25,822 research outputs found

    Scale-free topology optimization for software-defined wireless sensor networks: A cyber-physical system

    Get PDF
    Due to the limited resource and vulnerability in wireless sensor networks, maximizing the network lifetime and improving network survivability have become the top priority problem in network topology optimization. This article presents a wireless sensor networks topology optimization model based on complex network theory and cyber-physical systems using software-defined wireless sensor network architecture. The multiple-factor-driven virtual force field and network division–oriented particle swarm algorithm are introduced into the deployment strategy of super-node for the implementation in wireless sensor networks topology initialization, which help to rationally allocate heterogeneous network resources and balance the energy consumption in wireless sensor networks. Furthermore, the preferential attachment scheme guided by corresponding priority of crucial sensors is added into scale-free structure for optimization in topology evolution process and for protection of vulnerable nodes in wireless sensor networks. Software-defined wireless sensor network–based functional architecture is adopted to optimize the network evolution rules and algorithm parameters using information cognition and flow-table configure mode. The theoretical analysis and experimental results demonstrate that the proposed wireless sensor networks topology optimization model possesses both the small-world effect and the scale-free property, which can contribute to extend the lifetime of wireless sensor networks with energy efficiency and improve the robustness of wireless sensor networks with structure invulnerability

    Un nuevo esquema de agrupación para redes sensoras inalámbricas de radio cognitivas heterogéneas

    Get PDF
    Introduction: This article is the product of the research “Learning-based Spectrum Analysis and Prediction in Cognitive Radio Sensor Networks”, developed at Sejong University in the year 2019. Problem: Most of the clustering schemes for distributed cognitive radio-enabled wireless sensor networks consider homogeneous cognitive radio-enabled wireless sensors. Many clustering schemes for such homogeneouscognitive radio-enabled wireless sensor networks waste resources and suffer from energy inefficiency because of the unnecessary overheads. Objective: The objective of the research is to propose a node clustering scheme that conserves energy and prolongs network lifetime. Methodology: A heterogeneous cognitive radio-enabled wireless sensor network in which only a few nodes have a cognitive radio module and the other nodes are normal sensor nodes. Along with the hardware cost, theproposed scheme is efficient in energy consumption. Results: We simulated the proposed scheme and compared it with the homogeneous cognitive radio-enabled wireless sensor networks. The results show that the proposed scheme is efficient in terms of energyconsumption. Conclusion: The proposed node clustering scheme performs better in terms of network energy conservation and network partition. Originality: There are heterogeneous node clustering schemes in the literature for cooperative spectrum sensing and energy efficiency, but to the best of our knowledge, there is no study that proposes a non-cognitiveradio-enabled sensor clustering for energy conservation along with cognitive radio-enabled wireless sensors. Limitations: The deployment of the proposed special device for cognitive radio-enabled wireless sensors is complicated and requires special hardware with better battery powered cognitive sensor nodes

    Movement-Efficient Sensor Deployment in Wireless Sensor Networks With Limited Communication Range.

    Get PDF
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Three key factors in MWSNs, sensing quality, energy consumption, and connectivity, have attracted plenty of attention, but the interaction of these factors is not well studied. To take all the three factors into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment (or relocation) to optimize the sensing quality with a limited communication range and a specific network lifetime constraint. We derive necessary conditions for the optimal sensor deployment in both homogeneous and heterogeneous MWSNs. According to our derivation, some sensors are idle in the optimal deployment of heterogeneous MWSNs. Using these necessary conditions, we design both centralized and distributed algorithms to provide a flexible and explicit trade-off between sensing uncertainty and network lifetime. The proposed algorithms are successfully extended to more applications, such as area coverage and target coverage, via properly selected density functions. Simulation results show that our algorithms outperform the existing relocation algorithms

    An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks

    Get PDF
    Maximizing the lifetime of wireless sensor networks (WSNs) is a challenging problem. Although some methods exist to address the problem in homogeneous WSNs, research on this problem in heterogeneous WSNs have progressed at a slow pace. Inspired by the promising performance of ant colony optimization (ACO) to solve combinatorial problems, this paper proposes an ACO-based approach that can maximize the lifetime of heterogeneous WSNs. The methodology is based on finding the maximum number of disjoint connected covers that satisfy both sensing coverage and network connectivity. A construction graph is designed with each vertex denoting the assignment of a device in a subset. Based on pheromone and heuristic information, the ants seek an optimal path on the construction graph to maximize the number of connected covers. The pheromone serves as a metaphor for the search experiences in building connected covers. The heuristic information is used to reflect the desirability of device assignments. A local search procedure is designed to further improve the search efficiency. The proposed approach has been applied to a variety of heterogeneous WSNs. The results show that the approach is effective and efficient in finding high-quality solutions for maximizing the lifetime of heterogeneous WSNs

    From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites

    Get PDF
    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy–graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.5

    M-GEAR: Gateway-Based Energy-Aware Multi-Hop Routing Protocol for WSNs

    Full text link
    In this research work, we advise gateway based energy-efficient routing protocol (M-GEAR) for Wireless Sensor Networks (WSNs). We divide the sensor nodes into four logical regions on the basis of their location in the sensing field. We install Base Station (BS) out of the sensing area and a gateway node at the centre of the sensing area. If the distance of a sensor node from BS or gateway is less than predefined distance threshold, the node uses direct communication. We divide the rest of nodes into two equal regions whose distance is beyond the threshold distance. We select cluster heads (CHs)in each region which are independent of the other region. These CHs are selected on the basis of a probability. We compare performance of our protocol with LEACH (Low Energy Adaptive Clustering Hierarchy). Performance analysis and compared statistic results show that our proposed protocol perform well in terms of energy consumption and network lifetime.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
    • …
    corecore