15,624 research outputs found

    Advanced propulsion system for hybrid vehicles

    Get PDF
    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery

    Car Industry developments – oil industry challenges

    Get PDF
    Automotive industry of Europe is one of the greatest economical powers, the „engine of Europe”. It employs directly 2.2 million people and 10 million in related industries and services. Combined turnover of automotive manufacturers reaches 700 billion EUR (retail another 520 billion EUR). The industry is the largest R&D investor in EU. On the other hand the transport sector carries a huge safety and environmental risk. Thanks to this fact the automotive industry is one of the most regulated sectors in the EU. As a result of these regulations: one average car built in 1970s produced as many pollutant elements as one hundred cars manufactured today. These achievements are based on struggles of both the auto and oil industry as parallel with technology development in car industry fuel quality developments achieved by the oil industry drove to a much “cleaner” fuel quality (unleaded sulphur free petrol, reduction of aromatics, benzene; sulphur free diesel, reduction of density, poly-aromatics, etc.). In the end of the 1990s, and especially for the last few years new challenges came into the focus of the auto and oil industry of the EU and the world. Concerns about high energy prices and price volatility, security of worldwide oil supply and climate change became a main policy agenda of the EU and the world. This new policy is reflected in new regulatory initiatives requiring cars using less energy more efficiently, emitting less carbondioxide and using growing proportion of renewable fuels. The European Commission declared the idea of “Cars for Fuels” instead of “Fuels for Cars”. This article discusses in detail the regulations and challenges that rose towards oil and car industry during the recent years. It describes the possible solutions in order to fulfil the requirements of the EU. After that a wide picture is presented without going into much detail on developments of the automotive industry. Developments are divided between vehicle level, engine level and fuel level technologies, also paying attention to technologies that are less known or rather futuristic

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    Phase 1 of the near term hybrid passenger vehicle development program. Appendix B: Trade-off studies, volume 1

    Get PDF
    Tradeoff study activities and the analysis process used are described with emphasis on (1) review of the alternatives; (2) vehicle architecture; and (3) evaluation of the propulsion system alternatives; interim results are presented for the basic hybrid vehicle characterization; vehicle scheme development; propulsion system power and transmission ratios; vehicle weight; energy consumption and emissions; performance; production costs; reliability, availability and maintainability; life cycle costs, and operational quality. The final vehicle conceptual design is examined

    Advanced propulsion system concept for hybrid vehicles

    Get PDF
    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles

    Optimisation algorithms for the charge dispatch of plug-in vehicles based on variable tariffs

    Get PDF
    Plug-in vehicles powered by renewable energies are a viable way to reduce local and total emissions and could also support a highly efficient grid operation. Indirect control by variable tariffs is one option to link charging or even discharging time with the grid load and the renewable energy production. Algorithms are required to develop tariffs and evaluate grid impacts of variable tariffs for electric vehicles (BEV) as well as to schedule the charging process optimisation. Therefore a combinatorial optimisation algorithm is developed and an algorithm based on graph search is used and customised. Both algorithms are explained and compared by performance and adequate applications. The developing approach and the correctness of the quick combinatorial algorithm are proved within this paper. For vehicle to grid (V2G) concepts, battery degradation costs have to be considered. Therefore, common life cycle assumptions based on the battery state of charge (SoC) have been used to include degradation costs for different Li-Ion batteries into the graph search algorithm. An application of these optimisation algorithms, like the onboard dispatcher, which is used in the German fleet test "Flottenversuch ElektromobiliÀt". Grid impact calculations based on the optimisation algorithm are shown. --BEV,V2G,Plug-In-Vehicles (PHEV),optimisation,mobile dispatcher,demand side management,charging,combinatorial algorithm,graph search algorithm,indirect control by variable tariffs

    Forecasting the state of health of electric vehicle batteries to evaluate the viability of car sharing practices

    Get PDF
    Car sharing practices are introducing electric vehicles into their fleet. However, literature suggests that at this point shared electric vehicle systems are failing to reach satisfactory commercial viability. Potential reason for this is the effect of higher vehicle usage which is characteristic for car sharing, and the implication on the battery state of health. In this paper, we forecast state of health for two identical electric vehicles shared by two different car sharing practices. For this purpose, we use real life transaction data from charging stations and different electric vehicles’ sensors. The results indicate that insight into users’ driving and charging behaviour can provide valuable point of reference for car sharing system designers. In particular, the forecasting results show that the moment when electric vehicle battery reaches its theoretical end of life can differ in as much as ÂŒ of time when vehicles are shared under different conditions

    New applications for phosphoric acid fuel cells

    Get PDF
    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on site total energy systems, industrial cogeneration, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting are power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy

    A Study on the Integration of a High-Speed Flywheel as an Energy Storage Device in Hybrid Vehicles

    Get PDF
    The last couple of decades have seen the rise of the hybrid electric vehicle as a compromise between the outstanding specific energy of petrol fuels and its low-cost technology, and the zero tail-gate emissions of the electric vehicle. Despite this, considerable reductions in cost and further increases in fuel economy are needed for their widespread adoption. An alternative low-cost energy storage technology for vehicles is the high-speed flywheel. The flywheel has important limitations that exclude it from being used as a primary energy source for vehicles, but its power characteristics and low-cost materials make it a powerful complement to a vehicle's primary propulsion system. This thesis presents an analysis on the integration of a high-speed flywheel for use as a secondary energy storage device in hybrid vehicles. Unlike other energy storage technologies, the energy content of the flywheel has a direct impact on the velocity of transmission. This presents an important challenge, as it means that the flywheel must be able to rotate at a speed independent of the vehicle's velocity and therefore it must be coupled via a variable speed transmission. This thesis presents some practical ways in which to accomplish this in conventional road vehicles, namely with the use of a variator, a planetary gear set or with the use of a power-split continuously variable transmission. Fundamental analyses on the kinematic behaviour of these transmissions particularly as they pertain to flywheel powertrains are presented. Computer simulations were carried out to compare the performance of various transmissions, and the models developed are presented as well. Finally the thesis also contains an investigation on the driving and road conditions that have the most beneficial effect on hybrid vehicle performance, with a particular emphasis on the effect that the road topography has on fuel economy and the significance of this
    • 

    corecore