pseudo random manner, and the sequence 

is periodic with period T= NAt, where N in an integer. 

The most commonly used type of PRBS is the maximum length sequence, 

which is of length N= 2" -1, where n is an integer. This can be generated by an n 

stage shift register with the first stage determined by feedback of the appropriate 

modulo two sum of the last stage and one or two earlier stages, as shown in Fig. 5.33 

[5.26]. The logic contents of the shift register are moved one stage to the right every 

At seconds. The output can be taken from any stage and is a serial sequence of logic 

states having cyclic period NAt. The two possible states of the register, '0' and 'I', 

can be transformed to any required minimum and maximum amplitude value. 
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ip flops 

two 

Figure 5.33: Generation of PRBS by shift register 

In the previous section a "discrete" Bode plot for the Elman network was constructed 

based on sinusoidal signals as input to the network. Here, the objective is to create a 

"continuous" Bode diagram by using PRBS signals and to compare the outcome with 

the previous results. 

For our case, a 63 bit PRBS signal of bit interval 0.3 seconds was used as 

input excitation. Fig. 5.34 shows the form of this signal where the maximum and 

minimum amplitude were set to 3.25 and 1.75 volts respectively. Experiments showed 

that a lower length sequence has an effect poorer results due to the short period of 

cross correlation of the system's output and input signal. 

Assuming that u(t) and y(t) are the system's input and output respectively, then 

by estimating the various spectra involved [5.27], the frequency function of the neural 

network can be estimated as: 

GN ; co) _ , 14 (5.35) 
(DU (w) 

where the cross correlation RY� (i), is defined as 

N 

J ('t) =N ý'(t+i)u(t) (5.36) 

and analog expressions for the others. Then, the estimation of the corresponding 

157 

Clock pulse (to shift contents every At sec) 



Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks 

spectrum is given by 

M 

(Dyu((j)) _MR u(t)WM(T)e , c=-M 

(5.37) 

and analogously for (D,, and (D Y. 
Here, WM (i) is the so-called lag window' and M is 

the width of the lag window. 
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Figure 5.34: Typical PRBS signal 

However, the disadvantage of this method lies to fact that poor results can be obtained 

as the level of internally generated system noise increases. In that case, filtering the 

data before the estimation can improve the fit in the interesting frequency bands. The 

MATLAB Signal Processing Toolbox [5.28] contains functions for designing and 

applying filters. In our case a fourth order Butterworth filter was used and Fig. 5.35 

shows the Bode plot obtained by evaluating the cross spectrum from the cross 

correlation function for the Elman network. 

158 



Chapter 5 Identification of an Underwater Robotic Vehicle using Recurrent Neural Networks 

100 
AMPLITUDE PLOT, input #1 output #1 

10-1 

10-2 

10-3 
10-2 

-100 

-150 

-200' 
10-2 

10-1 100 101 

frequency (rod/sec) 

PHASE PLOT, input #1 output #1 

10-1 100 101 

frequency (rad/sec) 

102 

Figure 5.35: Comparison of the Continuous Bode plot for the Elman network with the 
frequency response of the Aquacube (*) 

The results are clearly consistent with those we obtained from the "discrete" Bode 

plot, while the noise makes its appearance for frequencies beyond about 4 rad/secs. 

Our best fully recurrent neural network model matches the magnitude of the frequency 

response of the Aquacube very well, but it shows a sharp transition between the phase 

at low and high frequencies. 

Despite the lead that the Elman network appears to have over the Aquacube 

in the phase diagram, its high recall performance, as shown by the magnitude diagram. 

and its simple architecture, demonstrates its superiority for long-term prediction over 

other neural modelling techniques. 
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5.6 Conclusions 

In this chapter, the backpropagation algorithm is projected as an effective learning 

method for neural networks having feedback connections and memory neurons. 

In dynamic applications, the real computing power of connectionist models 

could be exploited only if the network itself is dynamical in nature. One approach was 

to window the network inputs and then treat the time domain like another spatial 

domain, with a result the development of the spread encoding network. 

Alternatively to introduce dynamics into the network by transferring the regular 

network neuron state to another set of "duplication" neurons called memory neurons. 

The modified Elman and the "autoregressive" networks were examples of such 

architectures. It was shown that memory neuron networks performed as accurately as 

the spread encoding network over a prediction horizon of five steps ahead, while they 

"enjoyed" a smaller network structure thus faster both in terms of training and recall, 

making them ideal candidates for the on-line control of our prototype URV. 
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CHAPTER 6 

Control of an Underwater Robotic Vehicle using 
Neural Network Approaches 

6.1 Introduction 

Automatic control, once regarded as exotic technology, has become commonplace. In 

consumer products automatic controllers regulate the temperature and humidity in our 

homes, the speed of our automobiles, the chlorine in our swimming pools, even the 

cooking of our food. Modern industry uses these systems in a myriad of applications. 

Without them large segments of the petrochemical, pharmaceutical, semiconductor, 

machine tool, and many other industries could not exist in their present form. Lacking 

automatic control we could not have gone to the moon, nor could we have produced 

most of our modern weapons systems. Most of these applications have developed 

within the past 50 years; prior to World War II automatic control was poorly 

understood and little used. Now, armed with better theory and growing demand, the 

number of systems is increasing exponentially, fuelled by an inexorable drive toward 

automation. 

Mathematical systems theory, despite its success with linear systems, is of little 

help with nonlinear systems; its results are sparse and system specific. Hence, for the 
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sake of mathematical tractability, nonlinear systems are usually analyzed by making 
linear approximations of their performance. While useful, this method never truly 

represents a real-world system. If for no other reason, physical systems are nonlinear 

due to their bounded outputs; they are unable to produce an output beyond some limit. 

This and more subtle deviations from linearity may make a linear system solution non- 

optimal, thereby producing unexpected performance degradation, instability, and even 

outright failure in practical applications. 

Some of the best examples of control are to be found in natural systems. 
Mundane activities that we and other biological organisms perform unerringly are well 
beyond the capabilities of our best artificial control systems. Walking on two feet, 

riding a bicycle, are feats that we take for granted but which we have not been able 

to realise in the machines of our design. The exceptional achievements of human 

control make the shortcomings of our conventional control technology seem all the 

more striking. 

The common thread in the above examples is the controlling mechanism, a 

biological nervous system. Our understanding of the brain at a detailed level is 

limited, but several abstract characteristics are well-known. The state of neither our 

knowledge nor our technology permits modelling the brain in a meaningful way. We 

can, however, develop computational methods that are brain-inspired. The hope is that 

some aspects of biological computation that are essential to the sophisticated control 

behaviour that it helps realise can thereby be captured. Arguments of vitalism aside, 

dispute the notion that more brain-like computational models should help produce 

more brain-like performance in areas such as control. 

The use of neural networks (NNs) in control applications, including robotics, 

and aerospace applications, among others, has recently begun a pattern of very rapid 

growth. In some cases, neural networks have been used to perform very narrow, 

specific tasks within a control system, such as pattern recognition or feature extraction. 

In other cases, neural networks have been used directly to output the signals which 

control motors, or actuators, or whatever needs to be controlled. The term 

neurocontrol refers to this case. 
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Neurocontrol is an important field of research for two reasons: 

0 Because of the contribution it may ultimately make to our understanding 

of the human mind 

0 Because it can enable the automated control of systems which could not 

be controlled in the past, for one of two reasons - the physical cost of 

implementing a known control algorithm, or the difficulty of finding 

such an algorithm for complex, noisy, nonlinear problems. 

Neural networks eliminate the need to set up and solve difficult nonlinear 

mathematical models; instead, the networks learn from examples to optimise 

performance regardless of the system's nonlinearity. Furthermore, they can be trained 

on-line to optimise continuously the system's operation despite a changing 

environment. Neural networks as a control technology is not necessary opposed to 

conventional control. Improvements in control systems can be realised through 

appropriate hybrids of neural networks and traditional techniques. 

This chapter will concentrate on backpropagation and its variations for control 

applications. Other artificial neural network techniques have been applied to control 

[6.1], but the backpropagation techniques are more fully developed. For automatic 

control, a backpropagation neural network has the advantages of a full nonlinear 

representation and a well developed learning algorithm. 

The next section presents various neural network methods for control. The 

objective in that section is to provide a foundation in neural network control. This is 

necessary to understand the proposed neural architecture and its relationship to other 

neural network controllers. The last section presents the proposed architecture as an 

efficient way of controlling nonlinear systems, such as URVs. 

6.2 Neurocontrol Structures 

The neural network makes use of nonlinearity, learning, parallel processing, and 

generalisation capabilities for application to advanced intelligent control. The range 

of neural network techniques for control is so large that it cannot be covered 

adequately in this section. Underneath the apparent complexity, required by specific 
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applications, there are really only five generic designs now used in neurocontrol. Each 

of the five does allow for some degree of variation. While the depth of presentation 

can vary greatly, an attempt will be made to convey an understanding of the basic 

principles governing each, as well as some idea of their areas of applicability and 

potential limitations. 

Supervised control. In many cases it is possible to perform a needed automatic 

control function by simply teaching a neural network to mimic the behaviour of an 

existing controller with a supervised learning algorithm. The existing controller can 
be a conventional one or a human expert. In the former case, this method seems, at 
first, ridiculous since a controller is already available. The existing conventional 

controller, however, may be impractical to implement. Barto in [6.2] mentions that a 

neural network may be able to provide the control using an input representation that 

is easier to measure than the representation required by the known controller. 

In the latter case, this technique assumes the availability of a human who performs 

adequately, and some motivation for producing a machine replacement, such as cost, 

speed, consistency, or safety [6.3]. Fig. 6.1 a shows how the neural network is trained. 

The network receives the same inputs as the human-the input x, and the state vector 

(the actual system output in this case). 

(4) 

PLANT 

input 

x 
Neural 
Network 

State 
Vector 

(b) 

Figure 6.1: Supervised control 
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The output of the network is compared with that of the human and the difference is 

fed back to modify the network's weights in a direction that reduces the error. When 

the network has been adequately trained, that is, when it responds sufficiently like the 

human throughout the operating range, training is terminated, the human is removed 

from the loop, and control is turned over to the neural network as shown in Fig. 6. lb. 

Supervised control is conceptually simple and easy to implement. However, it 

cannot improve upon the performance of the human who may operate in an 

unacceptable non-optimal manner. While less than satisfying from a theoretical 

standpoint, supervised control with NNs is assumed to allow access to some of these 

human abilities that have been optimised over thousands of years of evolution. 

Delta / Dual control. A neural network may be combined with another 

controller to enhance the overall control capability. This type of controller is illustrated 

in Fig. 6.2. It functions analogously to the integral term in a PID controller where the 

integral term minimises long term errors. 

Figure 6.2: Combining a conventional controller with a 
neural network 

An important application note for the dual controllers is that if feedback is used, then 

the feedback signal should be sent directly to the NN instead of providing the network 

with an error signal. The error signal does not contain the context information of the 

feedback data. Thus, with the error signal as input, the network is forced to find a 
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mapping without knowledge of where in the state space the error is generated. In a 

formal sense, this method is equivalent to a kind of adaptive critic design, which will 

be discussed later, where the critic has been fixed in advance. Its performance is 

highly sensitive to the quality of the fixed feedback system. 

Miyamoto, Kawato et al., [6.4] successfully used this method to train a 

functional network to control a robotic arm. Since then, many researchers have 

successfully replicated this design. 

Direct Inverse control. If a plant can be represented by an invertible function, 

a simple method of automatic control is possible. Fig. 6.3a shows the training phase 

where the network learns this inverse function. The network receives the plant state 

vector as input. The difference between the network output and the control input to 

the plant constitute an error signal used to adjust network weights. 

Once trained, the arrangement of fig. 6.3b is used to control the system. Since 

the composition of F(F-' )=1, the state vector equals the control input; therefore, to 

achieve a desired system output it is only necessary to provide it as input. This 

approach has been used to control the manufacture of thermoplastic composite 

structures [6.5]. The network was first trained by manually exercising the process over 

a range of control parameters. In performance comparisons with a linear PID 

controller, the neural network exhibited a lower tracking error, less noise sensitivity 

and higher robustness with respect to unknown process delays. 

In some cases this method has some serious problems [6.6]. The learning 

procedure is not "goal directed"; the training signal must be chosen to sample over a 

wide range of system inputs, to explore the operational range, without making explicit 

reference to the reference signals for which close loop control is required. This point 

is strongly related with the general concept of persistent excitation. 

The plant function also may not be invertible. If the nonlinear plant mapping 

is not one-one then an incorrect inverse can be obtained. For example, considering 

only the static problem, the plant may produce the same output for more than one 

input. Training to produce the inverse function would require the network to produce 

different outputs for the same input; a not achievable condition. If the system is 

considered dynamical, the situation is still more complicated. 

168 



Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches 

(a) 

Control State 
Input Neural Vector 

Network F DR. 

F-' 

(b) 

Figure 6.3: Control using the inverse function 

The frequency response of the plant may go to zero at some input frequency. Since 

this would require an infinite response from the neural network at this frequency, the 

inverse is again not physically realisable. 

With these caveats, the method of direct inverse control is still worthy of 

consideration if the characteristics of the plant are well understood, and its transfer 

function is known to be invertible. 

Neural Adaptive control. In designing nonlinear neural control systems, it 

seems reasonable to start with the successful models developed for linear systems, 

suitably modified to include neural networks. This is the approach taken by Narendra 

[6.7] who has shown a set of powerful and general methods for achieving stable 

adaptive control of linear time-invariant systems. He and others have this work to 

nonlinear neural network applications with considerable success [6.8], using structures 

similar to those developed for linear adaptive control systems, with nonlinear neural 

networks substituted for the linear processing elements. 

Fig. 6.4 shows an adaptive control configuration intended to produce a system 

capable of maintaining optimal performance despite variations in its environment. 
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Figure 6.4: Direct adaptive control 

Here, the control error ec (the difference between the actual and desired system output) 

is minimised by feeding it back to the controller, where it is used to modify the 

controller's characteristics in such a way as to reduce this error. The mechanism by 

which this modification is achieved constitutes a large part of the highly developed 

science of adaptive control. Again, linear systems have received most of the attention; 

the theoretical results for nonlinear systems are sparse and specialised. 

The configuration shown in Fig. 6.4 is called the direct method. Unfortunately 

there is no visible way to use it with nonlinear plants. The problem lies in the location 

of the unknown nonlinear plant. Lying as it does between the controller and the 

output, it seems that there is no way to determine the changes in the controller's 

response characteristics needed to minimise the control error. Psaltis and Sideris [6.9], 

introduced the concept of using the plant Jacobian, or sensitivity derivative, to allow 

errors at the plant output to be fed back to the network. This in not a new concept, 

the field of sensitivity modelling having been developed to provide estimates of these 

derivatives, for the use in gradient descent MRAC schemes. If the cost function is 

defined as J(W), then, knowing the Jacobian of the plant, the gradient of the cost 

function with respect to the P input cj, could readily be determined, with v, being the 

i`h plant output. 
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aJ(w) aj(w) a (6.1) a; ay; ac 
This gradient, which is produced at the output of the neural network, can now readily 
be fed back using the backpropagation learning rule. However, since it is to be 

assumed that little knowledge of the nonlinear plant is available, it would be difficult 

to obtain an analytical expression for the plant Jacobian. Numerical differentiation 

could be used to form an approximation to the Jacobian, but would of course suffer 

from large errors that plague such a technique. Alternatively, the ay/ac term can be 

obtained on-line from the incremental inputs and outputs of the plant dynamics, 

providing that the learning rate should be sufficiently small so that the weights of the 

network do not vary significantly at each instant. 

Fig. 6.5 shows the indirect method, a configuration that is useful for both linear 

and nonlinear plants [6.10]. An additional functional block called the identification 

model is required. During training, both the identification model and the plant receive 

the same input. The identification error, the model's deviation from the actual plant 

output, is used by backpropagation to adjust the model's weights. Once trained, the 

model's output will track the plant's output. 

Figure 6.5: Indirect adaptive control 
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Once the identification model has been trained to mimic the plant's input-output 

behaviour, it may be used in a procedure that minimises the control error by 

optimising the controller's weights. This process is easily understood by assuming that 

the controller and the identification model are cascaded neural networks. If the 

identification model's weights are "frozen" after training, the controller's weights are 

adjusted by backpropagation through the identification model along the path shown 

in Fig. 6.5. 

The case where the weights of the identification model, once set by training, 

are fixed should be considered as seldom. In general, the identification model must 

be updated periodically as the characteristics of the plant change with time and 

operating conditions. Another factor that forces retraining is the limited nature of most 

training sets. The ideal training set would constitute a complete, statistically accurate 

representation of the input data. This may not be possible in practice. Acquisition of 

such a set may be technically or economically infeasible, or it may be impossible to 

anticipate how the input data statistics will change over time. As a result, the 

identification model, as initially trained, may only accurately represent the actual 

plant's characteristics over a limited range. 

For these reasons, the identification model must be retrained, usually without 

disrupting normal control operation. This on-line retraining is desirable but 

complicated. Updating the model may produce complex interactions with the control 

loop, thereby interfering with correct operation of the overall control system. This 

problem may be alleviated by selecting different update rates for the identification 

model and the control variables. Empirically, the identification model is adjusted more 

frequently than the control variables for the sake of robustness. 

Reinforcement Learning control. Often a sequence of decisions must be made 

without an immediate indication of their effectiveness. For example, when playing 

chess there is no conclusive indication of performance until the last move has been 

made. Despite this lack of intermediate information, the skilful player has learned to 

make "good" moves at every step of the game. This points up the difficult training 

problem of credit assignment, that is, determining which series of actions should be 

reinforced when only the final result is known. 
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A reinforcement controller is trained with an error signal that is much lower 

in quality than the feedback signal in other controllers. The advantage is that the error 

signal is normally directly available from the environment with little or no processing. 

A reinforcement learning system requires two components: a search generator 

and a memory. The search element is necessary to explore the space of operation and 

elicit responses from the environment. The memory component uses the reinforcement 

signal to learn the operations that yield the best return. 

Often, a reinforcement signal is not available at every instance of time. Thus, 

the learning system must learn a proper series of steps instead of a single step. To 

speed learning when no reinforcement signal in present, Barto et al. [6.11 ] included 

an additional element, an adaptive critic, as shown in Fig. 6.6. The purpose of the 

critic is to predict the reinforcement given the current system state. The critic provides 

a reinforcement signal when the environment is not providing one. This greatly speeds 

the learning. 

Figure 6.6: Reinforcement learning controller with 
adaptive critic 

A difficulty with reinforcement learning is that because the reinforcement signal is 

only a single good/bad signal, the control network learns slowly in high dimensional 

spaces. 

Werbos [6.12] proposed a solution to this problem by adding a model network 

173 



Chapter 6 Control of an Underwater Robotic Vehicle using Neural Network Approaches 

between the critic and the controller. This configuration is illustrated in Fig. 6.7. The 

model network provides derivative information to the controller network to , peed the 
learning. 

Input 

Critic 

Neural Net. 
Plant Model 

R 

Reinforcement 
learning Plant 

Controller Control 
Signals 

Figure 6.7: Reinforcement controller with plant model 
assisting the adaptive critic 

The other facet of reinforcement learning is the search element. The search element 

is responsible for exploring the state space. It generates the test actions for probing 

the system. Much of the work to date has used random behaviour as the search 

element. However, Schmidhuber in [6.13] has proposed the use of a plant model for 

guiding the search. 

Details aside, the importance of the reinforcement learning controllers is that 

they actively participate and experiment with the environment instead of being trained 

off-line. As such they have a greater capacity for learning about and accommodating 

unforeseen events in the environment than do other neural control techniques. 
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6.3 Predictive Control Strategies 

In the previous section, the existing control schemes for learning control of dynamical 

systems were briefly discussed. It was shown that "model-based" algorithms can 

permit highly optimised control. 

Control design methods centred on the model based control concept are 

potentially very attractive for industrial applications. Model Predictive Control (MPC) 

is now widely recognised as a powerful methodology to address industrially important 

control problems [6.14]. The reason for such popularity is the ability of model-based 

predictive control to yield high performance despite significant unmeasurable change 

in the underlying physical behaviour of the plant that is controlled. The general 

strategy of MPC algorithms is to utilise a model to predict the output into the future 

and minimise the difference between the predicted output and the desired one. 

Such schemes have been proved to be very successful for linear systems [6.15]. 

Most of the MPC techniques are based on linear models and are thus not very well 

suited for the control of nonlinear systems. Because of this, there have been numerous 

efforts to extend MPC techniques for the control of nonlinear systems [6.16][6.17]. All 

of these efforts require the use of detailed fundamental models. In numerous occasions 

such models are unavailable; thus nonlinear identification techniques must be used in 

order to apply MPC methods to nonlinear systems. 

It is the ability of neural networks to describe and model many, if not all, of 

the non-linearities of complex systems which makes them ideal candidates for use 

within a predictive control scheme. 

This section illustrates how predictive control schemes can be used for the 

control of an underwater vehicle. Both the one-step-ahead and the long range 

(multi-step) predictive controller are considered and are evaluated on-line. 

6.3.1 Predictive Control using Feedforward Neural Networks 

We now propose an one-step-ahead prediction controller architecture for control of the 

nonlinear dynamics of our underwater prototype, the Aquacube. The controller 
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architecture should be designed with the goal of providing a nonlinear learning 

controller with stability assurances. Central to the controller design process is the 

feasibility to actually use. To address this issue, the proposed control architecture was 

tested with real time experiment using the prototype underwater robot in a swimming 

pool. 

The objective of the controller is to make the vehicle track a desired trajectory 

with minimum error. As the vehicle can be considered as a SISO system, the desired 

trajectory is related to the corresponding depth displacement. 

Our investigation relies on using a forward neural model directly, as part of a 

closed loop model predictive control scheme. Instead of using a transfer function, the 

controller is implemented as a finite optimisation procedure, which has to be solved 

for any time t. The possibility of handling constraints (such as limitations of the 

control values) by incorporating them into the optimisation objective gives MPC a 

special attractivity. Even for nonlinear systems, the stability of the closed loop system 

can be proven [6.18]. 

Model based predictive control comprises the following elements: 

" Prediction of plant output by means of a plant model. 

" Generation of a reference trajectory for a desired plant output, starting from the 

knowledge of the current plant state. 

" Calculation of the best control action to minimise the difference between 

predicted plant output and the reference trajectory. 

The algorithm of MPC is characterised by the following strategy: 

0A reference trajectory, a "prediction horizon", is calculated at each sampling 

time. 

0 Calculation of control input is based on prediction of plant output, and its 

comparison with the reference trajectory, repetitively over the whole process 

from now until the prediction horizon. 

In this general case, the control inputs which will optimise matching with the 

reference trajectory can cause the predicted output for the next sample to be different 

from the reference trajectory. This is in order to obtain a best fit over the whole of the 

reference trajectory. 
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However, in the first instance, we have chosen to simplify the general 

approach. Rather than predicting several sampling intervals ahead, we have chosen to 

attempt to control on the basis of a one-step-ahead prediction. 
The proposed MPC structure is shown in Fig. 6.8 [6.191, where D represents 

the delay of the output signal. In this structure the forward neural network is used to 

predict the next output response of the nonlinear system and in order to find the 

optimum controller input, a cost function of the form given below should be 

minimised: 

N Nu 

_ [ysp(t+J)-y, (t+J)]'+ ßE Au(k+i)2+X[v (t+1)-v(t)]2 (6.2) 

f=l i=O 

where NP is the output prediction horizon, N� is the control horizon, N,, p 
is the desired 

vehicle position, y., and y are the neural and plant outputs respectively. Lambda (k) 

is a damping factor that reduces jitter and therefore can be considered as a smoothing 

factor. In our trials, lambda (? ) ranged in the region of [0 - 8]. 

St 

Figure 6.8: Model Predictive Control scheme 

The above control structure includes a feedback to the setpoint, which ensures steady 

state accuracy. Alpha ((x) is a parameter which introduces a difference timescale for 
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changes in the modified setpoint and therefore improves robustness of the control 

scheme by reducing the effects of plant/model mismatch. As this control scheme is 

used to predict the next output response of the non-linear system, NP was set to 1 and 
Nu to 0. Beta ((3) is set to 0 because we are primarily concerned with reducing any 

underdamping using the parameter k. 

The operation of the MPC is as follows. At each time step, 300 msec in our 

case, the vehicle position is sampled and the error is computed. A feedforward 

multilayered neural network was used as a model of Aquacube. A structure of 

5/18/12/1 was used with two hidden layers, as this was proved to be sufficient 

accurate for one-step-ahead modelling of our underwater prototype. The neural 

network inputs are initialised to current and previous values of the vehicle position 

and input and a chosen value of u(t). Network initialisation and calculation of the cost 

function J are repeated with different values of u(t) and the value of u(t) that 

minimises the cost function is selected and applied to the thruster of the vehicle. 

D 

Nonlinear 
plant 

aetpoint 
Nonlinear 

_ PI/I optimiser 
-_ ri D 

Neural 
model 

actual output 
neural output 

Figure 6.9: Hybrid Model Predictive Control scheme 

Two alternative control strategies have been also introduced in this section. Unlike the 

conventional closed loop control, PI control for example, the main idea is to 

compensate the non-linear relation among the plant variables by introducing the 

proposed nonlinear neural optimiser in the loop as it can be shown in Fig. 6.9. In this 
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sense the PI controller regards our non-linear plant as a linear combined system with 

unit gain. 

Since the neural model is not perfect, the PI controller helps to reduce the 

sensitivity of the whole system against disturbances as well as provides zero steady 

state error by increasing the system type number. It is worth noting that the main 

improvement from the conventional PI approach results from the knowledge acquired 

by the NN during the training period [6.20]. We note that the performance of this 

scheme can be improved slightly by employing an integral control action only. This 

eliminates the overshoot behaviour which due to the proportional part of the controller. 

In the PI-MPC scheme, the settings for the conventional controller were K. = 

0.08, and K, = 0.02 sec-', while in the I-MPC case K; was set to 0.2 sec-'. 

Results from simulation of the proposed three methods are shown in Figs. 6.10- 

6.12 respectively. A spread encoding (SE) network replaced the real underwater 

vehicle, and the good tracking of the desired trajectory demonstrates the effectiveness 

of the above control architectures. 
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Figure 6.12: MPC with PI term in simulation 

Additionally, our one-step ahead predictive control schemes performed very 

satisfactorily under real operational conditions. In Figs. 6.13 - 6.16 we can see the 

results obtained from the Aquacube, in a swimming pool test, using the three proposed 

techniques. 
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It is worth noting that in the original MPC scheme, the increase of ? factor results in 

the expected smoother behaviour of the plant, in areas where the training was 

sufficient accurate. Setpoint changes were made through the whole operating range 

and from the above results it can be seen that the one-step-ahead prediction network 

has learnt to predict the vehicle's output and therefore the MPC brings the vehicle 

near the reference value. 

The network size and input configuration is a critical factor for the overall 

stability of the system. They are probably the most important parameters of the 

proposed neural network controller. 
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Fig. 6.17 shows the good tracking of the vehicle's position from the feedforward 

neural predictor and this fact demonstrates the capability of the proposed predictor to 

emulate the vehicle's response even under real operational conditions. 

Under the MPC scheme, the nonlinear optimiser is designed to command the 

vehicle for tracking a specified position (depth). The global operation of the MPC 

scheme is important from the aspects of stability and robustness, but more important 

is the way in which the vehicle is controlled. Fig. 6.18 illustrates the neural network 

control of the Aquacube. 

C 

4 
n 

2 

0 

0 
-2 

ö 
-4 

-A 

ýrý. f 

21 41 61 61 101 1Z1 141 161 181 

time (sec) 

s 

2.5 

1. ý 

1e 

0.5 

--eetpoint -control input 

Figure 6.18: Control input used in MPC 

Although the neural-predict-controller maintains good control of the vehicle, the above 

diagram reveals the cost of using one-step ahead prediction schemes. The control 

values are spread in a large operational area and by no means can be considered as 

smooth enough. This can be explained by the fact that as we are using one-step-ahead 

prediction schemes we did not optimise the control effort in a larger horizon, i. e. no 

emphasis on control limitations was given. 

However, this "problem" can be easily overcome by employing long range prediction 

control schemes, something that will be considered later in this chapter. 

The complete results from the experimental trials are summarised in table 6.1. 
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Method MSE setpoint - plant MSE plant - NN 

MPC 1X=3 0.0234 0.00162 

MPC 1X=6 0.0355 0.0018 

MPC 2 (NN + I) 2=4 0.0579 0.00045 

MPC 3 (NN + PI) X--4 0.0558 0.00044 

Table 6.1 

A number of other control strategies have been implemented and tested on the same 

vehicle under the same operating conditions, as we have already discussed in a 

previous chapter. A PID, for example, with specific coefficients "seems" to give 

satisfactory results. An attempt to test again the PID controller on the Aquacube, gave 

us the following results. 

I . "r. ýr.: ux: "tiv.. sý 
2 

1 21 41 81 81 101 121 141 151 181 
firne (904 

- SetpoEnt -- Aqusoube -, - PID conmd . Iprul 

Kp: 1.76,00: 0.18, Kd 0.2 

4 

These rather disappointing results can be explained by the fact that a PID controller 

was constructed according to the instructions given in [6.21], i. e. without including the 

positive offset to compensate for the effect of buoyancy. Similar results can be also 

obtained for the methods described in [6.22]. 
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6.3.2 Predictive Control using Recurrent Neural Networks 
The method presented in the previous section can be expanded in a straightforward 

manner to handle long range (multi-step) predictions. 

In the previous chapter, different recurrent network architectures for modelling 
dynamical systems, as our underwater prototype, were discussed. These architectures 

differ in their performance aspects in terms of computational complexity, mapping 

capabilities and convergence. 

The objective of this section is to solve the model predictive control problem 

when the model of the system is given by a nonlinear recurrent network. With the 

requirement of fewer weights and a shorter training time for the neural network model, 

the modified Elman and the "autoregressive" networks are proposed [6.23]. 

The recurrent-MPC structure consists of a recurrent neural model which is used to 

predict the next five output responses of the nonlinear system. According to this 

configuration, the following optimisation problem is to be solved: 

NN 
n 

O'[y, 
p(t+i)-yn(t+a)]2+E 

Au(k+J)2+X[v'�(t+l) y(t)]2 
(6.3) 

=i j=o 

where NP is the output prediction horizon, N� is the control horizon, 0 is a weight in 

the output error and 2 is a damping factor to suppress oscillations. the prediction 

horizon specifies the range of future outputs which are being considered in the 

minimisation, while the control horizon defines the number of control moves required 

to reach the desired objective. The role of the recurrent network is to provide the 

outputs predictions up to the specified prediction horizon. In our trials, the 0 value 

ranged in the region [1.2 - 2], while in the case of k in the region [0 - 4]. 

Depending on the control horizon specified, a range of future control moves 

may have been calculated at each sample instant. However, control is implemented in 

a "receding horizon" manner; i. e. only the first of the calculated control sequences is 

applied, so as to avoid uncertainties associated with extrapolation [6.24]. 

The optimal control, u(t), that will minimise the cost function, is determined 

by numerical methods like the Simplex method or the Rosen Gradient Projection 

Method. If the control horizon is shorter than the prediction horizon, the future control 
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after N� is held constant to u(t +Nu) [6.25]. In our case the prediction horizon was set 

at five and the control horizon at zero. In this configuration, the recurrent networks 
identify one-step-ahead model and use it recursively up to the pre-specified prediction 
horizon. 

Figs 6.19 - 6.20 show a simulation test of the long range prediction controller 
in which the prediction is made by the modified Elman and the "autoregressive" 

networks respectively. As in previous simulation tests, the real underwater system was 

replaced by a SE network. 
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Figure 6.19: Elman - MPC in simulation 
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Figure 6.20: "AR"-MPC in simulation 

The control algorithm was then tested with real-time experiments using the Aquacube 

in a swimming pool and performances can be shown in Figs. 6.21 - 6.23, while the 

complete experimental results are illustrated in table 6.2. 

It is clearly shown that the one-step-ahead network output of the recurrent 

networks matches closely to the one of the Aquacube. This fact reveals the power of 

recurrent links that can be found in both configurations. 

Although the "autoregressive" version of long term prediction control scheme proved 

to be superior than using the Elman network, both experiments demonstrated the 

effectiveness of the recurrent-MPC in keeping the vehicle at a specified constant depth 

with the minimum required control effort. 
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Figure 6.21: "AR" MPC with a=0.999 
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Method MSE setpoint - plant MSE plant - NN 

AR a=0.999, 0.0523 0.000516 

X=4,0=1.8 

AR a=0.2, 0.0547 0.000590 

A, =4,0=2 

Elman a=0.5, 0.0555 0.000748 

X4,0=1.8 

Table 6.2 
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Another parameter having significant importance in the controller performance is the 

measurement noise. The results showed the ability of the recurrent MPC scheme to 

adapt the measurement noise, a phenomenon which is found in any real experimental 

test. 

The good results obtained with recurrent networks are due also to the fact that 

minimum control effort was used to achieve the specific performance. The control 

values are smoother than those of the one-step-ahead control are shown in Fig. 6.24 - 
6.25. 
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Figure 6.25: Control input for Elman network 

As the plant is a nonlinear system, and the Elman net did not mimic exactly the 

dynamics of the plant, a small offset error was produced. This offset error can be 

quickly eliminated either by adaptation of NN if learning is kept active, or if the 

whole MPC scheme might be connected, using an outer loop, with an integral term. 
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CHAPTER 7 

Conclusions and Recommendations 

7.1 Conclusions 

The primary thrust of this research was to demonstrate practical techniques for 

nonlinear control. The main issues of the study were learning methods for modelling 

and control of a Single-Input-Single-Output underwater vehicle. 

The application of neural networks to complex systems is not new. It has been 

shown to be quite successful for land vehicles [7.1]. However, for the additional 

complexities of an environment such as the sea, the research has just started. 

The well known backpropagation algorithm is introduced as a universal 

learning algorithm for models. The universality of the algorithm is demonstrated by 

studying it on a number of different network architectures. We have demonstrated this 

property on modelling a complex nonlinear system such as an real underwater vehicle. 

It is to be emphasised here that for dynamic modelling tasks, the generalisation 

capabilities of the learning algorithm may be more important than the training time. 

Generalisation refers to the ability of the trained networks to correctly interpret a new 

set of input data from the same domain of the training data. It is the capability of the 

networks to learn the regularities in the input data rather than performing a simple 

"look-up table" operation. 

190 



Chapter 7 Conclusions and Recommendations 

A neural network was configured to represent the dynamics of the vehicle in 

a NARX model scheme and this approach has been found to provide good modelling 

results as the network was capable to predict the next vehicle's position. 
The universality of the backpropagation is further investigated by analysing 

recurrent networks for long range predictions of the vehicle dynamics. Three new 

schemes for recurrent modelling using gradient based neural network approaches are 

proposed in this thesis. 

In dynamic applications, the real computing power of connectionist models 

could be exploited only if the networks themselves are dynamical in nature. Two 

approaches to processing inputs in the time domain have been applied: One was to 

window the inputs and then treat the time domain like another spatial domain, with 

the result the development of the spread encoding network. 

Alternatively to introduce dynamics into the network by transferring the regular 

network neuron state to another set of "duplication" neurons called memory neurons. 

The modified Elman and the "autoregressive" networks are examples of such 

architectures. The learning, generalisation and temporal information extraction abilities 

of these architectures were studied on modelling the underwater vehicle and the results 

confirmed that they can be used as efficient neural prediction models. 

Although there is a growing interest in applying neural networks to nonlinear 

systems, little work has been reported on using such networks for real-time control. 

Two predictive control approaches for the learning control using one-step-ahead 

and five-step-ahead prediction neural networks are proposed. The proposed schemes 

are evaluated both in simulation and on-line and are shown to provide very good 

tracking performance. It is shown that long range prediction schemes improves the 

tracking performance of the system significantly compared to the one-step-ahead 

prediction controller. Additionally, hybrid control strategies which combine neural 

predictive with conventional controllers are investigated and the results show us the 

possibility of an effective integration of two different kind controllers. 

Using the proposed control schemes a new application for the neural networks 

concerning the learning control of underwater vehicles is portrayed. 
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7.2 Recommendations 

Conclusions and Recommendations 

This research has provided foundation for a number of possible theoretical as well as 

practical extensions. The most important of them include the development of a neuro- 
fuzzy system for modelling and control complex nonlinear systems and the 

implementation of such learning systems in a VLSI form. 

Neural networks and neurocomputations in general, imply an implicit character 

of knowledge being acquired from a family of training patterns and distributed along 

the connections of the structure within their learning. Accepting this point of view one 

can think of neural networks as structure-free and fully distributed models. The 

distributivity of computations contributes to profound learning capabilities as the 

individual computing elements in the network are capable of adjusting their 

connections to carry out the best possible mapping for the training set of patterns. 

While the computational distributivity enhances learning, this also makes it almost 

impossible to come up with a reasonable interpretation of the overall structure of the 

network in the form of easily comprehended explicit logical constructs, like "if-then" 

statements. In contrast to the implicit character of the knowledge that has been 

"coded" into the network, different knowledge representation schemes used in 

symbolic computations code the domain knowledge in an explicit manner. 

On the other hand, fuzzy logic based design for control has several advantages 

including simplicity and ease in design. However, as the system complexity increases, 

it becomes difficult for the fuzzy logic to determine right set of rules and membership 

functions to describe the system behaviour. 

Use of neural networks to learn system behaviour seems to be a good way to 

solve the above mentioned problem. This problem can be solved by defining a fuzz}' 

error that is propagated back through a neuro-like architecture of the fuzzy controller. 

According to this fuzzy error, the strength of its antecedent, the current state of the 

controlled system, and the control action derived from the conclusion, each fuzzy rule 

determines its amount of error and tunes the membership functions of its antecedent 

and its conclusion. By this we can get an unsupervised learning technique that enables 

a fuzzy controller to adapt to a control task by knowing just about the global state and 
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the fuzzy error. 

Conclusions and Recommendations 

As an extension to the above technique, a hybrid learning procedure can be 

used, where the neuro-fuzzy inference system can construct an input-output mapping 
based on both human knowledge (in the form of fuzzy "if-then" rules) and stipulated 
input-output data pairs. 

Artificial neural systems are currently realised in a number of ways. In this 

work, they have been implemented in software. For the best results and real-life 

applications, however, neural networks need to be implemented either as a hardware 

emulation or as special-purpose hardware integrated circuit. 

There have been a number of researchers trying to implement neural networks 

using arrays of Transputers. Although Transputers are very popular nowadays due to 

their very high performance / price ratio, the implementation of m nodes of a neural 

network to an n Transputer array suffers from communication overhead. According 

to the GALATEA European project [7.2], Philips Co. reports that the speedup of their 

Transputer system was lower than the expected one, and this fact led the company 

to replace Transputers by Digital Signal Processors (DSPS) in their GPNC (general 

purpose neurocomputer hardware) demonstrator. DSPS offered the following 

advantages: fast scalar operations (10 x over Transputer); higher bus bandwidth. 

Special-purpose hardware has recently become available to replace 

microprocessors and digital signal processors for neural network implementations. The 

new hardware builds on the parallelism within neural networks to provide a large 

increase in speed at about the same cost. It can be several thousand times faster than 

the previous approaches. 

Neural network applications suitable for implementation in digital VLSI cover 

a wide spectrum, from dedicated feedforward networks for real time feature detection 

to general purpose engines for exploring learning algorithms [7.3]. Digital 

implementations use either parallel or bit-serial arithmetic and the majority of them 

include some form of on-chip learning. 

Although digital simulation is the usual way of implementing a neural network, 

the concept is essentially analogue. New hybrid designs are of interest where weights 

will be stored digitally while the computation of the inner product will be performed 
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in an analogue domain. 

Conclusions and Recommendations 

The combination of specialised hardware and advance algorithms will offer the 

practical engineer a new tool, moving electronic technology closer to the human 

domain. 
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APPENDIX A 

"AQUACUBE" DESIGN 

In order to validate the effectiveness of neural control strategies for the control of 

underwater vehicles, a vehicle which would operate with only one degree of freedom 

was constructed. Since the easiest positional parameter to measure is depth, using a 

pressure transducer, a simple vehicle was designed and constructed to house one 

thruster aligned vertically, and a pressure transducer. This simple one dimensional 

model was called the Aquacube due to its simplistic shape. A drawing of this 

prototype vehicle is shown in Fig. Al. 

The Aquacube has a single thruster mounted in a steel endoskeleton. 

Positioning the thruster in this manner reduces axial and cross flow effects. A 4-2OmA 

current loop pressure sensor is added to the vehicle for measuring depth; sufficient 

buoyancy is added to the vehicle to make it slightly positively buoyant. Without any 

drive power, the vehicle will usually tend to drift upwards because of this positive 

buoyancy. All information and power is transmitted via a umbilical which is non- 

tensioned and made approximately neutrally buoyant, in order to minimise the static 

forces. Fig. A2 illustrates Aquacube at its physical environment. 

For ease of development, and because of the simplicity of the system, a 

Personal Computer, with suitable interface boards, was used for control and data 

logging. Motor control has been particularly difficult on two accounts. The first was 

the marinization of the motor housing to provide reliable operation and the second was 

the best method for motor drive. 
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In addition to the non-linear characteristics in axial flow machines, the stiction 

in the thruster at low speeds and the required starting torques coupled with , 
forced 

us to control the thruster using a Pulse-Width-Modulation drive system. The 

modulation frequency was 20 kHz and the motor voltage was ±25V with a current of 

20A peak. Noise interference from the umbilical to the sensor signals needed special 

consideration in order to reduce it to an acceptable level. 

It is on this model that all the neural strategies have been carried out. In 

addition, the vehicle's small size and weight gave us a more convenient test bed for 

experimental purposes rather than one with a larger and more complex design. 

I, 

Figure Al: The Aquacube prototype vehicle 
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