21 research outputs found

    Watermarking technique for wireless multimedia sensor networks: A state of the art

    Get PDF
    Wireless multimedia sensor networks (WMSNs) are an emerging type of sensor network which contain sensor nodes equipped with microphones, cameras, and other sensors that produce multimedia content. These networks have the potential to enable a large class of applications ranging from military to modern healthcare. Multimedia nodes are susceptible to various types of attack, such as cropping, compression, or even physical capture and sensor replacement. Hence, security becomes an important issue in WMSNs. However, given the fact that sensors are resource constrained, the traditional intensive security algorithms are not well suited for WMSNs. This makes the traditional security techniques, based on data encryption, not very suitable for WMSNs. Watermarking techniques are usually computationally lightweight and do not require much memory resources. These techniques are being considered as an attractive alternative to the traditional techniques, because of their light resource requirements. The objective of this paper is to present a critical analysis of the existing state-of-the-art watermarking algorithms developed for WMSNs

    A Secure Cluster-Based Multipath Routing Protocol for WMSNs

    Get PDF
    The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption

    A Fusion-Based Framework for Wireless Multimedia Sensor Networks in Surveillance Applications

    Get PDF
    Multimedia sensors enable monitoring applications to obtain more accurate and detailed information. However, the development of efficient and lightweight solutions for managing data traffic over wireless multimedia sensor networks (WMSNs) has become vital because of the excessive volume of data produced by multimedia sensors. As part of this motivation, this paper proposes a fusion-based WMSN framework that reduces the amount of data to be transmitted over the network by intra-node processing. This framework explores three main issues: 1) the design of a wireless multimedia sensor (WMS) node to detect objects using machine learning techniques; 2) a method for increasing the accuracy while reducing the amount of information transmitted by the WMS nodes to the base station, and; 3) a new cluster-based routing algorithm for the WMSNs that consumes less power than the currently used algorithms. In this context, a WMS node is designed and implemented using commercially available components. In order to reduce the amount of information to be transmitted to the base station and thereby extend the lifetime of a WMSN, a method for detecting and classifying objects on three different layers has been developed. A new energy-efficient cluster-based routing algorithm is developed to transfer the collected information/data to the sink. The proposed framework and the cluster-based routing algorithm are applied to our WMS nodes and tested experimentally. The results of the experiments clearly demonstrate the feasibility of the proposed WMSN architecture in the real-world surveillance applications

    Copyright protection of scalar and multimedia sensor network data using digital watermarking

    Get PDF
    This thesis records the research on watermarking techniques to address the issue of copyright protection of the scalar data in WSNs and image data in WMSNs, in order to ensure that the proprietary information remains safe between the sensor nodes in both. The first objective is to develop LKR watermarking technique for the copyright protection of scalar data in WSNs. The second objective is to develop GPKR watermarking technique for copyright protection of image data in WMSN

    Wireless multimedia sensor networks, security and key management

    Get PDF
    Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. These mentioned characteristics, challenges, and requirements of designing WMSNs open many research issues and future research directions to develop protocols, algorithms, architectures, devices, and testbeds to maximize the network lifetime while satisfying the quality of service requirements of the various applications. In this thesis dissertation, we outline the design challenges of WMSNs and we give a comprehensive discussion of the proposed architectures and protocols for the different layers of the communication protocol stack for WMSNs along with their open research issues. Also, we conduct a comparison among the existing WMSN hardware and testbeds based on their specifications and features along with complete classification based on their functionalities and capabilities. In addition, we introduce our complete classification for content security and contextual privacy in WSNs. Our focus in this field, after conducting a complete survey in WMSNs and event privacy in sensor networks, and earning the necessary knowledge of programming sensor motes such as Micaz and Stargate and running simulation using NS2, is to design suitable protocols meet the challenging requirements of WMSNs targeting especially the routing and MAC layers, secure the wirelessly exchange of data against external attacks using proper security algorithms: key management and secure routing, defend the network from internal attacks by using a light-weight intrusion detection technique, protect the contextual information from being leaked to unauthorized parties by adapting an event unobservability scheme, and evaluate the performance efficiency and energy consumption of employing the security algorithms over WMSNs

    Secure Surveillance Framework for IoT Systems Using Probabilistic Image Encryption

    Full text link
    [EN] This paper proposes a secure surveillance framework for Internet of things (IoT) systems by intelligent integration of video summarization and image encryption. First, an efficient video summarization method is used to extract the informative frames using the processing capabilities of visual sensors. When an event is detected from keyframes, an alert is sent to the concerned authority autonomously. As the final decision about an event mainly depends on the extracted keyframes, their modification during transmission by attackers can result in severe losses. To tackle this issue, we propose a fast probabilistic and lightweight algorithm for the encryption of keyframes prior to transmission, considering the memory and processing requirements of constrained devices that increase its suitability for IoT systems. Our experimental results verify the effectiveness of the proposed method in terms of robustness, execution time, and security compared to other image encryption algorithms. Furthermore, our framework can reduce the bandwidth, storage, transmission cost, and the time required for analysts to browse large volumes of surveillance data and make decisions about abnormal events, such as suspicious activity detection and fire detection in surveillance applications.This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1A2B4011712). Paper no. TII-17-2066.Muhammad, K.; Hamza, R.; Ahmad, J.; Lloret, J.; Wang, H.; Baik, SW. (2018). Secure Surveillance Framework for IoT Systems Using Probabilistic Image Encryption. IEEE Transactions on Industrial Informatics. 14(8):3679-3689. https://doi.org/10.1109/TII.2018.2791944S3679368914

    A Method for Clustering and Cooperation in Wireless Multimedia Sensor Networks

    Get PDF
    Wireless multimedia sensor nodes sense areas that are uncorrelated to the areas covered by radio neighbouring sensors. Thus, node clustering for coordinating multimedia sensing and processing cannot be based on classical sensor clustering algorithms. This paper presents a clustering mechanism for Wireless Multimedia Sensor Networks (WMSNs) based on overlapped Field of View (FoV) areas. Overlapping FoVs in dense networks cause the wasting of power due to redundant area sensing. The main aim of the proposed clustering method is energy conservation and network lifetime prolongation. This objective is achieved through coordination of nodes belonging to the same cluster to perform assigned tasks in a cooperative manner avoiding redundant sensing or processing. A paradigm in this concept, a cooperative scheduling scheme for object detection, is presented based on the proposed clustering method

    Distributed Calibration of Wireless Multimedia Sensor Networks

    Get PDF
    Wireless Multimedia Sensor Networks (WMSNs) are gaining popularity among researchers over the past few years. Knowledge of the geographic locations of the sensor nodes is very important in such sensor networks. Location calibration is a method that uses the connectivity information, the estimated distance information among the sensor nodes, as well as the vision images to find the location of the sensor nodes in WMSNs. We generate local maps for nodes in immediate vicinity and merge them together to get a global map. Local maps are prone to be incorrect mainly due to distribution symmetry in a grid based network and uncertainties in the classical multidimensional scaling. Performance measures to calculate and study the same have been developed and described in detail. In this research we propose a new algorithm which corrects the error to improve the location calibration in WMSN. The major contribution of our thesis lies in developing the theoretical framework for distributed camera calibration based on vision data, local inter-node distances and local topology. Moreover our work does not need any moving targets to perform distributed camera calibration. We further develop innovative algorithms for local map generation and map merging. We evaluated the proposed approach through computer simulations. This location calibration algorithm can thus be used to develop self-organized wireless multimedia sensor networks. We demonstrate the effectiveness of our proposed approach through computer simulation. We demonstrate the proposed approach for different base node and successfully build the global map. The percentage of accuracy obtained demonstrate that the 80% of the nodes can have a good local map, however the global map obtained can accurately localize all the nodes in the network. This brings a completion to the scope of this thesis, the framework developed further provides an opportunity to extend this algorithm to real time wireless multimedia sensor networks.School of Electrical & Computer Engineerin

    Field test of multi-hop image sensing network prototype on a city-wide scale

    Get PDF
    Open Access funded by Chongqing University of Posts and Telecommuniocations Under a Creative Commons license, https://creativecommons.org/licenses/by-nc-nd/4.0/Wireless multimedia sensor network drastically stretches the horizon of traditional monitoring and surveillance systems, of which most existing research have utilised Zigbee or WiFi as the communication technology. Both technologies use ultra high frequencies (mainly 2.4 GHz) and suffer from relatively short transmission range (i.e. 100 m line-of-sight). The objective of this paper is to assess the feasibility and potential of transmitting image information using RF modules with lower frequencies (e.g. 433 MHz) in order to achieve a larger scale deployment such as a city scenario. Arduino platform is used for its low cost and simplicity. The details of hardware properties are elaborated in the article, followed by an investigation of optimum configurations for the system. Upon an initial range testing outcome of over 2000 m line-of-sight transmission distance, the prototype network has been installed in a real life city plot for further examination of performance. A range of suitable applications has been proposed along with suggestions for future research.Peer reviewe

    Compressed Sensing based Low-Power Multi-View Video Coding and Transmission in Wireless Multi-Path Multi-Hop Networks

    Get PDF
    Wireless Multimedia Sensor Network (WMSN) is increasingly being deployed for surveillance, monitoring and Internet-of-Things (IoT) sensing applications where a set of cameras capture and compress local images and then transmit the data to a remote controller. Such captured local images may also be compressed in a multi-view fashion to reduce the redundancy among overlapping views. In this paper, we present a novel paradigm for compressed-sensing-enabled multi-view coding and streaming in WMSN. We first propose a new encoding and decoding architecture for multi-view video systems based on Compressed Sensing (CS) principles, composed of cooperative sparsity-aware block-level rate-adaptive encoders, feedback channels and independent decoders. The proposed architecture leverages the properties of CS to overcome many limitations of traditional encoding techniques, specifically massive storage requirements and high computational complexity. Then, we present a modeling framework that exploits the aforementioned coding architecture. The proposed mathematical problem minimizes the power consumption by jointly determining the encoding rate and multi-path rate allocation subject to distortion and energy constraints. Extensive performance evaluation results show that the proposed framework is able to transmit multi-view streams with guaranteed video quality at lower power consumption
    corecore